【0001】
【発明の属する技術分野】
本発明はデータ通信装置や無線通信装置等の電気装置に適用して好適な発熱部品の取付構造に関する。
【0002】
【従来の技術】
従来の発熱部品の取付構造の図面を説明すると、図5は従来の発熱部品の取付構造を示す正面図、図6は従来の発熱部品の取付構造を示す要部の断面図で、次に、従来の発熱部品の取付構造の構成を図5,図6に基づいて説明すると、金属材からなる放熱板51には、ネジ孔51aが設けられている。
【0003】
パワートランジスタ等からなる発熱部品52は、孔53aを有する金属材からなる取付板53と、この取付板53上に設けられ、発熱素子が内蔵された本体部54と、この本体部54から導出された端子55とで構成されている。
【0004】
この発熱部品52は、取付板53の下面が放熱板51上に載置された状態で、孔53aに挿通されたネジ56がネジ孔51aにねじ込まれて、放熱板51に取り付けられている。
【0005】
そして、放熱板51に取り付けられた発熱部品52の端子55は、放熱板51と直交する位置に配置された回路基板57に半田付けされるようになっている。(例えば、特許文献1参照)
【0006】
一般に、従来の発熱部品の取付構造においては、取付板53の下面と放熱板51の表面との間の隙間を少なくして、取付板53から放熱板51への熱伝導を良くするために、図6に示すように、熱伝導性のある粘性体58が取付板53の下面と放熱板51の表面との間に設けられている。
【0007】
しかし、従来の発熱部品の取付構造は、取付板53と放熱板51の面同士が単に衝合しているため、粘性体58の量が多いと、取付板53の下面から粘性体58が多く溢れて外観を損ね、また、粘性体58の量が少ないと、取付板53から放熱板51への熱伝導が悪くなるものであった。
【0008】
【特許文献1】
実開平5−20385号公報
【0009】
【発明が解決しようとする課題】
従来の発熱部品の取付構造は、取付板53と放熱板51の面同士が単に衝合しているため、粘性体58の量が多いと、取付板53の下面から粘性体58が多く溢れて外観を損ね、また、粘性体58の量が少ないと、取付板53から放熱板51への熱伝導が悪くなるという問題がある。
【0010】
そこで、本発明は取付板から放熱板への熱伝導が良好で、且つ、見栄えの良い発熱部品の取付構造を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するための第1の解決手段として、金属材からなる取付板、及びこの取付板上に形成された本体部を有する発熱部品と、この発熱部品の前記取付板を取り付けるための金属材からなる放熱板とを備え、前記放熱板には、前記取付板の下面と対向する位置に、1個、或いは複数個の貫通孔が設けられ、前記放熱板と前記取付板の下面との間には、熱伝導性のある粘性体が設けられると共に、前記粘性体が前記貫通孔内に侵入可能とした構成とした。
【0012】
また、第2の解決手段として、前記放熱板には、前記取付板の下面と対向する位置に、前記粘性体を留めるための凹部が設けられ、前記貫通孔が前記凹部の底部に位置して設けられた構成とした。
【0013】
また、第3の解決手段として、前記凹部は、前記取付板の下面の範囲内に位置して設けられた構成とした。
また、第4の解決手段として、前記粘性体がシリコンオイルコンパウンドで構成された。
また、第5の解決手段として、前記放熱板がアルミ材で形成された構成とした。
【0014】
【発明の実施の形態】
本発明の発熱部品の取付構造の図面を説明すると、図1は本発明の発熱部品の取付構造を示す要部の平面図、図2は図1の2−2線における断面図、図3は本発明の発熱部品の取付構造に係る放熱板の要部の平面図、図4は本発明の発熱部品の取付構造の他の実施例を示す要部の断面図である。
【0015】
次に、本発明の発熱部品の取付構造の構成を図1〜図3に基づいて説明すると、アルミ材等の金属材からなる放熱板1は、四角形状をなした凹部1aと、この凹部1aの底部1bに位置した状態で設けられた1個、或いは複数個の貫通孔1cと、凹部1aの両端近傍に設けられたネジ孔1dを有する。
【0016】
シリコンオイルコンパウンド等からなる熱伝導性のある粘性体2は、放熱板1に設けられた凹部1a内に充填(或いは塗布)され、粘性体2が凹部1a内に留め(溜め)られた状態となっている。
また、この粘性体2は、若干多めに充填されており、凹部1a上で盛り上がるように設けられている。
【0017】
パワートランジスタ等からなる発熱部品3は、孔4aを有する金属材からなる取付板4と、この取付板4上に設けられ、発熱素子が内蔵された本体部5と、この本体部5から導出された端子6とで構成されている。
【0018】
この発熱部品2は、取付板4の下面と凹部1aとが対向した状態で、取付板3の下面が放熱板1上に載置され、孔3aに挿通されたネジ6がネジ孔1dにねじ込まれて、放熱板1に取り付けられている。
【0019】
そして、発熱部品3が放熱板1に取り付けられた際、取付板4の下面で粘性体2が押され、凹部1a内から溢れた粘性体2は、貫通孔1c内に侵入して、取付板4の下面の横方向から溢れないようになっている。
【0020】
また、凹部1aは、取付板4の下面の範囲内に位置するように形成されており、この構成によって、凹部1a内から溢れた粘性体2は、貫通孔1c内に侵入して、取付板4の下面の横方向から溢れることが無い。
【0021】
なお、凹部1aは、取付板4の下面の範囲外に若干はみ出した構成にしても良く、この場合、凹部1a内に充填された粘性体2は、その表面張力によって、中央部が盛り上がった状態となっているため、取付板4の取付の際には、取付板4の下面が粘性体2の中央部の盛り上がった部分を押圧するようになり、従って、押された粘性体2は、貫通孔1cに侵入して、取付板4の下面の横方向からの溢れが極めて少なくなる。
【0022】
その結果、粘性体2によって、取付板4の下面と放熱板1の表面との間の隙間が確実に埋められ、取付板4から放熱板1への熱伝導が良好となる。
そして、放熱板1に取り付けられた発熱部品3の端子6は、放熱板1上に配置された回路基板8の配線パターン9に半田付けされるようになっている。
【0023】
また、図4は、本発明の発熱部品の取付構造の他の実施例を示し、この他の実施例は、前記実施例における凹部1aを無くしたものである。
その他の構成は、前記実施例と同様であるので、同一部品に同一番号を付し、ここではその説明を省略する。
【0024】
この他の実施例は、熱伝導性のある粘性体2が取付板4の下面と放熱板1の表面との間に設けられ、そして、取付板4の取付時、取付板4の下面で粘性体2が押され、この押された粘性体2が貫通孔1cに侵入するようにしたものである。
【0025】
このような構成にすると、放熱板1上に塗布された粘性体2は、その表面張力によって、中央部が盛り上がった状態となっているため、取付板4の取付の際には、取付板4の下面が粘性体2の中央部の盛り上がった部分を押圧するようになり、従って、押された粘性体2は、貫通孔1cに侵入して、取付板4の下面の横方向からの溢れが少なくなると共に、粘性体2によって、取付板4の下面と放熱板1の表面との間の間の隙間が確実に埋められ、取付板4から放熱板1への熱伝導が良好となる。
【0026】
【発明の効果】
本発明の発熱部品の取付構造は、金属材からなる取付板、及びこの取付板上に形成された本体部を有する発熱部品と、この発熱部品の取付板を取り付けるための金属材からなる放熱板とを備え、放熱板には、取付板の下面と対向する位置に、1個、或いは複数個の貫通孔が設けられ、放熱板と取付板の下面との間には、熱伝導性のある粘性体が設けられると共に、粘性体が貫通孔内に侵入可能としたため、粘性体の塗布量を多くしても、粘性体は貫通孔に侵入して、取付板の下面の横方向からの粘性体の溢れが少なく、見栄えの良いものが得られると共に、粘性体によって、取付板の下面と放熱板の表面との間の隙間が確実に埋められ、取付板から放熱板への熱伝導の良好なものが得られる。
【0027】
また、放熱板には、取付板の下面と対向する位置に、粘性体を留めるための凹部が設けられ、貫通孔が凹部の底部に位置して設けられたため、取付板の下面の横方向からの粘性体の溢れが極めて少なく、見栄えの良好なものが得られる。
【0028】
また、凹部は、取付板の下面の範囲内に位置して設けられたため、取付板の下面の横方向からの粘性体の溢れが無く、見栄えの一層良好なものが得られる。
【0029】
また、粘性体がシリコンオイルコンパウンドで構成されたため、熱伝導性が良く、放熱効果の良好なものが得られる。
【0030】
また、放熱板がアルミ材で形成されたため、熱伝導性が良く、放熱効果の良好なものが得られる。
【図面の簡単な説明】
【図1】本発明の発熱部品の取付構造を示す要部の平面図。
【図2】図1の2−2線における断面図。
【図3】本発明の発熱部品の取付構造に係る放熱板の要部の平面図。
【図4】本発明の発熱部品の取付構造の他の実施例を示す要部の断面図。
【図5】従来の発熱部品の取付構造を示す正面図。
【図6】従来の発熱部品の取付構造を示す要部の断面図。
【符号の説明】
1 放熱板
1a 凹部
1b 底部
1c 貫通孔
1d ネジ孔
2 粘性体
3 発熱部品
4 取付板
4a 孔
5 本体部
6 端子
7 ネジ
8 回路基板
9 配線パターン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-generating component mounting structure suitable for application to electric devices such as data communication devices and wireless communication devices.
[0002]
[Prior art]
Referring to drawings of a conventional heat-generating component mounting structure, FIG. 5 is a front view showing a conventional heat-generating component mounting structure, and FIG. 6 is a sectional view of a main part showing a conventional heat-generating component mounting structure. The configuration of a conventional heat-generating component mounting structure will be described with reference to FIGS. 5 and 6. The heat-radiating plate 51 made of a metal material is provided with a screw hole 51a.
[0003]
The heat generating component 52 composed of a power transistor or the like is provided with a mounting plate 53 made of a metal material having a hole 53a, a main body portion 54 provided on the mounting plate 53 and having a built-in heat generating element, and led out from the main body portion 54. And a terminal 55.
[0004]
The heat generating component 52 is attached to the heat radiating plate 51 by screwing the screw 56 inserted into the hole 53 a into the screw hole 51 a with the lower surface of the mounting plate 53 placed on the heat radiating plate 51.
[0005]
The terminal 55 of the heat-generating component 52 attached to the heat sink 51 is soldered to a circuit board 57 disposed at a position orthogonal to the heat sink 51. (For example, see Patent Document 1)
[0006]
Generally, in the conventional mounting structure of the heat-generating component, in order to reduce the gap between the lower surface of the mounting plate 53 and the surface of the heat radiating plate 51, and to improve the heat conduction from the mounting plate 53 to the heat radiating plate 51, As shown in FIG. 6, a thermally conductive viscous body 58 is provided between the lower surface of the mounting plate 53 and the surface of the radiator plate 51.
[0007]
However, in the conventional heat-generating component mounting structure, since the surfaces of the mounting plate 53 and the heat radiating plate 51 are merely in contact with each other, when the amount of the viscous body 58 is large, the viscous body 58 increases from the lower surface of the mounting plate 53. If the viscous body 58 overflows and impairs the appearance, and if the amount of the viscous body 58 is small, heat conduction from the mounting plate 53 to the heat radiating plate 51 becomes poor.
[0008]
[Patent Document 1]
Japanese Utility Model Laid-Open No. 5-20385
[Problems to be solved by the invention]
In the conventional mounting structure for a heat-generating component, since the surfaces of the mounting plate 53 and the heat radiating plate 51 are merely in contact with each other, if the amount of the viscous body 58 is large, the viscous body 58 overflows a lot from the lower surface of the mounting plate 53. If the appearance is impaired and the amount of the viscous body 58 is small, there is a problem that heat conduction from the mounting plate 53 to the heat radiating plate 51 is deteriorated.
[0010]
Accordingly, an object of the present invention is to provide a mounting structure for a heat-generating component that has good heat conduction from the mounting plate to the heat radiating plate and has a good appearance.
[0011]
[Means for Solving the Problems]
As a first means for solving the above problems, a mounting plate made of a metal material, a heat generating component having a main body formed on the mounting plate, and a metal for mounting the mounting plate of the heat generating component A radiator plate made of a material, the radiator plate is provided with one or a plurality of through holes at a position facing the lower surface of the mounting plate, and the radiator plate and the lower surface of the mounting plate A viscous body having thermal conductivity is provided between the two, and the viscous body is configured to be able to enter the through hole.
[0012]
As a second solution, a concave portion for retaining the viscous body is provided on the heat sink at a position facing the lower surface of the mounting plate, and the through hole is located at a bottom of the concave portion. The configuration was provided.
[0013]
As a third solution, the recess is provided so as to be located within a range of a lower surface of the mounting plate.
As a fourth solution, the viscous body is made of a silicone oil compound.
As a fifth solution, the heat radiating plate is made of an aluminum material.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a plan view of a main part showing a mounting structure of a heat generating component of the present invention, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, and FIG. FIG. 4 is a plan view of a main part of a heat radiating plate according to a mounting structure of a heat-generating component of the present invention. FIG.
[0015]
Next, the configuration of the mounting structure of the heat-generating component of the present invention will be described with reference to FIGS. 1 to 3. The heat radiating plate 1 made of a metal material such as an aluminum material has a rectangular concave portion 1 a and a concave portion 1 a. One or a plurality of through holes 1c provided in a state of being located at the bottom portion 1b of the base member 1 and a screw hole 1d provided near both ends of the concave portion 1a.
[0016]
The heat conductive viscous body 2 made of a silicon oil compound or the like is filled (or applied) in the concave portion 1a provided in the heat sink 1, and the viscous body 2 is retained (reserved) in the concave portion 1a. Has become.
The viscous body 2 is slightly overfilled and provided so as to swell over the concave portion 1a.
[0017]
The heat generating component 3 including a power transistor and the like is provided with a mounting plate 4 made of a metal material having a hole 4a, a main body 5 provided on the mounting plate 4 and having a built-in heat generating element, and led out of the main body 5. And terminal 6.
[0018]
In the heat-generating component 2, the lower surface of the mounting plate 3 is placed on the radiator plate 1 with the lower surface of the mounting plate 4 and the concave portion 1a facing each other, and the screw 6 inserted into the hole 3a is screwed into the screw hole 1d. And attached to the heat sink 1.
[0019]
When the heat-generating component 3 is mounted on the heat sink 1, the viscous body 2 is pressed by the lower surface of the mounting plate 4, and the viscous body 2 overflowing from the recess 1a enters the through-hole 1c, and 4 so as not to overflow from the lateral direction on the lower surface.
[0020]
Further, the concave portion 1a is formed so as to be located within the range of the lower surface of the mounting plate 4. With this configuration, the viscous body 2 overflowing from the concave portion 1a enters the through hole 1c, and 4 does not overflow from the lower side.
[0021]
In addition, the concave portion 1a may be configured to slightly protrude out of the range of the lower surface of the mounting plate 4. In this case, the viscous body 2 filled in the concave portion 1a is in a state in which the central portion is raised by the surface tension. Therefore, when the mounting plate 4 is mounted, the lower surface of the mounting plate 4 presses the raised portion at the center of the viscous body 2, so that the pressed viscous body 2 penetrates. When it enters the hole 1c, the overflow of the lower surface of the mounting plate 4 from the lateral direction is extremely reduced.
[0022]
As a result, the gap between the lower surface of the mounting plate 4 and the surface of the heat radiating plate 1 is reliably filled by the viscous body 2, and the heat conduction from the mounting plate 4 to the heat radiating plate 1 is improved.
Then, the terminals 6 of the heat generating component 3 attached to the heat sink 1 are soldered to the wiring patterns 9 of the circuit board 8 disposed on the heat sink 1.
[0023]
FIG. 4 shows another embodiment of the mounting structure of the heat-generating component of the present invention. In this embodiment, the concave portion 1a in the above-mentioned embodiment is eliminated.
Other configurations are the same as those of the above-described embodiment, and the same components are denoted by the same reference numerals, and description thereof will be omitted.
[0024]
In this other embodiment, the heat conductive viscous body 2 is provided between the lower surface of the mounting plate 4 and the surface of the heat radiating plate 1. The body 2 is pushed, and the pushed viscous body 2 enters the through hole 1c.
[0025]
With this configuration, the viscous body 2 applied on the heat radiating plate 1 is in a state in which the central portion is raised due to the surface tension thereof. Of the viscous body 2 presses the raised portion at the center of the viscous body 2. Therefore, the pressed viscous body 2 enters the through hole 1c and overflows the lower surface of the mounting plate 4 from the lateral direction. At the same time, the gap between the lower surface of the mounting plate 4 and the surface of the heat radiating plate 1 is reliably filled by the viscous body 2, and the heat conduction from the mounting plate 4 to the heat radiating plate 1 is improved.
[0026]
【The invention's effect】
The heat-generating component mounting structure of the present invention includes a mounting plate made of a metal material, a heat-generating component having a main body formed on the mounting plate, and a heat-radiating plate made of a metal material for mounting the mounting plate of the heat-generating component. The heat radiating plate is provided with one or a plurality of through holes at a position facing the lower surface of the mounting plate, and has a heat conductive property between the heat radiating plate and the lower surface of the mounting plate. Since the viscous body is provided and the viscous body can penetrate into the through-hole, even if the amount of the viscous body applied is large, the viscous body penetrates into the through-hole and viscous from the lateral direction of the lower surface of the mounting plate. A good-looking one with less body overflow is obtained, and the viscous material reliably fills the gap between the lower surface of the mounting plate and the surface of the radiator plate, providing good heat conduction from the mounting plate to the radiator plate. Is obtained.
[0027]
Further, the heat sink has a concave portion for retaining the viscous body at a position facing the lower surface of the mounting plate, and a through hole is provided at the bottom of the concave portion. With very little viscous material and a good appearance can be obtained.
[0028]
Further, since the concave portion is provided within the range of the lower surface of the mounting plate, there is no overflow of the viscous body from the lateral direction of the lower surface of the mounting plate, and a better-looking one can be obtained.
[0029]
In addition, since the viscous body is made of the silicone oil compound, a material having good heat conductivity and good heat radiation effect can be obtained.
[0030]
In addition, since the heat radiating plate is made of aluminum, a heat radiating plate having good heat conductivity and a good heat radiating effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a plan view of a main part showing a mounting structure of a heat-generating component of the present invention.
FIG. 2 is a sectional view taken along line 2-2 in FIG. 1;
FIG. 3 is a plan view of a main part of a heat sink according to the mounting structure of the heat generating component of the present invention.
FIG. 4 is a sectional view of a main part showing another embodiment of the mounting structure of the heat-generating component of the present invention.
FIG. 5 is a front view showing a conventional heat-generating component mounting structure.
FIG. 6 is a sectional view of a main part showing a conventional heat-generating component mounting structure.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 heat sink 1a recess 1b bottom 1c through hole 1d screw hole 2 viscous body 3 heat generating component 4 mounting plate 4a hole 5 main body 6 terminal 7 screw 8 circuit board 9 wiring pattern