【0001】
【発明の属する技術分野】
本発明は、医療用管状体に関する。さらに詳しくは、本発明は、内外径比が大きく、大きい圧壊強度と良好な柔軟性とを兼ね備え、管状体が潰れにくく、優れた操作性を有するガイディングカテーテルとして特に好適に用いることができる医療用管状体に関する。
【0002】
【従来の技術】
一般に医療用管状体と称される医療器具は、細い生体管路を通して目的部位まで挿入される細径のチューブであり、複雑に曲折し、分岐を有する生体管路内で、進路を選択して押し込み得るような優れた操作性が要求される。
近年、患者の肉体的、時間的負担を軽減させるために、検査及び治療に医療用管状体を使用する例が多くなっている。従来、検査や治療のために目的部位の切開が必要であった手技に対しても、医療用管状体を使用して侵襲を軽減する例が増えている。医療用管状体には、例えば、血管造影用カテーテル、経皮的冠動脈形成術(PTCA)用カテーテル、脳外科用マイクロカテーテル、腹部用マイクロカテーテルなどがある。経皮的冠動脈形成術では、大腿動脈、橈骨動脈などに穿刺して、そこから冠動脈口まで医療用管状体を挿入し、管状体に造影剤を注入して冠動脈血管造影を行ったり、ガイドワイヤー、バルーンカテーテル、血管内エコー装置などの治療用具を、医療用管状体の内腔を通して目的治療部位まで運んで治療を行う。そのために、内腔を薬剤や細径の医療器具が行き交うので、内径はできるだけ大きく、また、内腔の表面が潤滑性に優れて、医療器具との摩擦抵抗が小さいことが好ましい。さらに、生体管路を傷つけないために、医療用管状体の遠位端部には適度な柔軟性が必要とされる。
これらの目的で使用されている医療用管状体は、管状体部と、手元側に操作と接合を目的とする部分から構成されている。内層には、潤滑性に優れた合成樹脂が用いられ、その内層チューブの外周に金属線又は非金属線を螺旋状に編組した層を設けて補強し、さらに、その補強層の外層に電線被覆と同様な技術により、編組管状体を合成樹脂層と共に押出成形することにより構成されている。また、遠位端側には、柔軟性を持たせるために、押出成形で使用した合成樹脂よりも軟らかい合成樹脂のチューブを編組管状体に熱溶着させる。
医療用管状体は、なるべく薄肉であることが必要であるが、薄肉にすると必然的に管状体の強度は弱くなり、また操作性も低下する。そのために、編組された補強体を大きくしたり、外層の合成樹脂を硬いものに変えたりするなどの方法がとられているが、一方、医療用管状体の重要な性能である柔軟性まで損なわれ、細い屈曲した生体管路では管路を傷つけるおそれが生ずる。
【0003】
【発明が解決しようとする課題】
本発明は、内外径比が大きく、大きい圧壊強度と良好な柔軟性とを兼ね備え、管状体が潰れにくく、優れた操作性を有するガイディングカテーテルとして特に好適に用いることができる医療用管状体を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、管状の金属線補強体の外側に合成樹脂保護層、内側にフッ素樹脂潤滑層を有する医療用管状体において、フッ素樹脂潤滑層の厚さを15μm以下とすることにより、同一の外径であっても内径が大きく、大きい圧壊強度と良好な柔軟性とを兼ね備え、潰れにくい医療用管状体が得られることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)管状の金属線補強体の外側に合成樹脂保護層、内側にフッ素樹脂潤滑層を有する医療用管状体において、外径が0.5〜3mmであり、内径と外径の比が0.855〜0.900であり、フッ素樹脂潤滑層の厚さが0.1〜15μmであることを特徴とする医療用管状体、
(2)外径の40%に相当する寸法だけ押しつぶしたときの圧壊荷重が、遠位端から50mm以内の部分において0.4〜1.5kgであり、遠位端から50mmを超える部分において0.5〜3.0kgである第1項記載の医療用管状体、
(3)支点と力点の距離を10mmとして測定した片持ち曲げ荷重の最大値が、遠位端から50mm以内の部分において40〜150gであり、遠位端から50mmを超える部分において90〜200gである第1項記載の医療用管状体、
(4)遠位端から少なくとも50mm以内の部分において、支点と力点の距離を10mmとして測定した片持ち曲げ荷重の最大値が、遠位端に近づくにつれて、連続的又は段階的に小さくなる第1項記載の医療用管状体、
(5)遠位端から50mmを超える部分に荷重20Nをかけたときの伸び率が、3〜4%である第1項記載の医療用管状体、及び、
(6)ガイディングカテーテルである第1項、第2項、第3項、第4項又は第5項記載の医療用管状体、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の医療用管状体は、管状の金属線補強体の外側に合成樹脂保護層、内側にフッ素樹脂潤滑層を有する医療用管状体において、外径が0.5〜3mmであり、内径と外径の比が0.855〜0.900であり、フッ素樹脂潤滑層の厚さが0.1〜15μmである医療用管状体である。
本発明の医療用管状体を構成する管状の金属線補強体の材質に特に制限はなく、例えば、ステンレス鋼線、タングステン線、硬鋼線、ピアノ線などの金属線を挙げることができる。金属線の形状に特に制限はなく、例えば、丸線、平角線などを挙げることができる。管状の金属線補強体の形成方法に特に制限はなく、例えば、芯材により支持されたフッ素樹脂チューブの表面に金属線を編組することができ、芯材により支持されたフッ素樹脂チューブの表面に金属線をコイル状に巻きつけることができ、あるいは、金属線のみで管状体を形成することもできる。
本発明の医療用管状体に用いる合成樹脂保護層の材質に特に制限はなく、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン類、ポリエステルエラストマーなどのポリエステル類、ポリイミド、ポリエーテルイミドなどのポリイミド類、ナイロン11、ナイロン12、ナイロン69、ナイロン612などのポリアミド類、ポリジメチルシロキサンなどのシリコーン類などを挙げることができる。
本発明の医療用管状体に用いるフッ素樹脂潤滑層の材質に特に制限はなく、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ペルフルオロビニルエーテル共重合体、テトラフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアイオノマーなどを挙げることができる。これらの中で、ポリテトラフルオロエチレンを特に好適に用いることができる。
【0006】
本発明の医療用管状体は、外径が0.5〜3mmである。外径が0.5mm未満の管状体は、内腔の径が小さすぎて、医療用管状体としての実用性が乏しくなるおそれがある。外径が3mmを超えると、挿入し得る生体管路が限られ、患者への侵襲が大きくなるおそれがある。本発明の医療用管状体は、内径と外径の比が0.855〜0.900である。内径と外径の比が0.855未満であると、管状体の外径に対して利用し得る内腔の径が小さすぎ、医療用管状体として有効に使用し得なくなるおそれがある。内径と外径の比が0.900を超えると、管壁の厚さが小さくなりすぎて、管状体が潰れやすくなったり、トルク伝達性が低下したりするおそれがある。
本発明の医療用管状体は、管状の金属線補強体の内側に設けられたフッ素樹脂潤滑層の厚さが0.1〜15μmである。フッ素樹脂潤滑層の厚さが0.1μm未満であると、金属線補強体を安定して被覆することが困難になり、管状体の内腔表面の潤滑性が不足したり、あるいは、金属線補強体の一部が露出したりするおそれがある。フッ素樹脂潤滑層の厚さは15μm以下で安定した被覆性と十分な潤滑性が得られ、通常は15μmを超える厚さのフッ素樹脂潤滑層を設ける必要はない。
【0007】
本発明の医療用管状体は、外径の40%に相当する寸法だけ押しつぶしたときの圧壊荷重が、遠位端から50mm以内の部分において、0.4〜1.5kgであることが好ましく、0.6〜1.2kgであることがより好ましい。また、外径の40%に相当する寸法だけ押しつぶしたときの圧壊荷重が、遠位端から50mmを超える部分において、0.5〜3.0kgであることが好ましく、0.7〜2.0kgであることがより好ましい。以下、外径の40%に相当する寸法だけ押しつぶした時の圧壊荷重を、単に「圧壊荷重」と呼ぶ。本発明において、圧壊荷重は、医療用管状体の試験片を支持台上に水平に載置し、管状体の試験片と接触する面が管状体の長手方向と直交する細長い形状である圧子を用い、外径の40%に相当する寸法だけ押しつぶしたときの圧子にかかる荷重を読み取ることにより求めることができる。例えば、外径2mmの医療用管状体の圧壊荷重は、管状体の試験片を0.8mm押しつぶしたときの荷重として求める。試験片と接触する圧子の細長い形状の面は、外径の40%に相当する寸法だけ押しつぶしたときも、なお両端に試験片と接触しない部分を有する大きさとする。
本発明の医療用管状体において、圧壊荷重が、遠位端から50mm以内の部分において0.4kg未満であると、医療用管状体が遠位端部において潰れやすく、医療用管状体の操作性が低下するおそれがある。圧壊荷重が、遠位端から50mm以内の部分において1.5kgを超えると、医療用管状体の遠位端部が硬く、生体管路を傷つけるおそれがある。圧壊荷重が、遠位端から50mmを超える部分において0.5kg未満であると、医療用管状体が潰れやすく、押し込み特性とトルク伝達性が不十分となるおそれがある。圧壊荷重が、遠位端から50mmを超える部分において3.0kgを超えると、医療用管状体が硬くなりすぎて、生体管路の屈曲に追従することが困難になるおそれがある。
【0008】
本発明の医療用管状体は、支点と力点の距離を10mmとして測定した片持ち曲げ荷重の最大値が、遠位端から50mm以内の部分において40〜150gであることが好ましく、60〜120gであることがより好ましい。また、支点と力点の距離を10mmとして測定した片持ち曲げ荷重の最大値が、遠位端から50mmを超える部分において90〜200gであることが好ましく、120〜180gであることがより好ましい。支点と力点の距離を10mmとして測定した片持ち曲げ荷重の最大値は、医療用管状体を金属製の試験片つかみ具で水平につかみ、試験片つかみ具の端を支点とし、支点から10mm離れた力点に圧子を当てて下降させ、圧子の下降量と圧子にかかる荷重の関係を表す曲線から、荷重の最大値を読み取り、該力点における支点と力点の距離を10mmとして測定した片持ち曲げ荷重の最大値とする。以下、支点と力点の距離を10mmとして測定した片持ち曲げ荷重の最大値を、単に「曲げ荷重」と呼ぶ。
試験片つかみ具は、試験片が変形することなく安定に保持されるように、試験片の外径と同じ寸法の内径を有する管路が形成される形状とする。試験片つかみ具により支点から突き出されている試験片の長さは20mmとする。支点から突き出されている試験片の長さを20mmとすることにより、圧子を下降させても試験片が圧子から外れることを防ぎ、かつ試験片の自重による曲げ荷重への影響を最小限にとどめることができる。医療用管状体の曲げ荷重が、医療用管状体の長さ方向に連続的又は段階的に変化する場合は、曲げ荷重の大きい側を試験片つかみ具でつかんで支点とし、曲げ荷重の小さい側を力点として試験を行い、得られた曲げ荷重を該力点における曲げ荷重とする。
本発明の医療用管状体において、曲げ荷重が、遠位端から50mm以内の部分において40g未満であると、医療用管状体が遠位端部において変形しやすく、医療用管状体の操作性が低下するおそれがある。曲げ荷重が、遠位端から50mm以内の部分において150gを超えると、医療用管状体の遠位端部が生体管路に追従して変形しにくく、生体管路を傷つけるおそれがある。曲げ荷重が、遠位端から50mmを超える部分において90g未満であると、軟らかすぎて押し込み特性が不良となるおそれがある。曲げ荷重が、遠位端から50mmを超える部分において200gを超えると、管路追従性が低下し、生体管路を傷つけるおそれがある。
【0009】
本発明の医療用管状体においては、遠位端から少なくとも50mm以内の部分において、支点と力点の距離を10mmとして測定した片持ち曲げ荷重の最大値が、遠位端に近づくにつれて、連続的又は段階的に小さくなる構造とすることができる。曲げ荷重を、遠位端に近づくにつれて連続的又は段階的に小さくなる構造とすることにより、近位端側から遠位端に近づくにつれて、連続的又は段階的に軟らかくなる操作性に優れた医療用管状体を得ることができる。このような構造を有する医療用管状体の製造方法に特に制限はなく、例えば、管状の金属線補強体の編組密度又は巻き密度を遠位端に近づくにつれて粗とすることができ、あるいは、外側の合成樹脂保護層を形成する樹脂組成物を、遠位端に近づくにつれて連続的又は段階的に軟質となる樹脂組成物とすることもできる。
曲げ荷重が遠位端に近づくにつれて小さくなる医療用管状体の曲げ荷重は、遠位端から10mmの位置を力点、20mmの位置を支点として、遠位端から10mmの位置における曲げ荷重を測定し、次いで、端から10mmを切断し、遠位端から20mmの位置を力点、30mmの位置を支点として、遠位端から20mmの位置における曲げ荷重を測定し、引き続きこのようにして端から10mmの切断と、力点及び支点の移動を繰り返すことにより、遠位端から10mmごとの曲げ荷重を測定することができる。
【0010】
本発明の医療用管状体においては、必要に応じて、遠位端に軟質のチップを接合することができる。遠位端に接合する軟質のチップに特に制限はなく、例えば、管状の金属線補強体が存在せず、外側の合成樹脂保護層と内側のフッ素樹脂潤滑層のみからなる短いチューブなどを挙げることができる。遠位端における合成樹脂保護層と軟質のチップの合成樹脂保護層を同一組成又は類似組成の樹脂組成物とすることにより、両者を比較的容易に接合することができる。
本発明の医療用管状体は、遠位端から50mmを超える部分に荷重20Nをかけたときの伸び率が、3〜4%であることが好ましく、3.2〜3.8%であることがより好ましい。荷重20Nをかけたときの伸び率の測定方法に特に制限はなく、例えば、一定間隔の2本の標線を付した複数本の試験片を作製し、それぞれの試験片に荷重20Nをかけて標線間の距離を測定して伸び率を算出することができ、あるいは、長尺の医療用管状体に、複数組の一定間隔の2本ずつの標線を付し、荷重20Nをかけて各組の標線間の距離を測定して伸び率を測定することもできる。荷重20Nをかけたときの伸び率が3%未満であると、大きな力を加えないとトルクが伝わらないおそれがある。荷重20Nをかけたときの伸び率が4%を超えると、トルク伝達性が悪くなるおそれがある。
本発明の医療用管状体は、同一寸法の外径であっても内径が大きいので、内腔への医療器具などの挿入が容易であり、操作中に内腔が潰れにくく、押し込み特性とトルク伝達性が良好である。本発明の医療用管状体は、操作性に優れ、複雑に屈折した生体管路を通して目的部位まで確実に進めることができるので、ガイディングカテーテルとして特に好適に用いることができる。
【0011】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において、カテーテルの特性は、下記の方法により測定した。
(1)圧壊荷重試験
カテーテルをアルミ板上に水平に置き、カテーテルの上方から、先端の接触面が0.5mm×8.0mmの長方形の平面である圧子を、圧子の先端の接触面の長手方向とカテーテルの長手方向が直交する位置として、速度40mm/minで下降させ、カテーテルの外径の40%に相当する0.832mmだけカテーテルを押しつぶしたときの荷重を読み取り、圧壊荷重とした。
(2)片持ち曲げ試験
カテーテルの遠位端から10mmの位置を力点、20mmの位置を支点として、試験片つかみ具でカテーテルをつかんで水平に保持した。遠位端から10mmの力点で、試験片の上方から、先端の接触面が0.8mm×5.5mmの長方形の平面である圧子を、圧子の先端の接触面の長手方向と試験片の長手方向が直交する位置として、速度100mm/minで垂直に下降させ、圧子の位置を横軸、曲げ荷重を縦軸とする曲線を描き、曲げ荷重の最大値を、遠位端から10mmにおける片持ち曲げ荷重の最大値とした。次いで、端10mmを切断し、遠位端から20mmの位置を力点、30mmの位置を支点とし、遠位端から20mmにおける片持ち曲げ荷重の最大値を求めた。同様な操作を繰り返し、遠位端から30mm、40mm及び500mmの位置における片持ち曲げ荷重の最大値を求めた。
(3)伸び試験
カテーテルから、全長100mmの試験片を切り取り、その中央部50mmをはさんで2本の標線をつけ、試験片の上下を試験片つかみ具でつかみ、荷重20Nをかけて3分後に標線間の距離を測定し、伸び率を算出した。
【0012】
実施例1
内径1.830mm、外径1.850mm、肉厚10μmのポリテトラフルオロエチレンチューブを長さ1,000mmに切断し、内部にステンレス鋼の芯材を挿通し、外周に断面形状が30μm×120μmのステンレス鋼(SUS304)平角線16本を編組して補強体を形成した。この上に、中間層樹脂としてナイロン12を厚さ70μmで押し出して、編組されたステンレス鋼平角線を被覆した。
さらに、ナイロン612を供給する押出機とナイロン12を供給する押出機を一つのダイに結合し、近位端から950mmの部分を厚さ45μmのナイロン612で被覆し、近位端から950mmすなわち遠位端から50mmの位置でナイロン12の供給を始め、ナイロン612とナイロン12の混合樹脂で、遠位端に近づくほどナイロン12が多くなり、遠位端においてはすべてナイロン12となる樹脂組成物で厚さ45μmの外層の被覆を形成した。最後に芯材を抜き取って、外径2.08mmのガイディングカテーテルを完成した。
得られたガイディングカテーテルの遠位端から10mm、20mm、30mm、40mm及び500mmの個所で測定した圧壊荷重は、それぞれ0.75kg、0.85kg、0.92kg、0.95kg及び1.00kgであり、片持ち曲げ荷重の最大値は、それぞれ80g、114g、134g、145g及び150gであった。遠位端から500mmの個所で測定した伸び率は、3.5%であった。
図1に示す形状の長さ175mm、内径3mmの腔路を有するポリテトラフルオロエチレン製の体腔モデルを用いて、押し込み試験を行った。体腔モデルを37℃の恒温水槽に浸漬し、ガイディングカテーテルを腔路に押し込んだ。前進、後退、左右への回転を繰り返しながら、ガイディングカテーテルを円滑に押し込むことができた。
実施例2
内径1.844mm、外径1.850mm、肉厚3μmのポリテトラフルオロエチレンチューブを用いた以外は、実施例1と同様にして、ガイディングカテーテルを作製し、圧壊荷重、片持ち曲げ荷重の最大値及び伸び率を測定し、押し込み試験を行った。
【0013】
比較例1
内径1.800mm、外径1.860mm、肉厚30μmのポリテトラフルオロエチレンチューブを用い、ナイロン612とナイロン12からなる外層の厚さを40μmとした以外は、実施例1と同様にして、ガイディングカテーテルを作製し、圧壊荷重、片持ち曲げ荷重の最大値及び伸び率を測定し、押し込み試験を行った。
比較例2
2003年4月現在販売されているガイディングカテーテルについて、実施例1と同様にして、圧壊荷重、片持ち曲げ荷重の最大値及び伸び率を測定し、押し込み試験を行った。
このガイディングカテーテルは、内径1.800mm、外径1.860mm、肉厚30μmのポリテトラフルオロエチレンのチューブの上に、直径60μmのステンレス鋼の丸線と直径40μmのタングステンの丸線を編組して補強体を形成し、その上に外層樹脂としてポリエステルエラストマーを厚さ110μmで押し出し、被覆を形成している。
ガイディングカテーテルの遠位端から10mm、20mm、30mm、40mm及び500mmの個所で測定した圧壊荷重は、それぞれ0.56kg、0.65kg、0.72kg、0.76kg及び0.79kgであり、片持ち曲げ荷重の最大値は、それぞれ65g、97g、115g、125g及び130gであった。遠位端から500mmの個所で測定した伸び率は、4.3%であった。
実施例1と同様にして、体腔モデルを用いて押し込み試験を行った。実施例1のガイディングカテーテルに比べると、動きの伝達性が悪く、操作性は劣っていた。
実施例1〜2及び比較例1〜2の評価結果を、第1表に示す。
【0014】
【表1】
【0015】
第1表に見られるように、実施例1〜2の本発明のガイディングカテーテルは、現在販売されている比較例2のガイディングカテーテルよりも内径が30μm大きく、管壁が薄いにもかかわらず、圧壊荷重と片持ち曲げ荷重の最大値がいずれも比較例2のガイディングカテーテルより大きく、遠位端の近傍を除く部分の伸び率がガイディングカテーテルとして適当な3〜4%の範囲にあり、優れた操作性を有している。ポリテトラフルオロエチレン層の厚さを30μmとし、その他の構成を実施例1〜2のガイディングカテーテルとほぼ同じにした比較例1のガイディングカテーテルは、内径は実施例1〜2のガイディングカテーテルより小さいが、圧壊荷重と片持ち曲げ荷重の最大値に大差はなく、操作性は実施例1〜2のガイディングカテーテルほど優れてはいない。
【0016】
【発明の効果】
本発明の医療用管状体は、同一寸法の外径であっても内径が大きいので、内腔への医療器具などの挿入が容易であり、操作中に内腔が潰れにくく、押し込み特性とトルク伝達性が良好であり、操作性に優れ、複雑に屈折した生体管路を通して目的部位まで確実に進めることができる。本発明の医療用管状体は、ガイディングカテーテルとして特に好適に用いることができる。
【図面の簡単な説明】
【図1】図1は、実施例で用いた体腔モデルの説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a medical tubular body. More specifically, the present invention provides a medical catheter which has a large ratio of inner and outer diameters, has both high crushing strength and good flexibility, is hardly crushed in a tubular body, and can be particularly preferably used as a guiding catheter having excellent operability. The present invention relates to a tubular body for use.
[0002]
[Prior art]
A medical device, which is generally called a medical tubular body, is a small-diameter tube that is inserted to a target site through a thin biological conduit, and is bent intricately, and in a biological conduit having a branch, a course is selected. Excellent operability that can be pushed in is required.
2. Description of the Related Art In recent years, in order to reduce physical and temporal burdens on patients, examples of using medical tubular bodies for examination and treatment have increased. 2. Description of the Related Art Conventionally, there is an increasing number of cases in which invasion is reduced by using a medical tubular body even for a procedure that requires incision of a target site for examination or treatment. Examples of the medical tubular body include a catheter for angiography, a catheter for percutaneous coronary angioplasty (PTCA), a microcatheter for brain surgery, and a microcatheter for abdomen. In percutaneous coronary angioplasty, a medical tubular body is inserted from the femoral artery, the radial artery, etc. to the coronary artery orifice, and a contrast agent is injected into the tubular body to perform coronary angiography or a guide wire. , A treatment device such as a balloon catheter and an intravascular echo device is carried to the target treatment site through the lumen of the medical tubular body to perform treatment. Therefore, it is preferable that the inner diameter is as large as possible, the surface of the lumen is excellent in lubricity, and the frictional resistance with the medical instrument is small, because a medicine or a small-diameter medical instrument passes through the lumen. Further, the distal end of the medical tubular body needs to have a moderate flexibility so as not to damage the living body duct.
The medical tubular body used for these purposes is composed of a tubular body portion and a portion for operation and joining on the proximal side. For the inner layer, a synthetic resin with excellent lubricity is used, a metal wire or a non-metal wire is spirally braided around the inner layer tube and reinforced, and the outer layer of the reinforcing layer is covered with electric wires. In the same technique as described above, the braided tubular body is extruded together with the synthetic resin layer. On the distal end side, a tube of a synthetic resin softer than the synthetic resin used in the extrusion molding is heat-welded to the braided tubular body in order to have flexibility.
The medical tubular body needs to be as thin as possible. However, when the medical tubular body is made thin, the strength of the tubular body is inevitably weakened, and the operability is also reduced. For this purpose, methods such as increasing the size of the braided reinforcement and changing the synthetic resin of the outer layer to a hard material have been adopted, but on the other hand, flexibility, which is an important performance of the medical tubular body, is impaired. In the case of a thin and bent biological conduit, there is a risk of damaging the conduit.
[0003]
[Problems to be solved by the invention]
The present invention provides a medical tubular body that has a large inner-outer diameter ratio, combines high crushing strength and good flexibility, is hardly crushed, and can be particularly preferably used as a guiding catheter having excellent operability. It was made for the purpose of providing.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-described problems, and as a result, in a medical tubular body having a synthetic resin protective layer on the outside of the tubular metal wire reinforcing body and a fluororesin lubrication layer on the inside, a fluororesin By setting the thickness of the lubricating layer to 15 μm or less, the inner diameter is large even with the same outer diameter, which combines high crushing strength and good flexibility, and finds that a medical tubular body that is hard to collapse can be obtained. Based on this finding, the present invention has been completed.
That is, the present invention
(1) In a medical tubular body having a synthetic resin protective layer on the outside of a tubular metal wire reinforcing body and a fluororesin lubricating layer on the inside, the outer diameter is 0.5 to 3 mm, and the ratio of the inner diameter to the outer diameter is 0. .855 to 0.900, and the thickness of the fluororesin lubricating layer is 0.1 to 15 μm,
(2) The crushing load when crushed by a size corresponding to 40% of the outer diameter is 0.4 to 1.5 kg in a portion within 50 mm from the distal end and 0 in a portion exceeding 50 mm from the distal end. 2. The medical tubular body according to item 1, which weighs from 0.5 to 3.0 kg.
(3) The maximum value of the cantilever bending load measured when the distance between the fulcrum and the force point is 10 mm is 40 to 150 g in a portion within 50 mm from the distal end and 90 to 200 g in a portion exceeding 50 mm from the distal end. A medical tubular body according to claim 1,
(4) In a portion at least within 50 mm from the distal end, the maximum value of the cantilever bending load measured when the distance between the fulcrum and the force point is 10 mm becomes smaller continuously or stepwise as it approaches the distal end. Medical tubular body according to claim,
(5) The medical tubular body according to item 1, wherein an elongation percentage when a load of 20 N is applied to a portion exceeding 50 mm from the distal end is 3 to 4%, and
(6) The medical tubular body according to any one of (1), (2), (3), (4) and (5), which is a guiding catheter,
Is provided.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The medical tubular body of the present invention, in a medical tubular body having a synthetic resin protective layer on the outside of the tubular metal wire reinforcing body and a fluororesin lubricating layer on the inside, the outer diameter is 0.5 to 3 mm, and the inner diameter is The medical tubular body has an outer diameter ratio of 0.855 to 0.900 and a thickness of the fluororesin lubricating layer of 0.1 to 15 μm.
The material of the tubular metal wire reinforcing member constituting the medical tubular body of the present invention is not particularly limited, and examples thereof include a metal wire such as a stainless steel wire, a tungsten wire, a hard steel wire, and a piano wire. There is no particular limitation on the shape of the metal wire, and examples thereof include a round wire and a flat wire. There is no particular limitation on the method of forming the tubular metal wire reinforcement.For example, a metal wire can be braided on the surface of the fluororesin tube supported by the core material, and the surface of the fluororesin tube supported by the core material can be braided. The metal wire can be wound in a coil shape, or the tubular body can be formed only from the metal wire.
There is no particular limitation on the material of the synthetic resin protective layer used for the medical tubular body of the present invention. For example, polyolefins such as polyethylene and polypropylene, polyesters such as polyester elastomer, polyimides such as polyimide and polyetherimide, and nylon 11 And polyamides such as nylon 12, nylon 69, and nylon 612, and silicones such as polydimethylsiloxane.
There is no particular limitation on the material of the fluororesin lubricating layer used for the medical tubular body of the present invention. For example, polytetrafluoroethylene, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro Examples thereof include a vinyl ether copolymer, a tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, and a perfluoroionomer. Among them, polytetrafluoroethylene can be particularly preferably used.
[0006]
The outer diameter of the medical tubular body of the present invention is 0.5 to 3 mm. A tubular body having an outer diameter of less than 0.5 mm may have a too small diameter of the lumen, and may be less practical as a medical tubular body. When the outer diameter exceeds 3 mm, the number of living body ducts that can be inserted is limited, and the invasion to the patient may be increased. The ratio of the inner diameter to the outer diameter of the medical tubular body of the present invention is 0.855 to 0.900. When the ratio of the inner diameter to the outer diameter is less than 0.855, the diameter of the lumen that can be used with respect to the outer diameter of the tubular body may be too small to be used effectively as a medical tubular body. If the ratio of the inner diameter to the outer diameter exceeds 0.900, the thickness of the tube wall becomes too small, and the tubular body may be easily crushed or the torque transmitting property may be reduced.
In the medical tubular body of the present invention, the fluororesin lubricating layer provided inside the tubular metal wire reinforcing body has a thickness of 0.1 to 15 μm. When the thickness of the fluororesin lubricating layer is less than 0.1 μm, it is difficult to stably cover the metal wire reinforcing body, and the lubricating property of the inner surface of the tubular body is insufficient, or the metal wire is not sufficiently coated. There is a possibility that a part of the reinforcing member is exposed. When the thickness of the fluororesin lubricating layer is 15 μm or less, stable covering properties and sufficient lubricity are obtained, and it is usually unnecessary to provide a fluororesin lubricating layer having a thickness exceeding 15 μm.
[0007]
The medical tubular body of the present invention preferably has a crushing load of 0.4 to 1.5 kg in a portion within 50 mm from the distal end when crushed by a size corresponding to 40% of the outer diameter, More preferably, the weight is 0.6 to 1.2 kg. Further, the crushing load when crushed by a size corresponding to 40% of the outer diameter is preferably 0.5 to 3.0 kg, more preferably 0.7 to 2.0 kg in a portion exceeding 50 mm from the distal end. Is more preferable. Hereinafter, the crush load when crushed by a size corresponding to 40% of the outer diameter is simply referred to as “crush load”. In the present invention, the crushing load is such that a test piece of a medical tubular body is placed horizontally on a support table, and an indenter whose surface in contact with the test piece of the tubular body has an elongated shape orthogonal to the longitudinal direction of the tubular body. It can be determined by reading the load applied to the indenter when crushed by a size equivalent to 40% of the outer diameter. For example, the crushing load of a medical tubular body having an outer diameter of 2 mm is obtained as a load when a test piece of the tubular body is crushed by 0.8 mm. The elongated surface of the indenter that comes into contact with the test piece has a size that has a portion that does not come into contact with the test piece at both ends even when crushed by a size corresponding to 40% of the outer diameter.
In the medical tubular body of the present invention, when the crushing load is less than 0.4 kg in a portion within 50 mm from the distal end, the medical tubular body is easily crushed at the distal end, and the operability of the medical tubular body is improved. May decrease. If the crushing load exceeds 1.5 kg in a portion within 50 mm from the distal end, the distal end of the medical tubular body is hard, and there is a possibility of damaging a biological duct. If the crushing load is less than 0.5 kg in a portion exceeding 50 mm from the distal end, the medical tubular body is likely to be crushed, and there is a possibility that the pushing characteristics and the torque transmission are insufficient. If the crushing load exceeds 3.0 kg in a portion exceeding 50 mm from the distal end, the medical tubular body may be too hard, and it may be difficult to follow the bending of the biological duct.
[0008]
In the medical tubular body of the present invention, the maximum value of the cantilever bending load measured with the distance between the fulcrum and the power point being 10 mm is preferably 40 to 150 g in a portion within 50 mm from the distal end, and is preferably 60 to 120 g. More preferably, there is. Further, the maximum value of the cantilever bending load measured when the distance between the fulcrum and the force point is 10 mm is preferably 90 to 200 g, and more preferably 120 to 180 g at a portion exceeding 50 mm from the distal end. The maximum value of the cantilever bending load measured by setting the distance between the fulcrum and the force point to 10 mm is as follows. The medical tubular body is horizontally held by a metal test piece gripper, and the end of the test piece gripper is used as a fulcrum, and 10 mm away from the fulcrum. A cantilever bending load obtained by reading the maximum value of the load from a curve representing the relationship between the amount of descent of the indenter and the load applied to the indenter, and measuring the distance between the fulcrum and the fulcrum at the force point as 10 mm Is the maximum value of Hereinafter, the maximum value of the cantilever bending load measured when the distance between the fulcrum and the force point is 10 mm is simply referred to as “bending load”.
The test piece gripper has a shape in which a conduit having an inner diameter equal to the outer diameter of the test piece is formed so that the test piece is stably held without being deformed. The length of the test piece protruding from the fulcrum by the test piece gripper is 20 mm. By setting the length of the test piece protruding from the fulcrum to 20 mm, the test piece is prevented from coming off from the indenter even when the indenter is lowered, and the influence of the weight of the test piece on the bending load is minimized. be able to. When the bending load of the medical tubular body changes continuously or stepwise in the length direction of the medical tubular body, the side with the larger bending load is grasped by the test piece gripper and used as a fulcrum, and the side with the smaller bending load is used. Is used as a power point, and the obtained bending load is defined as the bending load at the power point.
In the medical tubular body of the present invention, when the bending load is less than 40 g at a portion within 50 mm from the distal end, the medical tubular body is easily deformed at the distal end, and the operability of the medical tubular body is reduced. It may decrease. If the bending load exceeds 150 g in a portion within 50 mm from the distal end, the distal end portion of the medical tubular body follows the biological duct and is not easily deformed, and may damage the biological duct. If the bending load is less than 90 g at a portion exceeding 50 mm from the distal end, it is too soft and may have poor pushing characteristics. When the bending load exceeds 200 g at a portion exceeding 50 mm from the distal end, the duct followability is reduced, and there is a possibility that the living body duct may be damaged.
[0009]
In the medical tubular body of the present invention, in a portion at least 50 mm from the distal end, the maximum value of the cantilever bending load measured with the distance between the fulcrum and the force point being 10 mm is continuously or as the distal end is approached. It is possible to adopt a structure that gradually decreases. A medical treatment with excellent operability in which the bending load is continuously or stepwise reduced as it approaches the distal end, so that it softens continuously or stepwise as it approaches the distal end from the proximal end side. A tubular body for use can be obtained. There is no particular limitation on the method of manufacturing the medical tubular body having such a structure, and for example, the braid density or the winding density of the tubular metal wire reinforcement can be made coarser as approaching the distal end, or The resin composition forming the synthetic resin protective layer may be a resin composition that becomes softer continuously or stepwise as it approaches the distal end.
The bending load of the medical tubular body, in which the bending load becomes smaller as approaching the distal end, is determined by measuring the bending load at a position 10 mm from the distal end, with a force point at a position 10 mm from the distal end and a fulcrum at a position 20 mm from the distal end. Then, by cutting 10 mm from the end, measuring the bending load at the position of 20 mm from the distal end with the power point at the position of 20 mm from the distal end and the fulcrum at the position of 30 mm, and continuously measuring the bending load at the position of 10 mm from the end in this way. By repeating the cutting and the movement of the force point and the fulcrum, the bending load can be measured every 10 mm from the distal end.
[0010]
In the medical tubular body of the present invention, a soft tip can be joined to the distal end as necessary. There is no particular limitation on the soft tip to be joined to the distal end, for example, a short tube that does not have a tubular metal wire reinforcing body, and includes only an outer synthetic resin protective layer and an inner fluororesin lubricating layer. Can be. By making the synthetic resin protective layer at the distal end and the synthetic resin protective layer of the soft tip the same composition or a similar composition, the two can be relatively easily joined.
In the medical tubular body of the present invention, the elongation when applying a load of 20 N to a portion exceeding 50 mm from the distal end is preferably 3 to 4%, and preferably 3.2 to 3.8%. Is more preferred. There is no particular limitation on the method of measuring the elongation percentage when a load of 20 N is applied. For example, a plurality of test pieces with two marked lines at regular intervals are prepared, and a load of 20 N is applied to each test piece. The elongation rate can be calculated by measuring the distance between the marked lines, or a plurality of sets of two marked lines at fixed intervals are applied to a long medical tubular body, and a load of 20 N is applied. The elongation can also be measured by measuring the distance between each set of marked lines. If the elongation percentage under a load of 20 N is less than 3%, torque may not be transmitted unless a large force is applied. If the elongation percentage when a load of 20 N is applied exceeds 4%, torque transmission may be deteriorated.
The medical tubular body of the present invention has a large inner diameter even if the outer diameter is the same, so that a medical instrument or the like can be easily inserted into the lumen, the lumen is less likely to be crushed during operation, and the pushing characteristics and torque can be reduced. Good transmission. INDUSTRIAL APPLICABILITY The medical tubular body of the present invention is excellent in operability and can be reliably advanced to a target site through a complicatedly bent biological conduit, so that it can be particularly suitably used as a guiding catheter.
[0011]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, the characteristics of the catheter were measured by the following methods.
(1) A crush load test catheter is placed horizontally on an aluminum plate, and from the top of the catheter, the indenter whose contact surface at the tip is a rectangular flat surface of 0.5 mm × 8.0 mm is placed in the longitudinal direction of the contact surface at the tip of the indenter. The position where the direction and the longitudinal direction of the catheter were perpendicular to each other was lowered at a speed of 40 mm / min, and the load when the catheter was crushed by 0.832 mm corresponding to 40% of the outer diameter of the catheter was read and defined as the crush load.
(2) The cantilever bending test The catheter was held horizontally by using a test piece gripper with the position of 10 mm from the distal end of the catheter as a point of force and the position of 20 mm as a fulcrum. At the point of force of 10 mm from the distal end, from the top of the test piece, the indenter whose contact surface at the tip is a rectangular flat surface of 0.8 mm × 5.5 mm is placed in the longitudinal direction of the contact surface at the tip of the indenter and the length of the test piece. As a position where the directions are orthogonal to each other, descend vertically at a speed of 100 mm / min, draw a curve with the position of the indenter on the abscissa and the bending load on the ordinate, and set the maximum value of the bending load to cantilever at 10 mm from the distal end. The maximum value of the bending load was used. Next, the end 10 mm was cut, and the maximum value of the cantilever bending load at 20 mm from the distal end was determined with the position at 20 mm from the distal end as the point of force and the position at 30 mm as the fulcrum. The same operation was repeated to determine the maximum value of the cantilever bending load at the positions of 30 mm, 40 mm, and 500 mm from the distal end.
(3) A test piece having a total length of 100 mm was cut out from the elongation test catheter, two mark lines were placed across the central portion of 50 mm, and the upper and lower portions of the test piece were gripped by a test piece gripper, and a load of 20 N was applied under a load of 20 N. After minutes, the distance between the marked lines was measured, and the elongation was calculated.
[0012]
Example 1
A polytetrafluoroethylene tube having an inner diameter of 1.830 mm, an outer diameter of 1.850 mm, and a thickness of 10 μm is cut into a length of 1,000 mm, a stainless steel core material is inserted therein, and a cross-sectional shape of 30 μm × 120 μm is formed on the outer periphery. Sixteen stainless steel (SUS304) rectangular wires were braided to form a reinforcement. Nylon 12 was extruded with a thickness of 70 μm as an intermediate layer resin on this, and the braided stainless steel flat wire was covered.
Further, the extruder for supplying nylon 612 and the extruder for supplying nylon 12 are combined into one die, a portion 950 mm from the proximal end is coated with nylon 612 having a thickness of 45 μm, and 950 mm from the proximal end, that is, far from the proximal end. At a position 50 mm from the distal end, supply of nylon 12 is started, and a mixed resin of nylon 612 and nylon 12 is used. An outer coating of 45 μm thickness was formed. Finally, the core material was extracted to complete a guiding catheter having an outer diameter of 2.08 mm.
The crushing loads measured at 10 mm, 20 mm, 30 mm, 40 mm and 500 mm from the distal end of the obtained guiding catheter were 0.75 kg, 0.85 kg, 0.92 kg, 0.95 kg and 1.00 kg, respectively. The maximum values of the cantilever bending loads were 80 g, 114 g, 134 g, 145 g, and 150 g, respectively. The elongation measured at a point 500 mm from the distal end was 3.5%.
An indentation test was performed using a body cavity model made of polytetrafluoroethylene having a cavity having a length of 175 mm and an inner diameter of 3 mm shown in FIG. The body cavity model was immersed in a constant temperature water bath at 37 ° C., and the guiding catheter was pushed into the cavity. The guiding catheter could be pushed in smoothly while repeating forward, backward, and left and right rotations.
Example 2
A guiding catheter was prepared in the same manner as in Example 1 except that a polytetrafluoroethylene tube having an inner diameter of 1.844 mm, an outer diameter of 1.850 mm, and a wall thickness of 3 μm was used, and the maximum crushing load and cantilever bending load were obtained. The value and elongation were measured, and an indentation test was performed.
[0013]
Comparative Example 1
The procedure of Example 1 was repeated, except that a polytetrafluoroethylene tube having an inner diameter of 1.800 mm, an outer diameter of 1.860 mm and a wall thickness of 30 μm was used, and the thickness of the outer layer made of nylon 612 and nylon 12 was changed to 40 μm. A loading catheter was prepared, and the crushing load, the maximum value of the cantilever bending load, and the elongation were measured, and a pushing test was performed.
Comparative Example 2
For the guiding catheter sold as of April 2003, the crushing load, the maximum value of the cantilever bending load and the elongation were measured in the same manner as in Example 1, and a pushing test was performed.
This guiding catheter has a stainless steel round wire having a diameter of 60 μm and a tungsten round wire having a diameter of 40 μm braided on a polytetrafluoroethylene tube having an inner diameter of 1.800 mm, an outer diameter of 1.860 mm and a thickness of 30 μm. Then, a reinforcing material is formed, and a polyester elastomer is extruded thereon as an outer layer resin with a thickness of 110 μm to form a coating.
The crushing loads measured at 10 mm, 20 mm, 30 mm, 40 mm and 500 mm from the distal end of the guiding catheter were 0.56 kg, 0.65 kg, 0.72 kg, 0.76 kg and 0.79 kg, respectively. The maximum values of the holding bending load were 65 g, 97 g, 115 g, 125 g, and 130 g, respectively. The elongation measured at a point 500 mm from the distal end was 4.3%.
In the same manner as in Example 1, an indentation test was performed using a body cavity model. As compared with the guiding catheter of Example 1, the transmission of movement was poor, and the operability was poor.
Table 1 shows the evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2.
[0014]
[Table 1]
[0015]
As can be seen from Table 1, the guiding catheters of Examples 1 and 2 of the present invention have an inner diameter larger than that of the guiding catheter of Comparative Example 2 currently sold by 30 μm, and have a thin tube wall. The maximum values of the crushing load and the cantilever bending load are all larger than those of the guiding catheter of Comparative Example 2, and the elongation percentage of the portion other than the vicinity of the distal end is in the range of 3 to 4% which is suitable for the guiding catheter. Has excellent operability. The guiding catheter of Comparative Example 1 in which the thickness of the polytetrafluoroethylene layer was set to 30 μm and the other configuration was almost the same as the guiding catheter of Examples 1 and 2, the inner diameter of the guiding catheter of Examples 1 and 2 Although smaller, there is no great difference between the maximum values of the crushing load and the cantilever bending load, and the operability is not as excellent as the guiding catheters of Examples 1 and 2.
[0016]
【The invention's effect】
The medical tubular body of the present invention has a large inner diameter even if the outer diameter is the same, so that a medical instrument or the like can be easily inserted into the lumen, the lumen is less likely to be crushed during operation, and the pushing characteristics and torque can be reduced. The transmissivity is good, the operability is excellent, and it is possible to reliably proceed to a target site through a complicatedly bent biological duct. The medical tubular body of the present invention can be particularly suitably used as a guiding catheter.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a body cavity model used in an embodiment.