【0001】
【発明の属する技術分野】
本発明は、地熱を利用した被空調空間を冷暖房する地中熱利用空調システムに関する。
【0002】
【従来の技術】
外気に左右されず年間を通して安定した温度に保たれる地中に、地中熱交換器を設置し、地中熱交換器とヒートポンプとの間で熱交換可能として被空調空間を冷暖房する地中熱利用空調システムが開発されている。
地中熱利用空調システムは、年間を通じて安定した温度の大地を熱源として利用するため、空気熱源等の他システムに比べ成績係数(冷暖房能力/使用電力)の高いシステムである。
【0003】
【非特許文献1】「地球熱利用システム・地中熱利用ヒートポンプシステムの特徴と課題」新エネルギー産業技術総合開発機構(NEDO)発行パンフレット9ページ。
【0004】
【発明が解決しようとする課題】
従来の地中熱利用空調システムは、地中に設置された熱交換器とヒートポンプとの間で冷暖房運転のための放熱又は採熱の熱交換が続くと、時間の経過にともない地中熱交換器周辺の地中温度が上昇又は下降し、地中熱交換器の放熱又は採熱能力は減少する。
図中10(a)は、冷房又は暖房運転を行う際の放熱又は採熱にともなう地中熱交換器からの距離に応じた地中温度分布の経時変化を示す。
図中の実線▲1▼は、冷房又は暖房開始時の1日目運転終了時点の地中温度分布を示し、点線▲2▼及び▲3▼は、冷房又は暖房運転期におけるその後の運転時間の経過による地中温度分布の変化を示す。
図10(b)は、冷房又は暖房運転期における放熱又は採熱能力の経時変化を示す。
図10(b)▲3▼の時点のように時間経過とともに減少していった放熱又は採熱能力は見掛け上安定するが、その放熱又は採熱能力は初期▲1▼の時点に比べ著しく低下することになり、結果的に冷房又は暖房能力も初期に比べ著しく低下する。
従来の地中熱利用空調システムの冷房又は暖房能力は、この▲3▼の時点の放熱又は採熱能力を基に設計されているのが現状である。このため、標準的な戸建住宅では、冷暖房・給湯負荷等を地中熱でまかなう場合、一般的に100m程度のボアホール型地中熱交換器が必要になっており、また、住宅以外の業務用建築物では、敷地内に設置し得る数量の地中熱交換器で安定的に得られる冷暖房能力が建物全体の負荷に満たない場合が多く、成績係数の高い地中熱利用空調は部分的にしか使用できず、空調熱源等成績係数の劣る他の空調システムと併用して採用しなければならない事例が多い。
【0005】
本発明は、上記従来の地中熱利用空調システムの持つ問題点を解消する、地中熱交換器の採熱、放熱能力を回復可能とした効率的な地中熱利用空調システムを提供することを目的とする。
【0006】
【課題を解決するための手段】
本第1発明は、前記課題を解決するために、地中熱利用空調システムにおいて、地中に設置された地中熱交換器とヒートポンプとの間を熱交換可能に連結し、ヒートポンプと被空調空間及び大気との熱交換器とを切替可能に連結し、冷暖房運転時には、地中熱交換器、ヒートポンプ、被空調空間とを連結して、地中に放熱又は採熱しながら被空調空間を冷暖房し、冷暖房運転時以外で電気使用料金が安価な時に、地中熱交換器、ヒートポンプ、大気との熱交換器とを連結し、前記ヒートポンプを冷暖房運転時の運転と反対の運転をすることにより地中熱交換器の放熱又は採熱能力を回復・向上させることを特徴とする。
【0007】
本第2発明は、地中熱利用空調システムにおいて、地中に設置された少なくとも2グループ以上の地中熱交換器とヒートポンプとを熱交換可能に連結すると共に、前記ヒートポンプと被空調空間及び2グループ以上の地中熱交換器の他方の地中熱交換器とを切替可能に連結し、冷暖房運転時、前記少なくとも2グループ以上の地中熱交換器の一方とヒートポンプと被空調空間とを連結して地中に放熱又は採熱しながら冷暖房運転をし、冷暖房運転時以外で電気使用料金が安価な時に、前記ヒートポンプと少なくとも2グループ以上の地中熱交換器とを連結し、前記ヒートポンプで冷暖房運転時の運転と反対の運転をすることにより、少なくとも2グループ以上の地中熱交換器の一方の地中熱交換器の放熱又は採熱能力を回復させ、且つ2グループ以上の地中熱交換器の他方の地中熱交換器に長期的な採熱又は放熱能力を蓄積することを特徴とする。
【0008】
本第3発明は、本第1又は第2発明の地中熱利用空調システムにおいて、前記地中熱交換器とヒートポンプとの間にブラインを循環させることにより熱交換することを特徴とする。
【0009】
本第4発明は、本第1又は第2発明の地中熱利用空調システムにおいて、前記地中熱交換器とヒートポンプとの間に直接冷媒を循環させることにより熱交換することを特徴とする。
【0010】
【発明の実施の形態】
本発明の実施の形態を図により説明する。
図1は、本発明の地中熱利用空調システム1を、夏期の冷房用に適用した一実施形態を示す図である。
地中熱利用空調システム1は、地中に設置される地中熱交換器2、ヒートポンプ3、被空調空間4、大気との熱交換器5及びブライン(熱媒体液体又は熱媒体気体)を循環させるブライン配管6を有する。
地中熱交換器2は、地中に形成されるボアホール、杭基礎、直接基礎、地中連続壁等の地中地盤と接するすべての部材に適用可能である。
ヒートポンプ3は、圧縮機7と凝縮器8と膨張弁9と蒸発器10とそれらを接続し冷媒を循環する冷媒配管11と冷媒の流れを正逆方向に切り替える四方弁12から構成される。
図1に示されるように、地中熱利用空調システム1を冷房用に適用する場合、地中熱交換器2内のブラインとヒートポンプ3の凝縮器8からブライン配管6を通して循環するブラインとで熱交換し、地中に放熱し、被空調空間4とヒートポンプ3の蒸発器10との間で熱交換し、被空調空間4を冷房する。
【0011】
地熱利用空調システム1の冷房運転時以外で、電気使用料金が安価な時(例えば夜間)に、地中熱交換器2の放熱能力を回復するための運転を行う。図2は回復運転の実施状態を示す図である。
この状態では、冷媒の冷媒配管11を通しての循環が冷房運転時とは逆循環とし、ヒートポンプ3の凝縮器8と大気との熱交換器5との間で熱交換し、ヒートポンプ3の蒸発器10からブライン配管6を通して循環するブラインと地中熱交換器2内のブラインとで熱交換し、地中を冷却し、地中熱交換器2の放熱能力を回復させる。
【0012】
図3は、夏期の地中熱利用空調システム1の冷房運転と地中熱交換器2の放熱能力回復運転が交互に行われている状態を示す図である。実線で示されるものは、冷房運転13をすることにより、地中熱交換器2の放熱能力が低下するが、電気使用料金が安価な時(例えば夜間)に行われる放熱能力回復運転14により地中熱交換器2の放熱能力が回復し、初期の能力を維持した冷房運転が可能になることを示している。
図3において破線で示されるのは、放熱能力回復運転を行わない場合の地中熱交換器2の放熱能力の低下状態を示すもので、数日で放熱能力が著しく低下することを示している。
【0013】
図2の放熱能力回復のための地中冷却運転を行い、地中温度が初期温度に戻り、放熱能力が回復した後も、さらに冷却運転を続ければ、地中温度は初期温度よりさらに低下し、放熱能力そして冷房能力を初期よりも向上させることが可能となる。回復後も冷却運転を続けた場合の地中温度分布を図10(a)の一点鎖線▲4▼に、放熱能力を図10(b)の▲4▼に示す。初期状態の▲1▼に比べ、▲4▼では空調運転前よりも地中熱交換器からの距離に応じた地中温度分布がさらに低い状態になり、放熱能力が向上している。
【0014】
図4は、地中熱利用空調システム1を、冬期の暖房用に適用した一実施形態を示す図である。
図4に示されるように、地中熱利用空調システム1を暖房用に適用する場合、地中熱交換器2内のブラインとヒートポンプ3の蒸発器10からブライン配管6を通して循環するブラインとで熱交換し、地中から採熱し、被空調空間4とヒートポンプ3の凝縮器8との間で熱交換し、被空調空間4を暖房する。
【0015】
地中熱利用空調システム1の暖房運転時以外で、電気使用料金が安価な時(例えば夜間)に、地中熱交換器2の採熱能力を回復するための運転を行う。図5は回復運転の実施状態を示す図である。
この状態では、冷媒の冷媒配管11を通しての循環が暖房運転時とは逆循環とし、ヒートポンプ3の蒸発器10と大気との熱交換器5との間で熱交換し、ヒートポンプ3の凝縮器8からブライン配管6を通して循環するブラインと地中熱交換器2内のブラインとで熱交換し、地中を加熱し地中熱交換器2の採熱能力を回復させる。
【0016】
図6は、冬期の地中熱利用空調システム1の暖房運転と地中熱交換器2の採熱能力回復運転が交互に行われている状態を示す図である。実線で示されるものは、暖房運転15をすることにより、地中熱交換器2の採熱能力が低下するが、電気使用料金が安価な時(例えば夜間)に行われる採熱能力回復運転16により地熱交換機2の採熱能力が回復し、初期の能力を維持した暖房運転が可能になることを示している。
図6において破線で示されるのは、採熱能力回復運転16を行わない場合の地中熱交換器2の採熱能力の低下状態を示すもので、数日で採熱能力が著しく低下することを示している。
【0017】
図2の採熱能力が回復のための地中加熱運転を行い、地中温度が初期温度にもどり、採熱能力回復した後も、さらに加熱運転を続ければ、地中温度は初期温度よりさらに上昇し、採熱能力そして暖房能力を初期よりも向上させることが可能となる。回復後も加熱運転を続けた場合の地中温度分布を図10(a)の一点鎖線▲4▼に、採熱能力を図10(b)の▲4▼に示す。初期状態の▲1▼に比べ、▲4▼では空調運転前よりも地中熱交換器からの距離に応じた地中温度分布がさらに高い状態になり、採熱能力が向上している。
【0018】
図7は、本発明の地中熱利用空調システムを夏期の冷房運転期間の冷房運転時外であって電気使用料金が安価な時(夜間)に実施される地熱交換機2の放熱能力回復運転時の他の実施形態を示す図である。
この実施形態においては、少なくとも2グループ以上の地中熱交換器2、2’を有する。2グループ以上の地中熱交換器2、2’は、所定間隔を置いて配置されるのが好ましい。
この実施形態においても、冷房運転時は図1に示される実施形態と同様に、少なくとも2グループ以上の地中熱交換器2、2’の一方の地熱交換機2内の充填材とヒートポンプ3の凝縮器8からブライン配管6を通して循環するブラインとで熱交換し、被空調空間4とヒートポンプ3の蒸発器10との間で熱交換し、地中に放熱し、被空調空間4を冷房する。
この実施形態における放熱能力回復運転は、ヒートポンプ3の蒸発器10からブライン配管6を通して循環するブラインと一方の地中熱交換器2内の充填材とで熱交換し、一方の地中熱交換器2周囲の地中を冷却し、一方の地熱交換機2の放熱能力を回復させ、ヒートポンプ3の凝縮器8からブライン配管6を通して循環するブラインと他方の地熱交換機2’内の充填材と熱交換して、他方の地熱交換機2’周囲の地中に放熱し、次の暖房期間の採熱能力を向上させるための長期的な高温蓄熱が実施され、大気との熱交換器5による放熱を実施しない。
【0019】
図8は、本発明の地熱利用空調システム1を冬期の暖房運転期間の暖房運転時外で電気使用料金が安価な時に実施される地中熱交換器2の採熱能力回復運転時の他の実施形態を示す図である。
この実施形態においても、暖房運転時は図4に示される実施形態と同様に、少なくとも2グループ以上の一方の地中熱交換器2内の充填材とヒートポンプ3の蒸発器10からブライン配管6を通して循環するブラインとで熱交換し、被空調空間4とヒートポンプ3の凝縮器8との間で熱交換し、地中から採熱し、被空調空間4を暖房する。
この実施形態における採熱能力回復運転は、ヒートポンプ3の凝縮器8からブライン配管6を通して循環するブラインと一方の地中熱交換器2内の充填材とで熱交換し、一方の地中熱交換器2周囲の地中を加熱し、一方の地熱交換機2の採熱能力を回復させ、ヒートポンプ3の蒸発器10からブライン配管6を通して循環するブラインと他方の地熱交換機2’内の充填材と熱交換して、他方の地熱交換機2’周囲の地中から採熱し、次の冷房期間の放熱能力を向上させるための長期的な低温蓄熱が実施され、大気との熱交換器5による熱交換を実施しない。
【0020】
図9(a)(b)は、地中熱交換器2内に満たされた充填材とヒートポンプ3との熱交換を、ブライン配管を通して循環するブラインにより行うのではなく、ヒートポンプ3の冷媒配管11を循環する冷媒と地中熱交換器2内に満たされた水、グラウト等の充填材とで行うものである。
図9(a)は、地中熱利用空調システム1の冷房運転の状態を示すもので、地中熱交換器2内に満たされた充填材と熱交換する冷媒配管11自体がヒートポンプ3の凝縮器8として機能し、地中に放熱し、ヒートポンプ3の蒸発器10と被空調空間4との間で熱交換し被空調空間4を冷房する。
図9(b)は、地中熱利用空調システム1の暖房運転の状態を示すもので、地中熱交換器2内に満たされた充填材と熱交換する冷媒配管11自体がヒートポンプ3の蒸発器10として機能し、地中から採熱しヒートポンプ3の凝縮器8と被空調空間4との間で熱交換し被空調空間4を暖房する。
【0021】
以上、本発明の地中熱利用システムの実施形態の用途として空調を中心として説明してきたが、本発明の地中熱利用システムの用途は空調に限定されるものではなく、融雪、給湯等の他の用途にも適用可能であることは当然のことである。
【0022】
【発明の効果】
本発明の冷暖房運転時以外で電気使用量が減少する時に、地中熱交換器、ヒートポンプ、大気との熱交換器とを連結し、電気使用量の少ない時に設定される安価な電力を使用し、前記ヒートポンプを冷暖房運転時の運転と反対の運転をすることにより地中熱交換器の放熱又は採熱能力を回復させる構成により、冷暖房運転を長期間繰り返しても、初期の高位な地中熱交換器の放熱又は採熱能力を確保またはさらに向上させることができ、効率的に地中から熱を得ることができ、地中熱交換器ボリュームの低減や、建築物全負荷への地中熱利用対応が可能になる。
また、放熱又は採熱能力回復運転が、冷暖房運転時外の電気使用料金が安価な使用量減少時(夜間)に実施されるため、電力供給能力に影響されることがなく、安い電気料金で運転できるので、低コストの地中熱利用空調システムとすることができる。
さらに、ヒートポンプと少なくとも2グループ以上の地中熱交換器を連結し、前記ヒートポンプで冷暖房運転時の運転と反対の運転をすることにより、少なくとも2グループ以上の地中熱交換器の一方の地中熱交換器の放熱又は採熱能力を回復させ、且つ2グループ以上の地中熱交換器の他方の地中熱交換器に長期的な放熱又は採熱能力を蓄積する構成により、冷房又は暖房運転期間に次の暖房又は冷房運転期間のための長期的採熱又は放熱能力を蓄積することができ、低コストで効率のよい地熱利用空調システムとすることができ、大気との熱交換がないので、ヒートアイランド現象を抑制することができる。
地中熱交換器内の充填材に直接ヒートポンプの冷媒配管を配置することで熱交換効率がよくなり、ブライン配管が必要なくなり、ブライン搬送動力を削減でき、運転のための必要エネルギーを低減することができる。
【図面の簡単な説明】
【図1】本発明の冷房運転時の一実施形態を示す図である。
【図2】本発明の放熱能力回復運転の一実施形態を示す図である。
【図3】本発明の冷房及び放熱能力回復の交互運転による地中熱交換器の放熱能力回復状態を示す図である。
【図4】本発明の暖房運転時の一実施形態を示す図である。
【図5】本発明の採熱能力回復運転の一実施形態を示す図である。
【図6】本発明の暖房及び採熱能力回復の交互運転による地中熱交換器の採熱能力回復状態を示す図である。
【図7】本発明の放熱能力回復運転の他の実施形態を示す図である。
【図8】本発明の採熱能力回復運転の他の実施形態を示す図である。
【図9】本発明の地中熱交換器とヒートポンプとの間の熱交換の他の実施形態を示す図である。
【図10】(a)(b)従来技術の問題点を示す図である。
【符号の説明】
1:地中熱利用空調システム
2:地中熱交換器
3:ヒートポンプ
4:被空調空間
5:大気との熱交換器
6:ブライン用配管
7:圧縮機
8:凝縮器
9:膨張弁
10:蒸発器
11:冷媒用配管
12:四方弁
13:冷房運転
14:放熱能力回復運転
15:暖房運転
16:採熱能力回復運転[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a geothermal air-conditioning system that heats and cools an air-conditioned space using geothermal heat.
[0002]
[Prior art]
An underground heat exchanger is installed in the ground that is kept at a stable temperature throughout the year without being influenced by the outside air, and the air-conditioned space is cooled and heated so that heat can be exchanged between the underground heat exchanger and the heat pump. Heat utilization air conditioning systems have been developed.
The ground heat-use air conditioning system is a system with a higher coefficient of performance (cooling / heating capacity / power consumption) than other systems such as an air heat source, because the ground of stable temperature is used as a heat source throughout the year.
[0003]
[Non-Patent Document 1] “Features and issues of geothermal heat utilization system and geothermal heat utilization heat pump system”, page 9 of the New Energy Industrial Technology Development Organization (NEDO) publication pamphlet.
[0004]
[Problems to be solved by the invention]
The conventional geothermal heat-conditioning air-conditioning system has a function of exchanging geothermal heat as time passes if heat exchange for heat-conditioning operation or heat collection continues between the heat exchanger installed in the ground and the heat pump. The underground temperature around the vessel rises or falls, and the heat dissipation or heat collection capacity of the underground heat exchanger decreases.
In the figure, 10 (a) shows the change over time in the underground temperature distribution according to the distance from the underground heat exchanger due to heat radiation or heat collection during cooling or heating operation.
The solid line (1) in the figure indicates the underground temperature distribution at the end of the first day operation at the start of cooling or heating, and the dotted lines (2) and (3) indicate the subsequent operation time in the cooling or heating operation period. Changes in underground temperature distribution over time are shown.
FIG.10 (b) shows the time-dependent change of the thermal radiation or heat collection capability in a cooling or heating operation period.
Although the heat dissipation or heat collection ability that decreased with time as shown in FIG. 10 (b) (3) is apparently stable, the heat dissipation or heat collection ability is significantly reduced compared to the initial point (1). As a result, the cooling or heating capacity is significantly reduced compared to the initial stage.
The current cooling or heating capacity of a conventional geothermal heat-utilizing air conditioning system is designed based on the heat dissipation or heat collection capacity at the time point (3). For this reason, in a standard detached house, a borehole type ground heat exchanger of about 100m is generally required to cover the heating, cooling, hot water supply load, etc. with geothermal heat. In many buildings, the air conditioning capacity that can be stably obtained by the quantity of underground heat exchangers that can be installed on the premises is often less than the load of the entire building. In many cases, it must be used in combination with other air conditioning systems with poor coefficient of performance, such as air conditioning heat sources.
[0005]
The present invention provides an efficient geothermal air conditioning system capable of recovering the heat collection and heat radiation capacity of a ground heat exchanger, which eliminates the problems of the conventional geothermal heat utilization air conditioning system. With the goal.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the first invention of the present invention is a geothermal heat-conditioning air-conditioning system in which a ground heat exchanger installed in the ground and a heat pump are connected so as to be able to exchange heat, and the heat pump and air-conditioned The space and the air heat exchanger are switchably connected, and during the cooling and heating operation, the underground heat exchanger, heat pump, and air-conditioned space are connected, and the air-conditioned space is cooled and heated while radiating heat or collecting heat. By connecting the underground heat exchanger, heat pump, and heat exchanger to the atmosphere when the electricity usage fee is low except during air conditioning operation, the heat pump is operated opposite to the operation during air conditioning operation. It is characterized by recovering and improving the heat dissipation or heat collection capacity of the underground heat exchanger.
[0007]
The second aspect of the present invention is an underground heat-utilizing air conditioning system, wherein at least two groups of underground heat exchangers installed in the ground and a heat pump are connected so as to be able to exchange heat, and the heat pump, the air-conditioned space, and 2 The other underground heat exchangers of the group or higher ground heat exchangers are switchably connected, and at the time of cooling and heating operation, one of the at least two groups of ground heat exchangers, the heat pump, and the air-conditioned space are connected. The heat pump is connected to the heat pump and at least two groups of underground heat exchangers when the electricity usage fee is low except during the cooling and heating operation. By performing the opposite operation to the operation at the time of operation, the heat radiation or heat collection capacity of one of the underground heat exchangers of at least two groups or more is restored, and 2 groups Characterized by storing long-term Tonetsu or dissipating capability to the other underground heat exchanger of the above underground heat exchanger flop.
[0008]
The third invention is characterized in that in the ground heat utilization air conditioning system of the first or second invention, heat is exchanged by circulating brine between the underground heat exchanger and the heat pump.
[0009]
According to a fourth aspect of the present invention, in the ground heat utilization air conditioning system according to the first or second aspect of the present invention, heat is exchanged by directly circulating a refrigerant between the underground heat exchanger and the heat pump.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an embodiment in which a geothermal air conditioning system 1 according to the present invention is applied for cooling in summer.
The ground heat utilization air conditioning system 1 circulates a ground heat exchanger 2, a heat pump 3, an air-conditioned space 4, a heat exchanger 5 with air, and brine (a heat medium liquid or a heat medium gas) installed in the ground. A brine pipe 6 is provided.
The underground heat exchanger 2 can be applied to all members in contact with the underground ground such as boreholes, pile foundations, direct foundations, underground continuous walls formed in the underground.
The heat pump 3 includes a compressor 7, a condenser 8, an expansion valve 9, an evaporator 10, a refrigerant pipe 11 that circulates the refrigerant, and a four-way valve 12 that switches the refrigerant flow in the forward and reverse directions.
As shown in FIG. 1, when the underground heat-utilizing air conditioning system 1 is applied for cooling, heat is generated by the brine in the underground heat exchanger 2 and the brine circulating from the condenser 8 of the heat pump 3 through the brine pipe 6. The air-conditioned space 4 is cooled by exchanging heat to the ground and exchanging heat between the air-conditioned space 4 and the evaporator 10 of the heat pump 3.
[0011]
When the electricity usage fee is low (for example, at night) except during the cooling operation of the geothermal air conditioning system 1, an operation for recovering the heat radiation capacity of the geothermal heat exchanger 2 is performed. FIG. 2 is a diagram showing an implementation state of the recovery operation.
In this state, the circulation of the refrigerant through the refrigerant pipe 11 is reverse to that during the cooling operation, heat is exchanged between the condenser 8 of the heat pump 3 and the heat exchanger 5 with the atmosphere, and the evaporator 10 of the heat pump 3. Heat is exchanged between the brine circulating through the brine pipe 6 and the brine in the underground heat exchanger 2, the ground is cooled, and the heat radiation capacity of the underground heat exchanger 2 is recovered.
[0012]
FIG. 3 is a diagram illustrating a state where the cooling operation of the geothermal heat-use air conditioning system 1 and the heat radiation capability recovery operation of the underground heat exchanger 2 are alternately performed in summer. What is indicated by a solid line is that the heat radiation capacity of the underground heat exchanger 2 is reduced by performing the cooling operation 13, but the ground heat capacity is restored by the heat radiation capacity recovery operation 14 performed when the electricity usage fee is low (for example, at night). It shows that the heat dissipation capability of the intermediate heat exchanger 2 is restored and the cooling operation can be performed while maintaining the initial capability.
In FIG. 3, what is indicated by a broken line is a state in which the heat dissipation capability of the underground heat exchanger 2 is lowered when the heat dissipation capability recovery operation is not performed, and shows that the heat dissipation capability is remarkably reduced in a few days. .
[0013]
If the ground cooling operation is performed to restore the heat radiation capacity shown in Fig. 2 and the underground temperature returns to the initial temperature and the heat radiation capacity is restored, if the cooling operation is continued further, the underground temperature will further decrease from the initial temperature. In addition, it is possible to improve the heat dissipation capacity and the cooling capacity from the initial stage. When the cooling operation is continued after the recovery, the underground temperature distribution is shown by a one-dot chain line (4) in FIG. 10 (a), and the heat radiation capacity is shown by (4) in FIG. 10 (b). Compared with (1) in the initial state, in (4), the underground temperature distribution according to the distance from the underground heat exchanger is lower than before the air conditioning operation, and the heat radiation capacity is improved.
[0014]
FIG. 4 is a diagram showing an embodiment in which the geothermal air-conditioning system 1 is applied for winter heating.
As shown in FIG. 4, when the underground heat-utilizing air conditioning system 1 is applied for heating, heat is generated by the brine in the underground heat exchanger 2 and the brine circulating through the brine pipe 6 from the evaporator 10 of the heat pump 3. It exchanges, heat is collected from the ground, heat is exchanged between the air-conditioned space 4 and the condenser 8 of the heat pump 3, and the air-conditioned space 4 is heated.
[0015]
When the electricity usage fee is low (for example, at night) except during the heating operation of the geothermal air-conditioning system 1, an operation for recovering the heat collecting capacity of the underground heat exchanger 2 is performed. FIG. 5 is a diagram showing an implementation state of the recovery operation.
In this state, the circulation of the refrigerant through the refrigerant pipe 11 is reversed from that during the heating operation, heat is exchanged between the evaporator 10 of the heat pump 3 and the heat exchanger 5 with the atmosphere, and the condenser 8 of the heat pump 3 is exchanged. Heat is exchanged between the brine circulating through the brine pipe 6 and the brine in the underground heat exchanger 2, and the ground is heated to recover the heat collecting capacity of the underground heat exchanger 2.
[0016]
FIG. 6 is a diagram showing a state in which the heating operation of the underground heat utilization air conditioning system 1 and the heat recovery capability recovery operation of the underground heat exchanger 2 are alternately performed in winter. What is indicated by a solid line is that the heat collection capacity of the underground heat exchanger 2 is reduced by performing the heating operation 15, but the heat collection capacity recovery operation 16 is performed when the electricity usage fee is low (for example, at night). This shows that the heat collecting capacity of the geothermal exchanger 2 is restored, and heating operation is possible while maintaining the initial capacity.
In FIG. 6, the broken line indicates a state in which the heat collection capacity of the underground heat exchanger 2 is lowered when the heat collection capacity recovery operation 16 is not performed, and the heat collection capacity is significantly reduced in a few days. Is shown.
[0017]
If the heat collection capacity shown in Fig. 2 is restored to the initial temperature, the underground temperature returns to the initial temperature, and after the heat recovery capacity is recovered, if the heating operation is continued further, the underground temperature becomes higher than the initial temperature. As a result, the heat collecting capacity and the heating capacity can be improved from the initial stage. When the heating operation is continued even after recovery, the underground temperature distribution is shown by the one-dot chain line (4) in FIG. 10 (a), and the heat collection capacity is shown by (4) in FIG. 10 (b). Compared with (1) in the initial state, in (4), the underground temperature distribution according to the distance from the underground heat exchanger is higher than before the air conditioning operation, and the heat collection capacity is improved.
[0018]
FIG. 7 is a diagram illustrating the operation of recovering the heat radiation capacity of the geothermal exchanger 2 performed when the geothermal air conditioning system of the present invention is outside the cooling operation in the summer cooling operation and when the electricity usage fee is low (nighttime). It is a figure which shows other embodiment.
In this embodiment, it has at least two groups of underground heat exchangers 2, 2 ′. Two or more groups of underground heat exchangers 2, 2 ′ are preferably arranged at a predetermined interval.
Also in this embodiment, during the cooling operation, as in the embodiment shown in FIG. 1, at least two groups of the ground heat exchangers 2 and 2 ′ of the geothermal exchanger 2 and the condensation of the heat pump 3 are condensed. Heat is exchanged between the vessel 8 and the brine circulating through the brine pipe 6, heat exchange is performed between the air-conditioned space 4 and the evaporator 10 of the heat pump 3, heat is radiated into the ground, and the air-conditioned space 4 is cooled.
In the heat radiation capacity recovery operation in this embodiment, heat is exchanged between the brine circulating through the brine pipe 6 from the evaporator 10 of the heat pump 3 and the filler in one of the underground heat exchangers 2, and one of the underground heat exchangers 2 The surrounding ground is cooled, the heat radiation capacity of one of the geothermal exchangers 2 is restored, and heat is exchanged with the brine circulating through the brine pipe 6 from the condenser 8 of the heat pump 3 and the filler in the other geothermal exchanger 2 ′. Thus, heat is dissipated into the ground around the other geothermal exchanger 2 ′, long-term high-temperature heat storage is performed to improve the heat collection capacity in the next heating period, and heat is not dissipated by the heat exchanger 5 with the atmosphere. .
[0019]
FIG. 8 shows another example of the geothermal heat-conditioning air-conditioning system 1 according to the present invention during the heat recovery capability recovery operation of the geothermal heat exchanger 2 that is carried out when the electricity usage fee is low outside the heating operation during the winter heating operation period. It is a figure which shows embodiment.
Also in this embodiment, during heating operation, as in the embodiment shown in FIG. 4, at least two groups of fillers in one of the underground heat exchangers 2 and the evaporator 10 of the heat pump 3 are passed through the brine pipe 6. Heat exchange is performed with the circulating brine, heat exchange is performed between the air-conditioned space 4 and the condenser 8 of the heat pump 3, heat is collected from the ground, and the air-conditioned space 4 is heated.
In this embodiment, the heat recovery capability recovery operation is performed by exchanging heat between the brine circulated from the condenser 8 of the heat pump 3 through the brine pipe 6 and the filler in one of the underground heat exchangers 2, and one of the underground heat exchanges. The ground around the vessel 2 is heated, the heat collecting capacity of one of the geothermal exchangers 2 is restored, the brine circulating from the evaporator 10 of the heat pump 3 through the brine pipe 6 and the filler and heat in the other geothermal exchanger 2 ′ Exchange, heat is collected from the ground around the other geothermal exchanger 2 ′, and long-term low-temperature heat storage is performed to improve the heat dissipation capacity in the next cooling period, and heat exchange with the atmosphere is performed by the heat exchanger 5 Not implemented.
[0020]
9 (a) and 9 (b) show that the heat exchange between the filling material filled in the underground heat exchanger 2 and the heat pump 3 is not performed by the brine circulating through the brine piping, but the refrigerant piping 11 of the heat pump 3. Is performed with a refrigerant circulating in the ground and a filler such as water or grout filled in the underground heat exchanger 2.
FIG. 9A shows a cooling operation state of the ground heat utilization air conditioning system 1, and the refrigerant pipe 11 itself exchanging heat with the filler filled in the underground heat exchanger 2 is condensed by the heat pump 3. It functions as a vessel 8, dissipates heat into the ground, and heat-exchanges between the evaporator 10 of the heat pump 3 and the air-conditioned space 4 to cool the air-conditioned space 4.
FIG. 9B shows a heating operation state of the ground heat utilization air conditioning system 1, and the refrigerant pipe 11 itself that exchanges heat with the filler filled in the underground heat exchanger 2 is evaporated by the heat pump 3. It functions as a vessel 10 and heats the air-conditioned space 4 by collecting heat from the ground and exchanging heat between the condenser 8 of the heat pump 3 and the air-conditioned space 4.
[0021]
As described above, the application of the embodiment of the geothermal heat utilization system of the present invention has been described mainly with air conditioning, but the use of the geothermal heat utilization system of the present invention is not limited to air conditioning, such as snow melting, hot water supply, etc. Of course, it can be applied to other uses.
[0022]
【The invention's effect】
When the amount of electricity used is reduced except during the cooling and heating operation of the present invention, a ground heat exchanger, a heat pump, and a heat exchanger with the atmosphere are connected, and inexpensive electric power set when the amount of electricity used is small is used. The heat pump is operated in the opposite direction to the operation at the time of air-conditioning operation, thereby recovering the heat radiation or heat collecting capacity of the underground heat exchanger. The heat dissipation or heat collection capacity of the exchanger can be secured or further improved, heat can be efficiently obtained from the ground, the volume of the ground heat exchanger is reduced, and the ground heat to the full load of the building It can be used.
In addition, the heat recovery or heat recovery capability recovery operation is carried out when the electricity usage fee outside the air conditioning operation is low when the usage amount is low (nighttime), so it is not affected by the power supply capacity, and the electricity usage fee is low. Since it can be operated, it can be a low-cost geothermal air conditioning system.
Further, by connecting a heat pump and at least two groups of underground heat exchangers, and performing an operation opposite to the operation at the time of air-conditioning operation with the heat pump, at least one group of underground heat exchangers of at least two groups Cooling or heating operation with a configuration that restores the heat dissipation or heat collection capacity of the heat exchanger and accumulates long-term heat dissipation or heat collection capacity in the other underground heat exchanger of two or more groups of ground heat exchangers Because it can accumulate long-term heat collection or heat dissipation capacity for the next heating or cooling operation period in the period, it can be a low-cost and efficient geothermal air conditioning system, and there is no heat exchange with the atmosphere The heat island phenomenon can be suppressed.
By arranging the heat pump refrigerant piping directly on the filler in the underground heat exchanger, heat exchange efficiency is improved, no brine piping is required, brine transportation power can be reduced, and energy required for operation is reduced. Can do.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention during cooling operation.
FIG. 2 is a diagram showing an embodiment of a heat radiation capability recovery operation of the present invention.
FIG. 3 is a diagram showing a heat radiation capacity recovery state of the underground heat exchanger by alternate operation of cooling and heat radiation capacity recovery of the present invention.
FIG. 4 is a diagram showing an embodiment of the present invention during heating operation.
FIG. 5 is a diagram showing an embodiment of the heat recovery capability recovery operation of the present invention.
FIG. 6 is a diagram showing a state of recovering the heat collecting capacity of the underground heat exchanger by the alternate operation of heating and recovering the heat collecting capacity of the present invention.
FIG. 7 is a diagram showing another embodiment of the heat dissipation capability recovery operation of the present invention.
FIG. 8 is a diagram showing another embodiment of the heat recovery capability recovery operation of the present invention.
FIG. 9 is a view showing another embodiment of heat exchange between the underground heat exchanger and the heat pump of the present invention.
FIGS. 10A and 10B are diagrams showing problems of the prior art. FIGS.
[Explanation of symbols]
1: Geothermal use air conditioning system 2: Geothermal heat exchanger 3: Heat pump 4: Air-conditioned space 5: Heat exchanger with atmosphere 6: Pipe for brine 7: Compressor 8: Condenser 9: Expansion valve 10: Evaporator 11: Refrigerant pipe 12: Four-way valve 13: Cooling operation 14: Heat radiation capability recovery operation 15: Heating operation 16: Heat recovery capability recovery operation