JP2005082677A - Manufacturing process for polycarbonate resin - Google Patents

Manufacturing process for polycarbonate resin Download PDF

Info

Publication number
JP2005082677A
JP2005082677A JP2003315229A JP2003315229A JP2005082677A JP 2005082677 A JP2005082677 A JP 2005082677A JP 2003315229 A JP2003315229 A JP 2003315229A JP 2003315229 A JP2003315229 A JP 2003315229A JP 2005082677 A JP2005082677 A JP 2005082677A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
bis
aromatic
parts
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003315229A
Other languages
Japanese (ja)
Inventor
Hiroshi Shudo
弘 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2003315229A priority Critical patent/JP2005082677A/en
Priority to KR1020057008566A priority patent/KR100956048B1/en
Priority to DE60333218T priority patent/DE60333218D1/en
Priority to TW92131783A priority patent/TWI315320B/en
Priority to AU2003280769A priority patent/AU2003280769B2/en
Priority to PCT/JP2003/014458 priority patent/WO2004044033A1/en
Priority to US10/534,706 priority patent/US7244804B2/en
Priority to EP20030772737 priority patent/EP1566396B1/en
Priority to CA 2505969 priority patent/CA2505969C/en
Publication of JP2005082677A publication Critical patent/JP2005082677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process for a polycarbonate copolymer having excellent heat resistance and stiffness and improved in color. <P>SOLUTION: This manufacturing process for the polycarbonate resin is the one, in which, 5-95 mole% of the wholly aromatic dihydroxy component consists of a fluorene type bisphenol represented by formula [1] and 95-5 mole% of that consists of a dihydroxy component represented by formula [2], and in which a phosgenation reaction and a polymerization reaction are conducted substantially in the absence of oxygen. In formula [1], R<SP>1</SP>-R<SP>4</SP>are each independently hydrogen atom, a 1-9C hydrocarbon group which may contain an aromatic group, or a halogen atom. In formula [2] R<SP>5</SP>-R<SP>8</SP>are each independently hydrogen atom, a 1-9C hydrocarbon group which may contain an aromatic group, or a halogen atom; and W is a single bond, a 1-20C hydrocarbon group which may contain an aromatic group, or O, S, SO, SO<SB>2</SB>, CO or COO group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ポリカーボネート樹脂の製造方法に関する。さらに詳しくは実質的に酸素不在下でホスゲン化反応及び重合反応を行うことにより、優れた色相のポリカーボネート樹脂を得ることを目的とするポリカーボネート樹脂の製造方法に関する。   The present invention relates to a method for producing a polycarbonate resin. More specifically, the present invention relates to a method for producing a polycarbonate resin which is intended to obtain a polycarbonate resin having an excellent hue by performing a phosgenation reaction and a polymerization reaction substantially in the absence of oxygen.

従来、ビスフェノールAにカーボネート前駆物質を反応させて得られるポリカーボネート樹脂は透明性、耐熱性、機械的特性、寸法安定性が優れているがゆえにエンジニアリングプラスチックとして多くの分野に広く使用されているが、近年、加工成形品の軽薄短小化が進み、更なる耐熱性、剛性の向上したポリカーボネート樹脂が求められている。   Conventionally, polycarbonate resins obtained by reacting bisphenol A with a carbonate precursor have been widely used in many fields as engineering plastics because of their excellent transparency, heat resistance, mechanical properties, and dimensional stability. 2. Description of the Related Art In recent years, the light and thin size of processed molded articles has progressed, and a polycarbonate resin having further improved heat resistance and rigidity has been demanded.

ポリカーボネート樹脂の耐熱性、剛性を向上するためには、一般的に嵩高い動きにくい構造を有するビスフェノール類を用いる方法があり、種々のポリカーボネート樹脂が提案されている。中でも、特定のフルオレン構造を有するポリカーボネート樹脂が提案されている(例えば特許文献1,2参照)。しかしながら、これらの構造を有するポリカーボネート樹脂はホスゲン化反応及び重合反応中に著しく着色しやすく、したがって成形品の色相が黄色味を帯びるという問題があった。これを解決する手法として、ポリマー溶液に可視光を照射する方法(特許文献3参照)や、ポリマー溶液に金属不活性化剤及び/又は活性水素含有化合物を添加する方法(特許文献4参照)が提案されているが、これらは溶液色や流延法により作成するフィルムの色相を改善することはできても、熱履歴を与えるような成形法(射出成形法、圧縮成形法、溶融押出法など)にて成形体を作成した場合、上記改善法を用いても成形体の色相を改善することはできなかった。   In order to improve the heat resistance and rigidity of the polycarbonate resin, there is generally a method using bisphenols having a bulky structure that is difficult to move, and various polycarbonate resins have been proposed. Among them, a polycarbonate resin having a specific fluorene structure has been proposed (see, for example, Patent Documents 1 and 2). However, the polycarbonate resin having these structures is remarkably easily colored during the phosgenation reaction and the polymerization reaction, and thus there is a problem that the hue of the molded product is yellowish. Methods for solving this include a method of irradiating a polymer solution with visible light (see Patent Document 3) and a method of adding a metal deactivator and / or an active hydrogen-containing compound to the polymer solution (see Patent Document 4). Although proposed, these can improve the color of the film produced by solution color and casting method, but can be used to form a thermal history (injection molding method, compression molding method, melt extrusion method, etc.) ), The hue of the molded body could not be improved even using the above improvement method.

特開平11−174424号公報JP-A-11-174424 特開平8−134198号公報JP-A-8-134198 特開2002−080580号公報JP 2002-080580 A 特開2002−080734号公報JP 2002-080734 A

本発明の目的は、優れた耐熱性、剛性を持ち、且つ色相の良好なポリカーボネート樹脂の製造方法を提供することにある。色相が良好であることは、樹脂をレンズ、プリズム及び光ファイバーなどの光路変換部品、リフローハンダ付け部品、光ディスクなどの光学部材に用いる為には好ましい。また、樹脂に任意の色を付与するうえでも好ましい。   An object of the present invention is to provide a method for producing a polycarbonate resin having excellent heat resistance, rigidity and good hue. Good hue is preferable for using the resin for optical path conversion parts such as lenses, prisms and optical fibers, reflow soldering parts, and optical members such as optical disks. Moreover, it is preferable also when giving arbitrary colors to resin.

本発明者はこの目的を達成せんとして鋭意研究を重ねた結果、特定の二価フェノールを使用してポリカーボネート共重合体を製造する際、ホスゲン化反応及び重合反応を実質的に酸素不在下で行うことによって、上記目的を達成することを見出し、本発明に到達した。   As a result of intensive research aimed at achieving this object, the present inventor conducted a phosgenation reaction and a polymerization reaction substantially in the absence of oxygen when producing a polycarbonate copolymer using a specific dihydric phenol. As a result, the inventors have found that the above object can be achieved, and have reached the present invention.

すなわち、本発明によれば全芳香族ジヒドロキシ成分の5〜95モル%が下記一般式[1]、 That is, according to the present invention, 5 to 95 mol% of the wholly aromatic dihydroxy component is represented by the following general formula [1],

Figure 2005082677
[式中、R〜Rは夫々独立して水素原子、炭素原子数1〜9の芳香族基を含んでもよい炭化水素基又はハロゲン原子である。]で表されるフルオレン系ビスフェノール、好ましくは9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、95〜5モル%が下記一般式[2]
Figure 2005082677
[Wherein, R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group which may contain an aromatic group having 1 to 9 carbon atoms, or a halogen atom. ], Preferably 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 95 to 5 mol% is represented by the following general formula [2]

Figure 2005082677
[式中、R〜Rは夫々独立して水素原子、炭素原子数1〜9の芳香族基を含んでもよい炭化水素基又はハロゲン原子であり、Wは単結合、炭素原子数1〜20の芳香族基を含んでもよい炭化水素基、O、S、SO、SO、CO又はCOO基である。]
で表されるジヒドロキシ成分からなるポリカーボネート樹脂の製造方法であって、ホスゲン化反応及び重合反応を実質的に酸素不在下で行うことを特徴とするポリカーボネート樹脂の製造方法が提供される。
Figure 2005082677
[Wherein, R 5 to R 8 are each independently a hydrogen atom, a hydrocarbon group or a halogen atom which may contain an aromatic group having 1 to 9 carbon atoms, and W is a single bond, having 1 to 1 carbon atoms. A hydrocarbon group optionally containing 20 aromatic groups, an O, S, SO, SO 2 , CO or COO group. ]
A method for producing a polycarbonate resin comprising a dihydroxy component represented by the formula: wherein the phosgenation reaction and the polymerization reaction are carried out substantially in the absence of oxygen.

この製造法を用いることにより該ポリカーボネート樹脂5gを塩化メチレン50mlに遮光状態にて溶解した溶液のb値が5.0以下であるポリカーボネート共重合体の製造、提供が可能となる。なお、溶液のb値は4.0以下であることがより好ましく、3.5以下が最も好ましい。また、このポリカーボネート共重合体を用いて成形した場合色相の良好な成形品を得ることができる。この成形品のYI値は厚さ2mmの見本板で測定した場合、6.0以下であることが好ましい。なお、このYI値は4.5以下がより好ましく、3.5以下が最も好ましい。YI値が6.0より大きい場合、色相が悪く、光学成形品として用いることが困難となる。   By using this production method, it is possible to produce and provide a polycarbonate copolymer having a b value of 5.0 or less in a solution obtained by dissolving 5 g of the polycarbonate resin in 50 ml of methylene chloride in a light-shielded state. The b value of the solution is more preferably 4.0 or less, and most preferably 3.5 or less. Moreover, when it shape | molds using this polycarbonate copolymer, a molded article with a favorable hue can be obtained. The YI value of this molded product is preferably 6.0 or less when measured with a sample plate having a thickness of 2 mm. The YI value is more preferably 4.5 or less, and most preferably 3.5 or less. When the YI value is larger than 6.0, the hue is bad and it is difficult to use as an optical molded product.

本発明のポリカーボネート共重合体の製造方法は、通常の芳香族ポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンなどのカーボネート前駆物質を反応させる方法と同じであるが、ホスゲン化反応および重合反応において実質的に酸素を存在させない事が必要である。   The production method of the polycarbonate copolymer of the present invention is the same as a reaction means known per se for producing a normal aromatic polycarbonate resin, for example, a method of reacting an aromatic dihydroxy component with a carbonate precursor such as phosgene. It is necessary that substantially no oxygen is present in the phosgenation reaction and the polymerization reaction.

「実質的に酸素を存在させない」とは、系内の気相および液相に酸素を存在させないことを意味し、例えば気相および液相の酸素濃度が0.5ppm以下、好ましくは0.2ppm以下、更に好ましくは0.1ppm以下であることを意味する。   “Substantially no oxygen” means that no oxygen is present in the gas phase and liquid phase in the system. For example, the oxygen concentration in the gas phase and liquid phase is 0.5 ppm or less, preferably 0.2 ppm. Hereinafter, it means more preferably 0.1 ppm or less.

以下に本発明の目的である、優れた耐熱性、剛性を持ち、且つ色相の良好なポリカーボネート樹脂の製造方法について基本的な手段を簡単に説明する。   The basic means of the method for producing a polycarbonate resin having excellent heat resistance, rigidity and good hue, which is the object of the present invention, will be briefly described below.

カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。この時、これらの溶媒は、使用する前に窒素等を吹き込む手法及び還元剤を添加する手法又はその両方の手法で溶媒中の酸素を除いておくことことにより色相の良好なポリカーボネート樹脂の製造が可能となる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0〜40℃であり、反応時間は数分〜5時間である。反応の際にも、窒素を吹き込む手法やハイドロサルファイトのような還元剤を添加することで反応溶液中の酸素を常に除いておくことにより、さらに色相の良好なポリカーボネート樹脂の製造が可能となる。また、反応槽に窒素シール等を施し、酸素の侵入を防止する事も重要である。さらにその後の精製工程も窒素雰囲気下において実施することも色相改善には効果がある。   In a reaction using, for example, phosgene as a carbonate precursor, the reaction is usually performed in the presence of an acid binder and a solvent. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. At this time, these solvents can be used to produce a polycarbonate resin having a good hue by removing oxygen in the solvent by blowing nitrogen or the like and / or adding a reducing agent before use. It becomes possible. In order to accelerate the reaction, a catalyst such as a tertiary amine or a quaternary ammonium salt can also be used. In that case, reaction temperature is 0-40 degreeC normally, and reaction time is several minutes-5 hours. Even during the reaction, it is possible to produce a polycarbonate resin with a better hue by always removing oxygen in the reaction solution by adding a reducing agent such as a method of blowing nitrogen or hydrosulfite. . It is also important to prevent the invasion of oxygen by applying a nitrogen seal or the like to the reaction tank. Furthermore, the subsequent purification step is also effective in improving the hue by performing it in a nitrogen atmosphere.

本発明の芳香族ポリカーボネート共重合体は、それを構成する芳香族ジヒドロキシ成分として、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが全芳香族ジヒドロキシ成分の5〜95モル%、好ましくは10〜95モル%、さらに好ましくは30〜85モル%である。5モル%未満の場合、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン成分を用いる目的の一つである耐熱用材料としての特性が不満足なものとなり好ましくない。   The aromatic polycarbonate copolymer of the present invention has 9,9-bis (4-hydroxy-3-methylphenyl) fluorene as an aromatic dihydroxy component constituting it, 5 to 95 mol% of the total aromatic dihydroxy component, Preferably it is 10-95 mol%, More preferably, it is 30-85 mol%. If it is less than 5 mol%, the properties as a heat-resistant material, which is one of the purposes of using the 9,9-bis (4-hydroxy-3-methylphenyl) fluorene component, are unsatisfactory.

前記9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンは、その10gをエタノール50mlに溶解した溶液を光路長30mmで測定したb値が好ましくは6.0以下、より好ましくは5.5以下であり、さらに好ましくは5.0以下である。b値が上記範囲内であれば、得られるポリカーボネート共重合体から形成される成形体は色相および強度が高く、延伸フィルム特性も良好となり好ましい。   The 9,9-bis (4-hydroxy-3-methylphenyl) fluorene has a b value of preferably 6.0 or less, more preferably 5. measured by measuring a solution of 10 g in 50 ml of ethanol at an optical path length of 30 mm. 5 or less, more preferably 5.0 or less. When the b value is within the above range, a molded product formed from the obtained polycarbonate copolymer has a high hue and strength, and a stretched film property is also preferable.

通常、この9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンはo−クレゾールとフルオレノンの反応によって得られる。前記特定のb値を有する9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンは、特定の処理を行い不純物を除去することによって得ることができる。具体的には、o−クレゾールとフルオレノンの反応後に、未反応のo−クレゾールを留去した後、残さをアルコール系、ケトン系またはベンゼン誘導体系の溶媒に溶解し、これに活性白土または活性炭を加えてろ過後、ろ液から結晶化した生成物をろ過して精製された9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンを得ることができる。除去される不純物としては、2,4′−ジヒドロキシ体、2,2′−ジヒドロキシ体および構造不明の不純物等である。かかる精製に用いるアルコール系の溶媒としてはメタノール、エタノール、プロパノール、ブタノール等の低級アルコール、ケトン系の溶媒としてはアセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン等の低級脂肪族ケトン類およびこれらの混合物が好ましく、ベンゼン誘導体系の溶媒としてはトルエン、キシレン、ベンゼンおよびこれらの混合物が好ましい。溶媒の使用量はフルオレン化合物が十分に溶解する量であれば足り、通常フルオレン化合物に対して2〜10倍量程度である。活性白土としては市販されている粉末状または粒状のシリカ−アルミナを主成分とするものが用いられる。また、活性炭としては市販されている粉末状または粒状のものが用いられる。   The 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is usually obtained by the reaction of o-cresol and fluorenone. The 9,9-bis (4-hydroxy-3-methylphenyl) fluorene having the specific b value can be obtained by performing a specific treatment to remove impurities. Specifically, after the reaction between o-cresol and fluorenone, unreacted o-cresol is distilled off, and the residue is dissolved in an alcohol, ketone, or benzene derivative solvent, and activated clay or activated carbon is added thereto. In addition, after filtration, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene purified by filtering the product crystallized from the filtrate can be obtained. Examples of impurities to be removed include 2,4′-dihydroxy form, 2,2′-dihydroxy form and impurities whose structure is unknown. The alcohol solvent used for such purification is preferably a lower alcohol such as methanol, ethanol, propanol or butanol, and the ketone solvent is preferably a lower aliphatic ketone such as acetone, methyl ethyl ketone, methyl isopropyl ketone or cyclohexanone and a mixture thereof. As the benzene derivative solvent, toluene, xylene, benzene and a mixture thereof are preferable. The amount of the solvent used is sufficient if the fluorene compound is sufficiently dissolved, and is usually about 2 to 10 times the amount of the fluorene compound. As the activated clay, a commercially available powdery or granular silica-alumina main component is used. Further, as the activated carbon, commercially available powdery or granular materials are used.

本発明の芳香族ポリカーボネート共重合体において用いられる上記一般式[2]で示される他のジヒドロキシ成分としては、通常芳香族ポリカーボネートのジヒドロキシ成分として使用されているものであればよく、例えばハイドロキノン、レゾルシノール、4,4′−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン(ビスフェノールE)、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン(ビスフェノールC)、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4′−(p−フェニレンジイソプロピリデン)ジフェノール、α,α′−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン(ビスフェノールM)、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサンなどが挙げられ、なかでもビスフェノールA、ビスフェノールZ、ビスフェノールC、ビスフェノールE、ビスフェノールMが好ましく、特にビスフェノールAが好ましい。   The other dihydroxy component represented by the above general formula [2] used in the aromatic polycarbonate copolymer of the present invention may be any one that is usually used as a dihydroxy component of an aromatic polycarbonate. For example, hydroquinone, resorcinol 4,4'-biphenol, 1,1-bis (4-hydroxyphenyl) ethane (bisphenol E), 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4- Hydroxy-3-methylphenyl) propane (bisphenol C), 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis (4 -Hydroxyphenyl) cyclohexane (bisphenol Z), 1,1-bis (4- Droxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) pentane, 4,4 '-(p-phenylenediisopropylidene) diphenol, α, α'-bis ( 4-hydroxyphenyl) -m-diisopropylbenzene (bisphenol M), 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, and the like. Among them, bisphenol A, bisphenol Z, bisphenol C, bisphenol E, Bisphenol M is preferred, and bisphenol A is particularly preferred.

芳香族ポリカーボネート共重合体はそのポリマーを塩化メチレンに溶解した溶液での20℃における比粘度が0.2〜1.2の範囲が好ましく、0.25〜1.0の範囲がより好ましく、0.27〜0.80の範囲がさらに好ましい。比粘度が上記範囲内であれば成形品、殊にシートの強度が十分強く、溶融粘度および溶液粘度が適当で、取り扱いが容易であり好ましい。   The aromatic polycarbonate copolymer preferably has a specific viscosity at 20 ° C. in a solution of the polymer in methylene chloride in the range of 0.2 to 1.2, more preferably in the range of 0.25 to 1.0. The range of .27 to 0.80 is more preferable. If the specific viscosity is within the above range, the strength of the molded product, particularly the sheet, is sufficiently strong, the melt viscosity and the solution viscosity are appropriate, and handling is easy and preferable.

本発明の芳香族ポリカーボネート共重合体は、その重合反応において、末端停止剤として通常使用される単官能フェノール類を使用することができる。カーボネート前駆物質としてホスゲンを使用する反応の場合、単官能フェノール類は末端停止剤として分子量調節のために一般的に使用され、また得られた芳香族ポリカーボネート共重合体は、末端が単官能フェノール類に基づく基によって封鎖されているので、そうでないものと比べて熱安定性に優れている。   In the aromatic polycarbonate copolymer of the present invention, monofunctional phenols that are usually used as a terminal terminator can be used in the polymerization reaction. In the case of a reaction using phosgene as a carbonate precursor, monofunctional phenols are generally used as end terminators for molecular weight control, and the resulting aromatic polycarbonate copolymer has monofunctional phenols terminated. Since it is blocked by a group based on, it is superior in thermal stability as compared to those not.

かかる単官能フェノール類としては、芳香族ポリカーボネート樹脂の末端停止剤として使用されるものであればよく、一般にはフェノール或いは低級アルキル置換フェノールであって、下記一般式で表される単官能フェノール類を示すことができる。   Such monofunctional phenols only need to be used as a terminal terminator for aromatic polycarbonate resins, and are generally phenols or lower alkyl-substituted phenols, and monofunctional phenols represented by the following general formula: Can show.

Figure 2005082677
[式中、Aは水素原子、炭素数1〜9の直鎖または分岐のアルキル基あるいはアリールアルキル基であり、rは1〜5、好ましくは1〜3の整数である。]
Figure 2005082677
[Wherein, A is a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms or an arylalkyl group, and r is an integer of 1 to 5, preferably 1 to 3. ]

前記単官能フェノール類の具体例としては、例えばフェノール、p−tert−ブチルフェノール、p−クミルフェノールおよびイソオクチルフェノールが挙げられる。   Specific examples of the monofunctional phenols include phenol, p-tert-butylphenol, p-cumylphenol and isooctylphenol.

また、他の単官能フェノール類としては、長鎖のアルキル基或いは脂肪族エステル基を置換基として有するフェノール類または安息香酸クロライド類、もしくは長鎖のアルキルカルボン酸クロライド類を使用することができ、これらを用いて芳香族ポリカーボネート共重合体の末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易となるばかりでなく、物性も改良される。特に樹脂の吸水率を低くする効果があり、好ましく使用される。これらは下記一般式[I−a]〜[I−h]で表される。   Further, as other monofunctional phenols, phenols or benzoic acid chlorides having a long chain alkyl group or an aliphatic ester group as a substituent, or long chain alkyl carboxylic acid chlorides can be used, When these are used to block the ends of the aromatic polycarbonate copolymers, they not only function as end terminators or molecular weight regulators, but also improve the melt fluidity of the resin and facilitate molding processes. The physical properties are also improved. In particular, it has the effect of reducing the water absorption rate of the resin and is preferably used. These are represented by the following general formulas [Ia] to [Ih].

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

[前記一般式[I−a]〜[I−h]中、Xは−R−O−、−R−CO−O−または−R−O−CO−である、ここでRは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、Tは単結合または上記Xと同様の結合を示し、nは10〜50の整数を示す。
Qはハロゲン原子または炭素数1〜10、好ましくは1〜5の一価の脂肪族炭化水素基を示し、pは0〜4の整数を示し、Yは炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、Wは水素原子、−CO−R17、−CO−O−R18またはR19である、ここでR17、R18およびR19は、それぞれ炭素数1〜10、好ましくは1〜5の一価の脂肪族炭化水素基、炭素数4〜8、好ましくは5〜6の一価の脂環族炭化水素基または炭素数6〜15、好ましくは6〜12の一価の芳香族炭化水素基を示す。
aは4〜20、好ましくは5〜10の整数を示し、mは1〜100、好ましくは3〜60、特に好ましくは4〜50の整数を示し、Zは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、Wは水素原子、炭素数1〜10、好ましくは1〜5の一価の脂肪族炭化水素基、炭素数4〜8、好ましくは5〜6の一価の脂環族炭化水素基または炭素数6〜15、好ましくは6〜12の一価の芳香族炭化水素基を示す。]
[In the general formulas [Ia] to [Ih], X represents —RO—, —R—CO—O—, or —R—O—CO—, wherein R represents a single bond or A divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, T represents a single bond or a bond similar to the above X, and n represents an integer of 10 to 50.
Q represents a halogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, p represents an integer of 0 to 4, Y represents 1 to 10 carbon atoms, preferably 1 to 1 carbon atoms. 5 is a divalent aliphatic hydrocarbon group, W 1 is a hydrogen atom, —CO—R 17 , —CO—O—R 18 or R 19 , wherein R 17 , R 18 and R 19 are 1 to 10 carbon atoms, preferably 1 to 5 monovalent aliphatic hydrocarbon groups, 4 to 8 carbon atoms, preferably 5 to 6 monovalent alicyclic hydrocarbon groups or 6 to 15 carbon atoms, respectively. Preferably 6-12 monovalent | monohydric aromatic hydrocarbon group is shown.
a represents an integer of 4 to 20, preferably 5 to 10, m represents an integer of 1 to 100, preferably 3 to 60, particularly preferably 4 to 50, and Z represents a single bond or a carbon number of 1 to 10, preferably an 1-5 divalent aliphatic hydrocarbon group, W 2 is a hydrogen atom, C1-10, preferably 1 to 5 monovalent aliphatic hydrocarbon group, having 4 to 8 carbon atoms, Preferably, it represents a monovalent alicyclic hydrocarbon group having 5 to 6 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms, preferably 6 to 12 carbon atoms. ]

これらのうち好ましいのは、[I−a]および[I−b]の置換フェノール類である。この[I−a]の置換フェノール類としては、nが10〜30、特に10〜26のものが好ましく、その具体例としては、例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノールなどを挙げることができる。   Of these, the substituted phenols of [Ia] and [Ib] are preferable. As the substituted phenols of [Ia], those having n of 10 to 30, particularly 10 to 26 are preferable. Specific examples thereof include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, and octadecyl. Phenol, eicosylphenol, docosylphenol and triacontylphenol can be mentioned.

また、[I−b]の置換フェノール類としてはXが−R−CO−O−であり、Rが単結合である化合物が適当であり、nが10〜30、特に10〜26のものが好適であって、その具体例としては、例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。   Further, as the substituted phenols of [Ib], compounds in which X is —R—CO—O— and R is a single bond are suitable, and those in which n is 10 to 30, particularly 10 to 26. Specific examples thereof include, for example, decyl hydroxybenzoate, dodecyl hydroxybenzoate, tetradecyl hydroxybenzoate, hexadecyl hydroxybenzoate, eicosyl hydroxybenzoate, docosyl hydroxybenzoate and triacontyl hydroxybenzoate.

前記一般式[I−a]〜[I−g]で示される置換フェノール類または置換安息香酸クロライドにおいて置換基の位置は、p位またはo位が一般的に好ましく、その両者の混合物が好ましい。   In the substituted phenols or substituted benzoic acid chlorides represented by the above general formulas [Ia] to [Ig], the position of the substituent is generally preferably the p-position or the o-position, and a mixture of both is preferable.

前記単官能フェノール類は、得られた芳香族ポリカーボネート共重合体の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル%末端に導入されることが望ましく、また単官能フェノール類は単独でもしくは2種以上混合して使用してもよい。   The monofunctional phenols are desirably introduced into at least 5 mol%, preferably at least 10 mol% of the terminals of the resulting aromatic polycarbonate copolymer, and the monofunctional phenols are used alone. Or you may use it in mixture of 2 or more types.

また、本発明の芳香族ポリカーボネート共重合体において、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが、全芳香族ヒドロキシ成分の60モル%以上である場合は、樹脂の流動性が低下することがあり、そのため前記一般式[I−a]〜[I−g]で示される置換フェノール類または置換安息香酸クロライド類を末端停止剤として使用することが好ましい。   Further, in the aromatic polycarbonate copolymer of the present invention, when 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is 60 mol% or more of the total aromatic hydroxy component, the fluidity of the resin Therefore, it is preferable to use the substituted phenols or substituted benzoic acid chlorides represented by the above general formulas [Ia] to [Ig] as a terminal terminator.

本発明の芳香族ポリカーボネート共重合体は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。また少量の3官能化合物を共重合した分岐ポリカーボネートであってもよい。   The aromatic polycarbonate copolymer of the present invention may be a polyester carbonate copolymerized with an aromatic dicarboxylic acid, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or a derivative thereof, as long as the gist of the present invention is not impaired. . Moreover, the branched polycarbonate which copolymerized a small amount of trifunctional compounds may be sufficient.

本発明の芳香族ポリカーボネート共重合体は、そのガラス転移温度が160℃以上が好ましく、180℃以上がより好ましく、200℃以上がさらに好ましい。   The aromatic polycarbonate copolymer of the present invention has a glass transition temperature of preferably 160 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 200 ° C. or higher.

本発明の芳香族ポリカーボネート樹脂には、離型剤、蛍光増白剤、熱安定剤、酸化防止剤、紫外線吸収剤、着色剤、帯電防止剤、抗菌剤等改質改良剤を適宜添加して用いることができる。   To the aromatic polycarbonate resin of the present invention, a modifying agent such as a mold release agent, a fluorescent brightening agent, a heat stabilizer, an antioxidant, an ultraviolet absorber, a coloring agent, an antistatic agent, an antibacterial agent, and the like are appropriately added. Can be used.

本発明において使用される蛍光増白剤は、合成樹脂等の色調を白色あるいは青白色に改善するために用いられるものであれば特に制限はなく、例えばスチルベン系、ベンズイミダゾール系、ナフタルイミド系、ローダミン系、クマリン系、オキサジン系化合物等が挙げられる。   The fluorescent whitening agent used in the present invention is not particularly limited as long as it is used for improving the color tone of a synthetic resin to white or bluish white, for example, stilbene, benzimidazole, naphthalimide, Examples include rhodamine-based, coumarin-based, and oxazine-based compounds.

本発明で用いられる紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤またはベンゾフェノン系紫外線吸収剤が使用される。   As the ultraviolet absorber used in the present invention, a benzotriazole-based ultraviolet absorber, a triazine-based ultraviolet absorber, a benzoxazine-based ultraviolet absorber, or a benzophenone-based ultraviolet absorber is used.

ベンゾトリアゾール系紫外線吸収剤としては、例えば2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3,4,5,6−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル)−2H−ベンゾトリアゾール、2−(3’,5’−ジ−tert−アミル−2’−ヒドロキシフェニル)ベンゾトリアゾール、5−トリフルオロメチル−2−(2−ヒドロキシ−3−(4−メトキシ−α−クミル)−5−tert−ブチルフェニル)−2H−ベンゾトリアゾール等が挙げられる。   Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-3 ′-(3,4,5,6-tetrahydrophthalimidomethyl). ) -5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) ) Benzotriazole, 2- (3'-tert-butyl-5'-methyl-2'-hydroxyphenyl) -5-chlorobenzotriazole, 2,2'-methylenebis (4- (1,1,3,3- Tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3 ', 5'-bi) (Α, α-dimethylbenzyl) phenyl) -2H-benzotriazole, 2- (3 ′, 5′-di-tert-amyl-2′-hydroxyphenyl) benzotriazole, 5-trifluoromethyl-2- (2 -Hydroxy-3- (4-methoxy-α-cumyl) -5-tert-butylphenyl) -2H-benzotriazole and the like.

なかでも2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3,4,5,6−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシフェニル)−5−クロロベンゾトリアゾールが好ましく、更に2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾールが好ましい。   Among them, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′-(3,4,5,6-tetrahydrophthalimidomethyl) -5′-methylphenyl) Benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (3 '-Tert-butyl-5'-methyl-2'-hydroxyphenyl) -5-chlorobenzotriazole is preferred, and 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole is more preferred.

トリアジン系の紫外線吸収剤としては、ヒドロキシフェニルトリアジン系の例えば商品名チヌビン400(チバスペシャルティーケミカル社製)が好ましい。   As the triazine-based ultraviolet absorber, hydroxyphenyltriazine-based, for example, trade name Tinuvin 400 (manufactured by Ciba Specialty Chemicals) is preferable.

ベンゾオキサジン系の紫外線吸収剤としては、2−メチル−3,1−ベンゾオキサジン−4−オン、2−ブチル−3,1−ベンゾオキサジン−4−オン、2−フェニル−3,1−ベンゾオキサジン−4−オン、2−(1−又は2−ナフチル)−3,1−ベンゾオキサジン−4−オン、2−(4−ビフェニル)−3,1−ベンゾオキサジン−4−オン、2,2’−ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2,6又は1,5−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、1,3,5−トリス(3,1−ベンゾオキサジン−4−オン−2−イル)ベンゼンなどが挙げられるが、中でも2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)が好ましい。   Examples of the benzoxazine-based ultraviolet absorber include 2-methyl-3,1-benzoxazin-4-one, 2-butyl-3,1-benzoxazine-4-one, 2-phenyl-3,1-benzoxazine -4-one, 2- (1- or 2-naphthyl) -3,1-benzoxazin-4-one, 2- (4-biphenyl) -3,1-benzoxazin-4-one, 2,2 ′ -Bis (3,1-benzoxazin-4-one), 2,2'-p-phenylenebis (3,1-benzoxazin-4-one, 2,2'-m-phenylenebis (3,1- Benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2,6 or 1,5-naphthalene) ) Bis (3,1-benzoxazin-4-one) 1,3,5-tris (3,1-benzoxazin-4-on-2-yl) benzene and the like, among others, 2,2′-p-phenylenebis (3,1-benzoxazine-4- ON) is preferred.

ベンゾフェノン系紫外線吸収剤としては、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン等が挙げられ、なかでも2−ヒドロキシ−4−n−オクトキシベンゾフェノンが好ましい。これらの紫外線吸収剤は単独で用いても、二種以上併用してもよい。   Examples of the benzophenone ultraviolet absorber include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone and the like can be mentioned, among which 2-hydroxy-4-n-octoxybenzophenone is preferable. These ultraviolet absorbers may be used alone or in combination of two or more.

これらの紫外線吸収剤は、ポリカーボネート樹脂と紫外線吸収剤との合計量を100重量%として0.01〜5重量%であり、好ましくは0.02〜3重量%であり、特に好ましくは0.05〜2重量%である。0.01重量%未満では紫外線吸収性能が不十分で、5重量%を超えると樹脂の色相が悪化することがあるので好ましくない。   These ultraviolet absorbers are 0.01 to 5% by weight, preferably 0.02 to 3% by weight, particularly preferably 0.05, based on 100% by weight of the total amount of the polycarbonate resin and the ultraviolet absorber. ~ 2% by weight. If it is less than 0.01% by weight, the ultraviolet absorption performance is insufficient, and if it exceeds 5% by weight, the hue of the resin may be deteriorated.

本発明では、ブルーイング剤を用いてもよく、かかるブルーイング剤としては、例えばバイエル(株)製のマクロレックスバイオレット、三菱化学(株)製のダイアレジンバイオレット、ダイアレジンブルー、サンド(株)製のテラゾールブルー等が挙げられ、最も好適なものとしてマクロレックスバイオレットが挙げられる。これらのブルーイング剤は好ましくは0.1〜3ppm、より好ましくは0.3〜1.5ppm、最も好ましくは0.3〜1.2ppmの濃度で芳香族ポリカーボネート樹脂中に配合される。   In the present invention, a bluing agent may be used. Examples of such a bluing agent include Macrolex Violet manufactured by Bayer Co., Ltd., Dialresin Violet manufactured by Mitsubishi Chemical Co., Ltd., Dial Resin Blue, Sand Co., Ltd. Terazole blue and the like are available, and the most suitable is macrolex violet. These bluing agents are preferably incorporated into the aromatic polycarbonate resin at a concentration of 0.1 to 3 ppm, more preferably 0.3 to 1.5 ppm, and most preferably 0.3 to 1.2 ppm.

本発明において、前記芳香族ポリカーボネート共重合体に必要に応じて、リン酸、亜リン酸、ホスホン酸、亜ホスホン酸およびこれらのエステルよりなる群から選択された少なくとも1種のリン化合物を配合することができる。かかるリン化合物の配合量は、該芳香族ポリカーボネート共重合体に対して0.0001〜0.05重量%が好ましく、0.0005〜0.02重量%がより好ましく、0.001〜0.01重量%が特に好ましい。このリン化合物を配合することにより、かかる芳香族ポリカーボネート共重合体の熱安定性が向上し、成形時における分子量の低下や色相の悪化が防止される。   In the present invention, if necessary, the aromatic polycarbonate copolymer is blended with at least one phosphorus compound selected from the group consisting of phosphoric acid, phosphorous acid, phosphonic acid, phosphonous acid and esters thereof. be able to. The amount of the phosphorus compound is preferably 0.0001 to 0.05% by weight, more preferably 0.0005 to 0.02% by weight, and 0.001 to 0.01 based on the aromatic polycarbonate copolymer. Weight percent is particularly preferred. By blending this phosphorus compound, the thermal stability of the aromatic polycarbonate copolymer is improved, and a decrease in molecular weight and a deterioration in hue during molding are prevented.

かかるリン化合物としては、リン酸、亜リン酸、ホスホン酸、亜ホスホン酸およびこれらのエステルよりなる群から選択される少なくとも1種のリン化合物であり、好ましくは下記一般式   The phosphorus compound is at least one phosphorus compound selected from the group consisting of phosphoric acid, phosphorous acid, phosphonic acid, phosphonous acid, and esters thereof, preferably the following general formula

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

Figure 2005082677
Figure 2005082677

[式中、R〜R16は、それぞれ独立して、水素原子、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert−ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ドデシル、ヘキサデシル、オクタデシルなどの炭素数1〜20のアルキル基、フェニル、トリル、ナフチルなどの炭素数6〜15のアリール基またはベンジル、フェネチルなどの炭素数7〜18のアラルキル基を表し、また1つの化合物中に2つのアルキル基が存在する場合は、その2つのアルキル基は互いに結合して環を形成していてもよい。]
よりなる群から選択された少なくとも1種のリン化合物である。
[Wherein, R 5 to R 16 are each independently a hydrogen atom, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, hexadecyl. Represents an alkyl group having 1 to 20 carbon atoms such as octadecyl, an aryl group having 6 to 15 carbon atoms such as phenyl, tolyl and naphthyl, or an aralkyl group having 7 to 18 carbon atoms such as benzyl and phenethyl; In the case where two alkyl groups are present, the two alkyl groups may be bonded to each other to form a ring. ]
At least one phosphorus compound selected from the group consisting of:

上記(1)式で示されるリン化合物としては、例えばトリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイトなどが挙げられる。   Examples of the phosphorus compound represented by the formula (1) include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tridecyl phosphite, and trioctyl phosphite. , Trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6-di -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, bis (nonylphenyl) pentae Sri diphosphite, bis (2,4-di -tert- butylphenyl) pentaerythritol diphosphite, and distearyl pentaerythritol phosphite.

上記(2)式で示されるリン化合物としては、例えばトリブチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、トリエチルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられ、上記(3)式で示されるリン化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4−ジフェニレンホスホナイトなどが挙げられ、また上記(4)式で示される化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピルなどが挙げられる。   Examples of the phosphorus compound represented by the formula (2) include tributyl phosphate, trimethyl phosphate, triphenyl phosphate, triethyl phosphate, diphenyl monoorthoxenyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, and the like (3 ) The phosphorus compound represented by the formula includes tetrakis (2,4-di-tert-butylphenyl) -4,4-diphenylenephosphonite, and the compound represented by the formula (4) Examples thereof include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.

これらのリン化合物のなかで、トリスノニルフェニルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4−ジフェニレンホスホナイトが好ましく使用される。   Among these phosphorus compounds, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4-diphenylene Phosphonite is preferably used.

本発明のポリカーボネート共重合体には、酸化防止の目的で通常知られた酸化防止剤を添加することができる。その例としてはフェノール系酸化防止剤を示すことができ、具体的には例えばトリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等が挙げられる。これら酸化防止剤の好ましい添加量の範囲はポリカーボネート共重合体に対して0.0001〜0.05重量%である。   To the polycarbonate copolymer of the present invention, an antioxidant generally known for the purpose of antioxidant can be added. Examples thereof include phenolic antioxidants. Specifically, for example, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6 -Hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl -4-hydroxybenzyl) benzene, N, N-hexamethylenebis (3,5-di-tert-butyl-4- Loxy-hydrocinnamide), 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 3.9 -Bis {1,1-dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl} -2,4,8,10-tetraoxaspiro (5 5) Undecane etc. are mentioned. The range of preferable addition amount of these antioxidants is 0.0001 to 0.05% by weight with respect to the polycarbonate copolymer.

さらに本発明の芳香族ポリカーボネート共重合体には、必要に応じて一価または多価アルコールの高級脂肪酸エステルを加えることもできる。   Furthermore, a higher fatty acid ester of a monohydric or polyhydric alcohol can be added to the aromatic polycarbonate copolymer of the present invention as necessary.

かかる高級脂肪酸エステルとしては、炭素原子数1〜20の一価または多価アルコールと炭素原子数10〜30の飽和脂肪酸との部分エステルまたは全エステルであるのが好ましい。また、かかる一価または多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、プロピレングリコールモノステアレート、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート、2−エチルヘキシルステアレートなどが挙げられ、なかでもステアリン酸モノグリセリド、ペンタエリスリトールテトラステアレートが好ましく用いられる。   The higher fatty acid ester is preferably a partial ester or a total ester of a monovalent or polyhydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms. Further, partial esters or total esters of such monohydric or polyhydric alcohols and saturated fatty acids include stearic acid monoglyceride, stearic acid monosorbate, behenic acid monoglyceride, pentaerythritol monostearate, pentaerythritol tetrastearate, propylene glycol. Examples thereof include monostearate, stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate, 2-ethylhexyl stearate, among which stearic acid monoglyceride and pentaerythritol tetrastearate are preferably used. .

かかるアルコールと高級脂肪酸とのエステルの配合量は、該芳香族ポリカーボネート共重合体に対して0.01〜2重量%が好ましく、0.015〜0.5重量%がより好ましく、0.02〜0.2重量%がさらに好ましい。配合量がこの範囲内であれば離型性に優れ、また離型剤がマイグレートし金属表面に付着することもなく好ましい。   The amount of ester of such alcohol and higher fatty acid is preferably 0.01 to 2% by weight, more preferably 0.015 to 0.5% by weight, more preferably 0.02 to 0.5% by weight based on the aromatic polycarbonate copolymer. More preferred is 0.2% by weight. If the blending amount is within this range, it is preferable that the release property is excellent and the release agent does not migrate and adhere to the metal surface.

本発明の芳香族ポリカーボネート共重合体には、さらに滑剤、充填剤などの添加剤や他のポリカーボネート樹脂、他の熱可塑性樹脂を本発明の目的を損なわない範囲で少割合添加することもできる。   In the aromatic polycarbonate copolymer of the present invention, additives such as lubricants and fillers, other polycarbonate resins, and other thermoplastic resins may be added in a small amount within a range not impairing the object of the present invention.

本発明の芳香族ポリカーボネート樹脂組成物から成形品を得る方法としては、射出成形、押出成形、圧縮成形、射出圧縮成形、ブロー成形等が用いられ、フィルムやシートを製造する方法としては、厚みの均一性に優れ、ゲル、ブツ、フィッシュアイ、スクラッチ等の光学欠点の生じない方法が好ましく、例えば溶融押出し法、カレンダー法等が挙げられる。   As a method for obtaining a molded product from the aromatic polycarbonate resin composition of the present invention, injection molding, extrusion molding, compression molding, injection compression molding, blow molding or the like is used. A method that is excellent in uniformity and that does not cause optical defects such as gels, brats, fish eyes, and scratches is preferred, and examples thereof include a melt extrusion method and a calendar method.

かかる方法により製造された成形品は色相が良好であり、その上耐熱性、剛性が高いため、ソリが少なく、色調の優れた光学成形品に好適に用いられる。   A molded product produced by such a method has a good hue, and also has high heat resistance and rigidity. Therefore, the molded product is suitably used for an optical molded product with little warpage and excellent color tone.

本発明の製造方法によれば、優れた耐熱性、剛性を持ち、且つ色相の良好なポリカーボネート樹脂の製造、及び提供することが可能となる。色相が良好であることは、樹脂をレンズ、プリズム及び光ファイバーなどの光路変換部品、リフローハンダ付け部品、光ディスクなどの光学部材に用いる為には好ましい。また、樹脂に任意の色を付与するうえでも好ましい。従って本発明がもたらす工業的効果は格別である。   According to the production method of the present invention, it is possible to produce and provide a polycarbonate resin having excellent heat resistance, rigidity and good hue. Good hue is preferable for using the resin for optical path conversion parts such as lenses, prisms and optical fibers, reflow soldering parts, and optical members such as optical disks. Moreover, it is preferable also when giving arbitrary colors to resin. Therefore, the industrial effect brought about by the present invention is exceptional.

以下に実施例を挙げて本発明をさらに説明する。実施例中の部は重量部であり、%は重量%である。なお、評価は下記の方法によった。
(1)比粘度:ポリマー0.7gを塩化メチレン100mlに溶解し20℃の温度で測定した。
(2)ガラス転移温度(Tg):ティー・エイ・インスツルメント・ジャパン(株)社製2910型DSCを使用し、昇温速度20℃/minにて測定した。
(3)BCFモノマー溶液b値:試料10gを50mlのエタノールに溶解し光路長30mmの試料管にて日本電色(株)色差計300Aを用いて測定した。
(4)ポリマー溶液b値:ポリカーボネート共重合体5gを塩化メチレン50mlに遮光状態にて溶解し、光路長30mmの試料管にて日本電色(株)色差計300Aを用いて測定した。
(5)成形品YI値:JSW(株)製N−20C射出成形機を用いて、表1に示すシリンダ温度及び金型温度にて、厚さ2mmの見本板を射出成形により作成した。この見本板の黄色度(YI)を日本電色(株)製分光色彩計SE−2000(光源:C/2)を用いて測定した。
The following examples further illustrate the present invention. The part in an Example is a weight part and% is weight%. The evaluation was based on the following method.
(1) Specific viscosity: 0.7 g of polymer was dissolved in 100 ml of methylene chloride and measured at a temperature of 20 ° C.
(2) Glass transition temperature (Tg): Measured at a heating rate of 20 ° C./min using a 2910 type DSC manufactured by TA Instruments Japan Co., Ltd.
(3) BCF monomer solution b value: 10 g of a sample was dissolved in 50 ml of ethanol and measured with a color difference meter 300A by Nippon Denshoku Co., Ltd. in a sample tube having an optical path length of 30 mm.
(4) Polymer solution b value: 5 g of the polycarbonate copolymer was dissolved in 50 ml of methylene chloride in a light-shielded state, and measured using a Nippon Denshoku Co., Ltd. color difference meter 300A in a sample tube having an optical path length of 30 mm.
(5) Molded product YI value: Using a N-20C injection molding machine manufactured by JSW, a sample plate having a thickness of 2 mm was prepared by injection molding at the cylinder temperature and the mold temperature shown in Table 1. The yellowness (YI) of this sample plate was measured using a spectrocolorimeter SE-2000 (light source: C / 2) manufactured by Nippon Denshoku Co., Ltd.

[実施例1]
温度計、撹拌機、ベント付き反応器にイオン交換水21540部、48%水酸化ナトリウム水溶液4930部を入れ、窒素で30分間バブリングを行った後、エタノール溶液でのb値が3.0の9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)3231部、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下“BPA”と略称することがある)1949部およびハイドロサルファイト15部を溶解し、塩化メチレン14530部を加えた後、窒素気流下、撹拌しながら15〜25℃でホスゲン2200部を60分を要して吹き込んだ。ホスゲン吹き込み終了後、p−tert−ブチルフェノール115.4部および48%水酸化ナトリウム水溶液705部を加え、乳化後、トリエチルアミン5.9部を加えて28〜33℃で1時間撹拌して反応を終了した。反応終了後、生成物を塩化メチレンで希釈して、窒素気流下にて水洗した後、塩酸酸性にして水洗し、水相の導電率がイオン交換水とほぼ同じになったところで、ニーダーにて塩化メチレンを蒸発して、BCFとBPAの比がモル比で50:50の比粘度が0.282、Tgが195℃である白色のポリマー5460部を得た(収率95%)。
[Example 1]
In a thermometer, stirrer, and vented reactor, 21540 parts of ion-exchanged water and 4930 parts of 48% aqueous sodium hydroxide solution were bubbled with nitrogen for 30 minutes, and the b value in an ethanol solution was 3.0. , 9-bis (4-hydroxy-3-methylphenyl) fluorene (hereinafter sometimes abbreviated as “BCF”) 3231 parts, 2,2-bis (4-hydroxyphenyl) propane (hereinafter abbreviated as “BPA”) 1949 parts and 15 parts of hydrosulfite were dissolved, 14530 parts of methylene chloride was added, and 2200 parts of phosgene was blown in at a temperature of 15 to 25 ° C. for 60 minutes with stirring under a nitrogen stream. After completion of phosgene blowing, 115.4 parts of p-tert-butylphenol and 705 parts of 48% aqueous sodium hydroxide solution were added. After emulsification, 5.9 parts of triethylamine was added and stirred at 28-33 ° C. for 1 hour to complete the reaction. did. After completion of the reaction, the product was diluted with methylene chloride, washed with water in a nitrogen stream, acidified with hydrochloric acid, washed with water, and when the conductivity of the aqueous phase became almost the same as that of ion-exchanged water, The methylene chloride was evaporated to obtain 5460 parts of a white polymer having a BCF to BPA ratio of 50:50, a specific viscosity of 0.282, and a Tg of 195 ° C. (yield 95%).

このポリカーボネート樹脂粉粒体に、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト0.050%、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートを0.010%、ペンタエリスリトールテトラステアレートを0.030%加えて、ベント付きφ30mm単軸押出機を用いてペレット化し、これを用いて成形品を作成した。評価結果を表1に示す。   Tris (2,4-di-tert-butylphenyl) phosphite 0.050% and octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate were added to the polycarbonate resin granules. 0.010% and 0.030% of pentaerythritol tetrastearate were added and pelletized using a vented φ30 mm single screw extruder, and a molded product was prepared using this. The evaluation results are shown in Table 1.

[実施例2]
実施例1のBCFの使用量を1292部、BPAの使用量を3118部、p−tert−ブチルフェノールの使用量を102.6部とする以外は実施例1と同様にしてBCFとBPAの比がモル比で20:80である白色のポリマー4770部(収率96%)を得た。このポリマーの比粘度は0.370、Tgは170℃であった。このポリマー樹脂粉粒体を実施例1と同様にしてペレット化し、これを用いて成形品を作成した。結果を表1に示す。
[Example 2]
The ratio of BCF to BPA is the same as in Example 1 except that the amount of BCF used in Example 1 is 1292 parts, the amount of BPA used is 3118 parts, and the amount of p-tert-butylphenol used is 102.6 parts. 4770 parts (yield 96%) of a white polymer having a molar ratio of 20:80 were obtained. This polymer had a specific viscosity of 0.370 and a Tg of 170 ° C. This polymer resin powder was pelletized in the same manner as in Example 1, and a molded product was produced using this. The results are shown in Table 1.

[実施例3]
実施例1のBCFの使用量を4523部、BPAの使用量を1169部、p−tert−ブチルフェノールの使用量を128.2部とする以外は実施例1と同様にしてBCFとBPAの比がモル比で70:30であるポリマー5840部(収率93%)を得た。この白色のポリマーの比粘度は0.258、Tgは213℃であった。このポリマー樹脂粉粒体を実施例1と同様にしてペレット化し、これを用いて成形品を作成した。結果を表1に示す。
[Example 3]
The ratio of BCF to BPA is the same as in Example 1 except that the amount of BCF used in Example 1 is 4523 parts, the amount of BPA used is 1169 parts, and the amount of p-tert-butylphenol used is 128.2 parts. 5840 parts (yield 93%) of polymer with a molar ratio of 70:30 were obtained. The white polymer had a specific viscosity of 0.258 and Tg of 213 ° C. This polymer resin powder was pelletized in the same manner as in Example 1, and a molded product was produced using this. The results are shown in Table 1.

[実施例4]
実施例1のハイドロサルファイトの使用量を50部とする以外は実施例1と同様にしてBCFとBPAの比がモル比で50:50である白色のポリマー5650部(収率98%)を得た。このポリマーの比粘度は0.280、Tgは195℃であった。このポリマー樹脂粉粒体を実施例1と同様にしてペレット化し、これを用いて成形品を作成した。結果を表1に示す。
[Example 4]
5650 parts of white polymer (yield 98%) having a molar ratio of BCF to BPA of 50:50 in the same manner as in Example 1 except that the amount of hydrosulfite used in Example 1 was 50 parts. Obtained. This polymer had a specific viscosity of 0.280 and a Tg of 195 ° C. This polymer resin powder was pelletized in the same manner as in Example 1, and a molded product was produced using this. The results are shown in Table 1.

[実施例5]
実施例1と同様の装置にイオン交換水32320部、48%水酸化ナトリウム4320部を入れ、窒素で30分間バブリングを行った後、BCF2828部、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン(以下“BPM”と略称することがある)2589部およびハイドロサルファイト13部を溶解し、塩化メチレン12720部を加えた後、窒素気流下、撹拌しながら15〜20℃でホスゲン2000部を60分を要して吹き込んだ。ホスゲン吹き込み終了後、p−tert−ブチルフェノール112.2部と48%水酸化ナトリウム水溶液617部を加え乳化後、トリエチルアミン3.8部を加えて、28〜33℃で1時間攪拌して反応を終了した。このものを実施例1と同様に処理してBCFとBPM構成単位のモル比が50:50である白色のポリマー5450を得た(収率92%)。このポリマーの比粘度は0.285、Tgは178℃であった。このポリマー樹脂粉粒体を実施例1と同様にしてペレット化し、これを用いて成形品を作成した。結果を表1に示す。
[Example 5]
32320 parts of ion-exchanged water and 4320 parts of 48% sodium hydroxide were put in the same apparatus as in Example 1, and after bubbling with nitrogen for 30 minutes, 2828 parts of BCF, α, α′-bis (4-hydroxyphenyl)- 2589 parts of m-diisopropylbenzene (hereinafter sometimes abbreviated as “BPM”) and 13 parts of hydrosulfite are dissolved, 12720 parts of methylene chloride are added, and phosgene is added at 15 to 20 ° C. with stirring under a nitrogen stream. 2000 parts were blown in 60 minutes. After completion of phosgene blowing, 112.2 parts of p-tert-butylphenol and 617 parts of 48% aqueous sodium hydroxide solution were added to emulsify, and 3.8 parts of triethylamine was added, followed by stirring at 28 to 33 ° C. for 1 hour to complete the reaction. did. This was treated in the same manner as in Example 1 to obtain a white polymer 5450 having a molar ratio of BCF to BPM constitutional unit of 50:50 (yield 92%). This polymer had a specific viscosity of 0.285 and a Tg of 178 ° C. This polymer resin powder was pelletized in the same manner as in Example 1, and a molded product was produced using this. The results are shown in Table 1.

[比較例1]
実施例1と同様の装置にイオン交換水21540部、48%水酸化ナトリウム水溶液4930部を入れ、窒素でのバブリングは行わず、エタノール溶液でのb値が3.0の9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)3231部、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下“BPA”と略称することがある)1949部およびハイドロサルファイト15部を溶解し、塩化メチレン14530部を加えた後、窒素通気は行わず、撹拌しながら15〜25℃でホスゲン2200部を60分を要して吹き込んだ。ホスゲン吹き込み終了後、p−tert−ブチルフェノール115.4部および48%水酸化ナトリウム水溶液705部を加え、乳化後、トリエチルアミン5.9部を加えて28〜33℃で1時間撹拌して反応を終了した。反応終了後、生成物を塩化メチレンで希釈して、窒素通気は行わない状態で水洗した後、塩酸酸性にして水洗し、水相の導電率がイオン交換水とほぼ同じになったところで、ニーダーにて塩化メチレンを蒸発して、BCFとBPAの比がモル比で50:50の比粘度が0.278、Tgが195℃である黄白色のポリマー5290部を得た(収率90%)。このポリマー樹脂粉粒体を実施例1と同様にしてペレット化し、これを用いて成形品を作成した。結果を表1に示す。
[Comparative Example 1]
In the same apparatus as in Example 1, 21540 parts of ion-exchanged water and 4930 parts of 48% sodium hydroxide aqueous solution were added, and bubbling with nitrogen was not performed. 4-hydroxy-3-methylphenyl) fluorene (hereinafter abbreviated as “BCF”) 3231 parts, 2,2-bis (4-hydroxyphenyl) propane (hereinafter abbreviated as “BPA”) 1949 And 15 parts of hydrosulfite were dissolved, 14530 parts of methylene chloride was added, and nitrogen aeration was not performed, but 2200 parts of phosgene was blown in at 15 to 25 ° C. for 60 minutes with stirring. After completion of phosgene blowing, 115.4 parts of p-tert-butylphenol and 705 parts of 48% aqueous sodium hydroxide solution were added. After emulsification, 5.9 parts of triethylamine was added and stirred at 28-33 ° C. for 1 hour to complete the reaction. did. After completion of the reaction, the product was diluted with methylene chloride, washed with water without nitrogen aeration, then acidified with hydrochloric acid and washed with water. When the conductivity of the aqueous phase became almost the same as that of ion-exchanged water, a kneader was used. To obtain 5290 parts of a yellowish white polymer having a BCF to BPA molar ratio of 50:50, a specific viscosity of 0.278, and a Tg of 195 ° C. (90% yield). . This polymer resin powder was pelletized in the same manner as in Example 1, and a molded product was produced using this. The results are shown in Table 1.

[比較例2]
比較例1にて作成したポリカーボネート樹脂の塩化メチレン溶液に400Wの高圧水銀灯((株)日立ライティング製)(主波長350〜500nm)を1時間照射し、溶液の黄色味が退色した後、ニーダーにて塩化メチレンを蒸発して、BCFとBPAの比がモル比で50:50の比粘度が0.278、Tgが195℃である白色のポリマーを得た。このポリマー樹脂粉粒体を実施例1と同様にしてペレット化し、これを用いて成形品を作成した。結果を表1に示す。
[Comparative Example 2]
After irradiating the methylene chloride solution of the polycarbonate resin prepared in Comparative Example 1 with a 400 W high-pressure mercury lamp (manufactured by Hitachi Lighting Co., Ltd.) (main wavelength: 350 to 500 nm) for 1 hour, The methylene chloride was evaporated to obtain a white polymer having a molar ratio of BCF to BPA of 50:50, a specific viscosity of 0.278, and a Tg of 195 ° C. This polymer resin powder was pelletized in the same manner as in Example 1, and a molded product was produced using this. The results are shown in Table 1.

[比較例3]
実施例1と同様の装置にイオン交換水32320部、48%水酸化ナトリウム4320部を入れ、窒素でのバブリングは行わず、BCF2828部、BPM2589部およびハイドロサルファイト13部を溶解し、塩化メチレン12720部を加えた後、窒素通気は行わず、撹拌しながら15〜20℃でホスゲン2000部を60分を要して吹き込んだ。ホスゲン吹き込み終了後、p−tert−ブチルフェノール112.2部と48%水酸化ナトリウム水溶液617部を加え乳化後、トリエチルアミン3.8部を加えて、28〜33℃で1時間攪拌して反応を終了した。反応終了後、生成物を塩化メチレンで希釈して、窒素通気は行わない状態で水洗した後、塩酸酸性にして水洗し、水相の導電率がイオン交換水とほぼ同じになったところに、ニーダーにて塩化メチレンを蒸発して、BCFとBPM構成単位のモル比が50:50である黄白色のポリマー5440部を得た。このポリマーを塩化メチレン21760部に再度溶解し、これにメタノール272部を加え攪拌し、溶液の黄色味が退色した後、ニーダーにて塩化メチレンを蒸発して、白色のポリマー5030部を得た(収率85%)。このポリマーの比粘度は0.287、Tgは178℃であった。このポリマー樹脂粉粒体を実施例1と同様にしてペレット化し、これを用いて成形品を作成した。結果を表1に示す。
[Comparative Example 3]
32320 parts of ion-exchanged water and 4320 parts of 48% sodium hydroxide were placed in the same apparatus as in Example 1, and bubbling with nitrogen was not performed, but 2828 parts of BCF, 2589 parts of BPM and 13 parts of hydrosulfite were dissolved, and methylene chloride 12720 After adding a part, nitrogen aeration was not performed but 2000 parts of phosgene was blown in for 15 minutes at 15 to 20 ° C. with stirring. After completion of phosgene blowing, 112.2 parts of p-tert-butylphenol and 617 parts of 48% aqueous sodium hydroxide solution were added to emulsify, and 3.8 parts of triethylamine was added, followed by stirring at 28 to 33 ° C. for 1 hour to complete the reaction. did. After completion of the reaction, the product was diluted with methylene chloride, washed with water without carrying out nitrogen bubbling, acidified with hydrochloric acid, washed with water, and when the conductivity of the aqueous phase became almost the same as that of ion-exchanged water, The methylene chloride was evaporated with a kneader to obtain 5440 parts of a yellowish white polymer having a molar ratio of BCF to BPM constitutional unit of 50:50. This polymer was dissolved again in 21760 parts of methylene chloride, and 272 parts of methanol was added thereto and stirred. After the yellow color of the solution faded, the methylene chloride was evaporated with a kneader to obtain 5030 parts of a white polymer ( Yield 85%). This polymer had a specific viscosity of 0.287 and a Tg of 178 ° C. This polymer resin powder was pelletized in the same manner as in Example 1, and a molded product was produced using this. The results are shown in Table 1.

Figure 2005082677
Figure 2005082677

Claims (7)

全芳香族ジヒドロキシ成分の5〜95モル%が下記一般式[1]、
Figure 2005082677
[式中、R〜Rは夫々独立して水素原子、炭素原子数1〜9の芳香族基を含んでもよい炭化水素基又はハロゲン原子である。]で表されるフルオレン系ビスフェノール、95〜5モル%が下記一般式[2]
Figure 2005082677
[式中、R〜Rは夫々独立して水素原子、炭素原子数1〜9の芳香族基を含んでもよい炭化水素基又はハロゲン原子であり、Wは単結合、炭素原子数1〜20の芳香族基を含んでもよい炭化水素基、O、S、SO、SO、CO又はCOO基である。]
で表されるジヒドロキシ成分からなるポリカーボネート樹脂の製造方法であって、ホスゲン化反応及び重合反応を実質的に酸素不在下で行うことを特徴とするポリカーボネート樹脂の製造方法。
5 to 95 mol% of the total aromatic dihydroxy component is represented by the following general formula [1],
Figure 2005082677
[Wherein, R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group which may contain an aromatic group having 1 to 9 carbon atoms, or a halogen atom. The fluorene-based bisphenol represented by the formula: 95-5 mol% is represented by the following general formula [2]
Figure 2005082677
[Wherein, R 5 to R 8 are each independently a hydrogen atom, a hydrocarbon group or a halogen atom which may contain an aromatic group having 1 to 9 carbon atoms, and W is a single bond, having 1 to 1 carbon atoms. A hydrocarbon group optionally containing 20 aromatic groups, an O, S, SO, SO 2 , CO or COO group. ]
A process for producing a polycarbonate resin comprising a dihydroxy component represented by formula (1), wherein the phosgenation reaction and the polymerization reaction are carried out substantially in the absence of oxygen.
ホスゲン化反応及び重合反応をハイドロサルファルイトを添加し系内の酸素を除去したうえで行うことを特徴とする請求項1記載のポリカーボネート樹脂の製造方法。   The method for producing a polycarbonate resin according to claim 1, wherein the phosgenation reaction and the polymerization reaction are performed after adding hydrosulfurite to remove oxygen in the system. 精製工程を窒素雰囲気下で実施することを特徴とする請求項1または2記載のポリカーボネート樹脂の製造方法。   The method for producing a polycarbonate resin according to claim 1 or 2, wherein the purification step is carried out in a nitrogen atmosphere. 窒素シールを施した反応槽内で行うことを特徴とする請求項1〜3のいずれかに記載のポリカーボネート樹脂の製造方法。   The method for producing a polycarbonate resin according to any one of claims 1 to 3, wherein the method is performed in a reaction tank provided with a nitrogen seal. 該フルオレン系ビスフェノールが9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンである請求項1〜4のいずれかに記載の芳香族ポリカーボネート樹脂の製造方法。   The method for producing an aromatic polycarbonate resin according to any one of claims 1 to 4, wherein the fluorene-based bisphenol is 9,9-bis (4-hydroxy-3-methylphenyl) fluorene. 前記9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンは、その10gをエタノール50mlに溶解した溶液を光路長30mmで測定したb値が6.0以下である請求項1〜5のいずれかに記載のポリカーボネート樹脂の製造方法。   The 9,9-bis (4-hydroxy-3-methylphenyl) fluorene has a b value of 6.0 or less measured by measuring a solution of 10 g in 50 ml of ethanol at an optical path length of 30 mm. The manufacturing method of the polycarbonate resin in any one. 一般式[2]で表される化合物が、2,2−ビス(4−ヒドロキシフェニル)プロパン及び/又はα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンである請求項1〜6のいずれかに記載のポリカーボネート樹脂の製造方法。   The compound represented by the general formula [2] is 2,2-bis (4-hydroxyphenyl) propane and / or α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene. 7. A method for producing a polycarbonate resin according to any one of 6 above.
JP2003315229A 2002-11-14 2003-09-08 Manufacturing process for polycarbonate resin Pending JP2005082677A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003315229A JP2005082677A (en) 2003-09-08 2003-09-08 Manufacturing process for polycarbonate resin
KR1020057008566A KR100956048B1 (en) 2002-11-14 2003-11-13 Polycarbonate copolymer, resin composition, and molded article
DE60333218T DE60333218D1 (en) 2002-11-14 2003-11-13 POLYCARBONATE COPOLYMER, RESIN COMPOSITION AND FORM BODY
TW92131783A TWI315320B (en) 2002-11-14 2003-11-13 Polycarbonate copolymer, resin composition and molded article
AU2003280769A AU2003280769B2 (en) 2002-11-14 2003-11-13 Polycarbonate copolymer, resin composition, and molded article
PCT/JP2003/014458 WO2004044033A1 (en) 2002-11-14 2003-11-13 Polycarbonate copolymer, resin composition, and molded article
US10/534,706 US7244804B2 (en) 2002-11-14 2003-11-13 Polycarbonate copolymer, resin composition, and molded article
EP20030772737 EP1566396B1 (en) 2002-11-14 2003-11-13 Polycarbonate copolymer, resin composition, and molded article
CA 2505969 CA2505969C (en) 2002-11-14 2003-11-13 Polycarbonate copolymer, resin composition, and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315229A JP2005082677A (en) 2003-09-08 2003-09-08 Manufacturing process for polycarbonate resin

Publications (1)

Publication Number Publication Date
JP2005082677A true JP2005082677A (en) 2005-03-31

Family

ID=34415562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315229A Pending JP2005082677A (en) 2002-11-14 2003-09-08 Manufacturing process for polycarbonate resin

Country Status (1)

Country Link
JP (1) JP2005082677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050669A1 (en) 2006-10-18 2008-05-02 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
WO2017159727A1 (en) * 2016-03-15 2017-09-21 出光興産株式会社 Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotography device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050669A1 (en) 2006-10-18 2008-05-02 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
US7888455B2 (en) 2006-10-18 2011-02-15 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
US7893185B2 (en) 2006-10-18 2011-02-22 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
EP2570447A1 (en) 2006-10-18 2013-03-20 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
EP2570445A1 (en) 2006-10-18 2013-03-20 Idemitsu Kosan Co., Ltd. Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
KR101256333B1 (en) * 2006-10-18 2013-04-18 이데미쓰 고산 가부시키가이샤 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
KR101256334B1 (en) * 2006-10-18 2013-04-18 이데미쓰 고산 가부시키가이샤 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
KR101256336B1 (en) * 2006-10-18 2013-04-18 이데미쓰 고산 가부시키가이샤 Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
WO2017159727A1 (en) * 2016-03-15 2017-09-21 出光興産株式会社 Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotography device
CN108779238A (en) * 2016-03-15 2018-11-09 出光兴产株式会社 Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotographic apparatus
JPWO2017159727A1 (en) * 2016-03-15 2019-02-14 出光興産株式会社 Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photosensitive member, and electrophotographic apparatus
US10787541B2 (en) 2016-03-15 2020-09-29 Idemitsu Kosan Co., Ltd. Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotography device
CN108779238B (en) * 2016-03-15 2021-10-29 出光兴产株式会社 Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotographic apparatus

Similar Documents

Publication Publication Date Title
KR100956048B1 (en) Polycarbonate copolymer, resin composition, and molded article
KR20130088742A (en) Polycarbonate resin composition and molded article
KR20220035980A (en) Polycarbonate resin, molded article and optical film
JPH1135815A (en) Polycarbonate composition
JP2005082713A (en) Aromatic polycarbonate resin
JP5226173B2 (en) Aromatic polycarbonate resin
KR20100048962A (en) Lens and optical unit using the same
JP2005232252A (en) Modified polycarbonate resin
JP4086530B2 (en) Aromatic polycarbonate resin composition
JP2005119124A (en) Injection molding method for polycarbonate copolymer and molded product molded thereby
JP2005060541A (en) Polycarbonate copolymer and molded product
JP2005082677A (en) Manufacturing process for polycarbonate resin
JP2005015505A (en) High-refractive and heat-resistant aromatic polycarbonate resin composition
JP2005060628A (en) Polycarbonate resin having excellent reflow resistance
JP4383811B2 (en) Aromatic polycarbonate copolymer
JP4369208B2 (en) Aromatic polycarbonate resin composition
JP2005060540A (en) Polycarbonate copolymer
JP3584207B2 (en) Polycarbonate copolymer
JP2005018993A (en) High-refrangibility light guide plate
JP2005042021A (en) Polycarbonate resin composition
JP2005171051A (en) Optical member and aromatic polycarbonate resin suitable for producing the same
JP2005023124A (en) Aromatic polycarbonate resin
JP2005060560A (en) Aromatic polycarbonate resin pellet
JP2005041988A (en) Polycarbonate resin
JP2005029744A (en) Polycarbonate resin pellet