JP2005068531A - Metal powder production method - Google Patents

Metal powder production method Download PDF

Info

Publication number
JP2005068531A
JP2005068531A JP2003304014A JP2003304014A JP2005068531A JP 2005068531 A JP2005068531 A JP 2005068531A JP 2003304014 A JP2003304014 A JP 2003304014A JP 2003304014 A JP2003304014 A JP 2003304014A JP 2005068531 A JP2005068531 A JP 2005068531A
Authority
JP
Japan
Prior art keywords
metal powder
powder
oxide
nickel
nickel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003304014A
Other languages
Japanese (ja)
Inventor
Taku Fujimoto
卓 藤本
Takashi Mukono
隆 向野
Katsuhiko Yoshimaru
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003304014A priority Critical patent/JP2005068531A/en
Publication of JP2005068531A publication Critical patent/JP2005068531A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal powder production method which easily enables the surface of a metal powder to be coated with a desired oxide densely in a specified composition. <P>SOLUTION: The metal powder production method is used for producing a metal powder coated with an oxide comprising constituent elements of a dielectric material on the surface of the metal powder. The method comprises bringing a soluble compound and an alcohol into contact with the metal powder for forming the oxide comprising the constituent elements of the dielectric material, reacting the metal powder by contact with oxalic acid and ammonium oxalate to coat the surface of the metal powder with an oxalate, and firing the resultant metal powder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属粉の製造方法に関し、特に積層セラミックコンデンサの内部電極材料等に好適な特性を有した金属粉を製造する際の金属粉粒表面に所望の酸化物を緻密に被覆することを特徴とする金属粉の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing metal powder, and in particular, a desired oxide is densely coated on the surface of metal powder when producing metal powder having characteristics suitable for an internal electrode material of a multilayer ceramic capacitor. It is related with the manufacturing method of the metal powder characterized.

従来より、金属粉はペーストなどの配線材料として使用されているが、その一例として、各種金属粉が積層セラミックコンデンサの内部電極材料に用いられている。この積層セラミックコンデンサは、セラミック誘電体と内部電極とを交互に層状に重ねて圧着し焼成して一体化させたものであり、従来は白金、パラジウムのような貴金属粉末が内部電極材料に使用されていたが、近年においてはニッケル等の卑金属粉末を用いる技術が開発されている。   Conventionally, metal powder has been used as a wiring material such as a paste. As an example, various metal powders are used as an internal electrode material of a multilayer ceramic capacitor. This multilayer ceramic capacitor is made by laminating ceramic dielectrics and internal electrodes alternately in layers, pressing and firing them, and conventionally, noble metal powders such as platinum and palladium are used as internal electrode materials. However, in recent years, a technique using a base metal powder such as nickel has been developed.

ところが、内部電極材料である金属粉末として、例えばニッケル粉を用い、ニッケルペーストを使用してセラミック基材上に印刷し、該印刷した基材を複数枚重ねて加熱圧着して一体化した後、還元性雰囲気中で加熱焼成を行うと、焼成時にニッケルが酸化されて基材のセラミック相中にニッケルが拡散する現象を生じたりする。また、ニッケルペーストとセラミック基材との熱収縮率の相違により焼成時にデラミネーション(層間剥離)やクラック等の欠陥を引き起こすことがある。   However, as a metal powder that is an internal electrode material, for example, using nickel powder, printing on a ceramic base material using a nickel paste, after stacking a plurality of the printed base materials and integrating them by thermocompression bonding, When heat firing is performed in a reducing atmosphere, nickel is oxidized during firing and nickel is diffused into the ceramic phase of the substrate. In addition, a difference in thermal shrinkage between the nickel paste and the ceramic substrate may cause defects such as delamination (delamination) and cracks during firing.

このようなニッケルペーストの不具合に対し、例えば、セラミック基材を形成する誘電材料を構成する元素を酸化物として、ニッケル粉粒表面に被覆することが知られている。ニッケル粉粒表面に、誘電材料の構成元素による酸化物を被覆しておくことで、焼成時におけるニッケルの酸化を防止することができ、ニッケルペーストの熱収縮率をセラミック基材に近づけることができるためである。   In order to cope with such a problem of nickel paste, for example, it is known to coat the surface of nickel powder particles with an element constituting a dielectric material forming a ceramic substrate as an oxide. By coating the surface of the nickel powder with oxides of the constituent elements of the dielectric material, oxidation of nickel during firing can be prevented, and the thermal contraction rate of the nickel paste can be made closer to the ceramic substrate. Because.

より具体的には、チタン酸バリウム、ジルコン酸カルシウム等の複合酸化物をニッケル粉粒表面に被覆したニッケル粉が知られているが、このようなニッケル粉の製造方法としては、誘電材料の構成元素を水酸化物としてニッケル粉粒表面へ一旦被覆した後、還元性雰囲気で該水酸化物を還元してニッケル粉粒表面に酸化物を被覆することが提案されている(例えば、特許文献1参照)。   More specifically, nickel powder in which a composite oxide such as barium titanate and calcium zirconate is coated on the surface of nickel powder is known. As a method for producing such nickel powder, the structure of the dielectric material is used. It has been proposed that an element is coated as a hydroxide on the surface of nickel powder once, and then the hydroxide is reduced in a reducing atmosphere to coat the surface of nickel powder with an oxide (for example, Patent Document 1). reference).

特開2001−192702号公報JP 2001-192702 A

この特許文献1に開示されている製造方法によれば、ニッケル粉粒表面に所望の酸化物が被覆されるものの、その被覆状態はあまり十分とはいえない。つまり、ニッケル粉粒表面に被覆した酸化物が緻密な状態となっていないのである。また、水酸化物を還元処理する方法であると、所定組成の酸化物、或いは複合酸化物を被覆する際に、その組成にズレが生じやすい傾向がある。さらに、還元時に粒子同士が焼結して所定粒径のニッケル粉を得難いことや、水酸化物又は還元して得られた酸化物が剥離しやすいこと等の理由により、製造時歩留りが低くなる傾向もある。   According to the manufacturing method disclosed in Patent Document 1, although the desired oxide is coated on the surface of the nickel particles, the covering state is not very sufficient. That is, the oxide coated on the surface of the nickel particles is not in a dense state. Further, in the method of reducing the hydroxide, there is a tendency that when the oxide or the composite oxide having a predetermined composition is coated, the composition tends to be shifted. Furthermore, the yield during production is lowered due to the difficulty in obtaining nickel powder having a predetermined particle size due to the sintering of particles during reduction, and the ease of separation of hydroxide or oxide obtained by reduction. There is also a trend.

本発明は、以上のような事情の下になされたものであり、金属粉粒表面に所望の酸化物を緻密に且つ所定の組成で被覆することを容易に可能とする金属粉の製造方法を提供するものであり、特に、積層セラミックコンデンサの内部電極材料等に好適な特性を有する金属粉を製造可能とする技術を提供するものである。   The present invention has been made under the circumstances as described above, and provides a method for producing a metal powder that can easily coat a surface of a metal powder with a desired oxide densely and with a predetermined composition. In particular, the present invention provides a technique that makes it possible to produce metal powder having characteristics suitable for an internal electrode material of a multilayer ceramic capacitor.

本発明者らは上記の課題を達成するために、金属粉粒表面へ、より緻密な酸化物を被覆できるかという観点から種々の手法を検討した結果、本発明を想到するに至った。   In order to achieve the above-mentioned problems, the present inventors have studied various methods from the viewpoint of whether a finer oxide can be coated on the surface of metal powder particles, and as a result, have come up with the present invention.

本発明は、金属粉粒表面に、誘電材料の構成元素からなる酸化物を被覆した金属粉の製造方法において、誘電材料の構成元素からなる酸化物を形成するための可溶性化合物とアルコールとを金属粉に接触して、該金属粉を蓚酸及び蓚酸アンモニウムと接触して反応させることで粉粒表面に蓚酸化物を被覆した後、該金属粉に焼成処理を行うものとした。本発明の金属粉の製造方法によると、粉粒表面に酸化物を緻密に被覆することが可能となり、さらに所定組成の酸化物、複合酸化物を容易に被覆することができる。   The present invention relates to a method for producing a metal powder in which a metal powder surface is coated with an oxide composed of a constituent element of a dielectric material, and a soluble compound and an alcohol for forming the oxide composed of the constituent element of the dielectric material The metal powder was contacted with the powder and reacted with oxalic acid and ammonium oxalate to react with the oxalic oxide on the powder surface, and then the metal powder was baked. According to the method for producing a metal powder of the present invention, it is possible to densely coat an oxide on the particle surface, and it is possible to easily coat an oxide or composite oxide having a predetermined composition.

本発明に係る金属粉の製造方法によると、誘電材料の構成元素が単一或いは複合の蓚酸化物の形で金属粉粒表面に一旦被覆されることになる。この蓚酸化物は金属粉粒表面への密着性に優れるため、従来のような水酸化物で被覆する場合に比べ、緻密な状態で金属粉粒表面を被覆できるものと推測される。つまり、密着性が高く且つ緻密な状態で被覆した蓚酸化物を酸化物に変化させることにより、金属粉粒表面を酸化物で緻密に被覆するのである。例えば、誘電材料の構成元素としてジルコニウム(Zr)とカルシウム(Ca)を用いた場合、ジルコニウムとカルシウムとがそれぞれ蓚酸化物の形で金属粉粒表面に一旦被覆される。そして、これらの蓚酸化物が被覆された金属粉を焼成処理すると、これら蓚酸化物がCaZrOの複合酸化物となり、金属粉粒表面を緻密に被覆するのである。 According to the method for producing metal powder according to the present invention, the constituent elements of the dielectric material are once coated on the surface of the metal powder in the form of single or composite oxide. Since this soot oxide is excellent in adhesion to the surface of the metal particles, it is presumed that the surface of the metal particles can be coated in a dense state as compared with the case of coating with a conventional hydroxide. That is, the surface of the metal powder particles is densely coated with the oxide by changing the soot oxide coated in a dense state with high adhesion to an oxide. For example, when zirconium (Zr) and calcium (Ca) are used as the constituent elements of the dielectric material, zirconium and calcium are once coated on the surface of the metal particles in the form of soot oxide. When the metal powder coated with these soot oxides is fired, these soot oxides become CaZrO 3 composite oxides, and the surface of the metal powder particles is densely coated.

また、本発明に係る金属粉の製造方法によれば、誘電材料の構成元素が蓚酸化物として金属粉粒表面に強固に密着されており、その蓚酸化物が酸化物になることで、被覆される酸化物の組成に大きなズレを生じない。さらに、得られる酸化物の被覆が緻密であるので、その金属粉は分散性に優れ、凝集が生じづらくなる。   In addition, according to the method for producing metal powder according to the present invention, the constituent elements of the dielectric material are firmly adhered to the surface of the metal powder particles as soot oxide, and the soot oxide is coated with the oxide as an oxide. There is no significant shift in the composition of the oxide. Furthermore, since the resulting oxide coating is dense, the metal powder is excellent in dispersibility and is less likely to agglomerate.

本発明に係る金属粉の製造方法において、金属粉に、誘電材料の構成元素からなる酸化物を形成するための可溶性化合物とアルコールとを接触させる方法としては、例えば、金属粉を水に投入して金属粉スラリーを作製し、誘電材料の構成元素からなる酸化物を形成するための可溶性化合物とアルコールとを該金属粉スラリーに混合して撹拌することで実現できる。そして、このようにして得られた金属粉スラリーに、蓚酸溶液及び蓚酸アンモニウム溶液を添加することで、金属粉粒表面に所定の蓚酸化物を被覆することが可能となる。本発明におけるアルコールとしては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、アリルアルコール、エタノールアミンなどを用いることが可能であるが、実用的にはメタノールが好ましい。   In the method for producing a metal powder according to the present invention, as a method for bringing the metal powder into contact with a soluble compound for forming an oxide composed of a constituent element of a dielectric material and an alcohol, for example, the metal powder is poured into water. This can be realized by preparing a metal powder slurry, mixing a soluble compound for forming an oxide composed of a constituent element of a dielectric material, and alcohol into the metal powder slurry and stirring. And by adding an oxalic acid solution and an ammonium oxalate solution to the metal powder slurry thus obtained, the surface of the metal powder particles can be coated with a predetermined oxalate. Examples of the alcohol in the present invention include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, allyl alcohol, ethanolamine and the like. Although it can be used, methanol is preferred for practical use.

そして、本発明に係る金属粉の製造方法においては、焼成処理した金属粉に機械的作用を施すことが好ましい。本発明における機械的作用とは、例えば、金属粉を撹拌混合することにより、粉粒同士を衝突させることをいうものである。つまり、酸化物が被覆された金属粉粒と酸化物の粉粒同士が衝突する際の衝突エネルギーにより、酸化物を金属粉粒表面に固着するのである。より具体的には、乾燥した金属粉を、遠心力を利用した風力サーキュレーターを用いたり、いわゆるボールミルと呼ばれる粉砕機などを用いて混合撹拌することにより、金属粉と酸化物とに機械的作用を与えることができる。このような機械的作用を施すことにより、酸化物の固着を行えば、金属粉の凝集が防止でき、金属粉の粒径を均一に維持することを容易に実現できる。   And in the manufacturing method of the metal powder which concerns on this invention, it is preferable to give a mechanical effect | action to the baked metal powder. The mechanical action in the present invention refers to, for example, colliding powder particles by stirring and mixing metal powder. That is, the oxide is fixed to the surface of the metal particle by the collision energy when the metal particle coated with the oxide and the oxide particle collide with each other. More specifically, the mechanical action is applied to the metal powder and the oxide by mixing and stirring the dried metal powder using a wind circulator using centrifugal force or using a so-called ball mill. Can be given. By applying such a mechanical action, if the oxide is fixed, the aggregation of the metal powder can be prevented, and the uniform maintenance of the particle diameter of the metal powder can be easily realized.

この本発明の金属粉の製造方法における焼成処理は、非酸化性雰囲気中、300〜600℃に加熱することが望ましい。非酸化性雰囲気は、例えば、窒素ガス雰囲気、アルゴンガス雰囲気が挙げられる。焼成温度は、300℃未満であると、蓚酸化物が分解せずに表面へ残存してしまい、600℃を超えると焼結の進行が著しくなり、解砕が困難となるからである。   The firing treatment in the method for producing metal powder of the present invention is preferably heated to 300 to 600 ° C. in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a nitrogen gas atmosphere and an argon gas atmosphere. When the firing temperature is less than 300 ° C., the soot oxide remains on the surface without being decomposed, and when it exceeds 600 ° C., the progress of the sintering becomes remarkable and the crushing becomes difficult.

さらに、本発明の金属粉の製造方法における誘電材料の構成元素は、カルシウム、チタニウム、ジルコニウム、バリウム、ストロンチウム、イットリウムから選ぶことが好ましい。これらの元素は、セラミック誘電体を構成するものであり、金属粉粒表面に酸化物として被覆することで、金属粉の酸化防止、焼成時のデラミネーション、クラックの発生防止を効果的に実現できるからである。   Furthermore, the constituent element of the dielectric material in the method for producing metal powder of the present invention is preferably selected from calcium, titanium, zirconium, barium, strontium, and yttrium. These elements constitute a ceramic dielectric, and by covering the surface of the metal powder as an oxide, it is possible to effectively realize prevention of oxidation of metal powder, delamination during firing, and generation of cracks. Because.

本発明において、金属粉粒表面に被覆する酸化物は、選択した元素の単一酸化物でもよく、複数選択して複合酸化物としてもよい。具体的には、単一酸化物として、酸化カルシウム、酸化チタニウム、酸化ジルコニウム、酸化バリウム、酸化ストロンチウム、酸化イットリウムがあり、複合酸化物としてはチタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、ジルコン酸カルシウム等のペロブスカイト型複合酸化物が挙げられる。   In the present invention, the oxide coated on the surface of the metal particles may be a single oxide of a selected element, or a plurality may be selected to form a composite oxide. Specifically, there are calcium oxide, titanium oxide, zirconium oxide, barium oxide, strontium oxide, yttrium oxide as a single oxide, and barium titanate, calcium titanate, strontium titanate, zirconate as complex oxides. Examples thereof include perovskite complex oxides such as calcium.

上記した本発明に係る金属粉の製造方法は、特に内部電極用のペースト材料であるニッケル粉に有効なものであるが、その他の金属粉、例えば、銅、銀、パラジウムなどの金属粉、ニッケル−リン合金やニッケル−コバルト合金、銀−パラジウム合金などの各種合金粉へも好適なものである。これらの金属粉に対して本発明を適用する際には、各金属粉の種類や要求される粉体特性などを考慮して、適宜製造条件を決定すればよい。   The above-described method for producing metal powder according to the present invention is particularly effective for nickel powder that is a paste material for internal electrodes, but other metal powders, for example, metal powders such as copper, silver, and palladium, nickel -It is also suitable for various alloy powders such as phosphorus alloy, nickel-cobalt alloy, silver-palladium alloy. When the present invention is applied to these metal powders, the production conditions may be appropriately determined in consideration of the type of each metal powder and the required powder characteristics.

以上説明したように、本発明に係る金属粉の製造方法によれば、金属粉粒表面に所望の酸化物を緻密に且つ所定の組成で被覆することができる。特に、ニッケル粉等の金属粉に適用すると、積層セラミックコンデンサ製造における焼成時に起こりやすいデラミネーションやクラック、金属粉成分の酸化によるセラミック相への金属粉成分の拡散を確実に防止することができる金属粉を製造することができる。   As described above, according to the metal powder manufacturing method of the present invention, the surface of the metal powder particles can be coated with a desired oxide densely and with a predetermined composition. In particular, when applied to metal powder such as nickel powder, a metal that can reliably prevent delamination and cracks that are likely to occur during firing in the production of multilayer ceramic capacitors, and diffusion of the metal powder component to the ceramic phase due to oxidation of the metal powder component Powder can be produced.

以下、本発明の好適な実施形態について、実施例及び比較例に基づき説明する。   Hereinafter, preferred embodiments of the present invention will be described based on examples and comparative examples.

この実施例1では、ニッケル粉を例にした実施例1−1及び1−2について説明する。ここで説明する実施例1−1、1−2及び比較例1では、水酸化ニッケルスラリーをヒドラジン還元することにより得られたニッケル粉を原料として用いた。   In Example 1, Examples 1-1 and 1-2 taking nickel powder as an example will be described. In Examples 1-1 and 1-2 and Comparative Example 1 described here, nickel powder obtained by hydrazine reduction of a nickel hydroxide slurry was used as a raw material.

実施例1−1:まず、純水0.6Lに、原料であるニッケル粉100g(SEM観察による一次平均粒径が0.29μm)を投入して撹拌を行い、ニッケル粉スラリーを作製した。そして、これに塩化カルシウム1.86g及び塩化酸化ジルコニウム5.4gを水0.6Lに溶解した溶液と、メタノール1Lを投入して撹拌した。 Example 1-1 : First, 100 g of nickel powder as a raw material (primary average particle diameter of 0.29 μm by SEM observation) was added to 0.6 L of pure water and stirred to prepare a nickel powder slurry. A solution prepared by dissolving 1.86 g of calcium chloride and 5.4 g of zirconium chloride in 0.6 L of water and 1 L of methanol were added thereto and stirred.

また、純水0.2Lに蓚酸4.69gを溶かした第一溶液と、純水0.2Lに蓚酸アンモニウム5.28gを溶かした第二溶液とを準備した。そして、上記のようにして作製したニッケルスラリーへ、この第一及び第二溶液を、約一時間かけて同時に添加した。添加終了後、濾過を行うことにより液体分を除去し、大気中70℃で乾燥処理を行った。このようにして得られたニッケル粉の粉粒表面には、CaC24及びZr(C242が被覆された状態となっていた。 A first solution in which 4.69 g of oxalic acid was dissolved in 0.2 L of pure water and a second solution in which 5.28 g of ammonium oxalate was dissolved in 0.2 L of pure water were prepared. And this 1st and 2nd solution was simultaneously added over about 1 hour to the nickel slurry produced as mentioned above. After completion of the addition, the liquid component was removed by filtration, followed by drying at 70 ° C. in the atmosphere. The powder particle surface of the nickel powder thus obtained was covered with CaC 2 O 4 and Zr (C 2 O 4 ) 2 .

乾燥後、このニッケル粉を窒素ガス雰囲気中330℃で、20分間の焼成処理を行った。そして、焼成処理を終えたニッケル粉を粉砕装置(ハイブリダイザー)を用いて、機械的作用を施し、粉粒表面の被覆物を固着して安定化させた。このようにして、ジルコン酸カルシウム(CaZrO)の複合酸化物が粉粒表面に被覆された状態のニッケル粉を得た。 After drying, the nickel powder was baked for 20 minutes at 330 ° C. in a nitrogen gas atmosphere. And the nickel powder which finished the baking process was given a mechanical effect | action using the grinder (hybridizer), and the coating on the surface of a powder particle was fixed and stabilized. There was thus obtained nickel powder state composite oxide of calcium zirconate (CaZrO 3) was coated on the granular surface.

実施例1−2:実施例1−1と同様に、まず純水0.6Lに、原料であるニッケル粉100g(SEM観察による一次平均粒径が0.29μm)を投入して撹拌を行い、ニッケル粉スラリーを作製した。そして、これに塩化バリウム3.12g及び蓚酸チタンカリウム4.56gを水0.6Lに溶解した溶液と、メタノール1Lを投入して撹拌した。 Example 1-2 : As in Example 1-1, first, 100 g of nickel powder as a raw material (primary average particle diameter of 0.29 μm by SEM observation) was charged into 0.6 L of pure water and stirred. A nickel powder slurry was prepared. A solution obtained by dissolving 3.12 g of barium chloride and 4.56 g of potassium titanium oxalate in 0.6 L of water and 1 L of methanol were added thereto and stirred.

また、純水0.2Lに蓚酸4.69gを溶かした第一溶液と、純水0.2Lに蓚酸アンモニウム5.28gを溶かした第二溶液とを準備した。そして、上記のようにして作製したニッケルスラリーへ、この第一及び第二溶液を、約一時間かけて同時に添加した。添加終了後、濾過を行うことにより液体分を除去し、大気中70℃で乾燥処理を行った。このようにして得られたニッケル粉の粉粒表面には、BaC24及びTi(C242が被覆された状態となっていた。 A first solution in which 4.69 g of oxalic acid was dissolved in 0.2 L of pure water and a second solution in which 5.28 g of ammonium oxalate was dissolved in 0.2 L of pure water were prepared. And this 1st and 2nd solution was simultaneously added over about 1 hour to the nickel slurry produced as mentioned above. After completion of the addition, the liquid component was removed by filtration, followed by drying at 70 ° C. in the atmosphere. The powder particle surface of the nickel powder thus obtained was covered with BaC 2 O 4 and Ti (C 2 O 4 ) 2 .

乾燥後、このニッケル粉を窒素ガス雰囲気中300℃で、20分間の焼成処理を行った。そして、焼成処理を終えたニッケル粉を粉砕装置(ハイブリダイザー)を用いて、機械的作用を施し、粉粒表面の被覆物を固着して安定化させた。このようにして、ペロブスカイト型構造をもつチタン酸バリウム(BaTiO)の複合酸化物が粉粒表面に被覆された状態のニッケル粉を得た。 After drying, this nickel powder was baked for 20 minutes at 300 ° C. in a nitrogen gas atmosphere. And the nickel powder which finished the baking process was given a mechanical effect | action using the grinder (hybridizer), and the coating on the surface of a powder particle was fixed and stabilized. In this way, nickel powder in a state in which the powder oxide surface was coated with a composite oxide of barium titanate (BaTiO 3 ) having a perovskite structure was obtained.

比較例1:比較のために、水酸化物から酸化物に還元して被覆を行う従来の製法によるニッケル粉を製造した。実施例1−1と同様に、まず純水2Lに原料であるニッケル粉100g(SEM観察による一次平均粒径が0.29μm)を投入して撹拌を行い、ニッケル粉スラリーを作製した。そして、純水0.2Lに塩化酸化ジルコニウム6.0gを溶かした第一溶液と、純水0.2Lに塩化カルシウム1.86gを溶かした第二溶液とを準備し、この第一及び二溶液をニッケル粉スラリーに、約一時間かけて同時に添加した。さらに、水酸化ナトリウム濃度45g/Lの水酸化ナトリウム溶液を0.1L加え、水酸化ジルコニウムと水酸化カルシウムがニッケル粉粒表面に複合的に被覆されるように撹拌を行った。その後、ろ過処理したニッケル粉を窒素ガス雰囲気中300℃で20分間の焼成処理を行った。このようにしてジルコン酸カルシウム(CaZrO)の複合酸化物が粉粒表面に被覆された状態のニッケル粉を得た。 Comparative Example 1 : For comparison, nickel powder was manufactured by a conventional manufacturing method in which coating is performed by reducing hydroxide to oxide. In the same manner as in Example 1-1, 100 g of nickel powder as a raw material (primary average particle diameter of 0.29 μm by SEM observation) was first added to 2 L of pure water and stirred to prepare a nickel powder slurry. Then, a first solution in which 6.0 g of zirconium chloride is dissolved in 0.2 L of pure water and a second solution in which 1.86 g of calcium chloride is dissolved in 0.2 L of pure water are prepared. Was simultaneously added to the nickel powder slurry over about one hour. Further, 0.1 L of a sodium hydroxide solution having a sodium hydroxide concentration of 45 g / L was added, and stirring was performed so that zirconium hydroxide and calcium hydroxide were coated on the nickel powder particle surface in a composite manner. Thereafter, the filtered nickel powder was baked for 20 minutes at 300 ° C. in a nitrogen gas atmosphere. In this way, nickel powder in a state in which the complex oxide of calcium zirconate (CaZrO 3 ) was coated on the particle surface was obtained.

以上のようにして得られた実施例1−1、1−2、比較例1のニッケル粉について、レーザー回折散乱式粒度分布測定による重量累積粒径D50、比表面積の測定を行った。その結果を表1に示す。 The nickel powders of Examples 1-1 and 1-2 and Comparative Example 1 obtained as described above were measured for weight cumulative particle size D 50 and specific surface area by laser diffraction scattering type particle size distribution measurement. The results are shown in Table 1.

Figure 2005068531
Figure 2005068531

未処理ニッケル粉のD50に比較して実施例1−1、1−2のD50はあまり大きく変化していないものの、実施例1−1、1−2の比表面積にあっては未処理ニッケル粉よりも4倍近く大きな値となっていることが判明した。また、比較例1のニッケル粉は、酸化物粒子によるニッケル粉粒表面の被覆が不十分なため、ニッケル粉粒表面の一部のニッケルが露出した状態になっていると考えられ、その比表面積が小さい値になったと推測される。 Although D 50 of Examples 1-1 and 1-2 in comparison with the D 50 of the untreated nickel powder has not changed too large, in the specific surface area of Examples 1-1 and 1-2 Untreated It was found that the value was nearly four times larger than that of nickel powder. Further, the nickel powder of Comparative Example 1 is considered to be in a state where a part of nickel on the nickel powder particle surface is exposed because the nickel powder particle surface is not sufficiently covered with the oxide particles, and its specific surface area. Is estimated to be small.

そして、上記実施例及び比較例の各ニッケル粉によりペレットを形成し、大気雰囲気中で室温から1200℃まで加熱することで熱収縮率の測定を行った。また、各ニッケル粉についてTG曲線の測定を行い、各ニッケル粉の酸化開始温度の特定も行った。その結果を図1及び図2に示す。   And the pellet was formed with each nickel powder of the said Example and comparative example, and the thermal contraction rate was measured by heating from room temperature to 1200 degreeC in air | atmosphere atmosphere. Moreover, the TG curve was measured about each nickel powder, and the oxidation start temperature of each nickel powder was also specified. The results are shown in FIGS.

図1には各ニッケル粉の熱膨張率の変化を測定した結果を示している。この測定は、実施例1−1、1−2及び比較例1、参考として未処理のニッケル粉(原料:図1中「未処理粉」と記載)について行った。測定試料は、各ニッケル粉をそれぞれ0.5g採取し、98MPaの圧力を加えて、直径5mm、高さ約5mmのペレットを使用した。そして、熱機械分析(TMA)装置(セイコー電子工業社製 TMA/SS6000)を用いて、当該ペレットを還元雰囲気(1%H−99%N)中で、室温から10℃/minの昇温速度で1200℃まで加熱して連続的に収縮率を測定したものである。 FIG. 1 shows the result of measuring the change in the thermal expansion coefficient of each nickel powder. This measurement was performed on Examples 1-1 and 1-2 and Comparative Example 1, and untreated nickel powder (raw material: described as “untreated powder” in FIG. 1) for reference. As a measurement sample, 0.5 g of each nickel powder was sampled, a pressure of 98 MPa was applied, and pellets having a diameter of 5 mm and a height of about 5 mm were used. Then, using a thermomechanical analysis (TMA) apparatus (TMA / SS6000 manufactured by Seiko Denshi Kogyo Co., Ltd.), the pellets were increased from room temperature to 10 ° C./min in a reducing atmosphere (1% H 2 -99% N 2 ). The shrinkage is measured continuously by heating to 1200 ° C. at a temperature rate.

まず、図1(A)〜(C)に示すように未処理ニッケル粉では、400℃付近で収縮し始め、600℃辺りまで連続的に収縮していることが判る。   First, as shown in FIGS. 1A to 1C, it can be seen that untreated nickel powder starts to shrink around 400 ° C. and continuously shrinks to around 600 ° C.

また、実施例1−1のニッケル粉(図1(A))では、500℃付近でもほとんど収縮をしておらず、800℃付近から収縮することが判った。500℃での収縮率は、実施例1−1は−0.95%であり、未処理ニッケル粉が−8.79%であるため、収縮率に大きな差があることが確認された。そして、実施例1−2のニッケル粉(図1(B))では、600℃付近でもあまり収縮をしておらず、750℃付近から大きく収縮することが判った。500℃での収縮率は、実施例2は−0.998%であり、未処理ニッケル粉が−8.79%であるため、収縮率に大きく差があることが確認された。さらに、比較例1のニッケル粉(図1(C))では、400℃付近から徐々に収縮し始め、1200℃までほぼ一定の比率で収縮することが判った。500℃での収縮率は、比較例1は−1.96%であり、未処理ニッケル粉が−8.79%であり、比較例1の方が実施例1−1及び1−2よりも明らかに収縮率が大きいことが確認された。以上のような結果より、従来の製造方法による比較例1のニッケル粉と比較すると、本実施例1−1、1−2のニッケル粉の方が、500℃〜800℃付近での耐熱収縮性が高いことが判明した。   In addition, it was found that the nickel powder of Example 1-1 (FIG. 1A) hardly contracted even near 500 ° C. and contracted from around 800 ° C. The shrinkage rate at 500 ° C. was −0.95% in Example 1-1 and −8.79% for the untreated nickel powder, so it was confirmed that there was a large difference in shrinkage rate. Then, it was found that the nickel powder of Example 1-2 (FIG. 1B) did not shrink much even near 600 ° C., and greatly shrunk from around 750 ° C. The shrinkage rate at 500 ° C. was −0.998% in Example 2, and the untreated nickel powder was −8.79%, so it was confirmed that there was a large difference in shrinkage rate. Furthermore, it was found that the nickel powder of Comparative Example 1 (FIG. 1C) began to shrink gradually from around 400 ° C. and contracted at a substantially constant rate up to 1200 ° C. The shrinkage rate at 500 ° C. is −1.96% in Comparative Example 1 and −8.79% in untreated nickel powder, and Comparative Example 1 is more than Examples 1-1 and 1-2. It was confirmed that the shrinkage rate was obviously large. From the above results, compared with the nickel powder of Comparative Example 1 according to the conventional manufacturing method, the nickel powders of Examples 1-1 and 1-2 have heat resistance shrinkage around 500 ° C. to 800 ° C. Turned out to be expensive.

次に、図2に示すTG曲線の測定結果について説明する。このTG曲線測定も、実施例及び比較例、参考として未処理のニッケル粉(原料:図2中「未処理粉」と記載)について行った。この測定は、示差熱重量同時測定装置(セイコー電子工業社製TG/DTA/SS6300)用いて行った。各ニッケル粉15mgを採取し、φ5mmのアルミナ製セルに入れ、このセルを装置内に配置し、150mL/minの空気を流通しながら、室温から5℃/minの昇温速度で1000℃まで加熱して連続的に酸化重量増分を測定したものである。   Next, the measurement result of the TG curve shown in FIG. 2 will be described. This TG curve measurement was also performed on the untreated nickel powder (raw material: described as “untreated powder” in FIG. 2) as examples and comparative examples and for reference. This measurement was performed using a differential thermogravimetric simultaneous measurement device (TG / DTA / SS6300 manufactured by Seiko Denshi Kogyo Co., Ltd.). 15 mg of each nickel powder was sampled and placed in a φ5 mm alumina cell. This cell was placed in the apparatus and heated from room temperature to 1000 ° C. at a rate of 5 ° C./min while circulating 150 mL / min of air. Thus, the increment of oxidized weight was measured continuously.

図2(A’)及び(B’)に示すように、未処理ニッケル粉と実施例1−1、1−2を比べると、未処理ニッケル粉の方が低い温度域から重量の変化が生じていることが判る。また、図2(C’)の比較例1のニッケル粉も同様な傾向であった。   As shown in FIGS. 2 (A ′) and (B ′), when the untreated nickel powder is compared with Examples 1-1 and 1-2, the untreated nickel powder changes in weight from a lower temperature range. You can see that Further, the nickel powder of Comparative Example 1 in FIG.

図2(A’)を見ると判るように、実施例1−1は未処理ニッケル粉よりも高い温度域から変化し始めることが確認された。350℃での酸化度は、実施例1−1が1.2%であり、未処理ニッケル粉は2.76%であることから、酸化度に大きく差があることが判明した。つまり、実施例1−1のニッケル粉の方が酸化されにくいものであることが明確となった。また、図2(B’)に示すように実施例1−2も、未処理ニッケル粉よりも高い温度域から重量の変化をし始めることが確認された。350℃での酸化度は、実施例2が1.07%であり、未処理ニッケル粉は2.76%であることから、酸化度に大きく差があることが判明した。よって、実施例1−2のニッケル粉の方が酸化されにくいものであることが明確に判明した。さらに、図2(C’)の比較例1についてみると、同様に未処理ニッケル粉よりも高い温度域から重量の変化をし始めることが確認された。350℃での酸化度は、比較例1が2.00%であった。このことから、本実施例1−1及び1−2のニッケル粉は、比較例1に比べ、耐酸化性に優れていることが判明した。   As can be seen from FIG. 2 (A '), it was confirmed that Example 1-1 began to change from a temperature range higher than that of the untreated nickel powder. The degree of oxidation at 350 ° C. was found to be 1.2% in Example 1-1 and 2.76% for the untreated nickel powder. That is, it became clear that the nickel powder of Example 1-1 was less likely to be oxidized. Further, as shown in FIG. 2 (B '), it was confirmed that Example 1-2 also began to change in weight from a temperature range higher than that of the untreated nickel powder. The degree of oxidation at 350 ° C. was 1.07% in Example 2 and 2.76% in the untreated nickel powder, which revealed that there was a large difference in the degree of oxidation. Therefore, it was clearly found that the nickel powder of Example 1-2 was less likely to be oxidized. Furthermore, in Comparative Example 1 in FIG. 2 (C ′), it was confirmed that the weight started to change from a temperature range higher than that of the untreated nickel powder. The degree of oxidation at 350 ° C. was 2.00% in Comparative Example 1. From this, it was found that the nickel powders of Examples 1-1 and 1-2 were superior in oxidation resistance as compared with Comparative Example 1.

続いて、この実施例2では銅粉に関する場合について説明する。ここで説明する実施例2では、硫酸銅をヒドラジン還元することにより得られた銅粉を原料として用いた。   Then, in this Example 2, the case regarding copper powder is demonstrated. In Example 2 described here, copper powder obtained by hydrazine reduction of copper sulfate was used as a raw material.

実施例2:実施例1−1と同様に、まず純水0.6Lに、原料である銅粉100g(SEM観察による一次平均粒径が0.50μm)を投入して撹拌を行い、銅粉スラリーを作製した。そして、これに塩化バリウム3.12g及び蓚酸チタンカリウム4.56gを水0.6Lに溶解した溶液と、メタノール1Lを投入して撹拌した。 Example 2 : As in Example 1-1, first, 100 g of raw material copper powder (primary average particle diameter of 0.50 μm by SEM observation) was added to 0.6 L of pure water, followed by stirring. A slurry was prepared. A solution obtained by dissolving 3.12 g of barium chloride and 4.56 g of potassium titanium oxalate in 0.6 L of water and 1 L of methanol were added thereto and stirred.

また、純水0.2Lに蓚酸4.69gを溶かした第一溶液と、純水0.2Lに蓚酸アンモニウム5.28gを溶かした第二溶液とを準備した。そして、上記のようにして作製した銅粉スラリーへ、この第一及び第二溶液を、約一時間かけて同時に添加した。添加終了後、濾過を行うことにより液体分を除去し、大気中70℃で乾燥処理を行った。このようにして得られた銅粉の粉粒表面には、BaC24及びTi(C242が被覆された状態となっていた。 A first solution in which 4.69 g of oxalic acid was dissolved in 0.2 L of pure water and a second solution in which 5.28 g of ammonium oxalate was dissolved in 0.2 L of pure water were prepared. And this 1st and 2nd solution was simultaneously added over about 1 hour to the copper powder slurry produced as mentioned above. After completion of the addition, the liquid component was removed by filtration, followed by drying at 70 ° C. in the atmosphere. The powder particle surface of the copper powder thus obtained was covered with BaC 2 O 4 and Ti (C 2 O 4 ) 2 .

乾燥後、この銅粉を窒素ガス雰囲気中300℃で、20分間の焼成処理を行った。そして、焼成処理を終えた銅粉を粉砕装置(ハイブリダイザー)を用いて、機械的作用を施し、粉粒表面の被覆物を固着して安定化させた。このようにして、ペロブスカイト型構造をもつチタン酸バリウム(BaTiO)の複合酸化物が粉粒表面に被覆された状態の銅粉を得た。 After drying, this copper powder was baked for 20 minutes at 300 ° C. in a nitrogen gas atmosphere. And the copper powder which finished the baking process gave the mechanical effect | action using the grinding | pulverization apparatus (hybridizer), and adhered and stabilized the coating on the surface of a powder grain. In this way, copper powder was obtained in a state in which the powder oxide surface was coated with a composite oxide of barium titanate (BaTiO 3 ) having a perovskite structure.

以上のようにして得られた実施例2、未処理の銅粉について、レーザー回折散乱式粒度分布測定による重量累積粒径D50、比表面積の測定を行った。その結果を表2に示す。 About Example 2, the untreated copper powder obtained as described above, the weight cumulative particle diameter D 50 and the specific surface area were measured by laser diffraction scattering particle size distribution measurement. The results are shown in Table 2.

Figure 2005068531
Figure 2005068531

未処理銅粉のD50に比較して実施例2の比表面積にあっては未処理銅粉よりも6倍近く大きな値となっていることが判明した。 In the specific surface area of to Example 2 compared to the D 50 of the untreated copper powder was found to have a large value 6 times more than the untreated copper powder.

そして、上記実施例及び比較例の各銅粉によりペレットを形成し、大気雰囲気中で室温から1000℃まで加熱することで熱収縮率の測定を行った。また、各銅粉についてTG曲線の測定を行い、各銅粉の酸化開始温度の特定も行った。その結果を図3に示す。   And the pellet was formed with each copper powder of the said Example and comparative example, and the thermal contraction rate was measured by heating from room temperature to 1000 degreeC in air | atmosphere atmosphere. Moreover, the TG curve was measured about each copper powder, and the oxidation start temperature of each copper powder was also specified. The result is shown in FIG.

図3(D)には各銅粉の熱膨張率の変化を測定した結果を示している。この測定は、実施例2、未処理の銅粉について行った。測定試料及び測定条件は、実施例1のニッケル粉の場合と同様なため省略する(但し、測定温度は室温〜1000℃)。   FIG. 3D shows the result of measuring the change in the thermal expansion coefficient of each copper powder. This measurement was performed on Example 2, untreated copper powder. The measurement sample and measurement conditions are the same as in the case of the nickel powder of Example 1, and are omitted (however, the measurement temperature is room temperature to 1000 ° C.).

まず、図3(D)に示すように未処理銅粉では、600℃付近から収縮が始まっていた。一方、実施例2の銅粉では、600℃付近でもほとんど収縮をしていなく、800℃付近から収縮し始めることが判った。750℃での収縮率は、実施例2は0.11%であり、未処理銅粉が7.98%であるため、収縮率に大きな差があることが確認された。この結果より、本実施例2の銅粉は、600℃程度の低温側での耐熱収縮性が高いことが確認された。   First, as shown in FIG. 3D, the untreated copper powder started to shrink from around 600 ° C. On the other hand, it was found that the copper powder of Example 2 hardly contracted even at around 600 ° C. and began to shrink from around 800 ° C. The shrinkage rate at 750 ° C. was 0.11% in Example 2 and 7.98% of the untreated copper powder, so it was confirmed that there was a large difference in shrinkage rate. From this result, it was confirmed that the copper powder of the present Example 2 has high heat shrinkage resistance on the low temperature side of about 600 ° C.

次に、図3(D’)2に示すTG曲線の測定結果について説明する。このTG曲線測定も、実施例2、未処理の銅粉について行った。この測定は、実施例1の場合と同様なため省略する(但し、測定温度は室温〜800℃)。   Next, the measurement result of the TG curve shown in FIG. This TG curve measurement was also performed on Example 2, untreated copper powder. This measurement is omitted because it is the same as in Example 1 (however, the measurement temperature is room temperature to 800 ° C.).

図3(D’)に示すように、未処理銅粉と実施例2を比べると、未処理銅粉の方が低い温度域から重量の変化が生じていることが判明した。また、実施例2は未処理銅粉よりも高い温度域から変化し始めることが確認された。350℃での酸化度は、実施例2が2.25%であり、未処理銅粉は5.45%であることから、酸化度に大きく差があることが判明した。よって、実施例2の銅粉の方が酸化されにくいものであることが明確に判明した。   As shown in FIG. 3 (D ′), when the untreated copper powder was compared with Example 2, it was found that the untreated copper powder had a change in weight from a lower temperature range. Moreover, it was confirmed that Example 2 starts changing from a temperature range higher than that of untreated copper powder. The degree of oxidation at 350 ° C. was 2.25% in Example 2 and 5.45% for the untreated copper powder, so it was found that there was a large difference in the degree of oxidation. Therefore, it was clearly clarified that the copper powder of Example 2 was less likely to be oxidized.

各ニッケル粉の熱膨張率変化測定グラフ。The thermal expansion coefficient change measurement graph of each nickel powder. 各ニッケル粉のTG測定グラフ。TG measurement graph of each nickel powder. 銅粉の熱膨張率変化測定グラフ及びTG測定グラフ。The thermal expansion coefficient change measurement graph and TG measurement graph of copper powder.

Claims (5)

金属粉粒表面に、誘電材料の構成元素からなる酸化物を被覆した金属粉の製造方法において、
誘電材料の構成元素からなる酸化物を形成するための可溶性化合物とアルコールとを金属粉に接触して、
該金属粉を蓚酸及び蓚酸アンモニウムと接触して反応させることで粉粒表面に蓚酸化物を被覆した後、
該金属粉に焼成処理を行うことを特徴とする金属粉の製造方法。
In the method for producing metal powder in which the metal powder surface is coated with an oxide composed of a constituent element of a dielectric material,
Contacting the metal powder with a soluble compound and alcohol for forming an oxide composed of the constituent elements of the dielectric material,
After coating the succinate on the surface of the granules by reacting the metal powder with oxalic acid and ammonium oxalate,
A method for producing a metal powder, comprising subjecting the metal powder to a firing treatment.
焼成処理後の金属粉に機械的作用を施すものである請求項1に記載の金属粉の製造方法。 The method for producing metal powder according to claim 1, wherein the metal powder after firing is subjected to mechanical action. 焼成処理は、非酸化性雰囲気中、300〜600℃に加熱するものである請求項1又は請求項2に記載の金属粉の製造方法。 The method for producing metal powder according to claim 1 or 2, wherein the baking treatment is performed by heating to 300 to 600 ° C in a non-oxidizing atmosphere. 誘電材料の構成元素は、カルシウム、チタニウム、ジルコニウム、バリウム、ストロンチウム、イットリウムから選ばれるものである請求項1〜請求項3いずれかに記載の金属粉の製造方法。 The method for producing a metal powder according to any one of claims 1 to 3, wherein the constituent element of the dielectric material is selected from calcium, titanium, zirconium, barium, strontium, and yttrium. 金属粉は、ニッケル又はニッケル合金、銀又は銀合金、銅又は銅合金、パラジウム又はパラジウム合金のいずれかから形成されたものである請求項1〜請求項4いずれかに記載の金属粉の製造方法。
The method for producing metal powder according to any one of claims 1 to 4, wherein the metal powder is formed from any one of nickel or nickel alloy, silver or silver alloy, copper or copper alloy, palladium or palladium alloy. .
JP2003304014A 2003-08-28 2003-08-28 Metal powder production method Pending JP2005068531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304014A JP2005068531A (en) 2003-08-28 2003-08-28 Metal powder production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304014A JP2005068531A (en) 2003-08-28 2003-08-28 Metal powder production method

Publications (1)

Publication Number Publication Date
JP2005068531A true JP2005068531A (en) 2005-03-17

Family

ID=34407819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304014A Pending JP2005068531A (en) 2003-08-28 2003-08-28 Metal powder production method

Country Status (1)

Country Link
JP (1) JP2005068531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119652A (en) * 2011-12-07 2013-06-17 Jfe Mineral Co Ltd Surface-treated nickel ultra-fine powder and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119652A (en) * 2011-12-07 2013-06-17 Jfe Mineral Co Ltd Surface-treated nickel ultra-fine powder and method for producing the same

Similar Documents

Publication Publication Date Title
JP2005183972A (en) Method of manufacturing multilayer ceramic capacitor by spin coating and multilayer ceramic capacitor
TW529047B (en) Multilayer ceramic capacitor and method for the manufacture thereof
JP2018181941A (en) Multilayer ceramic capacitor and manufacturing method thereof
TW200920857A (en) Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser
JP2010067418A (en) Conductive paste and method of manufacturing the same
TW583154B (en) Method for producing dielectric particles
JP2003257776A (en) Conductive paste and laminated ceramic electronic component
JP3203238B2 (en) Composite nickel fine powder
JP2015083714A (en) Method for producing composite powder and conductive thick film paste and multilayer ceramic electronic component using composite powder obtained by the production method
TW202119441A (en) Electrically conductive paste composition for laminated ceramic capacitor internal electrode, method for manufacturing said electrically conductive paste composition for laminated ceramic capacitor internal electrode, and electrically conductive paste
JP4552260B2 (en) Nickel powder, electrode paste, and electronic component manufacturing method
JP2005068531A (en) Metal powder production method
JP3421810B2 (en) Method for producing ultrafine barium titanate dielectric ceramic material
JP3791264B2 (en) Method for producing reduction-resistant dielectric composition and method for producing multilayer ceramic capacitor
JP5853574B2 (en) Method for producing nickel-coated dielectric particles
JP2004277263A (en) Method for producing dielectric porcelain composition, and ceramic capacitor using the dielectric porcelain composition produced thereby
JP2003317542A (en) Conductive paste and multilayer ceramic electronic component
JP2001335805A (en) Coated metal powder, its production method, coated metal powder paste and ceramic multilayer parts
JP4016232B2 (en) Method for producing nickel powder
JP2757402B2 (en) Method for producing high-permittivity dielectric ceramic composition
JP2000216042A (en) Manufacture of laminated ceramic capacitor
JP2003129116A (en) Method for manufacturing nickel powder, nickel powder, nickel paste, and laminated ceramic electronic component
JP2007220551A (en) Conductor paste and electronic component
JPS61144813A (en) Laminated ceramic capacitor and manufacture thereof
JP2019067827A (en) Laminate electronic component