JP2005046538A - Porous body for medical treatment and method for manufacturing it - Google Patents
Porous body for medical treatment and method for manufacturing it Download PDFInfo
- Publication number
- JP2005046538A JP2005046538A JP2003284110A JP2003284110A JP2005046538A JP 2005046538 A JP2005046538 A JP 2005046538A JP 2003284110 A JP2003284110 A JP 2003284110A JP 2003284110 A JP2003284110 A JP 2003284110A JP 2005046538 A JP2005046538 A JP 2005046538A
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- polymer
- porous body
- medical
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Medicinal Preparation (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
本発明は、細胞増殖や生体内埋設に用いる医療用多孔質体およびその製造方法に関し、特に、その製造コストを抑制する技術に関するものである。 The present invention relates to a medical porous body used for cell proliferation and in vivo implantation and a method for producing the same, and more particularly to a technique for suppressing the production cost.
近年、医療分野や再生医工学の分野においては、組織再生の足場材料として高分子からなる医療用の多孔質体が用いられている。この多孔質体は、組織の導入により細胞の分化誘導や組織形成に用いられるほか、構造的に表面積が大きいことから徐放薬剤の担体としても用いられる。
このような多孔質体の製造方法としては、特許文献1〜5に見られるように高分子溶液を凍結した後真空減圧下にて溶媒を揮発させる凍結乾燥法を用いることが一般的である。
In recent years, in the medical field and the field of regenerative medical engineering, a medical porous body made of a polymer has been used as a scaffold material for tissue regeneration. This porous body is used for induction of cell differentiation and tissue formation by introduction of tissue, and also as a carrier for sustained release drugs because of its structurally large surface area.
As a method for producing such a porous material, it is common to use a freeze-drying method in which a polymer solution is frozen and then the solvent is volatilized under vacuum and reduced pressure as seen in Patent Documents 1 to 5.
凍結乾燥法は、上記のように低温かつ高真空下において処理されるので、材料となる高分子の化学的劣化を抑制しながら多孔質体を製造することができる。
しかしながら、上記凍結乾燥法においては、高価な高真空装置や低温トラップなどを備える凍結乾燥装置を用いる必要があり、多孔質体を製造する際においては、そのイニシャルコストが上昇するとともに高真空に保持するためのランニングコストもかさみ、多孔質体の製造コストが高くなるという問題がある。
本発明は、上記課題に鑑み、凍結乾燥装置を用いることなく医療用の多孔質体を製造することができる医療用多孔質体の製造方法等を提供することを目的とする。
However, in the freeze-drying method, it is necessary to use an expensive high-vacuum device or a freeze-drying device equipped with a low temperature trap, etc. When manufacturing a porous body, the initial cost increases and the vacuum is maintained at a high vacuum. There is also a problem that the running cost for doing so increases and the manufacturing cost of the porous body increases.
An object of this invention is to provide the manufacturing method of the medical porous body etc. which can manufacture the medical porous body without using a freeze-drying apparatus in view of the said subject.
上記課題を解決するために、本発明に係る医療用多孔質体の製造方法は、高分子を溶媒に溶解させた溶液を凍結させて凍結体を作製し、高分子が難溶または不溶でありかつ溶媒が可溶である抽出溶媒を用いて凍結体から溶媒を抽出することを特徴としている。
これによれば、一般家庭にあるようなフリーザを用いて多孔質体を製造することができるので、高価な凍結乾燥装置を用いる必要がなく、製造コストを抑制することができる。
In order to solve the above problems, the method for producing a porous body for medical use according to the present invention is a method in which a frozen body is produced by freezing a solution in which a polymer is dissolved in a solvent, and the polymer is hardly soluble or insoluble. The solvent is extracted from the frozen body using an extraction solvent in which the solvent is soluble.
According to this, since the porous body can be manufactured using a freezer as in a general household, it is not necessary to use an expensive freeze-drying apparatus, and the manufacturing cost can be suppressed.
具体的な高分子材料としては、熱可塑性高分子を用いることができ、例えばウレタン系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂、ポリエステル類、ポリビニルアルコール、ポリアクリル酸、ポリアルギン酸からなる群から選択された高分子を挙げることができる。
溶媒としては、クロロホルム、テトラヒドロフラン、トルエン、キシレン、メチルエーテルケトン、アセトン、塩化メチレン、ジメチルサルフォキサイド、ジオキサンからなる群から選択された溶媒を用いることができる。
As a specific polymer material, a thermoplastic polymer can be used, for example, urethane resin, vinyl chloride resin, acrylic resin, styrene resin, polyesters, polyvinyl alcohol, polyacrylic acid, polyalginic acid. A polymer selected from the group consisting of:
As the solvent, a solvent selected from the group consisting of chloroform, tetrahydrofuran, toluene, xylene, methyl ether ketone, acetone, methylene chloride, dimethyl sulfoxide, and dioxane can be used.
また、抽出溶媒としては、エタノール、メタノールの群から選択された抽出溶媒を用いることができる。
ここで、溶媒の抽出は、その際に凍結体の形が崩れないように溶媒の凝固点以下で行うことが好ましい。
なお、凍結体は、凍結を行うことによって高分子と溶媒とが相分離した複相構造をなしていると考えられる。
Moreover, as an extraction solvent, the extraction solvent selected from the group of ethanol and methanol can be used.
Here, the extraction of the solvent is preferably performed below the freezing point of the solvent so that the shape of the frozen body does not collapse.
The frozen body is considered to have a multiphase structure in which the polymer and the solvent are phase-separated by freezing.
このような製造方法によって形成される医療用多孔質体は、表皮部と内部との多孔度が略等しくなるので、再生医工学などの分野に適したものとなる。
上記多孔度は、80%〜98%のものが組織再生の用途においては好ましい。
具体的な高分子としては、分子量が10万〜30万の乳酸−εカプロラクトン共重合体を用いることができる。
The medical porous body formed by such a manufacturing method is suitable for fields such as regenerative medical engineering because the porosity of the epidermis and the inside are substantially equal.
A porosity of 80% to 98% is preferable for use in tissue regeneration.
As a specific polymer, a lactic acid-ε caprolactone copolymer having a molecular weight of 100,000 to 300,000 can be used.
上述したように、本発明によれば、高分子を溶媒に溶解させた溶液を凍結させて凍結体を作製し、高分子に難溶または不溶でありかつ溶媒に可溶である抽出溶媒を用いて凍結体から溶媒を抽出して多孔質体を形成させているので、一般家庭にあるようなフリーザを用いて多孔質体を製造することができる。したがって、高価な凍結乾燥装置を用いる必要がなく、イニシャルコスト並びにランニングコストを低くでき、製造コストを抑制することができる。 As described above, according to the present invention, a frozen body is prepared by freezing a solution in which a polymer is dissolved in a solvent, and an extraction solvent that is hardly soluble or insoluble in the polymer and is soluble in the solvent is used. Since the porous body is formed by extracting the solvent from the frozen body, the porous body can be manufactured using a freezer as in a general household. Therefore, it is not necessary to use an expensive freeze-drying apparatus, the initial cost and the running cost can be reduced, and the manufacturing cost can be suppressed.
また、本発明によれば、医療用多孔質体の表皮部と内部との多孔度が略等しくなるので、再生医工学などの分野に適したものを提供することができる。 Further, according to the present invention, since the porosity of the skin portion and the inside of the medical porous body is substantially equal, it is possible to provide a device suitable for fields such as regenerative medical engineering.
以下、本発明に係る医療用多孔質体(以下、「多孔質体」という。)およびその製造方法の一実施の形態について説明する。
まず、多孔質体の材料に使用する高分子について説明する。
本発明に係る多孔質体を構成する高分子は、例えば、熱可塑性の高分子であり、溶媒に可溶なものであれば特に制限されることなく用いることができる。例えば、熱可塑性高分子としては、熱可塑性ウレタン系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂、ポリエステル類、およびポリビニルアルコールやポリアクリル酸、ポリアルギン酸等の水溶性高分子を使用することができる。また、これらの高分子を複数ブレンドしたものを用いることもできる。
Hereinafter, a medical porous body according to the present invention (hereinafter referred to as “porous body”) and a method for producing the same will be described.
First, the polymer used for the porous material will be described.
The polymer constituting the porous body according to the present invention is, for example, a thermoplastic polymer and can be used without particular limitation as long as it is soluble in a solvent. For example, as the thermoplastic polymer, a thermoplastic urethane resin, a vinyl chloride resin, an acrylic resin, a styrene resin, a polyester, and a water-soluble polymer such as polyvinyl alcohol, polyacrylic acid, and polyalginic acid are used. be able to. Also, a blend of a plurality of these polymers can be used.
ここで、熱可塑性ポリウレタン系樹脂や塩化ビニル系樹脂といった生体吸収性を示さない高分子は、生体の外部に貼付する薬剤担体に用いることが望ましい。一方、生体吸収性を示す高分子である、ポリエステル類に属するポリ乳酸やポリグリコール酸、ポリリンゴ酸、ポリカプロラクトン、およびこれらの共重合体などは、生体内に埋植可能な組織再生用のスキャホールドとして用いることが望ましい。 Here, it is desirable to use a polymer that does not exhibit bioabsorbability, such as a thermoplastic polyurethane-based resin or a vinyl chloride-based resin, as a drug carrier to be attached to the outside of the living body. On the other hand, polylactic acid, polyglycolic acid, polymalic acid, polycaprolactone, and copolymers thereof belonging to polyester, which are bioabsorbable polymers, can be implanted in the living body for tissue regeneration. It is desirable to use it as a hold.
次に、このような高分子を溶媒に溶解させて高分子溶液を作製し、この溶液を型に流し込んで冷凍庫にて凍結させ、高分子溶液の凍結体を得る。ここで、凍結体においては、その凍結を行うことによって溶媒と高分子とが相分離した複相構造をなしていると考えられる。
使用する溶媒としては、多孔質体に用いる高分子を溶解させることができるとともに、冷凍庫程度の温度において凝固するものが好ましい。
Next, such a polymer is dissolved in a solvent to prepare a polymer solution, which is poured into a mold and frozen in a freezer to obtain a frozen body of the polymer solution. Here, it is considered that the frozen body has a multiphase structure in which the solvent and the polymer are phase-separated by freezing.
As the solvent to be used, a solvent capable of dissolving the polymer used for the porous body and solidifying at a temperature of a freezer is preferable.
例えば、クロロホルム、テトラヒドロフラン(THF)、トルエン、キシレン、メチルエーテルケトン(MEK)、アセトン、塩化メチレン、ジメチルスルフォキサイド(DMSO)、ジオキサンなどの有機溶媒を用いることができる。特に、ジオキサンやキシレンなどは、一般家庭において使用されている冷凍庫の温度(−20℃)程度において凝固するため、特殊な冷凍庫が不要でありイニシャルコストを下げ、多孔質体のコストを下げることができるため好ましい。 For example, organic solvents such as chloroform, tetrahydrofuran (THF), toluene, xylene, methyl ether ketone (MEK), acetone, methylene chloride, dimethyl sulfoxide (DMSO), and dioxane can be used. In particular, since dioxane, xylene, and the like are solidified at a temperature of a freezer (-20 ° C.) used in general households, a special freezer is not required, and the initial cost can be reduced and the cost of the porous body can be reduced. This is preferable because it is possible.
次に、凍結体を凍結させた状態にて、溶質である高分子が難溶または不溶であり、かつ溶媒と相溶性のある抽出溶媒にて溶媒を抽出する。この抽出においては、凍結した高分子溶液の形状が崩れない温度、すなわち溶媒の凝固点以下(例えば、上記冷凍庫内にて−20℃)に管理する必要がある。ここで、抽出溶媒としては、エタノールやメタノールなどを用いることができる。 Next, with the frozen body frozen, the solvent is extracted with an extraction solvent in which the solute polymer is hardly soluble or insoluble and is compatible with the solvent. In this extraction, it is necessary to control the temperature at which the frozen polymer solution does not collapse, that is, below the freezing point of the solvent (for example, −20 ° C. in the freezer). Here, ethanol, methanol, or the like can be used as the extraction solvent.
この抽出によって、高分子は多孔質体の形状となりながら析出する一方、溶媒が抽出溶媒と溶け合って置換されるので、抽出により形成される多孔質体には抽出溶媒が含侵された状態となる。
最後に、この抽出溶媒を蒸発させることによって多孔質体を得ることができる。
このような方法によれば、凍結乾燥装置を用いることなく一般的に使用されている冷凍庫にて多孔質体を製造することができる。したがって、多孔質体製造時におけるイニシャルコストを低減することができ、多孔質体の製造コストを下げることができる。
By this extraction, the polymer precipitates in the form of a porous body, while the solvent dissolves and is replaced by the extraction solvent, so that the porous body formed by extraction is impregnated with the extraction solvent. .
Finally, the porous body can be obtained by evaporating the extraction solvent.
According to such a method, a porous body can be produced in a generally used freezer without using a freeze-drying apparatus. Therefore, the initial cost at the time of manufacturing the porous body can be reduced, and the manufacturing cost of the porous body can be reduced.
さらに、本発明に係る多孔質体の製造方法によれば、得られた多孔質体は、外表面に近い部分が緻密になり内部が粗となるいわゆるスキン−コア構造が見られなくなる。したがって、多孔質体は、全体的に均一な多孔度を有する構造となり、足場材料などに適用する場合にはスキン−コア構造を有するものよりも適したものとなる。 Furthermore, according to the method for producing a porous body according to the present invention, the obtained porous body does not show a so-called skin-core structure in which a portion close to the outer surface becomes dense and the inside becomes rough. Therefore, the porous body has a structure having a uniform porosity as a whole, and is more suitable than that having a skin-core structure when applied to a scaffold material or the like.
以下、本発明に係る製造方法を用いて、生体吸収性高分子であるL乳酸−εカプロラクトン共重合体の多孔質体を製造する方法について説明する。
(1)組成比75:25のL乳酸−εカプロラクトン共重合体(以下、P(LA75/CL25)という。)を溶媒である1,4−ジオキサンに溶解し、4質量%の溶液を調整する。
Hereinafter, a method for producing a porous body of L-lactic acid-ε caprolactone copolymer, which is a bioabsorbable polymer, using the production method according to the present invention will be described.
(1) An L lactic acid-ε caprolactone copolymer (hereinafter referred to as P (LA75 / CL25)) having a composition ratio of 75:25 is dissolved in 1,4-dioxane as a solvent to prepare a 4% by mass solution. .
(2)次に、そのP(LA75/CL25)溶液を内径12mmのチューブ状鋳型に静かに流し込み、家庭用フリーザー(温度−20℃)にて24時間凍結させた。
(3)その後、凍結したP(LA75/CL25)溶液を鋳型から取り出し、12mmφ×80mmの円柱状の凍結体を得た。
(4)この円柱状の凍結体を、抽出溶媒である−20℃に冷却したエタノール500mL中に浸漬させ、24時間放置することによって、1,4−ジオキサン溶媒の抽出を行った。ここで、エタノールは、P(LA75/CL25)に難溶または不溶であり、かつ1,4−ジオキサンに可溶であり、抽出効率を向上させるため、抽出開始から12時間後に新しいものと交換した。
(2) Next, the P (LA75 / CL25) solution was gently poured into a tubular mold having an inner diameter of 12 mm and frozen in a home freezer (temperature −20 ° C.) for 24 hours.
(3) Thereafter, the frozen P (LA75 / CL25) solution was taken out of the mold to obtain a cylindrical frozen body of 12 mmφ × 80 mm.
(4) The columnar frozen body was immersed in 500 mL of ethanol cooled to −20 ° C. as an extraction solvent and left for 24 hours to extract a 1,4-dioxane solvent. Here, ethanol was slightly soluble or insoluble in P (LA75 / CL25) and soluble in 1,4-dioxane, and was replaced with a new one 12 hours after the start of extraction in order to improve extraction efficiency. .
(5)まだ完全には1,4−ジオキサン溶媒が抽出されていないと考えられるため、さらに室温にてエタノールを用いてP(LA75/CL25)を洗浄した。
(6)その後、洗浄されたP(LA75/CL25)を24時間真空乾燥することによって多孔質体を得た。
このようにして得られた多孔質体は、図1に示すように、連続した気泡を有するとともに、スキン−コア構造が無く、表皮部分と内部との孔径(2μm〜500μm)および多孔度(80%〜98%)が略等しいものとなった。このような多孔度を有する多孔質体は、組織再生用のスキャホールドの用途に適していると考えられる。
(5) Since it is considered that the 1,4-dioxane solvent has not been completely extracted, P (LA75 / CL25) was further washed with ethanol at room temperature.
(6) Thereafter, the washed P (LA75 / CL25) was vacuum-dried for 24 hours to obtain a porous body.
As shown in FIG. 1, the porous body thus obtained has continuous bubbles, has no skin-core structure, and has a pore diameter (2 μm to 500 μm) and a porosity (80 % To 98%) were substantially equal. It is considered that a porous body having such a porosity is suitable for a scaffold for tissue regeneration.
なお、上記実施の形態においては、高分子を溶媒に溶解させた高分子溶液を凍結させていたが、高分子溶液にさらに粒子状の造孔剤を加えるようにしてもよい。ここで、造孔剤としては、溶媒に難溶または不溶かつ抽出溶媒に可溶なものを選択することが望ましく、例えばNaClを用いることができる。これにより、凍結させた高分子溶液を抽出溶媒を用いて抽出する際、抽出溶媒が粒子状の造孔剤を溶媒とともに溶解するため、多孔質体においては、造孔剤の大きさの孔が形成されるようになる。なお、造孔剤として、NaClを用いる場合には、NaClが可溶な水系溶剤を用いてこれを抽出する必要がある。 In the above embodiment, the polymer solution in which the polymer is dissolved in the solvent is frozen. However, a particulate pore-forming agent may be added to the polymer solution. Here, it is desirable to select a pore-forming agent that is hardly soluble or insoluble in a solvent and soluble in an extraction solvent. For example, NaCl can be used. Thus, when the frozen polymer solution is extracted using the extraction solvent, the extraction solvent dissolves the particulate pore forming agent together with the solvent. Will be formed. In addition, when using NaCl as a pore making agent, it is necessary to extract this using the aqueous solvent in which NaCl is soluble.
また、上記実施の形態においては、高分子を溶媒に溶解させて凍結させていたが、凍結前に徐放薬剤を混合するようにしてもよい。このようにすれば、生体の外部に貼付する薬剤を多孔質体の製造時において担持させることができ、多孔質体の製造後に薬剤を外部から浸透させる方法と比べて多孔質体内部にまで薬剤を含侵させることができる。 In the above embodiment, the polymer is dissolved in a solvent and frozen, but a sustained-release drug may be mixed before freezing. In this way, it is possible to carry the drug to be applied to the outside of the living body during the production of the porous body, and to the inside of the porous body as compared with the method of infiltrating the drug from the outside after the production of the porous body. Can be impregnated.
本発明に係る医療用多孔質体の製造方法は、特にコストの安さが求められる医療用多孔質体に有効である。 The method for producing a medical porous body according to the present invention is particularly effective for a medical porous body for which low cost is required.
Claims (11)
高分子を溶媒に溶解させた溶液を凍結させて凍結体を作製し、前記高分子が難溶または不溶でありかつ前記溶媒が可溶である抽出溶媒を用いて前記凍結体から溶媒を抽出する
ことを特徴とする医療用多孔質体の製造方法。 A method for producing a porous medical material made of a polymer,
A frozen body is prepared by freezing a solution in which a polymer is dissolved in a solvent, and the solvent is extracted from the frozen body using an extraction solvent in which the polymer is hardly soluble or insoluble and the solvent is soluble. A method for producing a medical porous body.
表皮部と内部との多孔度が略等しい
ことを特徴とする医療用多孔質体。 A medical porous body made of a polymer,
A porous medical material, characterized in that the porosity of the epidermis and the inside are substantially equal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003284110A JP2005046538A (en) | 2003-07-31 | 2003-07-31 | Porous body for medical treatment and method for manufacturing it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003284110A JP2005046538A (en) | 2003-07-31 | 2003-07-31 | Porous body for medical treatment and method for manufacturing it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005046538A true JP2005046538A (en) | 2005-02-24 |
Family
ID=34268815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003284110A Pending JP2005046538A (en) | 2003-07-31 | 2003-07-31 | Porous body for medical treatment and method for manufacturing it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005046538A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007181514A (en) * | 2006-01-04 | 2007-07-19 | Teijin Ltd | Filling material for regenerating bone or cartilage |
JP2009514996A (en) * | 2005-11-04 | 2009-04-09 | ピーピーディー メディテック | Porous material and method of making the same |
EP1860142A4 (en) * | 2005-03-18 | 2009-07-22 | Jms Co Ltd | Process for producing porous object and porous object obtained by the same |
CN104211982A (en) * | 2013-05-31 | 2014-12-17 | 嘉兴学院 | Manufacturing method of multi-aperture tissue engineering scaffold for cell growth |
WO2018056019A1 (en) * | 2016-09-21 | 2018-03-29 | グンゼ株式会社 | Method for producing sustained-release drug, and sustained-release drug |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3157524A (en) * | 1960-10-25 | 1964-11-17 | Ethicon Inc | Preparation of collagen sponge |
JPS61252261A (en) * | 1985-05-01 | 1986-11-10 | Bio Materiaru Yunibaasu:Kk | Porous transparent polyvinyl alcohol gel and production thereof |
JPH01131257A (en) * | 1987-11-16 | 1989-05-24 | Oji Paper Co Ltd | Production of microcellular molded body of high polymer |
JPH0263465A (en) * | 1988-08-31 | 1990-03-02 | G C Dental Ind Corp | Tooth surrounding tissue reproduction material |
JPH02208332A (en) * | 1989-02-08 | 1990-08-17 | Asahi Chem Ind Co Ltd | Production of polymeric porous material |
JPH0975442A (en) * | 1995-09-12 | 1997-03-25 | Takiron Co Ltd | Cell structure with in vivo decomposing and absorbing function |
JPH0999051A (en) * | 1995-05-30 | 1997-04-15 | Johnson & Johnson Medical Inc | Organism absorbent transplantation material of which porosity can be controlled, and its preparation |
JP2000230073A (en) * | 1999-02-08 | 2000-08-22 | Nichias Corp | Porous silica/rubber composite material and its production |
JP2000512666A (en) * | 1996-05-22 | 2000-09-26 | ベン―グリオン ユニバーシティー オブ ザ ネゲブ | Polysaccharide sponges for cell culture and transplantation |
WO2001057121A1 (en) * | 2000-02-03 | 2001-08-09 | Menicon Co., Ltd. | Spongy molding comprising water-soluble polymeric material and method of controlling pores thereof |
-
2003
- 2003-07-31 JP JP2003284110A patent/JP2005046538A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3157524A (en) * | 1960-10-25 | 1964-11-17 | Ethicon Inc | Preparation of collagen sponge |
JPS61252261A (en) * | 1985-05-01 | 1986-11-10 | Bio Materiaru Yunibaasu:Kk | Porous transparent polyvinyl alcohol gel and production thereof |
JPH01131257A (en) * | 1987-11-16 | 1989-05-24 | Oji Paper Co Ltd | Production of microcellular molded body of high polymer |
JPH0263465A (en) * | 1988-08-31 | 1990-03-02 | G C Dental Ind Corp | Tooth surrounding tissue reproduction material |
JPH02208332A (en) * | 1989-02-08 | 1990-08-17 | Asahi Chem Ind Co Ltd | Production of polymeric porous material |
JPH0999051A (en) * | 1995-05-30 | 1997-04-15 | Johnson & Johnson Medical Inc | Organism absorbent transplantation material of which porosity can be controlled, and its preparation |
JPH0975442A (en) * | 1995-09-12 | 1997-03-25 | Takiron Co Ltd | Cell structure with in vivo decomposing and absorbing function |
JP2000512666A (en) * | 1996-05-22 | 2000-09-26 | ベン―グリオン ユニバーシティー オブ ザ ネゲブ | Polysaccharide sponges for cell culture and transplantation |
JP2000230073A (en) * | 1999-02-08 | 2000-08-22 | Nichias Corp | Porous silica/rubber composite material and its production |
WO2001057121A1 (en) * | 2000-02-03 | 2001-08-09 | Menicon Co., Ltd. | Spongy molding comprising water-soluble polymeric material and method of controlling pores thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1860142A4 (en) * | 2005-03-18 | 2009-07-22 | Jms Co Ltd | Process for producing porous object and porous object obtained by the same |
JP2009514996A (en) * | 2005-11-04 | 2009-04-09 | ピーピーディー メディテック | Porous material and method of making the same |
US8383024B2 (en) | 2005-11-04 | 2013-02-26 | Ppd Meditech | Porous material and method for fabricating same |
JP2007181514A (en) * | 2006-01-04 | 2007-07-19 | Teijin Ltd | Filling material for regenerating bone or cartilage |
CN104211982A (en) * | 2013-05-31 | 2014-12-17 | 嘉兴学院 | Manufacturing method of multi-aperture tissue engineering scaffold for cell growth |
WO2018056019A1 (en) * | 2016-09-21 | 2018-03-29 | グンゼ株式会社 | Method for producing sustained-release drug, and sustained-release drug |
CN109715216A (en) * | 2016-09-21 | 2019-05-03 | 郡是株式会社 | The manufacturing method and slow release medicament of slow release medicament |
JPWO2018056019A1 (en) * | 2016-09-21 | 2019-07-04 | グンゼ株式会社 | Method for producing sustained release drug and sustained release drug |
JP6999562B2 (en) | 2016-09-21 | 2022-01-18 | グンゼ株式会社 | Production method of sustained release drug and sustained release drug |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nam et al. | Biodegradable polymeric microcellular foams by modified thermally induced phase separation method | |
Yoon et al. | Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts | |
US20070036844A1 (en) | Porous materials having multi-size geometries | |
KR101181738B1 (en) | Process for producing 3-dimentional nanofibrous scaffold having micro-size pores | |
WO2001002033A1 (en) | Process for manufacturing biomedical foams | |
WO2000055300A1 (en) | Method for preparing porous, biodegradable and biocompatible, polymeric scaffolds for tissue engineering | |
Velasco et al. | Preparation in supercritical CO2 of porous poly (methyl methacrylate)–poly (l-lactic acid)(PMMA–PLA) scaffolds incorporating ibuprofen | |
KR101260208B1 (en) | A method of preparing nanofibrous-structured biopolymer using phase separaton | |
EP2413981B1 (en) | Thick foams for biomedical applications and methods of making | |
US6673286B2 (en) | Method of making porous biodegradable polymers | |
KR20010046941A (en) | Fabrication Method of Porous Biodegradable Polymer Scaffolds for Tissue Engineering | |
JP2005046538A (en) | Porous body for medical treatment and method for manufacturing it | |
Tang et al. | Biodegradation of 3D‐printed polylactic acid milliprojections under physiological conditions | |
CN100356989C (en) | Method for preparing organic and inorganic nanometer composite organization engineering stent material by using thermal phase separation | |
KR100673498B1 (en) | Preparation method of biodegradable dual pore polymer scaffolds for tissue engineering | |
Cao et al. | Systematic selection of solvents for the fabrication of 3D combined macro-and microporous polymeric scaffolds for soft tissue engineering | |
US6635684B2 (en) | Method for preparing hydrophilic porous polymeric materials | |
KR20000060718A (en) | Fabrication Method of Porous Polymer Scaffolds for Tissue Engneering by Using a Gas Foaming Salt | |
Park et al. | Preparation of biodegradable polymer scaffolds with dual pore system for tissue regeneration | |
CN103254460B (en) | Method for preparing porous polymer material by selective biodegradation | |
EP1905462A1 (en) | Hollow tissue growth devices made by lyophilization | |
CN105457093A (en) | Method for producing a polymer porous support in batch | |
JP2005080927A (en) | Production method of medical porous body | |
KR101254386B1 (en) | A method of preparing nanofibrous-structured biopolymer using phase separaton | |
KR100201874B1 (en) | An artificial organ having a porous and biodegradable character and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091207 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100112 |