JP2004339327A - Carbonization apparatus - Google Patents

Carbonization apparatus Download PDF

Info

Publication number
JP2004339327A
JP2004339327A JP2003136433A JP2003136433A JP2004339327A JP 2004339327 A JP2004339327 A JP 2004339327A JP 2003136433 A JP2003136433 A JP 2003136433A JP 2003136433 A JP2003136433 A JP 2003136433A JP 2004339327 A JP2004339327 A JP 2004339327A
Authority
JP
Japan
Prior art keywords
furnace
carbonization
cylinder
main body
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003136433A
Other languages
Japanese (ja)
Other versions
JP4017556B2 (en
Inventor
Tetsuji Moriguchi
哲次 森口
Tetsuo Murata
鉄雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIN KK
Original Assignee
HOSHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIN KK filed Critical HOSHIN KK
Priority to JP2003136433A priority Critical patent/JP4017556B2/en
Publication of JP2004339327A publication Critical patent/JP2004339327A/en
Application granted granted Critical
Publication of JP4017556B2 publication Critical patent/JP4017556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonization apparatus for producing charcoal, bamboo charcoal, and the like, with which carbonization is carried out in an extremely high thermal efficiency in a short time, a manufacturing cost of charcoal is reduced, apparatus constitution is simple and an installation cost is reduced. <P>SOLUTION: This carbonization apparatus is equipped with a furnace body 10 having a plurality of air inlets 13a at its inside bottom part, a lid plate 4 for opening and closing a material doorway 1a at the top of the furnace body 10, a heating flue 2 which is stood in the furnace body 10 and has its top reaching the vicinity of the ceiling part of the furnace body 10 and a carbonization furnace 1 having an air intake port 17a and a flow rate control valve 56. In the carbonization apparatus, an ignition part is laid at the bottom side and a carbonizing material T charged in the furnace body 10 is spontaneously burnt in a state of oxygen deficiency and carbonized. The heating flue 2 has double column structure of an outer column 22 having a lower part equipped with an exhaust inlet 24 communicating with an in-furnace space 10a and a closed upper part and an inner column 2 having an upper end opening in the vicinity of the top in the outer cylinder 22 and a lower end communicating with an exhaust route 3 to the outside of the furnace. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば木片や竹片等の植物質原料を酸素不足状態で自発燃焼させて炭化するための炭化装置に関する。
【0002】
【従来の技術】
近年、木炭を始めとする炭は、その調湿作用、脱臭作用、マイナスイオン放出作用、有害物質吸着作用、防黴性、防ダニ性等の優れた性質が注目され、一般家庭では室内各所や床下に配置したり、炊飯器内に入れたり、飲料水や風呂水等に浸漬して用いる他、細片化ないし粉末化したものを壁材、天井材、床材の如き建築資材、襖や間仕切りの如き建具、畳等にサンドイッチ状態にしたものや、布団等の寝具類の内部に納めたものも商品化されており、更に土壌改質に用いたり、樹脂やセラミック材料等に混入する等、様々な方面に用途が拡がりつつあり、その需要はますます増大する傾向にある。
【0003】
しかるに、古典的な炭焼き釜によって製造される炭は、備長炭に代表されるように緻密で固いため、例えば脱臭剤や吸着剤あるいは土壌改質剤等の用途には不向きであり、しかも製造に時間と手間がかかって量産性に乏しい上、収益率が低く、原料的にも限定されて高コストに付き、また釜の設置場所にも大きく制約を受けるという難点があった。
【0004】
そこで、本発明者は先に、炭化装置として、上端開口部を開閉蓋付きの出し入れ口とする炉本体の内部に、下部に熱気導入孔を備えた炭化用加熱筒が炉本体の底部中心部から前記上端開口部の近傍まで立設され、且つ該上端開口部近傍から炉本体を横切って延びる横切り筒が炉本体の側壁を貫通して外部に排気筒として配管され、炉本体の底部には空気取入れ口が設けられたものを提案している(特許文献1)。
【0005】
この炭化装置によれば、炉本体内に装填された炭化用材料に底部側から着火して酸素不足状態で自発燃焼させるが、この自発燃焼に伴う燃焼ガスの吸入によって炭化用加熱筒が赤熱状態になり、炭化用材料は下方から上昇してくる熱気と赤熱した炭化用加熱筒から周囲へ放射される熱気とで加熱されて熱分解し、更に自燃温度に達して自発燃焼し、この自発燃焼・熱分解の領域の拡大に伴う燃焼ガスの増加が炭化用加熱筒を更に高温化して熱放射を増大させる相乗効果を生み、もって熱分解反応の進行と自発燃焼領域の拡大が速められ、装填された炭化用材料の全量が短時間で炭化することになる。
【0006】
しかして、このような炭化装置は、炭化用材料として様々な原料を利用できる上、脱臭性能や吸着性能に優れて粉砕容易な柔らかな消し炭状態の炭化物を短時間で量産でき、しかも構造的に簡単で設置場所に制約を受けないという多くの利点を有することから、既に実用に供されて好評を博している。
【0007】
【特許文献】
特開2003−119468
【0008】
【発明が解決しようとする課題】
しかしながら、上記の炭化装置においても、熱効率や操作性等の面で多分に改良の余地を残しており、炭製造コストの低減と作業性の改善のために更に短時間で能率よく炭化を行うことが求められている。例えば、該炭化装置では、炭化用加熱筒から外部への排気路を炉本体の上方へ直接には導出せず、横切り筒を介して外部の排気路に接続することにより、高温の燃焼ガスの炉本体内における排出経路を長くして熱損失を抑え、もって該加熱筒の蓄熱による赤熱化を促すようにしているが、まだ排気路から炉外へ持ち出される熱量が大きく、それだけ炉内温度の上昇が遅れて炭化に時間を要する上、炉本体内への炭化用材料の装填と得られた炭化物の取り出しに際し、出し入れ口近傍に半径方向に配設された横切り筒が邪魔になって作業しにくいといった難点があった。
【0009】
本発明は、上述の情況に鑑み、上記提案に係る炭化装置に簡単で且つ効果的な改良を加えることにより、非常に高い熱効率によって炭化時間をより短縮し、もって炭製造コストの更なる低減を可能とし、しかも炭化用材料の装填と得られた炭化物の取り出しにおける作業性を大きく改善し、また装置構成の簡素化による設備コストの低減をも図ることを目的としている。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係る炭化装置は、図面の参照符号を付して示せば、内底部に複数の空気導入孔13a…を有する略密閉式の炉本体10と、この炉本体10の上部に設けられた材料出入口1aを開閉する蓋板4と、該炉本体10内に立設されて上端が炉本体10天井部近傍に達する加熱排気筒2と、前記空気導入孔13a…への空気を供給する空気取入れ口17aと、該空気取入れ口17aに対する空気供給量調整手段(流量調整弁56)とを有する炭化炉1を備え、前記加熱排気筒2は、下部に炉内空間10aに連通する排気導入孔24…を備えて上部が閉塞した外筒22と、この外筒22内に同心状に配置した内筒23とからなる二重筒をなし、前記内筒23は、上端が前記外筒22内の頂部近傍で開口すると共に、下端が炉外への排気路3に連通しており、前記炉本体10の底部側を着火部(エルボ管16)として、該炉本体10内に装填された炭化用材料T…を酸素不足状態で自発燃焼させて炭化するように構成されてなる。
【0011】
請求項2の発明は、上記請求項1の炭化装置において、炉本体10の底部に、前記複数の空気導入孔13a…を設けた内底板13と、該内底板13の下位に配置した外底板14との間で構成される着火室15を備え、この着火室15に前記空気取入れ口17a及び着火用熱源導入口15aが設けられてなる構成としている。また、請求項3の発明は、この請求項2の炭化装置において、炉本体10内の底部側周面に底板受け部11cを有し、該底板受け部11c上に前記内底板13が外周部を非固定状態に載置してなるものとしている。
【0012】
請求項4の発明は、上記請求項1〜3のいずれかの炭化装置において、前記炭化炉1から排出される燃焼排ガスを再燃焼させるガス再燃焼炉5を有してなる構成としている。また、請求項5の発明は、この請求項4の炭化装置において、前記炭化炉1の空気取入れ口17aへ供給する導入外気を前記ガス再燃焼炉5から排出される高温排ガスとの熱交換によって昇温させる熱交換部(熱交換ジャケット53)を備えてなるものとしている。
【0013】
請求項6の発明は、上記請求項1〜5のいずれかの炭化装置において、炉本体10の周壁部11が二重壁をなし、その内外壁(内外金属板11a,11b)間に無機繊維からなる断熱材9aが装填されると共に、該炉本体10の内周面に無機繊維からなる断熱材9bが金属製押さえネット12を介して張設されてなる構成としている。
【0014】
請求項7の発明は、上記請求項1〜6のいずれかの炭化装置において、炉本体10の上面側全体が前記材料出入口1aを構成し、該炉本体10の中心部に1本の前記二重筒をなす加熱排気筒2が立設される一方、中央に該加熱排気筒2を下方より挿入させる筒状部(内筒部80b)を有する横断面ドーナツ形の金属製収容籠80を備え、炭化用材料T…を該収容籠80内に収容した状態で炉本体10内に装填するように構成されてなるものとしている。
【0015】
【発明の実施の形態】
以下に、本発明に係る炭化装置の一実施形態について、図面を参照して具体的に説明する。図1は付属設備を含む炭化装置全体の平面図、図2は同側面図、図3は同正面図、図4は同背面を示す。これら図1〜図4において、1は炭化炉、5はガス再燃焼炉、6は木酢液抽出器、7はクーリングタワー、Cはコントロールボックスであり、これらは矩形のベースフレーム8上に設置されている。
【0016】
炭化炉1は、図5〜図8にて詳細に示すように、有底縦円筒状に形成されて上端開口部を材料出入口1aとする炉本体10と、この炉本体10内の中心部に立設された加熱排気筒2と、該加熱排気筒2に接続して炉本体10の底部から延出する排気管3と、炉本体10の材料出入口1aを封鎖する蓋板4とから構成されている。
【0017】
炉本体10は、周壁部11が内外金属板11a,11b間にガラスウールからなる断熱材9aを装填した二重壁構造をなすと共に、該周壁部11の内周面にロックウールからなる断熱材9bが金属製押さえネット12を介して張設されており、底部には共に金属製である内底板13と外底板14との間に着火室15が構成され、外底板14の右寄り部分の下面側に一端を固着して右側外部に延出するエルボ管16が設けられ、このエルボ管16が着火室15に連通する着火熱源導入口15aを形成し、また側方外部より前後方向に沿う短い空気供給管17が周壁部11を貫通して着火室15内に突入配置し、その内端開口が空気供給口17aを形成している。なお、着火熱源導入口15aは、エルボ管16の外端フランジ部16aにねじ止め具18a,18aを介して着脱する蓋板18によって開閉できるようになっている。
【0018】
そして、炉本体10の内底板13は、ドーナツ板状をなし、その全面にわたって多数の空気導入孔13aが穿設されると共に、各空気導入孔13aの上面側に閉塞防止用の山形カバー片13bが溶接固着されており、その内周部を炉本体10の中心部に配置した金属製短筒体19の上部フランジ19aにねじ止めした状態で、外周部を炉本体10の内周に設けた突片からなる底板受け部11c…上に非固定状態に載置している。また、炉本体10の外底板14は、内底板13と同様にドーナツ板状をなすが、その外周部において周壁部11に溶接固着されている。しかして、短筒体19は、その下部フランジ19bにおいて、外底板14の下面側に配置した金属製の環状受け板20と一体に、ボルト−ナット21a…を介して外底板14に固定されている。
【0019】
加熱排気筒2は、端板22aにて閉塞した上端が炉本体10の材料出入口1a近傍に達する高さを有する金属製の外筒22と、この外筒22内に同心状に配置して上端が当該外筒22の閉塞した上端近傍に開口する金属製の内筒23とからなる二重筒をなし、外筒22の炉内空間10aに臨む下部周囲に多数の排気導入孔24…が穿設されている。しかして、外筒22は、下部を短筒体19の内側に挿通し、その下端を環状受け板20上に載置した状態で、上部側において周方向に等配して外側から螺挿した複数本のねじ形ピン25…の先端を内筒23に当接させることより、該内筒23に対して同心状態を保つように設定している。一方、内筒23は、その下端に設けたフランジ部23aを、排気管3の接続フランジ部30と共に、環状受け板20の下面側に取付けボルト21b…を介して連結することにより、排気管3に連通した状態で炉本体10に一体的に固定されている。なお、外筒22と内筒23との間の環状空間2aは、内筒23のフランジ部23aと環状受け板20との連結によって炉外に対して閉鎖されている。
【0020】
排気管3は、炉本体10の下側で中心から後方へ伸びる水平管部3aと、この水平管部3aの後端より炉本体10の外周面に近接して上方へ伸びる垂直管部3bとからなるL字状に形成されており、垂直管部3bの上端部後部側に、排気処理路に接続させるフレキシブル接続管31がクランプバンド31aを介して着脱自在に連結されるようになっている。また、垂直管部3bには内部を通過する燃焼排ガスの温度を計測する温度センサーS1が付設されている。なお、この排気管3における水平管部3aの前端部、水平管部3aと垂直管部3bとの接続部、垂直管部3bの上端部には各々チーズ管32が用いられ、各チーズ管32における非接続部の分岐開口部32aをキャップ33にて閉塞することにより、炉休止中に該キャップ33を外して管内清掃を容易に行えるように設定している。
【0021】
しかして、炉本体10の左右両側には台形状の支持フレーム26a,26bが立設されており、両支持フレーム26a,26bの上端に設けた軸受27a,27bに、炉本体10のやや下部寄り位置の左右両側に突設された枢軸28,28を枢支させることにより、両支持フレーム26a,26bに炉本体10が図5の実線で示す直立姿勢と同仮想線で示す前方への転倒姿勢とに転換可能に支持されている。なお、29は軸受27b側のギヤボックス34より突出する姿勢変換用ハンドルであり、その回転操作によって該ギヤボックス34内のウォーム減速ギヤ機構(図示省略)を介して炉本体10が排気管3と一体に起倒回動する。
【0022】
また、蓋板4は、炉本体10とは別体として、金属製の表裏板41a,41b間にガラスウールからなる断熱材9aを介装した円形厚板状に形成されている。しかして、炉本体10の後方には左右一対の支柱42a,42bが立設されており、両支柱42a,42bの上部間にわたされた枢軸43に左右一対の逆へ字形の取付けアーム44,44が中間部で固設され、両取付けアーム44,44の前端に蓋板4が取り付けられると共に、両取付けアーム44,44の後端側に角柱状のバランスウエイト45が固設されている。また、右側の支柱42bの上端には枢軸43の軸受部をなすギヤボックス45が設けてあり、該ギヤボックス45より突出する蓋開閉用ハンドル46の回転操作により、該ギヤボックス45内のウォーム減速ギヤ機構(図示省略)を介して枢軸43が両取付けアーム44,44と一体に回動し、もって蓋板4が図5の実線で示す閉鎖姿勢と同仮想線で示す開放姿勢とに転換するように構成されている。
【0023】
しかして、炉本体10の材料出入口1aの周縁には一定間隔置きに複数個の締付ねじ式クランプ具35…が起倒回動自在に枢着される一方、蓋板4の外周部には各クランプ具35に対応する溝付き突片47が突設されており、該蓋板4を材料出入口1aに被せた状態で、各クランプ具35の軸部を溝付き突片47の溝部に係入し、そのねじ部を回して締め付けることにより、該蓋板4が材料出入口1aに圧着して密閉状態になるように設定されている。なお、図2,図3,図5,図6では、図面の錯綜を避けるためにクランプ具35と溝付き突片47の1組は2組のみを図示している。
【0024】
木酢液抽出器6の上部には、図1及び図2に示すように、炭化炉1からの燃焼排ガスを直接にガス再燃焼炉5へ送るための上側管路接続口36aと、同燃焼排ガスを当該木酢液抽出器6内を経由してガス再燃焼炉5へ送るための下側管路接続口36bとが設けてあり、炭化炉1の排気管3の出口は前記のフレキシブル接続管31を介して両管路接続口36a,36bの一方を選択して接続できる。そして、炭化炉1からの燃焼排ガスは、両管路接続口36a,36bのいずれに流入した場合も、木酢液抽出器6の頂部に設けた送気ファン37を介して、図1及び図4に示す送気管38よりガス再燃焼炉5内の下部へ送り込まれるようになっている。なお、送気管38の頂端には、手動開閉弁39a付きの臨時排気口39が設けられている。
【0025】
ガス再燃焼炉5は、付設の灯油バーナー50の点火によって内部を高温燃焼状態とすることにより、炭化炉1からの燃焼排ガス中に含まれる微量有機物等を完全に熱分解し、もって該排ガスを無害無臭化する機能を果たすものであり、その炉内温度を温度計51にて計測するようになっている。しかして、図4に示すように、このガス再燃焼炉5の上部より延出する排気筒52の外側には、内部に排気筒52の周囲を螺旋状に周回する通気路53aを有する熱交換ジャケット53が設けられており、該熱交換ジャケット53の下部に外部へ開口した空気入口54aを備えると共に、同上部の空気出口54bが炭化炉1への給気配管55に接続している。従って、炭化炉1の稼働中、該炭化炉1の着火室15へ供給される空気は、熱交換ジャケット53の空気入口54aより取り入れられ、該熱交換ジャケット53の通気路53aを通る過程で排気筒52を通過する高温排ガスと熱交換し、昇温した状態で給気配管55を通して空気供給口17aより当該着火室15内へ流入することになる。
【0026】
この給気配管55は、熱交換ジャケット53側から下降する垂直管路55aと、その下端よりベースフレーム8に沿って前方へ向かう水平管路55bとで構成されており、水平管路55bの前端側に流量制御弁56が介装されている。そして、この水平管路55bには、前端にはフレキシブル接続管57が連結されており、該フレキシブル接続管57の遊端側をクランプバンド57aを介して、炭化炉1の空気供給管17の外端に着脱自在に接続できるように構成され、また、図1に示すように、流量制御弁56の手前には、給気配管55内を通過する空気の温度を計測する温度センサーS2が付設されると共に、この温度センサーS2よりも上流側に、先端が手動開閉弁58a付きの補助給気口58をなす管路55cが合流接続されている。
【0027】
なお、流量制御弁56は、コントロールボックスC内の制御装置(図示省略)に予め入力した制御データに基づき、排気管3の温度センサーS1にて計測される燃焼排ガスの温度、給気配管55にて計測される供給空気の温度、処理開始からの経過時間等に対応して、該制御装置からの指令信号によって開度が自動的に調整され、もって炭化炉1内へ空気供給量を増減するように設定されている。
【0028】
木酢液抽出器6は、図9に示すように、底部61aが漏斗状の内ケーシング61と有底筒状の外ケーシング62との間で外側水冷ジャケット6aが構成されると共に、上方から内ケーシング61内の中心上下方向に沿って配置した二重管63の内筒63aと外筒63bとの間で内側水冷ジャケット6bが構成され、また該二重管63の外筒63bと内ケーシング61との間が螺旋状フィン64を設けた抽出室60となっている。この抽出室60は、上部に前記の下側管路接続口36bが連通すると共に、底部中央に外ケーシング61を貫通して下方へ突出する開閉バルブ付き液導出口60aを備え、また二重管63の内筒63aの下端が底部近傍に開口している。しかして、該二重管63の内筒63aは、排気管として上方外部へ突出し、前記の送気ファン37を介してガス再燃焼炉5への送気管38に接続しており、図9では省略しているが、その外方突出部に前記の上側管路接続口36b(図2参照)が連通している。
【0029】
また、外側水冷ジャケット6aの上端部と内側水冷ジャケット6bの上端部ととが連通管65によって連通連結されると共に、内側水冷ジャケット6bの上端部に排水管66が接続され、外側水冷ジャケット6aの下端部に開閉弁67a付き給水管67が接続されている。しかして、排水管66及び給水管67はクーリングタワー7に接続しており、該クーリングタワー7のポンプ7a(図1参照)の稼働によって冷却水を両水冷ジャケット6a,6bへ通水して循環冷却するようになっている。なお、図9において、81は上記した木酢液抽出器6を設置する台枠、82は液導出口60aから導出される木竹酢液を回収する容器、83は該容器83を載せて運搬するための台車である。
【0030】
上記構成の炭化装置にて炭化物を製造するには、まず炭化炉1の蓋板4を開放して、材料出入口1aより木材や竹材のチップ等の炭化用材料Tを投入し、図6に示すように炉本体10の炉内空間10aに装填する。しかる後、蓋板4を閉じてクランプ金具35…にて炉本体10に締付け固定した上で、図8に示すように開放した着火熱源導入口15にガスバーナーGの火炎等の着火熱源を導入する。これにより、着火熱源の燃焼ガスと熱せられた空気とが混合状態で着火室15内に充満し、更に内底板13の空気導入孔13a…より炉内空間10aへ侵入し、もって最下部の炭化用材料T…が着火し、その自発燃焼による熱分解が開始される。しかして、着火熱源導入口15aは、最下部の炭化用材料T…が自発燃焼を始めた時点で蓋板18によって閉鎖する。
【0031】
上記自発燃焼の開始に伴い、発生する高温の燃焼ガスが炭化用材料T…間の隙間を通って上昇して熱気を下から上へ伝播させると共に、該燃焼ガスの一部は排気導入口24…より加熱排気筒2の外筒22と内筒23との間の環状空間2aに吸い込まれ、この環状空間2aを上昇して当該加熱排気筒2内の頂部で内筒23内に流入し、この内筒23内を下降して排気管3へ流出する。しかして、加熱排気筒2内を通過する燃焼ガスの熱気と周囲の炭化用材料T…の自発燃焼による熱気とで、まず当該排気筒2の外筒22の下部が内外両側から熱せられて赤熱する。そして更に炉内空間10aでの自発燃焼が拡がるにしたがい、増加する燃焼ガスの熱気と蓄熱によって外筒22の赤熱部分が次第に上方へ拡大してゆくと共に、内筒23も赤熱し始め、遂には加熱排気筒2全体が赤熱状態になる。
【0032】
これにより、炉内空間10a内の炭化用材料T…は、下方から上昇してくる熱気と、赤熱した加熱排気筒2から周囲へ放射される熱気とで加熱され、堆積層の下部側と中央側の両方から熱分解し始め、更に自燃温度に達して自発燃焼する。そして、この自発燃焼・熱分解の領域が拡がるに伴い、加熱排気筒2は流入する燃焼ガスの増加によって外筒22及び内筒23共に更に高温化して周囲への熱放射を増し、その相乗効果で炭化用材料T…の熱分解反応の進行と自発燃焼領域の拡大が速められ、やがて炉内空間10a全体が均一な高温状態になり、装填した炭化用材料Tの全てが熱分解して炭化する。
【0033】
この炭化処理においては、加熱排気筒2からの燃焼排ガスの排出に伴い、着火室15内に空気供給口17aより空気が吸入されるが、この空気吸入量を給気配管55に介在する流量制御弁56にて制限することにより、炉内空間10aを酸素不足状態に維持する。これにより、炭化用材料Tは、不完全燃焼によって炭素成分が殆ど燃焼しない状態で熱分解を継続し、もって最終的に内部まで完全に炭化することになる。
【0034】
また、炭化炉1の炉内温度は、空気供給口17aより着火室15内に供給される空気量の増減によって変化するため、流量制御弁56の開閉及び開度変更によって調整できる。しかして、この流量制御弁56の開閉及び開度調整は、予め得た試験データに基づいて使用する炭化用材料Tの種類と大きさ、含水率、装填量等に応じた処理温度条件を求めておき、これを前記の温度センサーS1,S2による計測温度と炉内温度に関連付けた制御データとして前記のコントロールボックスC内の制御装置(図示省略)に入力し、該制御装置からの指令信号によって自動的に行うように設定すればよい。
【0035】
炭化用材料Tとして一般的な木材チップや竹材チップを用いる場合、炉内温度は、通常350℃〜500℃程度で継続するように設定すればよいが、特に初期段階で自発燃焼を活発化させるために例えば処理開始から1時間内に一時的に1000℃近くに達するように条件設定してもよい。なお、温度センサーS1にて計測される燃焼排ガスの温度は、炉内温度よりも一般的に数100℃程度は低い値になる。しかして、前記のように処理温度条件は任意に設定できるら、炭化用材料T…の種類が同じであれば、常に同じ品質の炭化物を製造することができ、また炭化用材料T…の種類が同じでも熱分解する温度を異ならせて性質の異なる炭化物を製造することも可能である。
【0036】
炭化用材料Tの熱分解が終息すれば、燃焼排ガスの温度が急速に低下するから、これを温度センサーS1にて検出することによって炭化の完了が判明する。この炭化完了後、生成した炭化物の温度がある程度低下するのを待って、排気管3及び空気供給管17に接続していたフレキシブル接続管31,57を離脱させ、クランプ具35を外してハンドル46の操作によって蓋体4を図5の仮想線で示すように開放し、炉本体10の前方に適当な容器やシートを配置した上で、ハンドル29を操作して該炉本体10を同仮想線で示すように水平よりも若干下向きになるまで前方へ傾倒させ、生成した木炭や竹炭の如き炭化物を流出させ、また要すれば適当な道具で掻き出せばよい。
【0037】
この炭化炉1においては、炭化用材料の自発燃焼にて発生する高温の燃焼排ガスは、二重筒構造をなす加熱排気筒2の下部より外筒22内に入って上昇し、その内部頂端から内筒23内に流入して下降し、炉本体1の底部より炉外へ流出する。すなわち、該燃焼排ガスの炉本体10内での排気経路は、該加熱排気筒を単一筒構造として炉本体の上方への排気管に接続させる構成に比較して略2倍の長さになり、また既述した先行技術のように加熱排気筒(炭化用加熱筒)の頂部から半径方向の横切り筒を経て側方外部の排気管に接続する構成に比較しても格段に長くなる。従って、この炭化処理では、長い排気経路によって燃焼排ガスから加熱排気筒2への熱伝播量が多くなり、それだけ該排ガスによって炉外へ持ち出される熱量が減少し、高い熱効率が得られる上、その経路が二重筒内での上下往復になるため、加熱排気筒2全体の蓄熱による赤熱化が急速に進行し、この加熱排気筒2からの熱放射によって炉内温度が早く上昇し、もって炭化用材料T…の熱分解及び自発燃焼の進行が促進され、完全炭化に要する時間が短縮されて高い炭化処理能率を達成できる。
【0038】
また、本実施形態のように、炉本体10の上面側全体が前記材料出入口1aを構成し、炉本体10の中心に前記二重筒をなす一本の加熱排気筒2を配置する構成によれば、この加熱排気筒2の全体が赤熱化した以降、炉内空間10aの全体が中心部からの均等な熱放射によって偏りのない加熱状態となり、もって均質な高品位の炭化物が得られることに加え、例えば図10に示すような横断面ドーナツ形の金属製収納籠90を利用し、炉本体1内への炭化用材料T…の装填と処理後の炭化物の取出しを行うことが可能となる。
【0039】
この収納籠90は、外筒部90aと内筒部90bとが図に現れない底部で繋がって一体化すると共に上方に開放したものであり、その籠形態を保持するための金属フレーム91と、これら金属フレーム91に張設された金属製ネット92とから構成されており、外筒部90aの外径が炉本体10の内径よりも若干小さく、内筒部90bの内径が加熱排気筒2の外径よりも若干小さく設定されている。そして、この収納籠90によれば、図示のように、外内筒90a,90b間の横断面ドーナツ形の収容空間に炭化用材料T…を収容し、上縁に取り付けた弧状把手93にクレーン(図示省略)等の吊りフック94を掛けて吊り上げ、内筒部90bに下方から加熱排気筒2が挿入する形で、当該収納籠90ごと炉本体1内に装填し、そのまま蓋板4(図1〜3,5,6参照)を被せて炭化処理を行い、処理後には炉本体10を前記のように傾倒させることなく、装填時と同様に収納籠90を上方へ吊り上げて炉本体10から抜き出し、もって生成した炭化物全量を一挙に取り出せるから、作業性が著しく改善する。従って、炭化炉1が大型になるほど、このような収納籠90を利用できることは大きな利点となる。
【0040】
なお、前記先行技術の炭化装置における炭化炉のように横切り筒を有する構成では、該横切り筒も熱放射によって炭化用材料の熱分解及び自発燃焼の促進に貢献するが、該横切り筒の赤熱化までに時間がかかる上、その熱放射が炉内空間の頂部で且つ一半径方向を中心とする部位に偏るため、炉内空間が均一な加熱状態になりにくく、しかも当該横切り筒が障害物になるので前記のような収納籠を利用できない。
【0041】
一方、加熱排気筒2から排出される燃焼排ガスは、既述のようにガス再燃焼炉5に送って再燃焼させるから、ガス中に微量の有機物が付随していても完全に分解されることになり、最終的に外部へ排出される排ガスは無毒無臭になる。しかして、この実施形態では、炭化炉1へ供給する導入外気は、前記ガス再燃焼炉5から出る排ガスの熱を利用し、熱交換ジャケット53での熱交換によって昇温させておくことから、冷たい外気を直接に取り入れる場合に比較して熱効率が更に向上し、炉本体10内での炭化用材料T…の熱分解及び自発燃焼がより効率よく進むと共に、前記排ガスの熱利用によって炭化装置全体としても熱エネルギーの無駄が少なくなる。
【0042】
ところで、古くには木材乾留として工業的に行われていたように、木材や竹材の加熱に伴って気化する揮発成分中には酢酸を主として種々の有用な有機成分が含まれており、その凝縮によって木材からは木酢液、竹材からは竹酢液が得られ、これらは現在では貴重なものとなっている。そこで、この実施形態の炭化装置では、炭化炉1の排気管3を木酢液抽出器6内を経由する下側管路接続口36bに接続することにより、前記の木酢液や竹酢液を抽出して回収できるようにしている。
【0043】
すなわち、炭化炉1から出る燃焼排ガスは、該接続口36bに導くことにより、図9の実線矢印にて示すように、抽出室60内の上部に流入して当該抽出室60内を螺旋状に流下し、その底部より二重管63の内筒63a内へ流入して上昇し、送気ファン37を介してガス再燃焼炉5への送気管38へ送られるが、抽出室60内を螺旋状に流下する過程で内外の水冷ジャケット6b,6aを流通する冷却水と熱交換して降温し、この降温に伴って含まれていた酢酸を主体とした揮発成分が凝縮する。しかして、この凝縮成分は木酢液や竹酢液として図示破線矢印のように抽出室60の底部に溜まるから、これを開閉バルブ付き液導出口60aより流出させて下方に配置した容器82に回収できる。
【0044】
なお、前記実施形態の炭化装置においては、炉本体10の底部に、複数の空気導入孔13a…を設けた内底板13と下位の外底板14との間で構成される着火室15を設け、この着火室15に空気取入れ口17a及び着火用熱源導入口15aを設けているから、炭化処理の開始時に着火用熱源導入口15aに着火用熱源を導入した際、その燃焼ガスが着火室15全体に行き渡り、炉内空間10a内に装填された炭化用材料T…の堆積層は下面全体に均等に着火すると共に、空気取入れ口17aより流入する空気も着火室15全体から炉内空間10a内に均等に供給され、もって炭化用材料T…の熱分解及び自発燃焼が堆積層の下面全体から上方へ均等に効率よく進むことになる。
【0045】
また、この実施形態の炭化装置では、内底板13は外周部を炉本体10内の底部側周面に設けた底板受け部11c上に非固定状態に載置されているから、該内底板13が炭化処理時の熱膨張と処理後の収縮による寸法変化を繰り返しても、それ自体が変形したり炉本体10の周壁部11を歪ませたりすることがなく、もって炭化炉1は耐久性が向上して長寿命となる。更に、加熱排気筒2の外筒22は、非固定で環状受け板20上に載置され、炉本体10に対しては非固定であるため、煤等の蓄積によって排気導入孔24…の詰まりを生じたり、当該外筒22や内筒23の内外周面の被着物が多くなった際、材料出入口1a側から外筒22を簡単に引き抜いて清掃できると共に、この引き抜きによって露呈した内筒23も容易に清掃できることになる。
【0046】
更に、この実施形態の炭化装置においては、炉本体10の二重壁をなす周壁部11がの内外金属板11a,11b間にガラスウールからなる断熱材9aを装填すると共に、該炉本体10の内周面に金属製押さえネット12を介してロックウールからなる断熱材9bを張設していることから、該周壁部11を通した外部への放熱が抑えられ、それだけ炭化処理の熱効率が向上すると共に、該周壁部11の内外金属板11a,11bの高温化、とりわけ内側金属板11aの高温化に伴う熱劣化が防止され、それだけ炉本体10は耐久性が増して長寿命になるという利点がある。
【0047】
使用する炭化用材料Tとしては、木片、竹片、ナッツ類の殻の如き堅果殻等が挙げられ、これらは混合形態でも使用できると共に、大きさが不揃いであっても全く支障はない。また木片や竹片については、各種木竹製品の廃材、製材工程や加工工程で生じる不要な端材や残材、削り屑、剪定の切り枝、刈り取った柴等、従来では廃棄・焼却処分の対象であったものも使用可能である。
【0048】
前記実施形態の炭化装置は付属設備として木酢液抽出器6及びクーリングタワー7を備えるが、本発明の炭化装置は、これら付属設備を備えない構成でもよいし、排ガス熱を利用する温水器や乾燥器等の様々な他の付属設備を有する構成としてもよい。また、炭化炉1については、前記実施形態では傾倒可能な枢支型にしているが、固定型として既述のような収納籠90を利用して炭化用材料T…の装填と炭化物の取り出しを行うようにしてもよく、この固定型では蓋板4を炉本体10に枢着した構造でも差し支えない。そして、加熱排気筒2は、炉本体10内に複数本立設した構造とすることも可能である。
【0049】
更に、炉本体10の空気取入れ口17aに対する空気供給量調整手段は、前記実施形態における流量調整弁56等を用いた自動調整によるものに限らず、手動バルブやダンパー等による手動調整を行うものでもよい。また、炉本体10における二重壁をなす周壁部11内部に装填する断熱材9aと、該周壁部11の内周面に張設する断熱材9bは、例示したガラスウールやロックウールに限らず、これら以外の高融点の無機繊維も使用できる。その他、本発明の炭化装置における各部の形態、相互の連結構造、管路構成、送気ファンや開閉弁の設置位置等、細部構成については実施形態以外に種々設計変更可能である。
【0050】
【発明の効果】
請求項1の発明によれば、内底部に複数の空気導入孔を有する略密閉式の炉本体と、その上部の材料出入口を開閉する蓋板と、炉本体内に立設されて上端が炉本体天井部近傍に達する加熱排気筒と、前記空気導入孔への空気を供給する空気取入れ口及び空気供給量調整手段とを有する炭化炉を備えた炭化装置において、前記加熱排気筒を同心状に配置した外筒と内筒とからなる二重筒構造とし、その外筒が下部に炉内空間に連通する排気導入孔を有して上部を閉塞し、内筒が上端を外筒内の頂部近傍で開口して下端を炉外への排気路に連通する構成としているから、炭化用材料の自発燃焼にて発生する高温の燃焼排ガスが前記加熱排気筒内を上下往復して炉外へ出ることになり、燃焼排ガスから加熱排気筒への熱伝播量が多くなり、それだけ高い熱効率が得られる上、加熱排気筒全体の蓄熱による赤熱化が急速に進行し、この加熱排気筒からの熱放射によって炉内温度が早く上昇し、もって炭化用材料の熱分解及び自発燃焼が促進され、完全炭化に要する時間が短縮されて高い炭化処理能率を達成できる。
【0051】
請求項2の発明によれば、上記炭化装置において、炉本体の底部に、前記複数の空気導入孔を設けた内底板と下位の外底板との間で構成される着火室を備え、この着火室に前記空気取入れ口及び着火用熱源導入口が設けていることから、着火用熱源導入口に着火用熱源を導入した際の燃焼ガスが着火室全体に行き渡り、炉本体に装填した炭化用材料の堆積層が下面全体から均等に着火すると共に、空気取入れ口より流入する空気も着火室全体から炉内空間内に均等に供給され、もって炭化用材料の熱分解及び自発燃焼が堆積層の下面全体から上方へ均等に効率よく進み、より高い炭化処理能率が得られる。
【0052】
請求項3の発明によれば、上記炭化装置において、炉本体内の底部側周面に底板受け部を有し、該底板受け部上に前記内底板が外周部を非固定状態に載置していることから、該内底板が炭化処理時の熱膨張と処理後の収縮による寸法変化を繰り返しても、それ自体が変形したり炉本体の周壁部を歪ませたりすることがなく、もって炭化炉は耐久性が向上して長寿命となる。
【0053】
請求項4の発明によれば、上記炭化装置において、前記炭化炉から排出される燃焼排ガスを再燃焼させるガス再燃焼炉を有することから、ガス中に微量の有機物が付随していても完全に分解され、最終的に外部へ排出される排ガスは無毒無臭になって環境への負荷を与えない。
【0054】
請求項5の発明によれば、上記のガス再燃焼炉を有する炭化装置において、炭化炉へ供給する導入外気をガス再燃焼炉から排出される高温排ガスとの熱交換によって昇温させる熱交換部を備えることから、炭化処理の熱効率が更に向上し、炉本体内での炭化用材料の熱分解及び自発燃焼がより効率よく進むと共に、排ガスの熱利用によって炭化装置全体としても熱エネルギーの無駄が少なくなる。
【0055】
請求項6の発明によれば、上記炭化装置において、炉本体の周壁部が二重壁をなし、その内外壁間に無機繊維からなる断熱材が装填されると共に、該炉本体の内周面に無機繊維からなる断熱材が金属製押さえネットを介して張設されていることから、該周壁部を通した外部への放熱が抑えられ、それだけ炭化処理の熱効率が向上すると共に、該周壁部の金属板の高温化に伴う熱劣化が防止され、それだけ炉本体は耐久性が増して長寿命になる。
【0056】
請求項7の発明によれば、上記炭化装置において、炉本体の上面側全体が前記材料出入口を構成し、該炉本体の中心部に1本の前記二重筒をなす加熱排気筒が立設される一方、中央に該加熱排気筒を挿入させる筒状部を有する横断面ドーナツ形の材料収容籠を備え、炭化用材料を該材料収容籠内に収容した状態で炉本体内に装填するように構成されているから、加熱排気筒の赤熱化によって炉内空間全体が中心部からの均等な熱放射で偏りのない加熱状態となり、もって均質な高品位の炭化物が得られることに加え、前記収納籠によって炭化用材料の装填と処理後の炭化物の取出しを一括して行えると共に、該収納籠の炉本体に対する出入にクレーン等の機械力を利用でき、もって前記装填及び取出しの作業性が著しく向上し、とりわけ炭化炉が大型の場合に好都合となる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る炭化装置全体の平面図である。
【図2】同炭化装置の側面図である。
【図3】同炭化装置の正面図である。
【図4】同炭化装置の背面図である。
【図5】同炭化装置における炭化炉の図3A−A線による矢視側面図である。
【図6】同炭化炉の縦断側面図である。
【図7】同炭化炉の図6B−B線による横断平面図である。
【図8】同炭化炉の下部の縦断正面図である。
【図9】同炭化装置における木酢液抽出器の縦断側面図である。
【図10】同炭化装置における収納籠を利用した炭化用材料の装填操作を示す斜視図である。
【符号の説明】
1 炭化炉
1a 材料出入口
2 加熱排気筒
3 排気管
4 蓋板
5 ガス再燃焼炉
6 木酢液抽出器
9a,9b 断熱材
10 炉本体
10a 炉内空間
11 周壁部
11a 内側金属板(内壁)
11b 外側金属板(外壁)
11c 底板受け部
12 抑えネット
13 内底板
13a 空気導入孔
14 外底板
15 着火室
15a 着火用熱源導入口
16 エルボ管(着火部)
17a 空気取入れ口
22 外筒
23 内筒
24 空気導入孔
53 熱交換ジャケット(熱交換部)
56 流量調整弁(空気供給量調整手段)
80 金属製収納籠
80b 内筒部(筒状部)
T 炭化用材料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbonization device for spontaneously burning and carbonizing a vegetable material such as a piece of wood or bamboo in an oxygen-deficient state.
[0002]
[Prior art]
In recent years, charcoal and other types of charcoal have attracted attention for their excellent properties such as humidity control, deodorization, negative ion release, harmful substance adsorption, fungicidal and anti-mite properties. In addition to placing it under the floor, placing it in a rice cooker, immersing it in drinking water or bath water, etc., it also uses shredded or powdered building materials such as wall materials, ceiling materials, flooring materials, sliding doors and so on. Products in the form of sandwiches such as partitions and tatami mats, and those stored inside beddings such as futons have also been commercialized, and are further used for soil modification, mixed with resins and ceramic materials, etc. Applications are expanding in various fields, and the demand is increasing.
[0003]
However, charcoal produced by a classic charcoal kiln is dense and hard, as typified by Bincho charcoal, and is not suitable for applications such as deodorants, adsorbents, or soil modifiers. It takes a lot of time and effort, is poor in mass productivity, has a low profitability, is limited in terms of raw materials, is expensive, and has a great limitation on the location of the pot.
[0004]
Therefore, the inventor of the present invention first provided, as a carbonization device, a heating tube for carbonization having a hot air introduction hole at the bottom inside a furnace body having an opening at the upper end with an access port with an open / close lid. From the vicinity of the upper end opening, a cross-section tube extending from the vicinity of the upper end opening and extending across the furnace body passes through the side wall of the furnace body and is piped to the outside as an exhaust cylinder, and at the bottom of the furnace body, It has been proposed to provide an air inlet (Patent Document 1).
[0005]
According to this carbonization device, the carbonization material loaded in the furnace body is ignited from the bottom side and spontaneously combusts in a state of oxygen shortage. The carbonization material is heated by the hot air rising from below and the hot air radiated from the red-hot carbonization heating cylinder to the surroundings, thermally decomposes, further reaches the self-combustion temperature, and spontaneously burns.・ The increase in combustion gas accompanying the expansion of the pyrolysis region produces a synergistic effect of raising the temperature of the heating tube for carbonization and increasing the heat radiation, thereby accelerating the progress of the pyrolysis reaction and expanding the spontaneous combustion region, and loading The whole amount of the carbonized material thus carbonized will be carbonized in a short time.
[0006]
In addition, such a carbonizing device can use various raw materials as a carbonizing material, and is excellent in deodorizing performance and adsorptive performance, and can mass-produce soft quenched carbon which is easy to pulverize in a short period of time. Since it has many advantages that it is simple and is not restricted by the installation place, it has already been put to practical use and has been well received.
[0007]
[Patent Document]
JP-A-2003-119468
[0008]
[Problems to be solved by the invention]
However, even in the above-mentioned carbonization apparatus, there is still room for improvement in terms of thermal efficiency and operability, and it is necessary to efficiently carbonize in a shorter time in order to reduce coal production cost and improve workability. Is required. For example, in the carbonization device, an exhaust passage from the heating tube for carbonization to the outside is not directly led out above the furnace main body, but is connected to an external exhaust passage through a transverse tube, so that a high-temperature combustion gas is removed. Although the heat loss is suppressed by lengthening the discharge path in the furnace main body to promote red heating by the heat storage of the heating cylinder, the amount of heat taken out of the furnace from the exhaust path is still large, and the furnace temperature It takes a long time for carbonization due to the delay in ascent, and when loading the carbonizing material into the furnace body and taking out the obtained carbide, the transverse cylinder arranged radially near the inlet / outlet obstructs work. There was a difficulty that it was difficult.
[0009]
In view of the above situation, the present invention provides a simple and effective improvement to the carbonization device according to the above proposal, thereby further shortening the carbonization time by a very high thermal efficiency and thereby further reducing the coal production cost. An object of the present invention is to make it possible to improve the workability of loading the carbonizing material and taking out the obtained carbide, and to reduce the equipment cost by simplifying the apparatus configuration.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a carbonization apparatus according to claim 1 of the present invention is provided with a substantially closed furnace body 10 having a plurality of air introduction holes 13a at an inner bottom, as shown by reference numerals in the drawings. A cover plate 4 for opening and closing the material inlet / outlet 1 a provided at an upper portion of the furnace body 10, a heating / exhaust tube 2 erected inside the furnace body 10 and having an upper end reaching near the ceiling of the furnace body 10, The carbonization furnace 1 includes an air inlet 17a for supplying air to the air inlets 13a, and an air supply amount adjusting means (flow rate adjusting valve 56) for the air inlet 17a. A double cylinder consisting of an outer cylinder 22 having a lower portion provided with exhaust introduction holes 24 communicating with the furnace space 10a and having an upper portion closed, and an inner cylinder 23 arranged concentrically in the outer cylinder 22 is formed. The upper end of the inner cylinder 23 opens near the top in the outer cylinder 22. At the same time, the lower end communicates with the exhaust path 3 to the outside of the furnace, and the bottom side of the furnace main body 10 is used as an ignition portion (elbow tube 16) to convert the carbonizing materials T loaded in the furnace main body 10 into oxygen. It is configured so that it is spontaneously burned in a shortage state and carbonized.
[0011]
The invention according to claim 2 is the carbonization device according to claim 1, wherein an inner bottom plate 13 provided with the plurality of air introduction holes 13 a at the bottom of the furnace main body 10 and an outer bottom plate disposed below the inner bottom plate 13. The ignition chamber 15 includes an air intake 17a and an ignition heat source inlet 15a. According to a third aspect of the present invention, in the carbonization apparatus according to the second aspect, a bottom plate receiving portion 11c is provided on a bottom side peripheral surface in the furnace main body 10, and the inner bottom plate 13 is provided on the bottom plate receiving portion 11c with an outer peripheral portion. Are mounted in a non-fixed state.
[0012]
According to a fourth aspect of the present invention, there is provided the carbonization apparatus according to any one of the first to third aspects, further including a gas reburning furnace 5 for reburning the combustion exhaust gas discharged from the carbonization furnace 1. According to a fifth aspect of the present invention, in the carbonization apparatus according to the fourth aspect, outside air supplied to the air intake 17a of the carbonization furnace 1 is exchanged with high-temperature exhaust gas discharged from the gas reburning furnace 5 by heat exchange. A heat exchange unit (heat exchange jacket 53) for increasing the temperature is provided.
[0013]
The invention according to claim 6 is the carbonization device according to any one of claims 1 to 5, wherein the peripheral wall portion 11 of the furnace main body 10 forms a double wall, and the inorganic fibers are formed between the inner and outer walls (inner and outer metal plates 11a and 11b). And a heat insulating material 9b made of inorganic fibers is stretched on the inner peripheral surface of the furnace body 10 via a metal holding net 12.
[0014]
The invention according to claim 7 is the carbonization apparatus according to any one of claims 1 to 6, wherein the entire upper surface side of the furnace main body 10 constitutes the material inlet / outlet 1a. The heating / exhaust tube 2 forming a heavy cylinder is provided upright, and a donut-shaped metal storage basket 80 having a tubular section (inner cylindrical portion 80b) at the center for inserting the heating / exhaust tube 2 from below is provided. , And the carbonizing materials T are loaded into the furnace main body 10 in a state of being stored in the storage basket 80.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, one embodiment of a carbonization device according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a plan view of the entire carbonizing apparatus including accessory equipment, FIG. 2 is a side view, FIG. 3 is a front view, and FIG. 4 is a rear view. 1 to 4, reference numeral 1 denotes a carbonization furnace, 5 denotes a gas reburning furnace, 6 denotes a wood vinegar extractor, 7 denotes a cooling tower, and C denotes a control box, which are installed on a rectangular base frame 8. I have.
[0016]
As shown in detail in FIGS. 5 to 8, the carbonization furnace 1 has a furnace main body 10 formed in a vertical cylindrical shape with a bottom and having an upper end opening as a material entrance 1 a, and a central portion in the furnace main body 10. The heating exhaust pipe 2 is provided upright, an exhaust pipe 3 connected to the heating exhaust pipe 2 and extending from the bottom of the furnace main body 10, and a cover plate 4 for closing the material port 1 a of the furnace main body 10. ing.
[0017]
The furnace body 10 has a double wall structure in which a peripheral wall portion 11 is provided with a heat insulating material 9a made of glass wool between inner and outer metal plates 11a and 11b, and a heat insulating material made of rock wool is formed on the inner peripheral surface of the peripheral wall portion 11. 9b is stretched through a metal holding net 12, and an ignition chamber 15 is formed at the bottom between an inner bottom plate 13 and an outer bottom plate 14, both of which are made of metal, and a lower surface of a rightward portion of the outer bottom plate 14 is formed. An elbow pipe 16 having one end fixed to the side and extending to the right outside is provided. The elbow pipe 16 forms an ignition heat source introduction port 15a communicating with the ignition chamber 15, and is shorter than the side outside along the front-rear direction. An air supply pipe 17 penetrates through the peripheral wall portion 11 and protrudes into the ignition chamber 15, and an inner end opening thereof forms an air supply port 17a. The ignition heat source inlet 15a can be opened and closed by a cover plate 18 which is attached to and detached from the outer end flange portion 16a of the elbow pipe 16 via screw fasteners 18a, 18a.
[0018]
The inner bottom plate 13 of the furnace main body 10 has a donut plate shape, and has a large number of air introduction holes 13a formed on the entire surface thereof. Are fixed by welding, and the outer peripheral portion is provided on the inner periphery of the furnace main body 10 in a state where the inner peripheral portion is screwed to the upper flange 19a of the short metal cylinder 19 disposed at the center of the furnace main body 10. It is placed in a non-fixed state on bottom plate receiving portions 11c. The outer bottom plate 14 of the furnace main body 10 has a donut plate shape like the inner bottom plate 13, but is welded and fixed to the peripheral wall portion 11 at the outer peripheral portion. The short cylindrical body 19 is fixed to the outer bottom plate 14 via bolts and nuts 21a at the lower flange 19b thereof, integrally with the metal annular receiving plate 20 disposed on the lower surface side of the outer bottom plate 14. I have.
[0019]
The heating exhaust cylinder 2 has a metal outer cylinder 22 having a height such that the upper end closed by the end plate 22a reaches the vicinity of the material port 1a of the furnace main body 10, and is disposed concentrically within the outer cylinder 22 and has an upper end. Form a double cylinder composed of a metal inner cylinder 23 opening near the closed upper end of the outer cylinder 22, and a large number of exhaust introduction holes 24 are formed around the lower part of the outer cylinder 22 facing the furnace space 10a. Is established. Thus, the outer cylinder 22 was screwed in from the outside, with the lower part inserted through the inside of the short cylindrical body 19 and the lower end placed on the annular receiving plate 20 in the upper part, equally spaced in the circumferential direction. By setting the tips of the plurality of screw-shaped pins 25 to abut against the inner cylinder 23, it is set so as to maintain the concentric state with respect to the inner cylinder 23. On the other hand, the inner tube 23 is connected to the flange 23a provided at the lower end thereof together with the connection flange 30 of the exhaust pipe 3 on the lower surface side of the annular receiving plate 20 via mounting bolts 21b. Are integrally fixed to the furnace main body 10 in a state of communicating with the furnace main body 10. The annular space 2a between the outer cylinder 22 and the inner cylinder 23 is closed from the outside of the furnace by the connection between the flange portion 23a of the inner cylinder 23 and the annular receiving plate 20.
[0020]
The exhaust pipe 3 includes a horizontal pipe portion 3a extending rearward from the center below the furnace main body 10, and a vertical pipe portion 3b extending upward from the rear end of the horizontal pipe portion 3a in proximity to the outer peripheral surface of the furnace main body 10. The flexible connection pipe 31 to be connected to the exhaust treatment path is detachably connected to the rear side of the upper end of the vertical pipe section 3b via a clamp band 31a. . Further, a temperature sensor S1 for measuring the temperature of the combustion exhaust gas passing through the inside of the vertical pipe portion 3b is provided. A cheese pipe 32 is used at the front end of the horizontal pipe 3a, the connection between the horizontal pipe 3a and the vertical pipe 3b, and the upper end of the vertical pipe 3b. By closing the branch opening 32a of the non-connecting portion with the cap 33, the cap 33 is removed during furnace shutdown so that the inside of the pipe can be easily cleaned.
[0021]
Thus, trapezoidal support frames 26a, 26b are erected on both left and right sides of the furnace body 10, and the bearing bodies 27a, 27b provided at the upper ends of the support frames 26a, 26b are slightly closer to the lower part of the furnace body 10. By pivotally supporting the pivots 28, 28 protruding on the left and right sides of the position, the furnace main body 10 is placed on both support frames 26a, 26b in the upright posture shown by the solid line in FIG. It is supported to be convertible to. Reference numeral 29 denotes a posture changing handle that protrudes from the gear box 34 on the bearing 27b side. The rotation of the handle causes the furnace body 10 to communicate with the exhaust pipe 3 via a worm reduction gear mechanism (not shown) in the gear box 34. It turns up and down together.
[0022]
The cover plate 4 is formed separately from the furnace main body 10 into a circular thick plate having a heat insulating material 9a made of glass wool interposed between metal front and back plates 41a and 41b. A pair of right and left columns 42a and 42b are provided upright at the rear of the furnace body 10, and a pair of right and left inverted V-shaped mounting arms 44 and 44 are provided on a pivot 43 provided between upper portions of both columns 42a and 42b. A fixing plate 44 is fixed at an intermediate portion, the cover plate 4 is attached to the front ends of the mounting arms 44, 44, and a prismatic balance weight 45 is fixed to the rear ends of the mounting arms 44, 44. A gear box 45 forming a bearing of the pivot 43 is provided at the upper end of the right column 42b, and the worm reduction in the gear box 45 is performed by rotating a cover opening / closing handle 46 protruding from the gear box 45. The pivot 43 rotates integrally with the two mounting arms 44, 44 via a gear mechanism (not shown), whereby the cover plate 4 is switched between the closed position shown by the solid line in FIG. 5 and the open position shown by the imaginary line in FIG. It is configured as follows.
[0023]
A plurality of tightening screw-type clamps 35 are pivotally attached to the periphery of the material entrance 1a of the furnace main body 10 at regular intervals so as to be able to be turned upside down and rotatable. A grooved projection 47 corresponding to each clamp 35 is provided in a projecting manner. With the cover plate 4 covering the material entrance 1a, the shaft of each clamp 35 is engaged with the groove of the grooved projection 47. The cover plate 4 is set in such a manner that the cover plate 4 is pressed against the material port 1a to be in a sealed state by being inserted and turning the screw portion to tighten. In FIGS. 2, 3, 5, and 6, only two sets of the clamp 35 and the grooved projection 47 are shown to avoid complicating the drawings.
[0024]
As shown in FIGS. 1 and 2, an upper pipe connection port 36a for directly sending combustion exhaust gas from the carbonization furnace 1 to the gas reburning furnace 5 is provided at an upper portion of the wood vinegar liquid extractor 6, and the combustion exhaust gas. And a lower pipe connection port 36b for sending the gas to the gas reburning furnace 5 through the wood vinegar liquid extractor 6, and the outlet of the exhaust pipe 3 of the carbonization furnace 1 is connected to the flexible connection pipe 31. , One of the two pipe connection ports 36a and 36b can be selected and connected. When the flue gas from the carbonization furnace 1 flows into either of the two pipe connection ports 36a and 36b, the combustion exhaust gas flows through the air supply fan 37 provided at the top of the wood vinegar liquid extractor 6 in FIGS. The gas is supplied to the lower part in the gas reburning furnace 5 through an air supply pipe 38 shown in FIG. At the top end of the air supply pipe 38, a temporary exhaust port 39 with a manual opening / closing valve 39a is provided.
[0025]
The gas reburning furnace 5 completely decomposes trace organic substances and the like contained in the combustion exhaust gas from the carbonization furnace 1 by setting the inside to a high-temperature combustion state by the ignition of the attached kerosene burner 50, and thus the exhaust gas is removed. It functions to make it harmless and odorless, and the temperature inside the furnace is measured by a thermometer 51. As shown in FIG. 4, outside the exhaust pipe 52 extending from the upper part of the gas reburning furnace 5, a heat exchange having a ventilation path 53 a helically circulating around the exhaust pipe 52 is provided inside. A jacket 53 is provided. An air inlet 54 a that opens to the outside is provided below the heat exchange jacket 53, and an air outlet 54 b in the upper part is connected to an air supply pipe 55 to the carbonization furnace 1. Therefore, during the operation of the carbonization furnace 1, the air supplied to the ignition chamber 15 of the carbonization furnace 1 is taken in from the air inlet 54 a of the heat exchange jacket 53, and is exhausted while passing through the ventilation path 53 a of the heat exchange jacket 53. It exchanges heat with the high-temperature exhaust gas passing through the cylinder 52 and flows into the ignition chamber 15 from the air supply port 17a through the air supply pipe 55 in a state where the temperature is raised.
[0026]
The air supply pipe 55 includes a vertical pipe 55a descending from the heat exchange jacket 53 side and a horizontal pipe 55b extending forward from the lower end thereof along the base frame 8, and a front end of the horizontal pipe 55b. A flow control valve 56 is interposed on the side. A flexible connection pipe 57 is connected to a front end of the horizontal pipe 55b, and a free end of the flexible connection pipe 57 is connected to the outside of the air supply pipe 17 of the carbonization furnace 1 through a clamp band 57a. A temperature sensor S2 for measuring the temperature of the air passing through the air supply pipe 55 is provided in front of the flow control valve 56, as shown in FIG. At the same time, a pipe 55c having a distal end forming an auxiliary air supply port 58 with a manual opening / closing valve 58a is connected to the upstream side of the temperature sensor S2.
[0027]
The flow control valve 56 controls the temperature of the combustion exhaust gas measured by the temperature sensor S1 of the exhaust pipe 3 based on control data previously input to a control device (not shown) in the control box C, The opening degree is automatically adjusted by a command signal from the control device in accordance with the temperature of the supply air measured, the elapsed time from the start of the processing, and the like, thereby increasing or decreasing the air supply amount into the carbonization furnace 1. It is set as follows.
[0028]
As shown in FIG. 9, the wood vinegar liquid extractor 6 has an outer water-cooled jacket 6a formed between a funnel-shaped inner casing 61 and a bottomed cylindrical outer casing 62 as shown in FIG. An inner water-cooling jacket 6b is formed between the inner tube 63a and the outer tube 63b of the double tube 63 arranged along the vertical direction of the center of the inside of the tube 61, and the outer tube 63b of the double tube 63 and the inner casing 61 The space between them is an extraction chamber 60 provided with a spiral fin 64. The extraction chamber 60 is provided with a liquid outlet port 60a with an open / close valve which communicates with the lower pipe connection port 36b at the upper part and which projects downward through the outer casing 61 at the center of the bottom. The lower end of the inner cylinder 63a is open to the vicinity of the bottom. Thus, the inner tube 63a of the double tube 63 protrudes upward and outward as an exhaust tube, and is connected to the air supply tube 38 to the gas reburning furnace 5 through the air supply fan 37, as shown in FIG. Although omitted, the upper pipe connection port 36b (see FIG. 2) communicates with the outwardly projecting portion.
[0029]
The upper end of the outer water-cooled jacket 6a and the upper end of the inner water-cooled jacket 6b are connected by a communication pipe 65, and the drain pipe 66 is connected to the upper end of the inner water-cooled jacket 6b. A water supply pipe 67 with an on-off valve 67a is connected to the lower end. The drain pipe 66 and the water supply pipe 67 are connected to the cooling tower 7, and the cooling water is circulated and cooled by passing the cooling water through the cooling jackets 6a and 6b by the operation of the pump 7a (see FIG. 1) of the cooling tower 7. It has become. In FIG. 9, reference numeral 81 denotes a frame on which the wood vinegar liquid extractor 6 is installed, 82 denotes a container for collecting the wood and bamboo vinegar liquid drawn out from the liquid outlet 60 a, and 83 denotes a container on which the container 83 is carried. It is a trolley for
[0030]
In order to produce carbide by the carbonization apparatus having the above configuration, first, the cover plate 4 of the carbonization furnace 1 is opened, and a carbonization material T such as wood or bamboo chips is introduced from the material entrance 1a, as shown in FIG. To the furnace space 10a of the furnace body 10 as described above. Thereafter, the cover plate 4 is closed, and is fixed to the furnace main body 10 with clamp fittings 35..., And an ignition heat source such as a flame of the gas burner G is introduced into the open ignition heat source inlet 15 as shown in FIG. I do. As a result, the combustion gas of the ignition heat source and the heated air fill the ignition chamber 15 in a mixed state, and further enter the furnace space 10a through the air introduction holes 13a of the inner bottom plate 13 and thereby carbonize the lowermost portion. The material for use T is ignited, and thermal decomposition by spontaneous combustion is started. Thus, the ignition heat source inlet 15a is closed by the cover plate 18 when the lowermost carbonizing material T starts spontaneous combustion.
[0031]
With the start of the spontaneous combustion, the generated high-temperature combustion gas rises through the gap between the carbonizing materials T and propagates the hot air from below to above, and a part of the combustion gas is exhausted from the exhaust inlet 24. .. Are drawn into the annular space 2a between the outer cylinder 22 and the inner cylinder 23 of the heating / exhaust cylinder 2 and ascend the annular space 2a and flow into the inner cylinder 23 at the top of the heating / exhaust cylinder 2; It descends inside the inner cylinder 23 and flows out to the exhaust pipe 3. Then, the lower part of the outer cylinder 22 of the exhaust pipe 2 is heated from both the inner and outer sides by the hot air of the combustion gas passing through the heated exhaust pipe 2 and the hot air generated by the spontaneous combustion of the surrounding carbonizing materials T. I do. Further, as the spontaneous combustion in the furnace interior space 10a expands, the reddish portion of the outer cylinder 22 gradually expands upward due to the increased hot air and heat storage of the combustion gas, and the inner cylinder 23 also begins to glow red. The entire heating exhaust pipe 2 becomes red hot.
[0032]
As a result, the carbonizing materials T in the furnace space 10a are heated by the hot air rising from below and the hot air radiated from the heated exhaust pipe 2 to the surroundings, and the lower side and the center of the deposited layer are heated. Pyrolysis starts from both sides, reaches the self-combustion temperature, and burns spontaneously. As the area of the spontaneous combustion / pyrolysis expands, the heated exhaust pipe 2 further increases the temperature of both the outer cylinder 22 and the inner cylinder 23 due to the increase of the inflowing combustion gas, thereby increasing the heat radiation to the surroundings. As a result, the progress of the thermal decomposition reaction of the carbonizing material T and the expansion of the spontaneous combustion region are accelerated, and the entire furnace interior space 10a eventually becomes a uniform high temperature state, and all of the loaded carbonizing material T is thermally decomposed and carbonized. I do.
[0033]
In the carbonization process, air is sucked from the air supply port 17 a into the ignition chamber 15 with the discharge of the combustion exhaust gas from the heating exhaust pipe 2. By limiting with the valve 56, the furnace space 10a is maintained in an oxygen-deficient state. Accordingly, the carbonizing material T continues to thermally decompose in a state where the carbon component hardly burns due to incomplete combustion, and eventually carbonizes completely inside.
[0034]
Further, since the furnace temperature of the carbonizing furnace 1 changes depending on the increase or decrease of the amount of air supplied into the ignition chamber 15 from the air supply port 17a, it can be adjusted by opening and closing the flow control valve 56 and changing the opening degree. The opening and closing of the flow control valve 56 and the adjustment of the opening degree are performed by obtaining processing temperature conditions according to the type and size of the carbonizing material T to be used, the water content, the charged amount, and the like based on test data obtained in advance. This is input to a control device (not shown) in the control box C as control data associated with the temperature measured by the temperature sensors S1 and S2 and the furnace temperature, and is input by a command signal from the control device. What is necessary is just to set it to perform automatically.
[0035]
When general wood chips or bamboo chips are used as the carbonizing material T, the furnace temperature may be set so as to normally be maintained at about 350 ° C. to 500 ° C., but spontaneous combustion is particularly activated in the initial stage. For this purpose, for example, conditions may be set such that the temperature temporarily reaches nearly 1000 ° C. within one hour from the start of processing. In addition, the temperature of the combustion exhaust gas measured by the temperature sensor S1 is a value that is generally several hundred degrees Celsius lower than the furnace temperature. Thus, if the treatment temperature conditions can be set arbitrarily as described above, carbides of the same quality can always be produced as long as the types of carbonizing materials T are the same. However, it is also possible to produce carbides having different properties by using different pyrolysis temperatures even if they are the same.
[0036]
When the thermal decomposition of the carbonizing material T ends, the temperature of the combustion exhaust gas rapidly decreases. Therefore, the completion of the carbonization can be determined by detecting the temperature by the temperature sensor S1. After the completion of the carbonization, the flexible connection pipes 31 and 57 connected to the exhaust pipe 3 and the air supply pipe 17 are detached after the temperature of the generated carbide is lowered to some extent, and the clamp tool 35 is removed to remove the handle 46. 5, the lid 4 is opened as shown by the imaginary line in FIG. 5, an appropriate container or sheet is arranged in front of the furnace main body 10, and the handle 29 is operated to move the furnace main body 10 into the same phantom line. As shown in the figure, the body is tilted forward until it is slightly lower than the horizontal, and the generated charcoal such as charcoal or bamboo charcoal flows out, and if necessary, it can be scraped off with an appropriate tool.
[0037]
In the carbonization furnace 1, high-temperature flue gas generated by the spontaneous combustion of the carbonizing material enters the outer cylinder 22 from the lower part of the heating exhaust cylinder 2 having a double cylinder structure, rises from the inner top end, and rises. It flows into the inner cylinder 23, descends, and flows out of the furnace from the bottom of the furnace body 1. That is, the exhaust path of the combustion exhaust gas in the furnace main body 10 is about twice as long as a configuration in which the heating exhaust cylinder is connected to an exhaust pipe above the furnace main body as a single cylinder structure. Further, the length of the heating exhaust cylinder (heating cylinder for carbonization) is significantly longer than that of the prior art described above, in which the heating exhaust cylinder (carbonization heating cylinder) is connected to an external exhaust pipe via a radially traversing cylinder from the top. Therefore, in this carbonization treatment, the amount of heat transmitted from the combustion exhaust gas to the heating exhaust pipe 2 increases due to the long exhaust path, the amount of heat taken out of the furnace by the exhaust gas decreases accordingly, high thermal efficiency can be obtained, and the path can be improved. Is reciprocated up and down in the double cylinder, so that red heat is rapidly generated by the heat storage of the entire heating and exhausting cylinder 2, and the temperature in the furnace rises quickly due to heat radiation from the heating and exhausting cylinder 2, thus causing carbonization. The progress of thermal decomposition and spontaneous combustion of the materials T is promoted, the time required for complete carbonization is reduced, and a high carbonization efficiency can be achieved.
[0038]
Further, as in the present embodiment, the entire upper surface side of the furnace main body 10 constitutes the material inlet / outlet 1a, and the single heating / exhaust cylinder 2 forming the double cylinder is disposed at the center of the furnace main body 10. For example, after the entire heating exhaust tube 2 is red-heated, the entire furnace space 10a is in an evenly heated state by uniform heat radiation from the central portion, so that a uniform high-quality carbide can be obtained. In addition, it is possible to load the carbonizing material T... Into the furnace main body 1 and take out the processed carbide by using a metal storage basket 90 having a donut shape in cross section as shown in FIG. .
[0039]
In the storage basket 90, an outer cylindrical portion 90a and an inner cylindrical portion 90b are connected and integrated at a bottom portion not shown in the drawing and are opened upward, and a metal frame 91 for holding the cage form is provided. An outer diameter of the outer cylindrical portion 90 a is slightly smaller than an inner diameter of the furnace body 10, and an inner diameter of the inner cylindrical portion 90 b is It is set slightly smaller than the outer diameter. According to the storage basket 90, as shown in the drawing, the carbonizing material T is stored in the donut-shaped storage space in the cross section between the outer and inner cylinders 90a and 90b, and the crane is attached to the arc-shaped handle 93 attached to the upper edge. (Not shown) and the like. The heating and exhausting tube 2 is inserted into the inner cylindrical portion 90b from below with the hanging hook 94, and the storage basket 90 is loaded into the furnace main body 1, and the lid plate 4 (FIG. After the treatment, the storage basket 90 is lifted upward from the furnace main body 10 in the same manner as during loading without tilting the furnace main body 10 as described above. Since the whole amount of the carbide generated by the extraction and removal can be taken out at once, the workability is remarkably improved. Therefore, as the carbonization furnace 1 becomes larger, it becomes a great advantage that such a storage basket 90 can be used.
[0040]
In the configuration of the prior art carbonization apparatus having the transverse cylinder as in the carbonization furnace, the transverse cylinder also contributes to the thermal decomposition of the carbonizing material and the promotion of spontaneous combustion by heat radiation. In addition, it takes a long time, and the heat radiation is concentrated on the top part of the furnace space and a portion centered in one radial direction, so that the furnace space is not easily heated uniformly, and furthermore, the transverse tube becomes an obstacle. Therefore, such a storage basket cannot be used.
[0041]
On the other hand, the combustion exhaust gas discharged from the heating exhaust pipe 2 is sent to the gas reburning furnace 5 and recombusted as described above. Therefore, even if a trace amount of organic matter is included in the gas, it is completely decomposed. And the exhaust gas finally discharged to the outside becomes non-toxic and odorless. In this embodiment, the introduced outside air to be supplied to the carbonization furnace 1 is heated by heat exchange in the heat exchange jacket 53 using heat of the exhaust gas discharged from the gas reburning furnace 5. The thermal efficiency is further improved as compared with the case where cold outside air is directly taken in, the pyrolysis and spontaneous combustion of the carbonizing materials T in the furnace body 10 proceed more efficiently, and the entire carbonizing apparatus is utilized by utilizing the heat of the exhaust gas. Even so, waste of heat energy is reduced.
[0042]
By the way, as in the old years, as in the industrial practice of wood carbonization, the volatile components that evaporate as wood and bamboo are heated contain various useful organic components, mainly acetic acid. Wood vinegar is obtained from wood and bamboo vinegar is obtained from bamboo, and these are now valuable. Therefore, in the carbonization apparatus of this embodiment, the wood vinegar or bamboo vinegar is extracted by connecting the exhaust pipe 3 of the carbonization furnace 1 to the lower pipe connection port 36b passing through the wood vinegar liquid extractor 6. So that they can be collected.
[0043]
That is, the flue gas discharged from the carbonization furnace 1 is guided to the connection port 36b, and flows into the upper part of the extraction chamber 60 as shown by the solid line arrow in FIG. It flows down, flows into the inner cylinder 63a of the double pipe 63 from the bottom, rises, and is sent to the air supply pipe 38 to the gas reburning furnace 5 through the air supply fan 37, but spirals in the extraction chamber 60. During the cooling process, the temperature of the cooling water flowing through the inner and outer water-cooling jackets 6b and 6a is exchanged with the cooling water to lower the temperature, and the volatile component mainly composed of acetic acid is condensed with the cooling. Since this condensed component accumulates in the bottom of the extraction chamber 60 as a wood vinegar solution or a bamboo vinegar solution as shown by the dashed arrow in the figure, the condensed component flows out of the liquid outlet port 60a with an on-off valve and is collected in a container 82 disposed below. it can.
[0044]
In the carbonization apparatus of the above embodiment, an ignition chamber 15 is provided at the bottom of the furnace body 10 between the inner bottom plate 13 provided with a plurality of air introduction holes 13a. Since the ignition chamber 15 is provided with the air intake 17a and the ignition heat source inlet 15a, when the ignition heat source is introduced into the ignition heat source inlet 15a at the start of the carbonization process, the combustion gas is discharged to the entire ignition chamber 15. , The carbonized material T... Loaded in the furnace space 10a ignites uniformly over the entire lower surface, and air flowing in from the air intake 17a also flows from the entire ignition chamber 15 into the furnace space 10a. Thus, the pyrolysis and spontaneous combustion of the carbonizing materials T proceed uniformly and efficiently upward from the entire lower surface of the deposition layer.
[0045]
Further, in the carbonization device of this embodiment, the inner bottom plate 13 is placed in an unfixed state on the bottom plate receiving portion 11c provided on the bottom side peripheral surface in the furnace body 10 because the inner bottom plate 13 is not fixed. Does not deform itself nor distorts the peripheral wall portion 11 of the furnace body 10 even if the dimensional change due to the thermal expansion during the carbonization process and the shrinkage after the process is repeated. It is improved and has a long life. Further, since the outer cylinder 22 of the heated exhaust cylinder 2 is mounted on the annular receiving plate 20 in a non-fixed manner and is not fixed to the furnace main body 10, the exhaust introduction holes 24 are clogged due to accumulation of soot and the like. Or when the amount of adhered substances on the inner and outer peripheral surfaces of the outer cylinder 22 and the inner cylinder 23 increases, the outer cylinder 22 can be easily pulled out from the material entrance 1a side for cleaning, and the inner cylinder 23 exposed by this pulling out can be cleaned. Can also be easily cleaned.
[0046]
Further, in the carbonizing apparatus of this embodiment, a heat insulating material 9a made of glass wool is loaded between the inner and outer metal plates 11a and 11b of the peripheral wall portion 11 forming the double wall of the furnace body 10, and the furnace body 10 Since the heat insulating material 9b made of rock wool is stretched on the inner peripheral surface via the metal holding net 12, heat radiation to the outside through the peripheral wall portion 11 is suppressed, and the thermal efficiency of the carbonization process is improved accordingly. At the same time, it is possible to prevent the inner and outer metal plates 11a and 11b of the peripheral wall portion 11 from being heated to a high temperature, and in particular to prevent the heat deterioration due to the high temperature of the inner metal plate 11a, so that the furnace body 10 has increased durability and a longer life. There is.
[0047]
Examples of the carbonizing material T to be used include wood chips, bamboo chips, nut shells such as nut shells, and these can be used in a mixed form, and there is no problem even if the sizes are not uniform. In the case of wood chips and bamboo chips, waste wood and bamboo products have been conventionally discarded and incinerated, such as waste wood and bamboo scraps, unnecessary cuttings and remaining materials generated in the sawing and processing processes, shavings, pruned cuttings, and cut grass. What was the target can also be used.
[0048]
Although the carbonization apparatus of the embodiment includes the wood vinegar liquid extractor 6 and the cooling tower 7 as accessory equipment, the carbonization apparatus of the present invention may be configured without these accessory equipment, or may be a water heater or a dryer using exhaust gas heat. It is good also as a structure which has various other accessory facilities, such as. In addition, the carbonizing furnace 1 is of a pivotable type that can be tilted in the above-described embodiment. However, as the fixed type, the loading of the carbonizing materials T... In this fixed type, a structure in which the cover plate 4 is pivotally attached to the furnace main body 10 may be used. The heating exhaust tube 2 may have a structure in which a plurality of heating exhaust tubes 2 are erected in the furnace main body 10.
[0049]
Further, the means for adjusting the amount of air supplied to the air inlet 17a of the furnace main body 10 is not limited to the means for performing automatic adjustment using the flow control valve 56 or the like in the above-described embodiment, but may be one for performing manual adjustment using a manual valve or a damper. Good. Further, the heat insulating material 9a loaded inside the peripheral wall portion 11 forming the double wall in the furnace body 10 and the heat insulating material 9b stretched on the inner peripheral surface of the peripheral wall portion 11 are not limited to the glass wool and the rock wool described above. Other high-melting inorganic fibers can also be used. In addition, the design of the detailed configuration such as the form of each part, the mutual connection structure, the pipe configuration, the installation position of the air supply fan and the on-off valve, and the like in the carbonization apparatus of the present invention can be variously changed in addition to the embodiment.
[0050]
【The invention's effect】
According to the first aspect of the present invention, a substantially hermetic furnace body having a plurality of air introduction holes in an inner bottom portion, a cover plate for opening and closing a material inlet / outlet at an upper portion thereof, and a furnace standing upright in the furnace body and having an upper end provided therein. In a carbonization apparatus having a heating exhaust cylinder reaching the vicinity of a main body ceiling portion, and a carbonization furnace having an air intake for supplying air to the air introduction hole and an air supply amount adjusting means, the heating exhaust cylinder is concentrically arranged. The outer cylinder has a double cylinder structure consisting of an outer cylinder and an inner cylinder.The outer cylinder has an exhaust introduction hole communicating with the furnace space in the lower part, and the upper part is closed. Since it is configured to open in the vicinity and communicate the lower end to the exhaust path to the outside of the furnace, high-temperature flue gas generated by the spontaneous combustion of the carbonizing material goes up and down in the heated exhaust cylinder to exit the furnace. As a result, the amount of heat transmitted from the combustion exhaust gas to the heated exhaust stack increases, In addition to high thermal efficiency, red heat is rapidly generated by the heat storage of the entire heating stack, and the temperature inside the furnace rises quickly due to heat radiation from the heating stack, thereby causing thermal decomposition and spontaneous combustion of the carbonizing material. Accelerated, the time required for complete carbonization is shortened, and a high carbonization efficiency can be achieved.
[0051]
According to the second aspect of the present invention, in the carbonization apparatus, an ignition chamber formed between the inner bottom plate provided with the plurality of air introduction holes and the lower outer bottom plate is provided at the bottom of the furnace main body. Since the chamber is provided with the air intake and the ignition heat source introduction port, the combustion gas when the ignition heat source is introduced into the ignition heat source introduction port spreads over the entire ignition chamber, and the carbonization material charged in the furnace body. Is uniformly ignited from the entire lower surface, and the air flowing from the air intake is also uniformly supplied from the entire ignition chamber into the furnace space, so that the thermal decomposition and spontaneous combustion of the carbonizing material are performed on the lower surface of the sedimentary layer. Efficiently and efficiently proceeding upward from the whole, higher carbonization efficiency can be obtained.
[0052]
According to the invention of claim 3, in the carbonization device, the furnace has a bottom plate receiving portion on the bottom side peripheral surface in the furnace main body, and the inner bottom plate is placed on the bottom plate receiving portion such that the outer peripheral portion is not fixed. Therefore, even if the inner bottom plate repeatedly undergoes dimensional changes due to thermal expansion during the carbonization process and shrinkage after the process, the inner bottom plate does not deform itself or distort the peripheral wall portion of the furnace main body, so Furnaces have increased durability and longer life.
[0053]
According to the invention of claim 4, since the carbonization apparatus includes the gas reburning furnace for reburning the combustion exhaust gas discharged from the carbonization furnace, even if a small amount of organic matter is included in the gas, it is completely removed. The exhaust gas that is decomposed and ultimately discharged to the outside becomes non-toxic and odorless, and does not impose a burden on the environment.
[0054]
According to the fifth aspect of the present invention, in the carbonization apparatus having the above-described gas reburning furnace, the heat exchange unit for raising the temperature of the introduced outside air supplied to the carbonization furnace by heat exchange with the high-temperature exhaust gas discharged from the gas reburning furnace. Therefore, the thermal efficiency of the carbonization process is further improved, and the thermal decomposition and spontaneous combustion of the carbonizing material in the furnace main body progresses more efficiently, and the waste heat energy of the entire carbonizing device is reduced by utilizing the heat of the exhaust gas. Less.
[0055]
According to the invention of claim 6, in the carbonizing apparatus, the peripheral wall of the furnace main body forms a double wall, and a heat insulating material made of inorganic fibers is loaded between the inner and outer walls, and the inner peripheral surface of the furnace main body is provided. Since the heat insulating material made of inorganic fiber is stretched through the metal holding net, heat radiation to the outside through the peripheral wall portion is suppressed, and the thermal efficiency of the carbonization process is improved accordingly, and the peripheral wall portion is The heat deterioration of the metal plate caused by the high temperature is prevented, and the furnace body has an increased durability and a longer life.
[0056]
According to the invention of claim 7, in the carbonization apparatus, the entire upper surface side of the furnace main body constitutes the material inlet / outlet, and one heating / exhaust cylinder forming the double cylinder stands upright at the center of the furnace main body. On the other hand, a doughnut-shaped material storage basket having a tubular portion into which the heating exhaust cylinder is inserted in the center is provided, and the carbonizing material is loaded into the furnace main body while being stored in the material storage basket. Since the heating exhaust stack is configured to be red-hot, the entire furnace space is in an evenly heated state with uniform heat radiation from the center, thereby obtaining a uniform high-quality carbide. The loading of the carbonized material and the removal of the carbide after processing can be performed by the storage basket at the same time, and the mechanical force of a crane or the like can be used to move the storage basket into and out of the furnace body, thereby significantly improving the workability of the loading and unloading. Improved, especially carbonized But it is advantageous in the case of a large-sized.
[Brief description of the drawings]
FIG. 1 is a plan view of an entire carbonizing device according to an embodiment of the present invention.
FIG. 2 is a side view of the carbonizing device.
FIG. 3 is a front view of the carbonization device.
FIG. 4 is a rear view of the carbonizing device.
FIG. 5 is a side view of the carbonization furnace in the carbonization apparatus, taken along line AA of FIG. 3;
FIG. 6 is a vertical sectional side view of the carbonization furnace.
FIG. 7 is a cross-sectional plan view of the carbonization furnace taken along the line 6B-B of FIG.
FIG. 8 is a vertical sectional front view of a lower portion of the carbonization furnace.
FIG. 9 is a vertical side view of a wood vinegar liquid extractor in the carbonization device.
FIG. 10 is a perspective view showing a loading operation of a carbonizing material using a storage basket in the carbonizing apparatus.
[Explanation of symbols]
1 Carbonization furnace
1a Material entrance
2 Heated exhaust pipe
3 Exhaust pipe
4 lid plate
5 Gas reburning furnace
6 Wood vinegar liquid extractor
9a, 9b insulation
10 Furnace body
10a Furnace space
11 Perimeter wall
11a Inside metal plate (inner wall)
11b Outside metal plate (outer wall)
11c Bottom plate receiving part
12 holding net
13 Inner bottom plate
13a Air inlet
14 Outer bottom plate
15 Ignition room
15a Heat source inlet for ignition
16 Elbow tube (ignition part)
17a Air intake
22 outer cylinder
23 inner cylinder
24 air inlet
53 Heat exchange jacket (heat exchange section)
56 Flow control valve (Air supply amount control means)
80 metal storage basket
80b Inner cylindrical part (cylindrical part)
T Material for carbonization

Claims (7)

内底部に複数の空気導入孔を有する略密閉式の炉本体と、この炉本体の上部に設けられた材料出入口を開閉する蓋板と、該炉本体内に立設されて上端が炉本体天井部近傍に達する加熱排気筒と、前記空気導入孔への空気を供給する空気取入れ口と、該空気取入れ口に対する空気供給量調整手段とを有する炭化炉を備え、
前記加熱排気筒は、下部に炉内空間に連通する排気導入孔を備えて上部が閉塞した外筒と、この外筒内に同心状に配置した内筒とからなる二重筒をなし、
前記内筒は、上端が前記外筒内の頂部近傍で開口すると共に、下端が炉外への排気路に連通しており、
前記炉本体の底部側を着火部として、該炉本体内に装填された炭化用材料を酸素不足状態で自発燃焼させて炭化するように構成されてなる炭化装置。
A substantially closed furnace main body having a plurality of air inlet holes at an inner bottom, a lid plate for opening and closing a material entrance provided at an upper portion of the furnace main body, and a furnace main body ceiling standing upright in the furnace main body and having an upper end. A heating exhaust cylinder that reaches the vicinity of the air inlet, an air intake that supplies air to the air introduction hole, and a carbonization furnace having an air supply amount adjustment unit for the air intake,
The heating exhaust cylinder has a double cylinder consisting of an outer cylinder closed at the top with an exhaust introduction hole communicating with the furnace space at the bottom, and an inner cylinder concentrically arranged in the outer cylinder,
The inner cylinder has an upper end that is open near the top in the outer cylinder, and a lower end that communicates with an exhaust path to the outside of the furnace,
A carbonization apparatus configured to use the bottom side of the furnace main body as an ignition portion to spontaneously burn and carbonize a carbonizing material loaded in the furnace main body in an oxygen-deficient state.
炉本体の底部に、前記複数の空気導入孔を設けた内底板と、該内底板の下位に配置した外底板との間で構成される着火室を備え、この着火室に前記空気取入れ口及び着火用熱源導入口が設けられてなる請求項1記載の炭化装置。At the bottom of the furnace body, there is provided an ignition chamber formed between an inner bottom plate provided with the plurality of air introduction holes and an outer bottom plate arranged below the inner bottom plate. The carbonization device according to claim 1, further comprising an ignition heat source inlet. 炉本体内の底部側周面に底板受け部を有し、該底板受け部上に前記内底板が外周部を非固定状態に載置してなる請求項2記載の炭化装置。3. The carbonizing apparatus according to claim 2, further comprising a bottom plate receiving portion on a bottom side peripheral surface in the furnace main body, wherein the inner bottom plate is placed on the bottom plate receiving portion in a non-fixed outer peripheral portion. 前記炭化炉から排出される燃焼排ガスを再燃焼させるガス再燃焼炉を有してなる請求項1〜3のいずれかに記載の炭化装置。The carbonization apparatus according to any one of claims 1 to 3, further comprising a gas reburning furnace for reburning combustion exhaust gas discharged from the carbonization furnace. 前記炭化炉の空気取入れ口へ供給する導入外気を前記ガス再燃焼炉から排出される高温排ガスとの熱交換によって昇温させる熱交換部を備えてなる請求項4記載の炭化装置。The carbonization apparatus according to claim 4, further comprising a heat exchange unit that raises the temperature of external air supplied to an air intake of the carbonization furnace by heat exchange with high-temperature exhaust gas discharged from the gas reburning furnace. 炉本体の周壁部が二重壁をなし、その内外壁間に無機繊維からなる断熱材が装填されると共に、該炉本体の内周面に無機繊維からなる断熱材が金属製押さえネットを介して張設されてなる請求項1〜5のいずれかに記載の炭化装置。The peripheral wall of the furnace body forms a double wall, and a heat insulating material made of inorganic fibers is loaded between the inner and outer walls thereof, and a heat insulating material made of inorganic fibers is provided on the inner peripheral surface of the furnace body via a metal holding net. The carbonizing device according to claim 1, wherein the carbonizing device is stretched. 炉本体の上面側全体が前記材料出入口を構成し、該炉本体の中心部に1本の前記二重筒をなす加熱排気筒が立設される一方、中央に該加熱排気筒を挿入させる筒状部を有する横断面ドーナツ形の金属製収容籠を備え、炭化用材料を該収容籠内に収容した状態で炉本体内に装填するように構成されてなる請求項1〜6のいずれかに記載の炭化装置。The entire upper surface side of the furnace main body constitutes the material inlet / outlet, and a single heating / exhausting cylinder forming the double cylinder is erected at the center of the furnace main body, while the heating / exhausting cylinder is inserted in the center. 7. A doughnut-shaped metal storage basket having a cross section, wherein the carbonization material is stored in the storage basket and loaded into the furnace body. The carbonizing device as described.
JP2003136433A 2003-05-14 2003-05-14 Carbonization equipment Expired - Lifetime JP4017556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136433A JP4017556B2 (en) 2003-05-14 2003-05-14 Carbonization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136433A JP4017556B2 (en) 2003-05-14 2003-05-14 Carbonization equipment

Publications (2)

Publication Number Publication Date
JP2004339327A true JP2004339327A (en) 2004-12-02
JP4017556B2 JP4017556B2 (en) 2007-12-05

Family

ID=33526401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136433A Expired - Lifetime JP4017556B2 (en) 2003-05-14 2003-05-14 Carbonization equipment

Country Status (1)

Country Link
JP (1) JP4017556B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138054A (en) * 2008-12-15 2010-06-24 Toshiba Corp Nanocarbon manufacturing apparatus
JP2011521043A (en) * 2008-05-13 2011-07-21 カーボネックス,ソシエテ アー レスポンサビリテ リミティー Carbonization method and apparatus
CN102267151A (en) * 2011-07-29 2011-12-07 浙江双枪竹木有限公司 Method for manufacturing carbonized bamboo chopsticks
CN102277202A (en) * 2011-07-19 2011-12-14 程培胜 Method for preparing gas by cracking garbage and biomass at high temperature
KR101185745B1 (en) * 2009-06-08 2012-09-26 (주)그린하베스트 Carbonized rice-hulls burner
CN107445164A (en) * 2017-09-13 2017-12-08 舒瑞 Mixed-flow produces charcoal revivifyig plant
JP6285588B1 (en) * 2017-03-07 2018-02-28 五友エコワークス株式会社 Self-burning carbonization heat treatment apparatus and self-burning carbonization heat treatment method using the same
JP2020007462A (en) * 2018-07-09 2020-01-16 五友エコワークス株式会社 Self-sustained combustion carbonization heat treatment apparatus, carbonization heat treatment system, and manufacturing method of carbide using the same
CN114686251A (en) * 2022-02-25 2022-07-01 安徽科技学院 High-efficient preparation equipment of biological charcoal
JP2023035761A (en) * 2021-09-01 2023-03-13 株式会社Impact Heat treatment apparatus and heat treatment method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521043A (en) * 2008-05-13 2011-07-21 カーボネックス,ソシエテ アー レスポンサビリテ リミティー Carbonization method and apparatus
JP2010138054A (en) * 2008-12-15 2010-06-24 Toshiba Corp Nanocarbon manufacturing apparatus
KR101185745B1 (en) * 2009-06-08 2012-09-26 (주)그린하베스트 Carbonized rice-hulls burner
CN102277202A (en) * 2011-07-19 2011-12-14 程培胜 Method for preparing gas by cracking garbage and biomass at high temperature
CN102267151A (en) * 2011-07-29 2011-12-07 浙江双枪竹木有限公司 Method for manufacturing carbonized bamboo chopsticks
JP6285588B1 (en) * 2017-03-07 2018-02-28 五友エコワークス株式会社 Self-burning carbonization heat treatment apparatus and self-burning carbonization heat treatment method using the same
JP2018145314A (en) * 2017-03-07 2018-09-20 五友エコワークス株式会社 Heat treatment device for self-combustion carbonization, and heat treatment method for self-combustion carbonization using the same
CN107445164A (en) * 2017-09-13 2017-12-08 舒瑞 Mixed-flow produces charcoal revivifyig plant
CN107445164B (en) * 2017-09-13 2023-09-08 舒瑞 Mixed-flow activated carbon production activation device
JP2020007462A (en) * 2018-07-09 2020-01-16 五友エコワークス株式会社 Self-sustained combustion carbonization heat treatment apparatus, carbonization heat treatment system, and manufacturing method of carbide using the same
JP7190726B2 (en) 2018-07-09 2022-12-16 五友エコワークス株式会社 Self-burning carbonization heat treatment apparatus, carbonization heat treatment system, and carbide production method using the same
JP2023035761A (en) * 2021-09-01 2023-03-13 株式会社Impact Heat treatment apparatus and heat treatment method
JP7399376B2 (en) 2021-09-01 2023-12-18 株式会社Impact Heat treatment equipment and heat treatment method
CN114686251A (en) * 2022-02-25 2022-07-01 安徽科技学院 High-efficient preparation equipment of biological charcoal

Also Published As

Publication number Publication date
JP4017556B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP2004339327A (en) Carbonization apparatus
JP2011174703A (en) Degreasing furnace
JP6285588B1 (en) Self-burning carbonization heat treatment apparatus and self-burning carbonization heat treatment method using the same
JP2009002594A (en) Small combustion furnace for manufacturing rice husk ash
JP2010248362A (en) Carbonization furnace
US20240368473A1 (en) Charcoal making apparatus
JP2005008658A (en) Apparatus for carbonization treatment of waste
JP2001107055A (en) Method and apparatus for manufacturing charcoal
JP2004176037A (en) Carbonization furnace
JP7231528B2 (en) Batch type carbonization equipment
JP3477572B2 (en) Stoves and boilers that also serve as carbonization furnaces
JP3529683B2 (en) Carbonization furnace and carbonization method
JP2010070661A (en) Carbonizing apparatus
JP2608853B2 (en) Carbonization furnace
JP2002146361A (en) Carbonizing equipment
JP2010241973A (en) Carbonization furnace
TW593660B (en) Apparatus for manufacturing conductive coal
JP2006342301A (en) Carbonization apparatus
JP7190726B2 (en) Self-burning carbonization heat treatment apparatus, carbonization heat treatment system, and carbide production method using the same
JPH10338882A (en) Carbonization oven
JP2001303064A (en) Carbonizing furnace
JP4280855B2 (en) Charcoal production equipment
JP2003119468A (en) Carbonizing unit
KR101063140B1 (en) Charcoal manufacturing equipment using waste wood
RU35335U1 (en) INSTALLATION FOR PRODUCING CHARCOAL (OPTIONS)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4017556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term