JP2004353046A - Boride cermet powder for thermal spraying - Google Patents

Boride cermet powder for thermal spraying Download PDF

Info

Publication number
JP2004353046A
JP2004353046A JP2003153243A JP2003153243A JP2004353046A JP 2004353046 A JP2004353046 A JP 2004353046A JP 2003153243 A JP2003153243 A JP 2003153243A JP 2003153243 A JP2003153243 A JP 2003153243A JP 2004353046 A JP2004353046 A JP 2004353046A
Authority
JP
Japan
Prior art keywords
powder
particles
cermet
resistance
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153243A
Other languages
Japanese (ja)
Inventor
Tatsuo Shimatani
竜男 島谷
Kunihiko Suzuki
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003153243A priority Critical patent/JP2004353046A/en
Publication of JP2004353046A publication Critical patent/JP2004353046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal spraying powder for forming a cermet-sprayed film which has high hardness, is superior in any of abrasion resistance, corrosion resistance and heat resistance, and besides has further improved thermal shock resistance and toughness. <P>SOLUTION: The boride cermet powder for thermal spraying is composed of a composite powder composition constituted of WB particles and Co, Cr and Mo particles of elemental metals so that the composition can comprise, by mass ratio, 2.5-4.0% B, 15.0-30.0% Co, 5.0-10.0% Cr, 3.0-6.0% Mo and the balance W with unavoidable impurities; and has an apparent density in a range of 3.0 to 4.0 g/cm<SP>3</SP>, and/or an average particle diameter of the primary WB particles of raw powder in the range of 1.0 to 1.5 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、代表的な溶射用サーメット材料であるタングステンカーバイド・コバルト(WC−Co)系溶射被覆層に匹敵する硬さおよび耐摩耗性と、クロムカーバイド・ニッケルクロム(Cr −NiCr)系溶射被覆層を凌駕する耐熱性および耐酸化性とを有し、かつ、上記のWC−Co系およびCr −NiCr系溶射被覆層には見られない高い耐熱衝撃性および靭性を有するサーメット溶射被膜を生成するための溶射用粉末に関する。
【0002】
【従来の技術】
近年、産業の発展に伴って産業用機械等の高性能化、高精度化、多様化およびエネルギーコストの低廉化が進むにつれて、溶射材料に金属とセラミックスを成分とする材料を用いてサーメット皮膜を形成するサーメット溶射被覆層に対する要求性能はますます厳しくなり、以前にも増して優れた性能を必要とするようになっている。
【0003】
従来、サーメット溶射被覆層(以下、単に「被覆層」または「溶射被膜」ともいう。)として施されている代表的なものは使用温度によって異なり、常温から500℃程度までの温度範囲では、WC−Co系やWC−Ni系のものが、これより高い900℃までの高温域では、Cr −NiCr系やCr −Ni系のものがあり、これらの被膜層はそれぞれ目的に応じた硬度と、耐熱性、耐摩耗性、耐酸化性などを有している。
【0004】
しかしながら、上記したように最近の産業の発展に伴って、サーメットの使用環境が多様化するにつれて、より一層これらの特性の優れたものが望まれており、上記した特性にさらに耐熱衝撃性、靭性を兼ね備えた被膜材料の開発が望まれている。その一例を挙げると、自動車用等の表面処理鋼板を製造するための高温の溶融亜鉛メッキ浴(450〜500℃)や溶融アルミニウム(700〜800℃)中に浸漬されて、連続的に通過する鋼板を支持し、案内して該鋼板の表面に均一な亜鉛メッキを被着させるために用いられるシンクロール、サポートロール等を被覆するための被膜層には、単に高い硬度や耐熱性、耐摩耗性を有するのみならず、溶融金属に対する耐食性、耐熱衝撃性や優れた靭性が求められる。
【0005】
前記した従来型のサーメット溶射被膜のうち、WC−Co系のものは、500℃までの乾燥雰囲気中では、硬度や耐摩耗性は優れているものの、耐食性や耐熱性が低く、特に500℃以上の酸化性雰囲気における耐熱性や耐食性に問題がある。また、Cr −NiCr系のものは、900℃の高温域まで、耐食性や耐熱、耐酸化性は維持されるものの、硬度や耐摩耗性が劣る。さらに、これらの被膜は一般に耐熱衝撃性が低く、靭性が劣っているので、被膜層が剥離しやすく、用途範囲が限られている。
【0006】
このように、従来用いられている被覆層は、高硬度で耐摩耗性に優れていても耐食性や耐熱性が劣っていたり、耐熱性や耐食性に優れていても耐摩耗性や硬度が不十分であったりする上に、いずれも耐熱衝撃性が低く、また靭性が劣っていた。これらすべての要求特性を同時に満足することができるサーメット溶射被膜を形成するための溶射用粉末として、特許第3134768号公報には、質量比にてB:2.5〜4.0%、Co:15.0〜30.0%、Cr:5.0〜10.0%、Mo:3.0〜6.0%を含み、残部Wと不可回避的不純物から構成された複合粉末組成物からなる硼化物系サーメット溶射用粉末が開示されている。
【0007】
この特許第3134768号公報に記載の硼化物系サーメット溶射用粉末は、WBおよび単体金属のCo、Cr、Moを基本構成要素とし、該粉末を造粒・焼結して形成されたサーメット粒子の一つ一つが、微細なW CoB を主とした粒子(以下、「W CoB 粒子」という。)と、それらを金属結合層として結びつけるCo−Cr−Mo系合金相とから構成されたものであり、前記粉末が、5〜45μmもしくは15〜53μmの粒度範囲よりも粗い場合には、緻密な溶射被覆層を形成させることが困難であるとされている。しかし、原料粉末の粒度などについての言及はない。溶射被膜は、溶射ガン内でサーメット粒子の金属結合層を溶融またはそれに近い状態とする温度に加熱・高速化されたものが母材表面に扁平状に付着し、それが順次堆積していくことに、より緻密で高い密着力を有するものとして形成される。
【0008】
しかし、サーメット粒子の見かけ密度が低く、内部まで密なものとなっていない(ポーラス状)と、溶射時の母材衝突時において砕け易くなり、粉末粒子が扁平状に堆積されないため、気孔が多く、かつ、一次粒子および二次粒子間の結合力が低下した溶射被膜を形成する。その結果、強度(靭性)、硬度、耐摩耗性、耐食性の低い溶射皮膜が得られ、十分な能力が発揮されない。
【0009】
また、Co、Cr、Moは、添加量の増加に伴い溶射皮膜の耐摩耗性、耐食性を低下させることから、通常、一次粒子の結合に必要最低限の量(Co≧15質量%、Cr≧5質量%、Mo≧3質量%)が添加される。そのため、一次粒子用原料粉末として使用されるWB粒子の粒径が、金属結合層であるCo−Cr−Mo系合金相で均一に被覆されるのに適当な大きさでないと、部分的に金属結合層の過多や不足が生じ、充分な特性が得られないという問題も生じていた。
【0010】
【特許文献1】
特許第3134768号
【0011】
【発明が解決しようとする課題】
本発明は、従来のサーメット溶射被膜における上記の問題点に鑑みてなされたものであって、高硬度で耐摩耗性、耐食性、耐熱性のいずれにも優れ、しかも耐熱衝撃性および靭性をもさらに向上させたサーメット溶射被膜を形成するための溶射用粉末を提供する。
【0012】
【課題を解決するための手段】
本発明の硼化物系サーメット溶射用粉末は、質量比にて、B:2.5〜4.0%、Co:15.0〜30.0%、Cr:5.0〜10.0%、Mo:3.0〜6.0%を含み、残部Wと不可回避的不純物からなるようにWB粒子と単体金属のCo、Cr、Mo粒子とで構成された複合粉末組成物からなる硼化物系サーメット溶射用粉末において、見かけ密度が3.0〜4.0g/cm の範囲にあることを特徴とする。
【0013】
また、別の態様では、質量比にて、B:2.5〜4.0%、Co:15.0〜30.0%、Cr:5.0〜10.0%、Mo:3.0〜6.0%を含み、残部Wと不可回避的不純物からなるようにWB粒子と単体金属のCo、Cr、Mo粒子とで構成された複合粉末組成物からなる硼化物系サーメット溶射用粉末において、一次粒子用原料粉末としてのWB粒子の平均粒径が1.0〜1.5μmの範囲にあることを特徴とする。
【0014】
なお、見かけ密度、WB粒子の平均粒径は、いずれも上記範囲にあることがことが好ましい。
【0015】
また、WとBとの合計量が質量比にて52.5〜70.0%、CoとCrとMoとの合計量が質量比にて25.0〜45.0%であることが好ましい。
【0016】
なお、前記溶射用粉末を構成する粉末の好ましい粒度は溶射方法によって異なるが、大気または減圧プラズマ溶射法を採用する場合には15〜53μm、15〜45μmの範囲が適当であり、また高速ガス炎溶射法による場合には5〜45μm、5〜30μm、5〜38μm、15〜45μm、15〜53μmの範囲であることが好ましい。
【0017】
【発明の実施の形態】
本発明は、上記の課題を解決すべく鋭意研究を重ねた結果、W CoB で表わされるW−Co系の複硼化物は、高い硬度や耐摩耗性を示すだけでなく、優れた耐熱衝撃性と靭性を有すること、さらに前記複硼化物に金属結合相として優れた耐熱性を有するCo−Cr−Mo系合金相を組み合わせ、これらをサーメット化することによって、高い硬度と耐摩耗性を有し、耐熱、耐酸化性および耐熱衝撃性を併せ有するサーメット溶射被膜を得ることができることを見出だした。また、前記サーメット被膜中に適量の複硼化物相を緻密にしかも均一に分散形成させるためには、含有させるべきBに最適添加範囲が存在すること、また、金属結合相となるCoとCrとMoは合金の状態ではなく、それぞれを単体金属として添加するのが適当であるとの知見を得ている。これらに加えて、さらにサーメット粉末の見かけ密度にも最適範囲が存在すること、また、一次粒子としてのWB粒子には、最適粒度範囲が存在することを見いだした。
【0018】
本発明による硼化物系サーメット溶射被覆層を得るためのサーメット溶射用粉末の構成成分は上記の通りであるが、以下にそれぞれの成分限定理由を説明する。
【0019】
Bは、WおよびCoと結合して複硼化物相を形成するために必要な元素であって、サーメット溶射用粉末中のBの含有量が2.5質量%未満では、溶射被覆時の熱影響と酸化により溶射被覆層中のB量が1.5質量%未満にまで低下するため、得られた溶射被覆層に十分な硬度と耐摩耗性が得られない。一方、4.0質量%を超えると、硬度は高くなるが溶射被覆層の強度(靭性と耐熱衝撃性)が著しく低下する。したがって、溶射用粉末中のB含有量は、2.5〜4.0%の範囲が適当である。
【0020】
Wは、Bと同様に複硼化物相を形成するために必要な元素であり、該複硼化物相は、W CoB で表されるが、サーメット溶射粉末中のWの含有量が50.0質量%未満では、前記複硼化物相の形成は不十分となり、溶射被覆層は所望の硬度と耐摩耗性が得られない。一方、70.0質量%を超えると、硬度、耐摩耗性および溶融亜鉛や溶融アルミニウムに対する耐食性は向上するが、靭性や耐熱衝撃性、さらに粉末の溶射付着効率(溶射時の歩留り)が著しく低下する。したがって、溶射用粉末中のWの含有量は、50.0〜70.0%の範囲が適当である。なお、WとBは、一次粒子用原料粉末としてWB粒子の形で導入される。
【0021】
Coは、金属結合相形成の主体となる元素であるが、一方において複硼化物相の形成にも欠かせない元素であり、得られた溶射被覆層に高温強度、耐酸化性を付与する効果を有する。Coの含有量が15.0質量%未満では、形成される金属結合相と複硼化物相との相互固溶量が少なくなるためにその結合力が低下し、かつ、気孔等の欠陥が発生しやすくなる。一方、30.0質量%を超えると、金属結合相における耐食性を低下させるとともに、複硼化物中において脆弱なCoB等の硼化物が多量に形成するようになるので、溶射被覆層の靭性が低下してしまう。したがって、溶射用粉末中のCo含有量は、15.0〜30.0質量%の範囲が適当である。
【0022】
Crは、耐食性、耐熱性および耐酸化性に寄与する元素であり、Coと結合して金属結合相を形成し靭性を向上させる効果を有する。Crの含有量が5.0質量%未満では、上記した効果が十分に得られず、また、10.0質量%を超えると、得られた溶射被覆層における耐食性、耐熱性および耐酸化性をさらに向上させるものの、靭性を低下させるので好ましくない。したがって、溶射用粉末中のCr含有量は、5.0〜10.0質量%の範囲が適当である。
【0023】
Moは、金属結合相を形成するCoとCrと結合して、該金属結合相の耐食性と強度とを一層高めるとともに、さらにはMo CoB で表される複硼化物を形成するために必要な元素である。Moの含有量が3.0質量%未満では、上記した効果は得られず、また6.0質量%を超えると金属結合相の強度がかえって低下してしまう。従って、溶射用粉末中のW含有量は、3.0〜6.0質量%の範囲が適当である。
【0024】
そして、本発明の溶射用粉末組成物においては、さらにWとBとの合計量を52.5〜70.0質量%に、また、CoとCrとMoの合計量を25.0〜45.0質量%に規制することにより、得られた溶射被覆層の脆化や剥離現象を抑制することができる。また、上記した本発明の溶射用粉末を製造する場合にはCo、CrおよびMoをそれぞれ単体金属粉末として用いることが肝要である。これは、これらの元素を合金粉末の形態、たとえばステライト合金粉末等の形態で用いた場合には、合金粉末中のCoはWB等の硼化物と結合し難く、W CoB 複硼化物が形成されにくいからである。
【0025】
また、一次粒子用原料粉末として使用されるWB粉末は、溶射被膜の硬度および耐摩耗性に寄与するものであり、本発明のサーメット粒子では、WB粉末がこれらのバインダー的役割を担うCo、Cr、Mo粉末と共に整粒され、焼結されることにより、複硼化物としてのW CoB 粒子と、これらの金属結合層であるCo−Cr−Mo系合金層を晶出させたものであり、このW CoB 粒子の粒径はWB粉末の粒径に比例して大きくなる。
【0026】
そして、その溶射被膜は、W CoB 粒子の一つ一つの表面に、均一にCo−Cr−Mo系合金層が被覆されたものとなるのが理想である。しかし、WB粒子の平均粒径が1.5μmより大きいと、W CoB 粒子間の空孔部が大きくなり、部分的にCo−Cr−Mo系合金層が過多となってしまい、耐熱性、耐摩耗性、耐食性の低下を生じてしまう。一方、1.0μm未満では、W CoB 粒子の比表面積が大きく、Co、Cr、Moの必要添加量を増加する必要が生じ、Co−Cr−Mo系合金層の増加による耐摩耗性、耐食性等の低下するか、Co−Cr−Mo系合金層が不足する場合には、耐熱衝撃性と靭性の低下が生じる。このため、本発明では、一次粒子用原料として使用されるWB粒子の粒径を1.0〜1.5μmの範囲に限定する。
【0027】
なお、かかるWB粒子の粒径は、空気分級により、粒度範囲を2.0μm以下とすることにより規制することができる。
【0028】
さらに、サーメット粉末の見かけ密度は、W CoB 粒子間の結合力と、サーメット粒子内部の空孔率に影響するものであり、その値が3.0g/cm 未満であると、W CoB 粒子間の結合力が低く、内部の空孔率も大きいため、母材との衝突時に扁平状にはならずに砕けて周囲に飛散しやすく、形成された被膜もサーメット粒子内部の空孔が残存したものとなるため、耐熱衝撃性の低下を生ずる。一方、4.0g/cm より高い値であると、その緻密化には2000℃以上の焼結温度が必要となり、WO 等の脆弱な酸化物が晶出し、さらにはW CoB が晶出せずにWBがそのまま残存してしまい、耐熱衝撃性と靭性を低下させてしまう。このため、本発明では、サーメット粒子としての見かけ密度を3.0〜4.0g/cm の範囲に限定する。
【0029】
なお、かかる見かけ密度は、焼結温度の上昇に伴い高くなり、1350〜1400℃の間で焼結することにより規制できる。
【0030】
本発明の溶射用粉末を用いて基板上にサーメット溶射被覆する方法としては、常法である、溶射ガンを使用した大気または減圧プラズマ溶射法もしくは高速ガス炎溶射法が適用される。通常、プラズマ溶射法には15〜53μm、15〜45μmの粒径の溶射用粉末が、また、高速ガス炎溶射法には5〜30μm、5〜38μm、5〜45μmもしくは15〜45μm、15〜53μmの粒径の溶射粉末が使用される。これらの粉末が、上記した粒度範囲よりも粗い場合には、緻密な溶射被覆層を形成させることが困難であり、かつ、加熱不足による溶射粉末の付着歩留りが低下する。したがって、低硬度および低付着歩留りの溶射被覆層しか得られず、品質低下やコスト高を招く。また、上記範囲よりも粒度が微細である場合には、粉末の流動性が低下するとともに、受熱効率の高い微細粉末が溶融して、溶射ガンのノズル内面に堆積するために溶射作業性が著しく損なわれる。なお、溶射用粉末の粒度は造粒により調整される。
【0031】
【実施例】
[実施例1]
Bを5.6質量%含有するWB粉末、Co粉末、Cr粉末およびMo粉末をそれぞれ70質量%、18質量%、8質量%および4質量%採取し、ステンレス鋼製容器に入れて振動ボールミル内で24時間湿式で粉砕混合した。該容器から取り出したスラリーを非酸化性雰囲気中において噴霧乾燥して造粒した後、真空中で焼結した。得られた粉末を回収し、これを空気分級機によって5〜45μmの粉末に整粒して、溶射用粉末を調製した。
【0032】
なお、見かけ密度は、焼結温度を1360℃にすることにより調整し、JISZ2504に記載の金属粉末の見かけ密度測定方法により測定した結果、3.6g/cm であった。また、WB粒子の平均粒径は、粉砕粉を空気分級により2.0μm以下とすることにより調整し、レーザー回折式粒度分布測定法により測定した結果、1.2μmであった。
【0033】
得られた溶射用粉末の化学組成、WB粉末の平均粒径、サーメット粒子としての見かけ密度、分級粒度範囲を表1に示す。次に、この粉末を使用して高速ガス炎溶射法(燃料:水素−酸素)により、SS400製基板上に0.4mm厚さの溶射被覆層を形成した。その後、機械加工および表面研磨により、該被覆層表面の凹凸を取り除き、試験片を得た。
【0034】
前記の基板表面に形成された溶射被覆層をCu−καX線回折法により同定した結果、主としてW CoB の三元系複硼化物相が認められた。また、EPMA定量分析による被覆層の組成分析を行った結果を表2に示す。試験片表面のビッカース硬度(荷重:0.3kgf)は1595であった。往復運動摩耗試験機を用い、JIS H 8503 第9項に規定された試験方法に従って、相手材にSiC研磨紙320番を使用し、試験荷重を3.0kgf、往復荷重回数を1600回として試験片の耐摩耗性試験を行った結果、摩耗減量は、0.51m であった。
【0035】
一方、試験片を600℃の電気炉中に30分間保持した後、水中で急冷する熱サイクルを繰り返し30回行い、1回毎に被覆層に生ずる亀裂や剥離の有無を目視およびカラーチェックにより観察して、耐熱衝撃性の評価を行った結果、該熱サイクル中には異常は認められず、高い耐熱衝撃性を有することが分かった。
【0036】
次に、試験片を900℃の電気炉中に2時間保持して被覆層の酸化増量の測定を行ったところ、その値は3.5mg/cm であり、高い耐酸化性を有することが確認された。900℃の高温下で測定した試験片表面のビッカース硬度(荷重:0.3kgf)は805であった。以上の諸特性試験結果を総括して表3に示す。
【0037】
これらの結果から、本発明によるサーメット溶射被膜は、硬度、耐摩耗性、耐高温酸化性、耐熱衝撃性および高温硬度(耐熱性)の諸特性に優れていることが理解される。
【0038】
[実施例2〜4および従来例1〜5]
混合する粉末の添加量、WB粉末の平均粒径、および分級粒度範囲を変えた以外は、実施例1と同様の原料粉末を用い、その所定量を粉砕混合し、造粒後焼結して見かけ密度を調整し、実施例2〜4、および従来例1〜2の溶射用粉末を得た。また、W粉末、Co粉末およびC粉末ならびにCr粉末、Ni粉末およびC粉末の所定量を用いて、それぞれ従来法によるWC−Co系サーメット溶射被膜形成用粉末(従来例3〜4)およびCr −NiCr系サーメット溶射被膜形成用粉末(従来例5)を作成した。これらの粉末組成物の化学組成を表1に示す。
【0039】
次に、これらの溶射用粉末を用いて、実施例1と同様に、SS基板上に高速ガス炎溶射法による溶射被覆層を形成した試験片を得、各試験片について実施例1と同様に、溶射被覆層の組成分析および特性試験を行った。それぞれの結果を表2および表3に示した。
【0040】
【表1】

Figure 2004353046
【0041】
【表2】
Figure 2004353046
【0042】
【表3】
Figure 2004353046
【0043】
以上の結果によれば、本発明による溶射用粉末を使用して得られた硼化物系サーメット溶射被膜は、従来使用されてきたWC−Co系サーメット溶射被膜に匹敵する硬度と耐摩耗性を有し、またCr −NiCr系サーメット溶射被膜を凌駕する耐酸化性と耐熱性を備えると共に、これら従来のサーメット溶射被膜に比べて著しく高い耐熱衝撃性を有しており、さらに同様の組成範囲に於いても、WB粉末の平均粒径と、サーメット粉末の見かけ密度を調整することにより、より高い特性が得られることが明らかになった。
【0044】
また、470℃で溶融しているZn−0.15%Al中へ120時間(5日間)の浸漬試験をしたところ、実施例1の腐食減量は92.2mg/cm 、被膜残存率は87.2%であった。一方、従来例1の腐食減量は97mg/cm 、被膜残存率は85.1%であり、また、従来例3の腐食減量は282mg/cm 、被膜残存率は33.9%であった。この溶融亜鉛および溶融アルミニウムへの浸漬試験結果によれば、本発明のサーメット溶射被膜のこれら溶融金属に対する耐腐食性は従来のサーメット溶射被膜に比べて一段と優れており、さらには同様の組成範囲においてもWB粉末の平均粒径を微細とし、サーメット粉末の見かけ密度を向上させることにより、より優れた特性が得られることが確認された。
【0045】
【発明の効果】
このように、本発明に係る硼化物系サーメット溶射用粉末による溶射被膜は、従来公知の硼化物系サーメット溶射用粉末による溶射被膜と比べて、その特性を維持しつつ、耐熱衝撃性、および靭性にさらに優れている。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes a typical a spray cermet tungsten carbide-cobalt (WC-Co) based hardness and abrasion resistance comparable to spray coating layer, a chromium carbide-nickel chromium (Cr 3 C 2 -NiCr) heat resistance superior to the system thermal spray coating layer and having and oxidation resistance, and has the above-mentioned WC-Co system and the Cr 3 C 2 -NiCr system spraying high not seen in the coating layer thermal shock resistance and toughness The present invention relates to a thermal spray powder for producing a cermet thermal spray coating.
[0002]
[Prior art]
In recent years, with the development of high performance, high precision, diversification, and low energy cost of industrial machines, etc. with the development of industry, cermet coating has been developed using metal and ceramic components as thermal spraying materials. The performance requirements for the cermet spray coating to be formed are becoming more and more stringent and require even better performance than ever before.
[0003]
Conventionally, a typical cermet spray coating layer (hereinafter simply referred to as a “coating layer” or “spray coating”) varies depending on the use temperature, and in a temperature range from room temperature to about 500 ° C., WC In the high-temperature range up to 900 ° C., there are Cr 3 C 2 —NiCr and Cr 3 C 2 —Ni-based and Co-based and WC-Ni-based ones. And heat resistance, abrasion resistance, oxidation resistance, and the like.
[0004]
However, as described above, with the recent development of industry, the use environment of cermets has been diversified, and it has been desired to further improve these characteristics. It is desired to develop a coating material having both of the above. For example, it is immersed in a high-temperature hot-dip galvanizing bath (450 to 500 ° C.) or molten aluminum (700 to 800 ° C.) for producing a surface-treated steel sheet for an automobile or the like, and continuously passed. The coating layer for coating sink rolls, support rolls, etc. used to support and guide the steel sheet and apply uniform galvanization to the surface of the steel sheet simply has high hardness, heat resistance, and wear resistance. In addition to having high heat resistance, corrosion resistance to molten metal, thermal shock resistance, and excellent toughness are required.
[0005]
Among the above-mentioned conventional cermet sprayed coatings, WC-Co-based coatings have excellent hardness and abrasion resistance in a dry atmosphere up to 500 ° C., but have low corrosion resistance and heat resistance, particularly 500 ° C. or higher. Have a problem in heat resistance and corrosion resistance in an oxidizing atmosphere. Further, Cr 3 C 2 —NiCr-based alloys have poor hardness and abrasion resistance up to a high temperature range of 900 ° C., although corrosion resistance, heat resistance, and oxidation resistance are maintained. Further, these coatings generally have low thermal shock resistance and poor toughness, so that the coating layer is easily peeled off, and the range of application is limited.
[0006]
As described above, the coating layer conventionally used has a high hardness and is excellent in abrasion resistance, but is inferior in corrosion resistance and heat resistance, or is insufficient in abrasion resistance and hardness even though it is excellent in heat resistance and corrosion resistance. In addition, all had low thermal shock resistance and were inferior in toughness. As a thermal spraying powder for forming a cermet spray coating capable of simultaneously satisfying all of these required characteristics, Japanese Patent No. 3134768 discloses a powder having a mass ratio of B: 2.5 to 4.0%, Co: 15.0-30.0%, Cr: 5.0-10.0%, Mo: 3.0-6.0%, composed of a composite powder composition composed of the balance W and unavoidable impurities. A boride-based cermet spray powder is disclosed.
[0007]
The boride-based cermet spraying powder described in Japanese Patent No. 3134768 is based on cermet particles formed by granulating and sintering the powder with WB and simple metals Co, Cr and Mo as basic constituent elements. Each one is composed of fine particles mainly composed of fine W 2 CoB 2 (hereinafter, referred to as “W 2 CoB 2 particles”) and a Co—Cr—Mo alloy phase that connects them as a metal bonding layer. When the powder is coarser than the particle size range of 5 to 45 μm or 15 to 53 μm, it is said that it is difficult to form a dense thermal spray coating layer. However, there is no mention of the particle size of the raw material powder. The thermal spray coating is heated and accelerated to a temperature at which the metal bonding layer of cermet particles is melted or close to that in the thermal spray gun.The thermal spray coating adheres flat to the surface of the base material and is deposited sequentially. In addition, it is formed as having a higher density and higher adhesion.
[0008]
However, if the apparent density of the cermet particles is low and the inside is not dense (porous shape), the cermet particles will be easily crushed at the time of collision with the base material during thermal spraying, and the powder particles will not be deposited in a flat shape, resulting in many pores. In addition, a thermal spray coating having a reduced bonding force between the primary particles and the secondary particles is formed. As a result, a thermal sprayed coating having low strength (toughness), hardness, abrasion resistance, and corrosion resistance is obtained, and sufficient performance is not exhibited.
[0009]
Since Co, Cr, and Mo decrease the wear resistance and corrosion resistance of the thermal sprayed coating with an increase in the added amount, usually, the minimum amount required for bonding the primary particles (Co ≧ 15 mass%, Cr ≧ 5% by mass, Mo ≧ 3% by mass). Therefore, if the particle size of the WB particles used as the raw material powder for the primary particles is not a size suitable for being uniformly coated with the Co—Cr—Mo-based alloy phase as the metal bonding layer, the metal particles are partially removed. There has also been a problem that an excessive amount or shortage of the bonding layer occurs, and sufficient characteristics cannot be obtained.
[0010]
[Patent Document 1]
Patent No. 3134768
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems in the conventional cermet spray coating, and has excellent hardness, wear resistance, corrosion resistance, and heat resistance, and also has a high thermal shock resistance and toughness. A thermal spray powder for forming an improved cermet thermal spray coating is provided.
[0012]
[Means for Solving the Problems]
The boride-based cermet thermal spray powder of the present invention has a mass ratio of B: 2.5 to 4.0%, Co: 15.0 to 30.0%, Cr: 5.0 to 10.0%, Mo: a boride-based composition containing 3.0 to 6.0% and comprising a composite powder composition composed of WB particles and simple metal Co, Cr, and Mo particles so that the balance is made of W and unavoidable impurities. The powder for cermet spraying is characterized in that the apparent density is in the range of 3.0 to 4.0 g / cm 3 .
[0013]
In another embodiment, B: 2.5 to 4.0%, Co: 15.0 to 30.0%, Cr: 5.0 to 10.0%, Mo: 3.0 by mass ratio. Boride-based cermet spraying powder comprising a composite powder composition comprising WB particles and simple metal Co, Cr and Mo particles so as to contain the balance W and unavoidable impurities. The average particle diameter of WB particles as a raw material powder for primary particles is in the range of 1.0 to 1.5 μm.
[0014]
It is preferable that both the apparent density and the average particle size of the WB particles are in the above ranges.
[0015]
The total amount of W and B is preferably 52.5 to 70.0% by mass ratio, and the total amount of Co, Cr and Mo is preferably 25.0 to 45.0% by mass ratio. .
[0016]
The preferred particle size of the powder constituting the thermal spraying powder varies depending on the thermal spraying method. However, when air or reduced pressure plasma thermal spraying is employed, the range of 15 to 53 μm and 15 to 45 μm is appropriate. When the thermal spraying method is used, the thickness is preferably in the range of 5 to 45 μm, 5 to 30 μm, 5 to 38 μm, 15 to 45 μm, and 15 to 53 μm.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
As a result of intensive studies to solve the above-mentioned problems, the present invention has revealed that the W—Co-based double boride represented by W 2 CoB 2 exhibits not only high hardness and wear resistance but also excellent heat resistance. Having high impact resistance and toughness, a high hardness and abrasion resistance can be obtained by combining the double boride with a Co-Cr-Mo-based alloy phase having excellent heat resistance as a metal bonding phase and forming a cermet thereof. It has been found that a cermet spray coating having both heat resistance, oxidation resistance and thermal shock resistance can be obtained. Further, in order to form an appropriate amount of the double boride phase in the cermet film in a dense and uniform dispersion, there is an optimum addition range for B to be contained, and Co and Cr, which are metal bonding phases, Mo has been found not to be in the state of an alloy, but to be appropriately added as a single metal. In addition to these, it has been found that there is an optimum range in the apparent density of the cermet powder, and that the WB particles as the primary particles have an optimum particle size range.
[0018]
The constituent components of the cermet spray powder for obtaining the boride-based cermet spray coating layer according to the present invention are as described above, and the reasons for limiting the respective components will be described below.
[0019]
B is an element necessary for forming a double boride phase by combining with W and Co. When the content of B in the cermet spraying powder is less than 2.5% by mass, the heat during the thermal spray coating is low. Since the amount of B in the thermal spray coating layer is reduced to less than 1.5% by mass due to the influence and oxidation, the obtained thermal spray coating layer cannot have sufficient hardness and wear resistance. On the other hand, when the content exceeds 4.0% by mass, the hardness is increased, but the strength (toughness and thermal shock resistance) of the sprayed coating layer is significantly reduced. Therefore, the B content in the thermal spraying powder is suitably in the range of 2.5 to 4.0%.
[0020]
W is an element necessary for forming a double boride phase similarly to B. The double boride phase is represented by W 2 CoB 2 , and the content of W in the cermet sprayed powder is 50%. If it is less than 0.0% by mass, the formation of the double boride phase becomes insufficient, and the sprayed coating layer cannot obtain desired hardness and wear resistance. On the other hand, if it exceeds 70.0% by mass, hardness, wear resistance and corrosion resistance to molten zinc and molten aluminum are improved, but toughness and thermal shock resistance, as well as powder thermal spray adhesion efficiency (yield during thermal spraying) are significantly reduced. I do. Therefore, the content of W in the thermal spraying powder is appropriately in the range of 50.0 to 70.0%. Note that W and B are introduced in the form of WB particles as raw material powder for primary particles.
[0021]
Co is an element that is a main component of the formation of a metal bonding phase, but is also an element that is indispensable for the formation of a double boride phase, and has an effect of imparting high-temperature strength and oxidation resistance to the obtained thermal spray coating layer. Having. If the Co content is less than 15.0% by mass, the amount of mutual solid solution between the formed metal bonding phase and the double boride phase is reduced, so that the bonding strength is reduced and defects such as pores are generated. Easier to do. On the other hand, if it exceeds 30.0% by mass, the corrosion resistance in the metal bonding phase is reduced, and a large amount of fragile borides such as CoB is formed in the double borides, so that the toughness of the thermal spray coating layer is reduced. Resulting in. Therefore, the Co content in the thermal spraying powder is appropriately in the range of 15.0 to 30.0% by mass.
[0022]
Cr is an element that contributes to corrosion resistance, heat resistance, and oxidation resistance, and has an effect of forming a metal bonding phase by combining with Co to improve toughness. If the content of Cr is less than 5.0% by mass, the above-mentioned effects cannot be sufficiently obtained. If the content exceeds 10.0% by mass, the corrosion resistance, heat resistance and oxidation resistance of the obtained thermal spray coating layer are reduced. Although it further improves, it is not preferable because it reduces toughness. Therefore, the Cr content in the thermal spraying powder is suitably in the range of 5.0 to 10.0% by mass.
[0023]
Mo combines with Co and Cr forming a metal bonding phase to further enhance the corrosion resistance and strength of the metal bonding phase, and furthermore, is necessary for forming a double boride represented by Mo 2 CoB 2. Element. If the Mo content is less than 3.0% by mass, the above-mentioned effects cannot be obtained. If the Mo content exceeds 6.0% by mass, the strength of the metal binding phase is rather reduced. Therefore, the W content in the thermal spraying powder is suitably in the range of 3.0 to 6.0% by mass.
[0024]
In the thermal spraying powder composition of the present invention, the total amount of W and B is set to 52.5 to 70.0% by mass, and the total amount of Co, Cr and Mo is set to 25.0 to 45. By regulating the content to 0% by mass, embrittlement and peeling of the obtained thermal spray coating layer can be suppressed. When producing the thermal spraying powder of the present invention, it is important to use Co, Cr and Mo as simple metal powders, respectively. This is because when these elements are used in the form of an alloy powder, for example, in the form of a stellite alloy powder or the like, Co in the alloy powder hardly binds to a boride such as WB and W 2 CoB 2 double boride is formed. This is because it is difficult to form.
[0025]
The WB powder used as the raw material powder for the primary particles contributes to the hardness and abrasion resistance of the thermal spray coating, and in the cermet particles of the present invention, the WB powder plays a role of a binder such as Co, Cr And W 2 CoB 2 particles as a double boride and a Co—Cr—Mo alloy layer as a metal bonding layer thereof are crystallized by sizing and sintering together with Mo powder. The particle size of the W 2 CoB 2 particles increases in proportion to the particle size of the WB powder.
[0026]
Ideally, the thermal spray coating is one in which the surface of each W 2 CoB 2 particle is uniformly coated with a Co—Cr—Mo-based alloy layer. However, if the average particle size of the WB particles is larger than 1.5 μm, the pores between the W 2 CoB 2 particles become large, and the Co—Cr—Mo-based alloy layer partially becomes excessive, resulting in heat resistance. , Abrasion resistance and corrosion resistance are reduced. On the other hand, if it is less than 1.0 μm, the specific surface area of the W 2 CoB 2 particles is large, and it is necessary to increase the required addition amount of Co, Cr, and Mo. When the corrosion resistance or the like is reduced or the Co—Cr—Mo alloy layer is insufficient, the thermal shock resistance and the toughness are reduced. For this reason, in the present invention, the particle size of the WB particles used as a raw material for primary particles is limited to the range of 1.0 to 1.5 μm.
[0027]
The particle size of such WB particles can be regulated by air classification by setting the particle size range to 2.0 μm or less.
[0028]
Further, the apparent density of the cermet powder affects the bonding force between the W 2 CoB 2 particles and the porosity inside the cermet particles, and if the value is less than 3.0 g / cm 3 , the apparent density of the W 2 CoB 2 binding force between particles is low, since the porosity of the interior is also large, easily scattered around crumble to not become flat at the time of collision with the base material, formed film also internal cermet particles sky Since the holes remain, the thermal shock resistance is reduced. On the other hand, if the value is higher than 4.0 g / cm 3 , the densification requires a sintering temperature of 2000 ° C. or more, a fragile oxide such as WO 3 is crystallized, and W 2 CoB 2 is further reduced. The WB remains without being crystallized, and the thermal shock resistance and toughness are reduced. For this reason, in the present invention, the apparent density as cermet particles is limited to the range of 3.0 to 4.0 g / cm 3 .
[0029]
The apparent density increases as the sintering temperature increases, and can be regulated by sintering at 1350 to 1400 ° C.
[0030]
As a method for applying cermet spray coating on a substrate using the thermal spray powder of the present invention, a conventional method, air or reduced pressure plasma spraying using a spray gun or high-speed gas flame spraying is applied. Usually, a spraying powder having a particle size of 15 to 53 μm and 15 to 45 μm is used for the plasma spraying method, and 5 to 30 μm, 5 to 38 μm, 5 to 45 μm or 15 to 45 μm and 15 to 45 μm for the high-speed gas flame spraying method. Thermal spray powder with a particle size of 53 μm is used. When these powders are coarser than the above-mentioned particle size range, it is difficult to form a dense thermal spray coating layer, and the adhesion yield of the thermal spray powder due to insufficient heating is reduced. Therefore, only a thermal sprayed coating layer having low hardness and low adhesion yield can be obtained, resulting in quality deterioration and cost increase. In addition, when the particle size is finer than the above range, the fluidity of the powder decreases, and the fine powder having high heat receiving efficiency is melted and deposited on the inner surface of the nozzle of the spray gun, so that the spraying workability is remarkable. Be impaired. The particle size of the thermal spray powder is adjusted by granulation.
[0031]
【Example】
[Example 1]
70 wt%, 18 wt%, 8 wt% and 4 wt% of WB powder, Co powder, Cr powder and Mo powder containing 5.6 wt% of B were collected, placed in a stainless steel container, and placed in a vibrating ball mill. For 24 hours by wet grinding. The slurry taken out of the container was spray-dried in a non-oxidizing atmosphere, granulated, and then sintered in vacuum. The obtained powder was collected and sized with an air classifier into powder having a size of 5 to 45 μm to prepare a powder for thermal spraying.
[0032]
The apparent density was adjusted by setting the sintering temperature to 1360 ° C., and as a result of being measured by the apparent density measuring method of metal powder described in JISZ2504, was 3.6 g / cm 3 . The average particle size of the WB particles was adjusted to 2.0 μm or less by pulverized powder by air classification, and as a result of measurement by a laser diffraction particle size distribution measurement method, it was 1.2 μm.
[0033]
Table 1 shows the chemical composition of the obtained thermal spraying powder, the average particle size of the WB powder, the apparent density as cermet particles, and the classified particle size range. Next, a spray coating layer having a thickness of 0.4 mm was formed on the SS400 substrate by high-speed gas flame spraying (fuel: hydrogen-oxygen) using this powder. Then, the irregularities on the surface of the coating layer were removed by machining and surface polishing to obtain a test piece.
[0034]
As a result of identifying the thermal spray coating layer formed on the substrate surface by Cu-κα X-ray diffraction, a ternary double boride phase of W 2 CoB 2 was mainly observed. Table 2 shows the results of composition analysis of the coating layer by EPMA quantitative analysis. The Vickers hardness (load: 0.3 kgf) of the test piece surface was 1,595. Using a reciprocating abrasion tester, in accordance with the test method specified in JIS H 8503, paragraph 9, using SiC polished paper No. 320 as the mating material, setting the test load to 3.0 kgf and the number of reciprocating loads to 1,600 times As a result of the abrasion resistance test, the loss on abrasion was 0.51 m 2 .
[0035]
On the other hand, after holding the test piece in an electric furnace at 600 ° C. for 30 minutes, a heat cycle of quenching in water was repeated 30 times, and each time, the presence or absence of cracks and peeling generated in the coating layer was visually observed and color checked. As a result of the evaluation of the thermal shock resistance, no abnormality was recognized during the thermal cycle, and it was found to have high thermal shock resistance.
[0036]
Next, when the test piece was held in an electric furnace at 900 ° C. for 2 hours and the oxidation weight increase of the coating layer was measured, the value was 3.5 mg / cm 2 , indicating that the sample had high oxidation resistance. confirmed. The Vickers hardness (load: 0.3 kgf) of the test piece surface measured at a high temperature of 900 ° C. was 805. Table 3 summarizes the results of the various characteristic tests described above.
[0037]
From these results, it is understood that the cermet sprayed coating according to the present invention is excellent in various properties such as hardness, abrasion resistance, high-temperature oxidation resistance, thermal shock resistance and high-temperature hardness (heat resistance).
[0038]
[Examples 2 to 4 and Conventional Examples 1 to 5]
Except that the addition amount of the powder to be mixed, the average particle size of the WB powder, and the classified particle size range were changed, the same amount of the raw material powder as in Example 1 was used. The apparent density was adjusted to obtain thermal spraying powders of Examples 2 to 4 and Conventional Examples 1 and 2. Further, using predetermined amounts of W powder, Co powder and C powder, and Cr powder, Ni powder and C powder, WC-Co-based cermet thermal spray coating forming powders (conventional examples 3 to 4) and Cr 3 by conventional methods, respectively. C 2 -NiCr cermet sprayed coating forming powder (conventional example 5) was created. Table 1 shows the chemical compositions of these powder compositions.
[0039]
Next, using these thermal spray powders, test pieces having a thermal spray coating layer formed by a high-speed gas flame spraying method on an SS substrate were obtained in the same manner as in Example 1, and each test piece was obtained in the same manner as in Example 1. The composition analysis and the property test of the thermal spray coating layer were performed. The results are shown in Tables 2 and 3.
[0040]
[Table 1]
Figure 2004353046
[0041]
[Table 2]
Figure 2004353046
[0042]
[Table 3]
Figure 2004353046
[0043]
According to the above results, the boride-based cermet sprayed coating obtained by using the thermal spraying powder according to the present invention has hardness and abrasion resistance comparable to those of the conventionally used WC-Co cermet sprayed coating. and also provided with a oxidation resistance and heat resistance superior to Cr 3 C 2 -NiCr cermet sprayed coating, as compared to these conventional cermet sprayed coating has a significantly higher heat shock resistance, further the same composition Even in the range, it became clear that higher characteristics could be obtained by adjusting the average particle size of the WB powder and the apparent density of the cermet powder.
[0044]
In addition, when an immersion test was performed for 120 hours (5 days) in Zn-0.15% Al molten at 470 ° C., the corrosion weight loss of Example 1 was 92.2 mg / cm 2 , and the residual film ratio was 87. 0.2%. On the other hand, the weight loss of corrosion of Conventional Example 1 was 97 mg / cm 2 , and the film residual ratio was 85.1%. The weight loss of Corrosion of Conventional Example 3 was 282 mg / cm 2 , and the residual film ratio was 33.9%. . According to the results of the immersion test in molten zinc and molten aluminum, the corrosion resistance of the cermet sprayed coating of the present invention to these molten metals is much better than that of the conventional cermet sprayed coating, and even in the same composition range. It was also confirmed that more excellent characteristics could be obtained by reducing the average particle size of the WB powder and improving the apparent density of the cermet powder.
[0045]
【The invention's effect】
As described above, the thermal sprayed coating using the boride-based cermet thermal spraying powder according to the present invention has higher thermal shock resistance, and toughness while maintaining its properties as compared with the conventionally known thermal sprayed coating using the boride-based cermet thermal spraying powder. Is even better.

Claims (5)

質量比にて、B:2.5〜4.0%、Co:15.0〜30.0%、Cr:5.0〜10.0%、Mo:3.0〜6.0%を含み、残部Wと不可回避的不純物からなるようにWB粒子と単体金属のCo、Cr、Mo粒子とで構成された複合粉末組成物からなる硼化物系サーメット溶射用粉末において、見かけ密度が3.0〜4.0g/cm の範囲にあることを特徴とする硼化物系サーメット溶射用粉末。By mass ratio, B: 2.5 to 4.0%, Co: 15.0 to 30.0%, Cr: 5.0 to 10.0%, Mo: 3.0 to 6.0%. In a boride-based cermet thermal spray powder composed of a composite powder composition composed of WB particles and simple metal Co, Cr and Mo particles so that the balance W and unavoidable impurities are contained, the apparent density is 3.0. A boride-based cermet thermal spray powder, which is in a range of from about 4.0 g / cm 3 to about 4.0 g / cm 3 . 質量比にて、B:2.5〜4.0%、Co:15.0〜30.0%、Cr:5.0〜10.0%、Mo:3.0〜6.0%を含み、残部Wと不可回避的不純物からなるようにWB粒子と単体金属のCo、Cr、Mo粒子とで構成された複合粉末組成物からなる硼化物系サーメット溶射用粉末において、一次粒子用原料粉末としてのWB粒子の平均粒径が1.0〜1.5μmの範囲にあることを特徴とする硼化物系サーメット溶射用粉末。B: 2.5 to 4.0%, Co: 15.0 to 30.0%, Cr: 5.0 to 10.0%, Mo: 3.0 to 6.0% by mass ratio. In a boride-based cermet thermal spray powder composed of a composite powder composition composed of WB particles and Co, Cr, and Mo particles of a simple metal so that the balance is composed of W and unavoidable impurities, as a raw material powder for primary particles The average particle diameter of the WB particles is in the range of 1.0 to 1.5 μm. 質量比にて、B:2.5〜4.0%、Co:15.0〜30.0%、Cr:5.0〜10.0%、Mo:3.0〜6.0%を含み、残部Wと不可回避的不純物からなるようにWB粒子と単体金属のCo、Cr、Mo粒子とで構成された複合粉末組成物からなる硼化物系サーメット溶射用粉末において、見かけ密度が3.0〜4.0g/cm の範囲にあり、かつ、一次粒子用原料粉末としてのWB粒子の平均粒径が1.0〜1.5μmの範囲にあることを特徴とする硼化物系サーメット溶射用粉末。By mass ratio, B: 2.5 to 4.0%, Co: 15.0 to 30.0%, Cr: 5.0 to 10.0%, Mo: 3.0 to 6.0%. In a boride-based cermet thermal spray powder composed of a composite powder composition composed of WB particles and simple metal Co, Cr and Mo particles so that the balance W and unavoidable impurities are contained, the apparent density is 3.0. in the range of to 4.0 g / cm 3, and, for boride cermet spraying, characterized in that the average particle size of the WB particles as a raw material powder for the primary particles is in the range of 1.0~1.5μm Powder. WとBとの合計量が質量比にて52.5〜70.0%、CoとCrとMoとの合計量が質量比にて25.0〜45.0%である請求項1〜3のいずれかに記載の硼化物系サーメット溶射用粉末。The total amount of W and B is 52.5 to 70.0% by mass ratio, and the total amount of Co, Cr and Mo is 25.0 to 45.0% by mass ratio. A boride-based cermet thermal spraying powder according to any one of the above. 粒度を5〜30μm、5〜38μm、5〜45μm、15〜45μmまたは15〜53μmのいずれかから選択される範囲に整粒した請求項1〜4のいずれかに記載の硼化物系サーメット溶射用粉末。The boride-based cermet thermal spraying according to any one of claims 1 to 4, wherein the particle size is adjusted to a range selected from any of 5 to 30 µm, 5 to 38 µm, 5 to 45 µm, 15 to 45 µm or 15 to 53 µm. Powder.
JP2003153243A 2003-05-29 2003-05-29 Boride cermet powder for thermal spraying Pending JP2004353046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153243A JP2004353046A (en) 2003-05-29 2003-05-29 Boride cermet powder for thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153243A JP2004353046A (en) 2003-05-29 2003-05-29 Boride cermet powder for thermal spraying

Publications (1)

Publication Number Publication Date
JP2004353046A true JP2004353046A (en) 2004-12-16

Family

ID=34048249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153243A Pending JP2004353046A (en) 2003-05-29 2003-05-29 Boride cermet powder for thermal spraying

Country Status (1)

Country Link
JP (1) JP2004353046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211293A (en) * 2006-02-09 2007-08-23 Fujimi Inc Spray deposit film, and powder for thermal spraying
WO2010143594A1 (en) * 2009-06-10 2010-12-16 株式会社 フジミインコーポレーテッド Powder for thermal spraying and method for forming thermal-spray deposit
WO2014155931A1 (en) * 2013-03-29 2014-10-02 日鉄住金ハード株式会社 Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211293A (en) * 2006-02-09 2007-08-23 Fujimi Inc Spray deposit film, and powder for thermal spraying
WO2010143594A1 (en) * 2009-06-10 2010-12-16 株式会社 フジミインコーポレーテッド Powder for thermal spraying and method for forming thermal-spray deposit
WO2014155931A1 (en) * 2013-03-29 2014-10-02 日鉄住金ハード株式会社 Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath
CN104854253A (en) * 2013-03-29 2015-08-19 日铁住金表面硬化株式会社 Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath
KR101615613B1 (en) * 2013-03-29 2016-04-26 닛테츠스미킨하드 가부시키가이샤 Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath
US9422617B2 (en) 2013-03-29 2016-08-23 Nippon Steel & Sumikin Hardfacing Co., Ltd. Cermet thermal spray powder, roller for molten metal plating bath, article in molten metal plating bath
JP2018003163A (en) * 2013-03-29 2018-01-11 日鉄住金ハード株式会社 Roll for molten-metal plating bath, and production method of roll for molten-metal plating bath

Similar Documents

Publication Publication Date Title
US6641917B2 (en) Spray powder and method for its production
KR100751742B1 (en) Spray powder, thermal spraying process using it, and sprayed coating
JP5058645B2 (en) Thermal spray powder, thermal spray coating and hearth roll
CN108677129A (en) A kind of FeCoNiCrSiAl high-entropy alloys coating and preparation method thereof
US8795448B2 (en) Wear resistant materials
Satapathy et al. Characterization of plasma sprayed pure red mud coatings: an analysis
WO2008014801A1 (en) A method for deposition of dispersion-strengthened coatings and composite electrode material for deposition of such coatings
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP2018178187A (en) Powder for spray coating, and film deposition method of sprayed coating using the same
CN115491629A (en) Method for preparing Ti-Al-C-based composite coating by using plasma spraying
JP2011026666A (en) Powder of boride-based cermet for thermal spraying
Fadavi et al. Study on high-temperature oxidation behaviors of plasma-sprayed TiB 2-Co composite coatings
JP2012102362A (en) Boride cermet-based powder for thermal spraying
JP3134767B2 (en) Boride cermet spraying powder
JP2004353046A (en) Boride cermet powder for thermal spraying
JPH0128828B2 (en)
JPH093618A (en) Production of titanium boride coated article thus produced
JP2011017049A (en) Boride-based cermet powder for thermal spraying
JPH0645863B2 (en) Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
JP2004353045A (en) Boride-based cermet powder for thermal spraying
JP3134768B2 (en) Boride cermet spraying powder
JP2011017058A (en) Boride-based cermet powder for thermal spraying
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JPH0564706B2 (en)
Shukla et al. Microstructural characterization and cyclic oxidation behavior of HVOF-sprayed Cr3C2-NiCr coating on Boiler steel at elevated temperature