JP2004340669A - Rotary magnetometric sensor - Google Patents

Rotary magnetometric sensor Download PDF

Info

Publication number
JP2004340669A
JP2004340669A JP2003135726A JP2003135726A JP2004340669A JP 2004340669 A JP2004340669 A JP 2004340669A JP 2003135726 A JP2003135726 A JP 2003135726A JP 2003135726 A JP2003135726 A JP 2003135726A JP 2004340669 A JP2004340669 A JP 2004340669A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
gear
magneto
magnetoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003135726A
Other languages
Japanese (ja)
Other versions
JP4154524B2 (en
Inventor
Kenji Tomaki
健治 戸蒔
Koji Niimura
耕二 新村
Yorihisa Nakamura
順寿 中村
Masanaga Nishikawa
雅永 西川
Masaya Ueda
雅也 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003135726A priority Critical patent/JP4154524B2/en
Publication of JP2004340669A publication Critical patent/JP2004340669A/en
Application granted granted Critical
Publication of JP4154524B2 publication Critical patent/JP4154524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary magnetometric sensor wherein the magnetic field of a magnet is uniformly impressed on respective magnetoelectric conversion elements even if the plurality of conversion elements are formed on a plane. <P>SOLUTION: This two-phase rotary magnetometric sensor substantially comprises a sensor body and a gear which is an object under detection. The sensor body comprises a nonmagnetic substrate with magneto-resistive elements 2a to 3b formed on its front surface, a magnet 13 disposed on the rear surface of the nonmagnetic substrate, a nonmagnetic protective case, etc. The magnet 13 is magnetized so as to have a magnetic flux density distribution in which magnetic flux density is distributed on a surface of the magnet 13 proportional to the square of distance R to the gear taken along a vertical direction to the nonmagnetic substrate from each of the elements 2a to 3b relative to the gear disposed in a position most contiguous to the elements 2a to 3b as the reference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転磁気センサ、特に工作機械や自動車などの回転位置検出や速度検出に利用される回転磁気センサに関する。
【0002】
【従来の技術】
この種の磁気センサは、通常、二つの磁電変換素子をセットにして一つの磁気センサを構成している。そして、この磁気センサを複数個備え、それぞれの磁気センサから出力される位相が異なる回転検出信号を検出する多相センサが知られている。
【0003】
ところで、多相センサでは、複数個の磁電変換素子が歯車の回転方向に沿って並んでいる。例えば図6は、2相回転磁気センサの四つの磁電変換素子2a,2b,3a,3bと被検出物である歯車20の一部を示した拡大図である。図6において、符号10は磁電変換素子2a〜3bを表面に形成している基板、符号13は磁石、符号21は歯車20の凸部(歯)であり、符号22は歯車20の凹部である。磁電変換素子2aと2bで一つの磁気センサ2を構成し、磁電変換素子3aと3bで一つの磁気センサ3を構成している。歯車20は矢印Kの方向に回転する。そして、磁電変換素子2aが歯車20の歯21に対向しているとき、磁電変換素子2bは歯車20の凹部に対向するように設置されている。磁電変換素子3a,3bも同様に設置されている。
【0004】
このとき、一つの磁気センサ2を構成している二つの磁電変換素子2a,2bにそれぞれ印加される磁界の強度が等しければ、波形歪のない理想的な波形の回転検出信号が出力される。ところが、磁電変換素子2a〜3bが複数並んでいるため、例えば磁気センサ2を構成している一方の磁電変換素子2aと他方の磁電変換素子2bが離れて配置されることになる。従って、磁電変換素子の配設位置によって、歯車20から磁電変換素子2aまでの距離R1と、歯車20から磁電変換素子2bまでの距離R2とが異なる。これにより、磁電変換素子2aと2bのそれぞれに印加される磁界の強さが異なってしまい、回転検出信号の波形が理想的な正弦波からずれてしまう。
【0005】
なお、距離R1,R2は、実際の歯車20から磁電変換素子2a,2bまでの距離を意味するものではなく、歯車20の歯21が磁電変換素子2a,2bに最も近接する位置に配置されたときの距離(最短距離)を意味するものである。従って、より具体的には、距離R1,R2は歯車20の歯21の頂部を結ぶ仮想線Lと各磁電変換素子2a,2bまでの距離である。さらに、磁電変換素子2a,2bは、垂直に通過する磁束によって抵抗が変化するので、距離R1,R2は基板10に対して、垂直方向にとった距離でなければならない。
【0006】
歯車20に近い方の磁電変換素子2bをグランドに接続し、歯車20から遠い方の磁電変換素子2aを電源に接続する場合、磁電変換素子2bに印加される磁界の方が磁電変換素子2aに印加される磁界より強いので、図7に点線で示すように、回転検出信号は、理想的な正弦波形と比べて正弦波の山(0°から180°の部分)で波形が膨らみ、谷(180°から360°の部分)で波形が細る。
【0007】
そこで、この問題を解決する一つの方法として、特許文献1に記載の回転検出装置が提案されている。この回転検出装置は、面対向モータのロータマグネットの外周側に取り付けられ、周方向に沿って同一幅で着磁された複数の磁極を有する回転検出用の磁石と、この磁石の回転によって発生する磁界の変化を検出するための複数の磁電変換素子とを備えている。そして、磁電変換素子を磁石と同一中心の円周上に配置し、各磁電変換素子と磁石とのギャップを全て同一にしている。これにより、磁石の磁界が各磁電変換素子に均一に作用するので、波形歪の小さな出力波形が得られる。
【0008】
【特許文献1】
特開平6−261524号公報
【0009】
【発明が解決しようとする課題】
そこで、特許文献1の技術を図6に示した2相回転磁気センサに適用して、図8に示すように、湾曲した基板10’を使用すると、確かに各磁電変換素子2a〜3bから歯車20までの距離は全て等しくなる。しかしながら、磁電変換素子2a〜3bを湾曲した基板10’上に形成することは、平面上に形成する場合と比較して高度の技術が要求され、また、その歩留まりが悪く、高価になるという問題がある。さらに、磁電変換素子2a〜3bから磁石13までの距離が異なってしまい、各磁電変換素子2a〜3bの磁界強度が均一にならないから、結局は同じ問題、すなわち出力波形が大きく歪む問題が発生することになる。
【0010】
そこで、本発明の目的は、複数個の磁電変換素子を平面上に形成した場合でも、磁石の磁界が各磁電変換素子に均一に印加される回転磁気センサを提供することにある。
【0011】
【課題を解決するための手段および作用】
前記目的を達成するため、本発明に係る回転磁気センサは、複数個の磁電変換素子が表面に設けられた非磁性体基板と、非磁性体基板の裏面に配置された磁石と、磁電変換素子に臨んだ、被検出物である回転体とを備え、磁電変換素子から出力される回転検出信号によって、回転体の回転状態を検出する回転磁気センサであって、回転体の回転により、回転体が磁電変換素子に最も近接する位置に配置されたときに、磁石からの磁界が磁電変換素子の各々に等しい強度で印加するように、磁石が着磁されていることを特徴とする。
【0012】
より具体的には、回転体が磁電変換素子に最も近接する位置に配置されたときを基準にして、磁石の表面における磁束密度分布が磁電変換素子の各々から非磁性体基板に対して垂直方向にとった回転体までの距離の2乗に比例する磁束密度分布を有するように、磁石が着磁されている。
【0013】
以上の構成により、複数個の磁電変換素子を平面上に形成した場合でも、磁電変換素子の各々に均一な磁気バイアスが印加され、波形歪の小さい出力波形が得られる。
【0014】
【発明の実施の形態】
以下、本発明に係る回転磁気センサの実施の形態について添付の図面を参照して説明する。
【0015】
図1は2相回転磁気センサのセンサ本体1の外観斜視図であり、図2は2相回転磁気センサの概略構成図であり、図3は2相回転磁気センサの電気回路図である。2相回転磁気センサは、概略、センサ本体1と被検出物である歯車20とで構成されている。センサ本体1は、磁気抵抗素子2a,2b,3a,3bを表面に形成した非磁性体基板10と、非磁性体基板10の裏面に配置された磁石13と、非磁性保護ケース16などにて構成されている。
【0016】
磁気抵抗素子2a〜3bは、所定の磁気抵抗を得るため直線形状の磁気抵抗パターンにて構成されている。これらの磁気抵抗素子2a〜3bは、歯車20の歯21の通過方向Kと長手方向が垂直関係を有するように所定のピッチで配置されている。磁気抵抗素子2aと2bで一つの磁気センサ2を構成し、磁気抵抗素子3aと3bで別の一つの磁気センサ3を構成している。
【0017】
磁気抵抗素子2a〜3bは、歯車20の歯21の通過方向Kに並んで配置されており、磁気抵抗素子2aと2bのピッチ間隔並びに磁気抵抗素子3aと3bのピッチ間隔は、それぞれ歯車20の歯21のピッチ間隔の1/2に設定されている。
【0018】
磁気抵抗素子2a〜3bは、たとえばInSb,InAs,GaAsなどの化合物半導体を蒸着法やスパッタリング法などで非磁性体基板10上に薄膜状に設けた後、この化合物半導体薄膜の表面にIn,TiAl,NiCr,Au,Ag,Cu,Alなどのメタル膜を蒸着法やスパッタリング法などの方法で所定のピッチにて形成したものである。あるいは、磁気抵抗パターンは、InSbなどの単結晶半導体基板10の表面にIn,TiAl,NiCr,Au,Ag,Cu,Alなどのメタル膜を所定のピッチで形成したものであってもよい。
【0019】
非磁性体基板10は絶縁体基板上に蒸着などでInSb膜などを形成したものや、InSbなどの単結晶半導体基板、あるいは別に成膜した半導体薄膜や単結晶基板をガラス、アルミナなどの絶縁基板上に接着剤で貼り付けて複合基板としたもの等が用いられる。なお、従来の場合、基板には、磁石13のバイアス磁界を集中させるために、通常、磁性体基板を用いるが、本発明の場合は、磁石13のバイアス磁界を集中させると、回転検出信号の波形の歪が大きくなるので使用しない。
【0020】
非磁性体基板10の磁気抵抗素子2a〜3b実装面とは反対側の面(裏面)は接着剤によって磁石13に接着されている。この磁石13は永久磁石であってもよいし、電磁石であってもよい。
【0021】
磁石13はホルダ14に装着された後、非磁性保護ケース16内に収納される。ホルダ14にはエポキシやフェノールなどの熱硬化性樹脂、ナイロン、PBT、PPSなどの熱可塑性樹脂、LCPなどの液晶ポリマ、アルミナなどが用いられる。4本のリード端子18a〜18dはそれぞれ、ホルダ14に設けた貫通穴14aに挿通されている。各リード端子18a〜18dの頭部19と磁気抵抗素子2a〜3bとは、ワイヤ17(あるいはリードフレーム)を介して接続されている。
【0022】
この後、非磁性保護ケース16の開口部から溶融樹脂を注入して、注形樹脂15を形成する。注形樹脂15には、耐湿性に優れかつ機械的強度が比較的高いエポキシ樹脂などが使用される。非磁性保護ケース16は、ベリリウム銅、燐青銅、黄銅、洋白、非磁性ステンレス、アルミニウム、セラミック、樹脂などの非磁性材料からなる。
【0023】
歯車20は、歯21が磁気抵抗素子2a〜3bに対向するようにセンサ本体1に臨んでいる。歯車20は強磁性体材料からなる。
【0024】
次に、以上の構成からなる回転磁気センサの作用効果について説明する。図3は、回転磁気センサの電気回路図である。電源用リード端子18aとグランド用リード端子18dとの間に磁気抵抗素子2a〜3bが直並列接続されている。
【0025】
磁石13のN極から出た磁束は、歯車20を介して磁石13のS極に戻る。このとき、磁石13のN極から出た磁束は、歯車20の歯のうち、磁石13のN極に最も接近している歯21に集中する。従って、歯車20が矢印Kで示す方向に回転すると、磁束の集中する位置も歯車20の回転につれて移動する。これにより、磁気抵抗素子2a〜3bを透過する磁束が、歯車20の歯21の移動に伴って変化する。磁気抵抗素子2a〜3bは、透過磁束が多くなるにつれて抵抗値も大きくなる。従って、この磁束の変化により、磁気抵抗素子2a〜3bのそれぞれの抵抗値が変化する。
【0026】
歯車20の歯21の移動に伴って、磁気抵抗素子2a〜3bのそれぞれの抵抗値が変化すると、出力用リード端子18b,18cにそれぞれ正弦波の回転検出信号S1,S2が出力される。回転検出信号S1とS2とは、位相差が90°である。
【0027】
ここに、回転検出信号S1,S2が図7の点線で示すように理想的な正弦波から外れているときには、回転検出信号S1,S2の電圧値で角度を正確に検出することが困難となる。
【0028】
そこで、本実施形態では、歯車20の歯21が磁気抵抗素子2a〜3bに最も近接する位置に配置されたときを基準にして、磁石13の表面における磁束密度分布が、磁気抵抗素子2a〜3bのそれぞれから歯車20までの距離Rの2乗に比例する磁束密度分布を有するように、磁石13を着磁している。
【0029】
一般に、磁界の強度は距離の2乗に反比例するので、歯車20までの距離Rが遠いほど磁界が弱くなる。そこで、距離による磁界強度の変化をキャンセルするように、あらかじめ磁束密度に差をつけておくのである。
【0030】
これにより、歯車20が回転して、歯車20の歯21が磁気抵抗素子2a〜3bに最も近接する位置に配置されたときに、磁石13からの磁界が磁気抵抗素子2a〜3bの各々に等しい強度で印加するようになる。この結果、波形歪の小さい回転検出信号S1,S2を得ることができる。
【0031】
なお、距離Rは、実際の歯車20から磁電変換素子2a〜3bまでの距離を意味するものではなく、歯車20の歯21が磁電変換素子2a〜3bのそれぞれに最も近接する位置に配置されたときの距離(最短距離)を意味するものである。従って、より具体的には、距離Rは歯車20の歯21の頂部を結ぶ仮想線Lと各磁電変換素子2a〜3bまでの距離である。さらに、磁電変換素子2a〜3bは、垂直に通過する磁束によって抵抗が変化するので、距離Rは非磁性体基板10に対して、垂直方向にとった距離でなければならない。
【0032】
さらに、磁石13の表面における磁束密度分布が、磁気抵抗素子2a〜3bのそれぞれから歯車20までの距離Rの2乗に比例する磁束密度分布を有することにより、歯車20と磁石13の間は均一な磁界となり、出力電圧の等しい回転検出信号S1,S2を得ることができる。
【0033】
図4は、短辺方向の長さが10mmの磁石13の磁束密度分布を示すグラフである。このような磁束密度分布を有する磁石13を得るためには、図5に示すように、磁石13の原材料である矩形体状の強磁性体の一端に、着磁装置の着磁ヨーク32の先端を面接触させた後、着磁コイル31に電流を流して磁界を発生させることにより強磁性体を磁化させる。このとき、着磁ヨーク32の中央部の着磁コイル31の巻回数を最も少なくし、外側にゆくほど巻回数を多くする、いわゆる円弧状着磁法を採用する。なお、図5は磁石13の短辺側から見た図である。
【0034】
また、本実施形態の2相回転磁気センサの磁気抵抗素子2a〜3bは、非磁性体基板10の平面に形成すればよいので、通常のパターン製造技術を利用することができ、歩留まりもよい。
【0035】
なお、本発明に係る回転磁気センサは前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。例えば前記実施形態では、磁電変換素子として磁気抵抗素子を使用したが、必ずしもこれに限るものではなく、ホール素子、ホールIC、NiFeやNiCoからなる強磁性体薄膜素子などを使用してもよい。
【0036】
【発明の効果】
以上の説明で明らかなように、本発明によれば、磁石からの磁界が磁電変換素子の各々に等しい強度で印加するように、磁石を着磁しているので、磁電変換素子を平面上に形成した場合でも、磁電変換素子の各々に均一な磁気バイアスが印加され、波形歪の小さい回転検出信号が得られる。この結果、工作機械や自動車などの回転位置や速度を精度良く検出することができる。
【図面の簡単な説明】
【図1】本発明に係る回転磁気センサのセンサ本体の一例を示す外観斜視図。
【図2】本発明に係る回転磁気センサの一実施形態を示す概略断面図。
【図3】図2に示した回転磁気センサの電気回路図。
【図4】図2に示した磁石の磁束密度分布を示すグラフ。
【図5】図2に示した磁石の着磁方法を説明するための断面図。
【図6】磁電変換素子と被検出物である歯車の一部を示した拡大図。
【図7】回転検出信号の波形を示すグラフ。
【図8】磁電変換素子と被検出物である歯車の一部を示した拡大図。
【符号の説明】
1…センサ本体
2,3…磁気センサ
2a,2b,3a,3b…磁気抵抗素子
10…非磁性体基板
13…磁石
20…歯車
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotating magnetic sensor, particularly to a rotating magnetic sensor used for detecting a rotational position and a speed of a machine tool, an automobile, and the like.
[0002]
[Prior art]
This type of magnetic sensor usually constitutes one magnetic sensor by setting two magnetoelectric conversion elements as a set. A multi-phase sensor that includes a plurality of magnetic sensors and detects rotation detection signals having different phases output from the respective magnetic sensors is known.
[0003]
By the way, in the polyphase sensor, a plurality of magnetoelectric conversion elements are arranged along the rotation direction of the gear. For example, FIG. 6 is an enlarged view showing four magnetoelectric conversion elements 2a, 2b, 3a, 3b of the two-phase rotating magnetic sensor and a part of the gear 20, which is an object to be detected. 6, reference numeral 10 denotes a substrate on the surface of which the magnetoelectric conversion elements 2a to 3b are formed, reference numeral 13 denotes a magnet, reference numeral 21 denotes a convex portion (teeth) of the gear 20, and reference numeral 22 denotes a concave portion of the gear 20. . One magnetic sensor 2 is constituted by the magneto-electric conversion elements 2a and 2b, and one magnetic sensor 3 is constituted by the magneto-electric conversion elements 3a and 3b. The gear 20 rotates in the direction of arrow K. When the magnetoelectric conversion element 2 a faces the teeth 21 of the gear 20, the magnetoelectric conversion element 2 b is installed so as to face the concave portion of the gear 20. The magneto-electric conversion elements 3a and 3b are installed similarly.
[0004]
At this time, if the strengths of the magnetic fields applied to the two magnetoelectric conversion elements 2a and 2b constituting one magnetic sensor 2 are equal, a rotation detection signal having an ideal waveform without waveform distortion is output. However, since a plurality of magneto-electric conversion elements 2a to 3b are arranged, for example, one magneto-electric conversion element 2a and the other magneto-electric conversion element 2b constituting the magnetic sensor 2 are arranged apart from each other. Therefore, the distance R1 from the gear 20 to the magnetoelectric conversion element 2a and the distance R2 from the gear 20 to the magnetoelectric conversion element 2b differ depending on the position of the magnetoelectric conversion element. As a result, the strength of the magnetic field applied to each of the magnetoelectric conversion elements 2a and 2b differs, and the waveform of the rotation detection signal deviates from an ideal sine wave.
[0005]
Note that the distances R1 and R2 do not mean the actual distance from the gear 20 to the magneto-electric conversion elements 2a and 2b, and the teeth 21 of the gear 20 are arranged at positions closest to the magneto-electric conversion elements 2a and 2b. It means the distance at the time (the shortest distance). Therefore, more specifically, the distances R1 and R2 are the distances between the virtual line L connecting the tops of the teeth 21 of the gear 20 and each of the magnetoelectric conversion elements 2a and 2b. Further, since the resistance of the magnetoelectric conversion elements 2a and 2b changes due to the magnetic flux passing vertically, the distances R1 and R2 must be distances taken in the vertical direction with respect to the substrate 10.
[0006]
When the magnetoelectric conversion element 2b closer to the gear 20 is connected to the ground and the magnetoelectric conversion element 2a farther from the gear 20 is connected to the power supply, the magnetic field applied to the magnetoelectric conversion element 2b is applied to the magnetoelectric conversion element 2a. Since the applied magnetic field is stronger than the applied magnetic field, as shown by the dotted line in FIG. 7, the waveform of the rotation detection signal swells at the peak (0 ° to 180 °) of the sine wave and the valley ( The waveform narrows at a portion between 180 ° and 360 °).
[0007]
Therefore, as one method for solving this problem, a rotation detecting device described in Patent Document 1 has been proposed. This rotation detecting device is mounted on the outer peripheral side of a rotor magnet of a surface-facing motor, and has a rotation detecting magnet having a plurality of magnetic poles magnetized at the same width along a circumferential direction, and is generated by rotation of the magnet. A plurality of magneto-electric conversion elements for detecting a change in a magnetic field. Then, the magnetoelectric conversion elements are arranged on the same circumference as the magnet, and the gaps between each magnetoelectric conversion element and the magnet are all the same. As a result, the magnetic field of the magnet uniformly acts on each magneto-electric conversion element, so that an output waveform with small waveform distortion can be obtained.
[0008]
[Patent Document 1]
JP-A-6-261524
[Problems to be solved by the invention]
Therefore, when the technology of Patent Document 1 is applied to the two-phase rotating magnetic sensor shown in FIG. 6 and the curved substrate 10 ′ is used as shown in FIG. 8, the gears are surely removed from each of the magnetoelectric conversion elements 2 a to 3 b. The distances to 20 are all equal. However, forming the magnetoelectric conversion elements 2a to 3b on a curved substrate 10 'requires a higher level of technology as compared with the case where the magnetoelectric conversion elements 2a to 3b are formed on a flat surface, and the yield is low and the cost is high. There is. Furthermore, since the distance from the magneto-electric conversion elements 2a to 3b to the magnet 13 is different and the magnetic field strength of each of the magneto-electric conversion elements 2a to 3b is not uniform, the same problem, that is, a problem that the output waveform is greatly distorted occurs. Will be.
[0010]
Therefore, an object of the present invention is to provide a rotating magnetic sensor in which a magnetic field of a magnet is uniformly applied to each magneto-electric conversion element even when a plurality of magneto-electric conversion elements are formed on a plane.
[0011]
Means and action for solving the problem
In order to achieve the above object, a rotating magnetic sensor according to the present invention includes a non-magnetic substrate having a plurality of magneto-electric conversion elements provided on a front surface thereof, a magnet disposed on a back surface of the non-magnetic substance substrate, and a magneto-electric conversion element. A rotating magnetic sensor that detects a rotation state of the rotating body by a rotation detection signal output from the magnetoelectric conversion element, wherein the rotating body is rotated by rotation of the rotating body. Is arranged at a position closest to the magneto-electric conversion element, the magnet is magnetized such that a magnetic field from the magnet is applied to each of the magneto-electric conversion elements with equal strength.
[0012]
More specifically, the magnetic flux density distribution on the surface of the magnet is perpendicular to the non-magnetic substrate from each of the magneto-electric conversion elements with reference to when the rotating body is arranged at the position closest to the magneto-electric conversion element. The magnet is magnetized so as to have a magnetic flux density distribution proportional to the square of the distance to the rotating body.
[0013]
With the above configuration, even when a plurality of magneto-electric conversion elements are formed on a plane, a uniform magnetic bias is applied to each of the magneto-electric conversion elements, and an output waveform with small waveform distortion can be obtained.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a rotating magnetic sensor according to the present invention will be described with reference to the accompanying drawings.
[0015]
FIG. 1 is an external perspective view of a sensor main body 1 of a two-phase rotating magnetic sensor, FIG. 2 is a schematic configuration diagram of the two-phase rotating magnetic sensor, and FIG. 3 is an electric circuit diagram of the two-phase rotating magnetic sensor. The two-phase rotating magnetic sensor generally includes a sensor main body 1 and a gear 20 as an object to be detected. The sensor main body 1 includes a nonmagnetic substrate 10 having magnetoresistive elements 2a, 2b, 3a, 3b formed on the surface, a magnet 13 disposed on the back surface of the nonmagnetic substrate 10, a nonmagnetic protective case 16, and the like. It is configured.
[0016]
Each of the magnetoresistive elements 2a to 3b is formed of a linear magnetoresistive pattern in order to obtain a predetermined magnetoresistance. These magnetoresistive elements 2a to 3b are arranged at a predetermined pitch so that the longitudinal direction has a vertical relationship with the passing direction K of the teeth 21 of the gear 20. One magnetic sensor 2 is constituted by the magnetoresistive elements 2a and 2b, and another magnetic sensor 3 is constituted by the magnetoresistive elements 3a and 3b.
[0017]
The magnetoresistive elements 2a to 3b are arranged side by side in the passing direction K of the teeth 21 of the gear 20, and the pitch interval between the magnetoresistive elements 2a and 2b and the pitch interval between the magnetoresistive elements 3a and 3b It is set to 1 / of the pitch interval of the teeth 21.
[0018]
The magnetoresistive elements 2a to 3b are formed by providing a compound semiconductor such as InSb, InAs, or GaAs in a thin film on the nonmagnetic substrate 10 by a vapor deposition method, a sputtering method, or the like. , NiCr, Au, Ag, Cu, Al, etc. are formed at a predetermined pitch by a method such as an evaporation method or a sputtering method. Alternatively, the magnetoresistive pattern may be one in which a metal film such as In, TiAl, NiCr, Au, Ag, Cu, or Al is formed at a predetermined pitch on the surface of the single crystal semiconductor substrate 10 such as InSb.
[0019]
The non-magnetic substrate 10 is a substrate obtained by forming an InSb film or the like on an insulating substrate by vapor deposition or the like, a single-crystal semiconductor substrate such as InSb, or a semiconductor thin film or single-crystal substrate formed separately from an insulating substrate such as glass or alumina. For example, a composite substrate that is attached to the upper surface with an adhesive is used. In the conventional case, a magnetic substrate is usually used to concentrate the bias magnetic field of the magnet 13 on the substrate. However, in the case of the present invention, when the bias magnetic field of the magnet 13 is concentrated, the rotation detection signal is reduced. Not used because waveform distortion increases.
[0020]
The surface (back surface) of the nonmagnetic substrate 10 opposite to the surface on which the magnetoresistive elements 2a to 3b are mounted is adhered to the magnet 13 with an adhesive. This magnet 13 may be a permanent magnet or an electromagnet.
[0021]
After the magnet 13 is mounted on the holder 14, it is stored in the non-magnetic protective case 16. For the holder 14, a thermosetting resin such as epoxy or phenol, a thermoplastic resin such as nylon, PBT or PPS, a liquid crystal polymer such as LCP, or alumina is used. Each of the four lead terminals 18a to 18d is inserted into a through hole 14a provided in the holder 14. The head 19 of each of the lead terminals 18a to 18d and the magnetoresistive elements 2a to 3b are connected via a wire 17 (or a lead frame).
[0022]
Thereafter, a molten resin is injected from the opening of the non-magnetic protective case 16 to form the cast resin 15. As the casting resin 15, an epoxy resin or the like having excellent moisture resistance and relatively high mechanical strength is used. The non-magnetic protective case 16 is made of a non-magnetic material such as beryllium copper, phosphor bronze, brass, nickel silver, non-magnetic stainless steel, aluminum, ceramic, and resin.
[0023]
The gear 20 faces the sensor main body 1 such that the teeth 21 face the magnetoresistive elements 2a to 3b. The gear 20 is made of a ferromagnetic material.
[0024]
Next, the operation and effect of the rotating magnetic sensor having the above configuration will be described. FIG. 3 is an electric circuit diagram of the rotating magnetic sensor. The magnetoresistive elements 2a to 3b are connected in series and parallel between the power supply lead terminal 18a and the ground lead terminal 18d.
[0025]
The magnetic flux from the N pole of the magnet 13 returns to the S pole of the magnet 13 via the gear 20. At this time, the magnetic flux emitted from the N pole of the magnet 13 is concentrated on the teeth 21 of the gear 20 that are closest to the N pole of the magnet 13. Therefore, when the gear 20 rotates in the direction indicated by the arrow K, the position where the magnetic flux concentrates also moves as the gear 20 rotates. Thereby, the magnetic flux passing through the magnetoresistive elements 2 a to 3 b changes with the movement of the teeth 21 of the gear 20. The resistance values of the magnetoresistive elements 2a to 3b increase as the transmitted magnetic flux increases. Therefore, the resistance value of each of the magnetoresistive elements 2a to 3b changes due to the change of the magnetic flux.
[0026]
When the respective resistance values of the magnetoresistive elements 2a to 3b change with the movement of the teeth 21 of the gear 20, sinusoidal rotation detection signals S1 and S2 are output to the output lead terminals 18b and 18c, respectively. The rotation detection signals S1 and S2 have a phase difference of 90 °.
[0027]
Here, when the rotation detection signals S1 and S2 deviate from an ideal sine wave as shown by a dotted line in FIG. 7, it becomes difficult to accurately detect an angle with the voltage values of the rotation detection signals S1 and S2. .
[0028]
Therefore, in the present embodiment, the magnetic flux density distribution on the surface of the magnet 13 is determined based on the time when the teeth 21 of the gear 20 are arranged at positions closest to the magnetoresistive elements 2a to 3b. Are magnetized so as to have a magnetic flux density distribution proportional to the square of the distance R from each of the gears 20 to the gear 20.
[0029]
In general, the strength of the magnetic field is inversely proportional to the square of the distance, so that the farther the distance R to the gear 20, the weaker the magnetic field. Therefore, a difference is previously made in the magnetic flux density so as to cancel the change in the magnetic field strength due to the distance.
[0030]
Thereby, when the gear 20 rotates and the teeth 21 of the gear 20 are arranged at positions closest to the magnetoresistive elements 2a to 3b, the magnetic field from the magnet 13 is equal to each of the magnetoresistive elements 2a to 3b. It comes to be applied with intensity. As a result, rotation detection signals S1 and S2 with small waveform distortion can be obtained.
[0031]
Note that the distance R does not mean the distance from the actual gear 20 to the magnetoelectric conversion elements 2a to 3b, and the teeth 21 of the gear 20 are arranged at positions closest to the respective magnetoelectric conversion elements 2a to 3b. It means the distance at the time (the shortest distance). Therefore, more specifically, the distance R is the distance between the virtual line L connecting the tops of the teeth 21 of the gear 20 and each of the magnetoelectric conversion elements 2a to 3b. Further, since the resistance of the magnetoelectric conversion elements 2a to 3b changes due to the magnetic flux passing vertically, the distance R must be a distance taken in the vertical direction with respect to the nonmagnetic substrate 10.
[0032]
Furthermore, since the magnetic flux density distribution on the surface of the magnet 13 has a magnetic flux density distribution proportional to the square of the distance R from each of the magnetoresistive elements 2a to 3b to the gear 20, the space between the gear 20 and the magnet 13 is uniform. And the rotation detection signals S1 and S2 having the same output voltage can be obtained.
[0033]
FIG. 4 is a graph showing the magnetic flux density distribution of the magnet 13 whose length in the short side direction is 10 mm. In order to obtain the magnet 13 having such a magnetic flux density distribution, as shown in FIG. 5, one end of a rectangular ferromagnetic material which is a raw material of the magnet 13 is attached to one end of a magnetizing yoke 32 of a magnetizing device. Are brought into surface contact, a current is passed through the magnetizing coil 31 to generate a magnetic field, thereby magnetizing the ferromagnetic material. At this time, a so-called arc-shaped magnetizing method is adopted in which the number of turns of the magnetized coil 31 at the center of the magnetized yoke 32 is minimized, and the number of turns is increased toward the outside. FIG. 5 is a view of the magnet 13 as viewed from the short side.
[0034]
Further, since the magnetoresistive elements 2a to 3b of the two-phase rotating magnetic sensor of the present embodiment may be formed on the plane of the non-magnetic substrate 10, a normal pattern manufacturing technique can be used, and the yield is good.
[0035]
It should be noted that the rotating magnetic sensor according to the present invention is not limited to the above embodiment, but can be variously modified within the scope of the gist. For example, in the above-described embodiment, a magnetoresistive element is used as the magnetoelectric conversion element. However, the present invention is not limited to this, and a Hall element, a Hall IC, a ferromagnetic thin film element made of NiFe or NiCo, or the like may be used.
[0036]
【The invention's effect】
As is clear from the above description, according to the present invention, the magnets are magnetized so that the magnetic field from the magnets is applied to each of the magneto-electric conversion elements with the same intensity. Even when formed, a uniform magnetic bias is applied to each of the magnetoelectric conversion elements, and a rotation detection signal with small waveform distortion is obtained. As a result, the rotational position and speed of a machine tool, an automobile, or the like can be accurately detected.
[Brief description of the drawings]
FIG. 1 is an external perspective view showing an example of a sensor main body of a rotary magnetic sensor according to the present invention.
FIG. 2 is a schematic cross-sectional view showing one embodiment of a rotating magnetic sensor according to the present invention.
FIG. 3 is an electric circuit diagram of the rotating magnetic sensor shown in FIG. 2;
FIG. 4 is a graph showing a magnetic flux density distribution of the magnet shown in FIG. 2;
FIG. 5 is a sectional view for explaining a method of magnetizing the magnet shown in FIG. 2;
FIG. 6 is an enlarged view showing a part of a magneto-electric conversion element and a gear as an object to be detected.
FIG. 7 is a graph showing a waveform of a rotation detection signal.
FIG. 8 is an enlarged view showing a part of a magnetoelectric conversion element and a gear as an object to be detected.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sensor main body 2, 3 ... Magnetic sensor 2a, 2b, 3a, 3b ... Magnetic resistance element 10 ... Non-magnetic substrate 13 ... Magnet 20 ... Gear

Claims (3)

複数個の磁電変換素子が表面に設けられた非磁性体基板と、
前記非磁性体基板の裏面に配置された磁石と、
前記磁電変換素子に臨んだ、被検出物である回転体とを備え、
前記磁電変換素子から出力される回転検出信号によって、前記回転体の回転状態を検出する回転磁気センサにおいて、
前記回転体の回転により、前記回転体が前記磁電変換素子に最も近接する位置に配置されたときに、前記磁石からの磁界が前記磁電変換素子の各々に等しい強度で印加するように、前記磁石が着磁されていること、
を特徴とする回転磁気センサ。
A non-magnetic substrate having a plurality of magneto-electric conversion elements provided on a surface thereof,
A magnet disposed on the back surface of the non-magnetic substrate,
A rotating body that is an object to be detected, facing the magnetoelectric conversion element,
A rotation magnetic sensor that detects a rotation state of the rotator by a rotation detection signal output from the magnetoelectric conversion element,
When the rotating body is arranged at a position closest to the magnetoelectric conversion element by the rotation of the rotating body, the magnet is applied so that a magnetic field from the magnet is applied with equal intensity to each of the magnetoelectric conversion elements. Is magnetized,
A rotary magnetic sensor characterized by the above-mentioned.
複数個の磁電変換素子が表面に設けられた非磁性体基板と、
前記非磁性体基板の裏面に配置された磁石と、
前記磁電変換素子に臨んだ、被検出物である回転体とを備え、
前記磁電変換素子から出力される回転検出信号によって、前記回転体の回転状態を検出する回転磁気センサにおいて、
前記回転体の回転により、前記回転体が前記磁電変換素子に最も近接する位置に配置されたときを基準にして、前記磁石の表面における磁束密度分布が、前記磁電変換素子の各々から前記非磁性体基板に対して垂直方向にとった前記回転体までの距離の2乗に比例する磁束密度分布を有するように、前記磁石が着磁されていること、
を特徴とする回転磁気センサ。
A non-magnetic substrate having a plurality of magneto-electric conversion elements provided on a surface thereof,
A magnet disposed on the back surface of the non-magnetic substrate,
A rotating body that is an object to be detected, facing the magnetoelectric conversion element,
A rotation magnetic sensor that detects a rotation state of the rotator by a rotation detection signal output from the magnetoelectric conversion element,
Due to the rotation of the rotator, the magnetic flux density distribution on the surface of the magnet is changed from each of the magneto-electric conversion elements to the non-magnetic based on when the rotator is arranged at the position closest to the magneto-electric conversion element. The magnet is magnetized so as to have a magnetic flux density distribution proportional to the square of the distance to the rotating body taken in a direction perpendicular to the body substrate;
A rotary magnetic sensor characterized by the above-mentioned.
前記回転検出信号は位相の異なる少なくとも二つの信号であることを特徴とする請求項1または請求項2に記載の回転磁気センサ。3. The rotating magnetic sensor according to claim 1, wherein the rotation detection signal is at least two signals having different phases.
JP2003135726A 2003-05-14 2003-05-14 Rotary magnetic sensor Expired - Lifetime JP4154524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135726A JP4154524B2 (en) 2003-05-14 2003-05-14 Rotary magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135726A JP4154524B2 (en) 2003-05-14 2003-05-14 Rotary magnetic sensor

Publications (2)

Publication Number Publication Date
JP2004340669A true JP2004340669A (en) 2004-12-02
JP4154524B2 JP4154524B2 (en) 2008-09-24

Family

ID=33525897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135726A Expired - Lifetime JP4154524B2 (en) 2003-05-14 2003-05-14 Rotary magnetic sensor

Country Status (1)

Country Link
JP (1) JP4154524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264866A (en) * 2008-04-24 2009-11-12 Hamamatsu Koden Kk Magnetic sensor and manufacturing method of the same
US9766260B2 (en) 2015-04-18 2017-09-19 Man Truck & Bus Ag Arrangement for determining a revolution rate and direction of rotation of a rotating component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264866A (en) * 2008-04-24 2009-11-12 Hamamatsu Koden Kk Magnetic sensor and manufacturing method of the same
US9766260B2 (en) 2015-04-18 2017-09-19 Man Truck & Bus Ag Arrangement for determining a revolution rate and direction of rotation of a rotating component

Also Published As

Publication number Publication date
JP4154524B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP6427184B2 (en) Method and apparatus for a magnetic sensor generating a changing magnetic field
US5814985A (en) Incremental sensor of speed and/or position for detecting low and null speeds
US6545462B2 (en) Sensor for the detection of the direction of a magnetic field having magnetic flux concentrators and hall elements
US20100188078A1 (en) Magnetic sensor with concentrator for increased sensing range
JP3603406B2 (en) Magnetic detection sensor and method of manufacturing the same
JP3895556B2 (en) Rotation angle detection sensor
EP2546611A1 (en) Magnetic sensor and magnetic encoder
WO2015009441A1 (en) Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
JP2734759B2 (en) Rotation detection device
JPH09159684A (en) Magnetic rotary detection device
US5128614A (en) Compound core element having a pair of uniaxial anisotropic ferromagnetic cell components with different coercive field strength for a thin film sensor
JPH11211409A (en) Magnetic detector
JP2022016380A (en) Encoder system for drive
JP2003066127A (en) Method for assembling magnetic sensor
JP5006671B2 (en) Magnetic encoder
JP2004340669A (en) Rotary magnetometric sensor
JP3611776B2 (en) Pulse signal generator
CN109328307B (en) Magnetic sensor and current sensor provided with same
KR20230101134A (en) Magnetic sensor using spin orbit torque and sensing method using same
JP5651039B2 (en) Rotary encoder
JP3233129B2 (en) Magnetic detector
JP3269307B2 (en) Pickup sensor and vehicle speed detection device using pickup sensor
JP3747149B2 (en) Pulse signal generator
JP2004037236A (en) Rotation angle detecting device
JPH11230782A (en) Rotation detecting equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4154524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

EXPY Cancellation because of completion of term