JP2004317737A - Mt connector, guide members used in the same and optical fiber management method using the same connector - Google Patents

Mt connector, guide members used in the same and optical fiber management method using the same connector Download PDF

Info

Publication number
JP2004317737A
JP2004317737A JP2003110545A JP2003110545A JP2004317737A JP 2004317737 A JP2004317737 A JP 2004317737A JP 2003110545 A JP2003110545 A JP 2003110545A JP 2003110545 A JP2003110545 A JP 2003110545A JP 2004317737 A JP2004317737 A JP 2004317737A
Authority
JP
Japan
Prior art keywords
connector
optical fiber
rfid
identification information
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110545A
Other languages
Japanese (ja)
Inventor
Masashi Hara
昌志 原
Kazunaga Kobayashi
和永 小林
Osamu Koyasu
修 子安
Keiji Ohashi
圭二 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003110545A priority Critical patent/JP2004317737A/en
Publication of JP2004317737A publication Critical patent/JP2004317737A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Electric Cable Installation (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make the individual identification of a relevant MT (MECHANICALLY TRANSFERABLE) connector to be performed easily from among a lot of MT connectors used in a multiple optical fiber cable and moreover to make it possible to increase the amount of identification information drastically. <P>SOLUTION: An MT connector 5 is constituted of a pair of connector main bodies 9 having a joint face 13 for joining optical fibers 5 , a plurality of guide holes 15 which are provided in order to centering axes centers of a plurality of the optical fibers 5 of the joint face 13 to the connector main body 9 of one side of this one pair of connector main bodies 9, guide members 11 which are attached to guiding holes 15 of the connector main body 9 of other side, a clamp member 19 which clamps the one pair of connector main bodies 9 in a state in which they are abutted with each other at the joint face 13, and an RFID (Radio Frequency Identification) 29 which is incorporated in the guide member 11 and in which identification information is stored. Then, identification information of the relevant MT connector 5 is read out easily from the RFID 29 and the amount of processable identification information is increased by the RFID 29. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、多数本の光ファイバを有するテープ心線を接続するための多心光ファイバ用のMTコネクタが多数敷設され、この多数のMTコネクタの中から個々のMTコネクタを容易に識別することを可能とするMTコネクタ及び前記MTコネクタで用いられるクランプ部材並びに前記MTコネクタを用いた光ファイバ管理方法に関する。
【0002】
【従来の技術】
図4を参照するに、従来、多数の光ファイバをシースした多心光ケーブル101が敷設される際に、上記の多心光ケーブル101の多数の光ファイバが局にある光ファイバ集線装置としての光配線盤(MDF: Main Distribution Frame、以下「MDF」と略す)などにおいて光コネクタなどで結線されている。上記の多心光ケーブル101は長さが限られているために他の多心光ケーブル101が接続されて延長される。図4では第1〜第4多心光ケーブル101A〜101Dが接続されている。
【0003】
近い将来に、FTTH(Fiber−to−the−Home)に代表される光アクセス網が進展し、光ファイバが各加入者まで普及すると予測されている。局から各家庭までの距離は、たかだか数kmに過ぎないが、一般的に、日本の大都市部の局の加入者数は数万にも達するので、局において、MDFで成端される加入者系の光ファイバも数万に達すると予測される。これを単心(1心)光コネクタで成端するとやはり数万のオーダになる。そこで、多心光ファイバテープ心線103などの多心の光ファイバを接続するための多心光コネクタとしての例えばMTコネクタ105(Mechanically Transferable Connector)が採用されることで、光コネクタ数を大幅に減らすことができている。
【0004】
一方、光ファイバ心数が数百から千心以上の多心光ケーブル101も実用化され、局へ引き込まれる光ケーブルの本数を減らすことができている。これらの多心光ケーブル101では、通常、4心あるいは8心の光ファイバテープ心線103が多数収納されており、多心光ケーブル101の片端あるいは両端には、4心あるいは8心の多心光コネクタが製造工場にて取りつけられて出荷されている。
【0005】
例えば、1000心の光ケーブルは、8心の光ファイバテープ心線103が125本から成り、その一端には125個の8心MTコネクタ105が取り付けられている。通常、多心光ケーブル101がその先端(引き込み端)から例えばマンホール107A内に引き込まれ、管路(日本の場合は、通常で内径φ75mm)を通して、次のマンホール107Bまで引き通される際に、スプリングアイという金具が先端に取り付けられる。なお、各マンホール107A〜107D内では各クロージャ109A〜109Dの中で多心光ファイバテープ心線103の各光ファイバが接続される。
【0006】
ところが、多心光ケーブル101の先端が大きくなると、管路内を引き通すことができないことと、マンホール107A〜107Dの間の距離と多心光ケーブル101の長さとの現場での調整の必要性から、通常は多心光ケーブル101の終端末のみにMTコネクタ105が取り付けられて出荷されている。例えば、図4において、第2多心光ケーブル101Bは第1マンホール107Aから第2マンホール107Bまでの間に引き通されている。第1マンホール107Aの第1クロージャ109Aの内部では、多数の多心光ファイバテープ心線103がMTコネクタ105により接続されており、第2マンホール107Bの第2クロージャ109Bの内部では、多数の多心光ファイバテープ心線103が融着接続されている。
【0007】
一方、第3多心光ケーブル101Cは第3マンホール107Cから第2マンホール107Bの方向へ、すなわち第2多心光ケーブル101Bとは逆の方向に引き通されている。このように、MTコネクタ105による接続と融着接続とがマンホール107A〜107Dで接続毎に交互に繰り返されている。
【0008】
大都市部においては、交通渋滞を招く工事は夜間に短時間のみ許可されるのであるが、工場でMTコネクタ105が多心光ケーブル101に取り付けられて出荷されることにより、現場においては多心光ケーブル101の光ファイバ同士を短時間で接続することが可能である。
【0009】
以上は、新しく多心光ケーブル101が敷設されるときに関するものであるが、敷設されてからある期間経過後に当初の需要予測と異なる事態になった場合、敷設された多心光ケーブル101の多心光ファイバテープ心線103の配線替えをせざるを得ない事態に迫られることがある。このような場合は、MTコネクタ105で接続したクロージャ109A,109Cを開き、当該MTコネクタ105が脱着されて新しい需要に見合うように配線替えが行われる。この時、クロージャ109A,109Cには多数のMTコネクタ105が存在するので、誤脱着や誤接続を避けるために個々のMTコネクタ105を個別に識別する必要がある。
【0010】
図5及び図6を参照するに、MTコネクタ105としては、JIS(規格番号JIS C 5981)では、2心、4心、8心、10心、12心光ファイバテープ心線用のフェルール111が規格化されている。MTコネクタ105は、予め多心光ファイバテープ心線103に取り付けた2個のフェルール111を2本の精密なガイドピン113で位置決めして突き合わせることにより、各フェルール111の接合面115に露出した複数の各光ファイバ117同士を接続するものである。
【0011】
MTコネクタ105のフェルール111は多心光ファイバテープ心線103の複数の光ファイバ117を接合面の所定位置に露出せしめて接続するものであり、例えば、60〜80Wt%の充填材(通常、シリカ微粉末)を含有したエポキシ樹脂、ポリフェニレンサルファイド樹脂(Polyphenylene Sulfide Resin、以下PPSと略す)などから、トランスファー成型された小型の樹脂成形品である。MTコネクタ105のフェルール111は、その成分として充填材を含有することにより、樹脂単体の時よりヤング率を高めてトランスファー成型時の歪みを減少させ、接合面の研磨性に優れており、使用時には弾性変形を抑えることができる。
【0012】
フェルール111にはブーツ119が取り付けられており、このブーツ119は合成ゴムから成り、多心光ファイバテープ心線103がフェルール111の接合面115の反対側に挿入される部分に位置している。ブーツ119は多心光ファイバテープ心線103がフェルール111の根元付近で曲げられた時に応力集中を避けるために設けられている。
【0013】
2本のガイドピン113は、ステンレス鋼から成り、フェルール111に設けたガイド孔121に挿入されることにより、相対する一対(2個)のMTコネクタ105のフェルール111に接続された多心光ファイバテープ心線103の軸合わせを行うためのものである。
【0014】
以上のように、多心光ファイバテープ心線103の軸合わせがガイドピン113によってなされた一対(1組)のMTコネクタ105のフェルール111は、図5に示されているように1個のステンレス鋼製のクランプスプリング123によって一定の押圧力が光ファイバ117の軸方向にかけられるので安定した嵌合状態が保持される。
【0015】
図6において、MTコネクタ105のフェルール111のマーキング面125は、MTコネクタ105の構造上、嵌合組み合わせが2通り存在するので、逆接続を防止する目的で、2面ある例えば2.0mm×3.0mmの側面のうちの一方の面のみに着色などによって接続方向を一義的に確定させるものである。
【0016】
さらに、1対のフェルール111が相対する接合面115とブーツ119が挿入されている面(多心光ファイバテープ心線103が挿入されている面)を除いてフェルール111の1面あるいは複数面の情報表示面127には、文字、数字又はバーコードなどの識別情報が直接印字され、あるいは前記識別情報を印刷したラベルが貼り付けられることにより、MTコネクタ105を個別に識別可能となる(例えば、特許文献1及び特許文献2参照)。
【0017】
【特許文献1】
特開平9−197194号公報
【0018】
【特許文献2】
特開2002−116345号公報
【0019】
【発明が解決しようとする課題】
ところで、従来のMTコネクタ105においては、図6に示されているように、小さな寸法のフェルール111の情報表示面127に、個体識別用として文字、数字、バーコードなどで識別情報が直接印刷されるか、あるいは文字、数字、バーコードなどを印刷したラベルが貼られるので、長期間経過すると上記の印字が不鮮明になったり、あるいはラベルが剥がれたりするという問題点があった。しかも、従来の方法ではフェルール111の情報表示面127の面積が狭いことの制約から、印字数が限定されるために識別情報量においても限られるので、必要な情報をすべて記載することは不可能であるという問題点があった。
【0020】
また、クロージャ109A、109CやMDFなどに収納されたMTコネクタ105を露出しないと確認できない。さらに、多数のMTコネクタ105の中から目的のMTコネクタ105を探し出すには多くの時間を要するために工事コストが上昇するという問題点があった。
【0021】
また、万一、間違ったMTコネクタ105が切り離されてしまった時は、当該MTコネクタ105の光ファイバに流れる信号で制御されていた機器の誤作動や情報の停止が発生し、重大な事故につながるという問題点があった。
【0022】
この発明は上述の課題を解決するためになされたもので、その目的は、敷設された多心光ケーブルにおいて各光ファイバを接続するための多数のMTコネクタの中から、各MTコネクタの個別識別を容易にでき、しかも識別情報量も飛躍的に増大させることを可能とするMTコネクタ及び前記MTコネクタで用いられるクランプ部材並びに前記MTコネクタを用いた光ファイバ管理方法を提供することにある。
【0023】
【課題を解決するための手段】
上記目的を達成するために請求項1によるこの発明のMTコネクタは、光ファイバ同士を接続するための接合面を有するMTコネクタにおいて、光ファイバを接合するための接合面を有する一対のコネクタ本体と、この一対のコネクタ本体の一方のコネクタ本体に接合面の光ファイバを軸心合わせするために設けられた複数のガイド孔と、前記一対のコネクタ本体の他方のコネクタ本体に前記ガイド孔に装着されたガイド部材と、前記一対のコネクタ本体を互いに接合面で突き合わせた状態にクランプするクランプ部材と、このクランプ部材に設けられ識別情報を記憶するRFIDと、を備えてなることを特徴とするものである。
【0024】
したがって、回線切り替え等の際に、クランプ部材に設けられたRFIDから該当するMTコネクタの識別情報が容易に読み出されるので、確実にMTコネクタの誤脱着や誤接続が避けられ、回線切り替え工事費の削減にも寄与する。また、RFIDにより取扱い可能な識別情報量が増加する。
【0025】
請求項2によるこの発明のMTコネクタは、請求項1記載のMTコネクタにおいて、前記RFIDが、外部から非接触で前記識別情報を読み書き可能であることを特徴とするものである。
【0026】
したがって、MTコネクタの識別情報はRFIDに容易に書き込むことができ、この書き込まれたMTコネクタの識別情報は時間経過によって消滅することはなく、例えばリーダ/ライタ機器により外部から非接触で短時間に容易に識別される。
【0027】
請求項3によるこの発明のクランプ部材は、光ファイバを軸心合わせする一対のMTコネクタを互いに突き合わせた状態にクランプするクランプ部材であって、このクランプ部材に識別情報を記憶するRFIDが設けられていることを特徴とするものである。
【0028】
したがって、一対のMTコネクタを互いに突き合わせた状態にクランプ部材でクランプことにより、回線切り替え等の際に、前記RFIDから該当するMTコネクタの識別情報が容易に読み出されるので、確実にMTコネクタの誤脱着や誤接続が避けられ、回線切り替え工事費の削減にも寄与する。また、RFIDにより取扱い可能な識別情報量が増加する。
【0029】
請求項4によるこの発明のクランプ部材は、請求項3記載のクランプ部材において、前記RFIDが、外部から非接触で前記識別情報を読み書き可能であることを特徴とするものである。
【0030】
したがって、MTコネクタの識別情報はRFIDに容易に書き込むことができ、この書き込まれたMTコネクタの識別情報は時間経過によって消滅することはなく、例えばリーダ/ライタ機器により外部から非接触で短時間に容易に識別される。
【0031】
請求項5によるこの発明の光ファイバ管理方法は、複数の素線又はテープ心線からなる光ファイバ心線をシースした光ケーブルを敷設すると共にこの光ケーブルの複数の光ファイバを複数対のMTコネクタで接続し且つ各一対のMTコネクタ毎にクランプ部材にてクランプして構成される前記複数の光ファイバの回線を管理する光ファイバ管理方法において、
予め、前記各クランプ部材毎に、該当するMTコネクタを識別するための識別情報を記憶したRFIDを設け、前記各MTコネクタのRFIDの識別情報を読取り装置によって該当するMTコネクタを個別に識別することにより、各光ファイバの回線状態を管理することを特徴とするものである。
【0032】
したがって、光ケーブルの接続時に、光ファイバの心線、回線、施工等の情報が各一対のMTコネクタのクランプ部材毎に設けられたRFIDに盛り込まれる。そして、回線切り替え等の際には、各クランプ部材に設けられたMTコネクタのRFIDから光ファイバの識別情報が読み出されることにより、回線が乗った光ファイバをさわることなく、必要とする光ファイバの心線対照・識別が容易に行われるので、大幅な省力化が図られる。
【0033】
請求項6によるこの発明の光ファイバ管理方法は、請求項5記載の光ファイバ管理方法において、前記RFIDが、外部から非接触で前記識別情報を読み書き可能であることを特徴とするものである。
【0034】
したがって、光ファイバの識別情報はRFIDに容易に書き込むことができ、この書き込まれた光ファイバの識別情報は時間経過によって消滅することはなく、例えばリーダ/ライタ機器により外部から非接触で短時間に容易に識別される。
【0035】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
【0036】
図1及び図3を参照するに、この実施の形態に係る多心光ケーブル1は、例えば複数の多心光ファイバテープ心線3をシースしたケーブルである。この多心光ケーブル1が地中や電柱に敷設される際に、多心光ケーブル1は長さが限られているために他の多心光ケーブル1が接続されて延長される。このとき、多心光ケーブル1の各多心光ファイバテープ心線3の各光ファイバ5が一対のMTコネクタ7により接続されることにより多心光ケーブル1が延長されるものである。
【0037】
この実施の形態に係る一対のMTコネクタ7は、図1に示されているように4心光ファイバテープ心線用のものを例としているが、JIS(規格番号JIS C 5981)では、2心、4心、8心、10心、12心光ファイバテープ心線用のフェルールが規格化されている。MTコネクタ7は、予め多心光ファイバテープ心線3に取り付けた一対のコネクタ本体としての例えば図1において右側の各フェルール9に設けられたガイド部材としての例えば精密な2本のガイドピン11が、図1において左側の各フェルール9に設けられたガイド孔15に装着され位置決めして突き合わされることにより、各フェルール9の接合面13に露出した複数の各光ファイバ5同士を接続するものである。
【0038】
一対のMTコネクタ7のフェルール9は多心光ファイバテープ心線3の複数の光ファイバ5を接合面13の所定位置に露出せしめて接続するものであり、例えば、60〜80Wt%の充填材(通常、シリカ微粉末)を含有したエポキシ樹脂、PPS樹脂などから、トランスファー成型された小型の樹脂成形品である。各MTコネクタ7のフェルール9は、その成分として充填材を含有することにより、樹脂単体の時よりヤング率を高めてトランスファー成型時の歪みを減少させたり、接合面13の研磨性に優れており、使用時には弾性変形を抑えることができる。
【0039】
また、各フェルール9にはブーツ17が取り付けられており、このブーツ17は合成ゴムからなり、多心光ファイバテープ心線3が各フェルール9の接合面13の反対側に挿入される部分に位置している。前記各ブーツ17は多心光ファイバテープ心線3が各フェルール9の根元付近で曲げられた時に応力集中を避けるために設けられている。
【0040】
ガイドピン11は例えばステンレス製などの金属製から構成されており、図1において左側のフェルール9に設けたガイド孔15に挿入されることにより、相対する1対のMTコネクタ7の各フェルール9に接続された多心光ファイバテープ心線3の各光ファイバ5の軸合わせを行う位置決め用ガイド部材である。
【0041】
上記の2個で1対のMTコネクタ7のフェルール9は、多心光ファイバ5の軸合わせが一対のガイドピン11によって行われ、図1に示されているようにクランプ部材としての例えば1個のステンレス鋼製のクランプスプリング19によって一定の押圧力が光ファイバ5の軸方向にかけられることにより安定した嵌合状態が保持される。
【0042】
この発明の実施の形態の主要部を構成するクランプスプリング19は、平板状のプレート部21の長手方向(図1において右斜め上と左斜め下とを結ぶ方向)の両端側に、互いに対向するフック部23が図1において上方へ立ち上がって一体化されている。前記フック部23は互いに突き合わされた一対のフェルール9の後端面を挟み込むようにクランプするためにスプリング性(弾力性)を有するものである。また、上記の長手方向の両端側のフック部23にはブーツ17を嵌入可能な切欠き部25が設けられている。したがって、この実施の形態ではクランプスプリング19は合計4つのフック部23が設けられている。
【0043】
また、各フック部23の上部にはクランプスプリング19の長手方向の外側に向けて湾曲した湾曲部27が合計4つ一体化されている。この4つの湾曲部27のうちの1つの湾曲部27の内側にRFID29 (Radio Frequency Identification) が設けられている。
【0044】
図2を参照するに、上記のRFID29について詳しく説明すると、この実施の形態では、RFID29はプラスチック製の筒状のケース31内に、RFID29を構成する同調用コンデンサと電源用コンデンサとMTコネクタ7の識別情報を記憶したIC(Integrated Circuit)チップとを収納したICパッケージ33と、このICパッケージ33に電気的に接続したアンテナコイル35が内蔵されている。アンテナコイル35は微小アンテナの役割を果たすもので、まっすぐな棒状または板状の磁芯部材37と、この磁芯部材37に当該磁芯部材37の軸芯を中心として螺旋状に卷回されたコイル本体としての被覆銅線39とからなる。
【0045】
MTコネクタ7のフェルール9が熱硬化性樹脂であると共にRFID29がクランプスプリング19の1つの湾曲部27の幅方向の両端に露出されているので、図3に示されているように一対のMTコネクタ7をクランプしたクランプスプリング19のRFID29と電磁誘導を用いた読取り装置としての例えばRFID読取り装置41(リード機器又はリード/ライタ機器)との信号伝達が可能である。
【0046】
RFID29は、RFID読取り装置41にケーブル43で結線されたアンテナ45から発信される無線電波により、アンテナコイル35を経てICパッケージ33内のICチップに記憶されたMTコネクタ7の管理情報、MTコネクタ7に接続している多心光ファイバテープ心線3の光ファイバ情報、接続作業時の情報などの識別情報が読み出し且つ書き込み可能に構成されている。つまり、RFID読取り装置41のアンテナ45とRFID29のアンテナコイル35との間で電磁波のやり取りが行われ、RFID29を設けたクランプスプリング19でクランプされているMTコネクタ7の個別の識別が可能となる。
【0047】
なお、上記のRFID29には、上述したように接続される多心光ファイバテープ心線3、回線、施工等を含むMTコネクタ7の識別情報が例えばリード/ライタ機器によって予め盛り込まれる。
【0048】
以上のようにして、多心光ケーブル1の各多心光ファイバテープ心線3が一対のMTコネクタ7により接続されることにより多心光ケーブル1が延長されて敷設される。しかも、接続された一対のMTコネクタ7には当該MTコネクタ7の識別情報を記憶したRFID29がクランプスプリング19に設けられている。
【0049】
図3を参照するに、現場における多心光ケーブル1のMTコネクタ7の識別試験の状態が示されている。敷設された多心光ケーブル1の多心光ファイバテープ心線3を配線替えする場合は、MTコネクタ7で接続したクロージャ(図示省略)を開き、このクロージャに存在する多数のMTコネクタ7の中から目的とするMTコネクタ7を識別するために、RFID読取り装置41にケーブル43で結線されたアンテナ45から、294kHzの電磁波が呼び掛け信号として周囲に放射される。なお、上記の電磁波は、通常は295kHz以下であるが、これに限定されない。
【0050】
一方、識別すべきMTコネクタ7には、RFID29を設けたクランプスプリング19が使用されているので、RFID29は上記のアンテナ45から発信された呼び掛け信号としての294kHzの電磁波をエネルギー源にして電源用コンデンサに蓄積した後に、ICチップに記憶されたMTコネクタ7の識別情報などを含む応答信号としての電磁波を上記アンテナ45に返送する。
【0051】
以上のように、回線切り替え等の際に、RFID読取り装置41のアンテナ45とRFID29との間の電磁波のやり取りにより、RFID29の識別情報がRFID読取り装置41(リード機器又はリード/ライタ機器)で読み出され、RFID29が取り付けられているMTコネクタ7の識別が容易に行われるので、確実にMTコネクタ7の誤脱着や誤接続が避けられると共に回線切り替え工事費の削減に寄与する。
【0052】
また、RFID29を設けたクランプスプリング19が用いられることにより、取扱い可能な識別情報量が増加するので、MTコネクタ7の管理情報、当該MTコネクタ7に接続している多心光ファイバテープ心線3の光ファイバ情報、接続作業時の情報などの飛躍的な識別情報量がRFID29に入力されることにより、該当する多心光ファイバテープ心線3の各光ファイバ5の心線対照・識別も可能となるので、光ケーブル製造工程管理や光ケーブル管理が容易となる。
【0053】
なお、この発明は前述した実施の形態に限定されることなく、適宜な変更を行うことによりその他の態様で実施し得るものである。前記クランプスプリング19の材質としてステンレス鋼を用いた例で説明したが熱硬化性樹脂により一体成形されたものを用いてもよい。
【0054】
【発明の効果】
以上のごとき発明の実施の形態の説明から理解されるように、請求項1の発明によれば、回線切り替え等の際に、クランプ部材に設けられたRFIDから該当するMTコネクタの識別情報を容易に読み出すことができるので、確実にMTコネクタの誤脱着や誤接続を避けることができ、回線切り替え工事費の削減にも寄与する。また、RFIDにより取扱い可能な識別情報量を増加できる。
【0055】
請求項2の発明によれば、MTコネクタの識別情報はRFIDに容易に書き込むことができ、この書き込まれたMTコネクタの識別情報は時間経過によって消滅することはなく、例えばリーダ/ライタ機器により外部から非接触で短時間に容易に識別できる。
【0056】
請求項3の発明によれば、2つのMTコネクタを互いに突き合わせた状況にクランプ部材でクランプすることにより、回線切り替え等の際に、前記RFIDから該当するMTコネクタの識別情報を容易に読み出すことができるので、確実にMTコネクタの誤脱着や誤接続を避けることができ、回線切り替え工事費の削減にも寄与する。また、RFIDにより取扱い可能な識別情報量を増加できる。
【0057】
請求項4の発明によれば、MTコネクタの識別情報はRFIDに容易に書き込むことができ、この書き込まれたMTコネクタの識別情報は時間経過によって消滅することはなく、例えばリーダ/ライタ機器により外部から非接触で短時間に容易に識別できる。
【0058】
請求項5の発明によれば、光ケーブルの接続時には、各一対のMTコネクタのクランプ部材毎に設けられたRFIDに光ファイバの心線、回線、施工等の情報を盛り込むことができる。回線切り替え等の際には、各MTコネクタのRFIDから光ファイバの識別情報を読み出すことができ、回線が乗った光ファイバをさわることなく、必要とする光ファイバの心線対照・識別を容易に行うことができるので、大幅な省力化を図ることができる。
【0059】
請求項6の発明によれば、MTコネクタの識別情報はRFIDに容易に書き込むことができ、この書き込まれたMTコネクタの識別情報は時間経過によって消滅することはなく、例えばリーダ/ライタ機器により外部から非接触で短時間に容易に識別できる。
【図面の簡単な説明】
【図1】この発明の実施の形態のMTコネクタの概略的な斜視図である。
【図2】この発明の実施の形態で用いられるRFIDの斜視図である。
【図3】この発明の実施の形態のMTコネクタの管理方法の概略的な説明図である。
【図4】従来におけるMTコネクタの管理方法の概略的な説明図である。
【図5】従来におけるMTコネクタの概略的な斜視図である。
【図6】従来におけるMTコネクタの概略的な斜視図である。
【符号の説明】
1 多心光ケーブル
3 多心光ファイバテープ心線
5 光ファイバ
7 MTコネクタ(多心光コネクタ)
9 フェルール(コネクタ本体)
11 ガイドピン(ガイド部材)
13 接合面
15 ガイド孔
19 クランプスプリング(クランプ部材)
21 プレート部
23 フック部
27 湾曲部
29 RFID
31 ケース
33 ICパッケージ
35 アンテナコイル
41 RFID読取り装置(リード機器又はリード/ライタ機器)
45 アンテナ
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, an MT connector for a multi-core optical fiber for connecting a tape core having a large number of optical fibers is laid, and an individual MT connector can be easily identified from the MT connector. TECHNICAL FIELD The present invention relates to an MT connector, a clamp member used in the MT connector, and an optical fiber management method using the MT connector.
[0002]
[Prior art]
Referring to FIG. 4, conventionally, when a multi-core optical cable 101 sheathed with a large number of optical fibers is laid, an optical wiring as an optical fiber concentrator in which a large number of optical fibers of the multi-core optical cable 101 are located in a station. It is connected by an optical connector or the like on a board (MDF: Main Distribution Frame, hereinafter abbreviated as “MDF”) or the like. Since the length of the multi-core optical cable 101 is limited, another multi-core optical cable 101 is connected and extended. In FIG. 4, the first to fourth multi-core optical cables 101A to 101D are connected.
[0003]
In the near future, it is predicted that an optical access network represented by FTTH (Fiber-to-the-Home) will evolve and that optical fibers will spread to each subscriber. The distance from the station to each home is only a few kilometers at most, but in general, the number of subscribers of stations in large metropolitan areas in Japan reaches tens of thousands, so the stations are terminated by MDF. It is predicted that the number of optical fibers of the third party will reach tens of thousands. If this is terminated with a single-fiber (single-fiber) optical connector, it will be of the order of tens of thousands. Therefore, for example, an MT connector 105 (Mechanically Transferable Connector) is used as a multi-core optical connector for connecting multi-core optical fibers such as the multi-core optical fiber ribbon 103, thereby greatly reducing the number of optical connectors. Can be reduced.
[0004]
On the other hand, a multi-core optical cable 101 having several hundreds to a thousand or more optical fibers has also been put into practical use, and the number of optical cables drawn into a station can be reduced. In these multi-core optical cables 101, usually, a large number of 4-core or 8-core optical fiber tape cores 103 are accommodated. One or both ends of the multi-core optical cable 101 have a 4-core or 8-core multi-core optical connector. Is installed at the factory and shipped.
[0005]
For example, a 1000-core optical cable has 125 8-core optical fiber ribbons 103, and 125 8-core MT connectors 105 are attached to one end thereof. Usually, when the multi-core optical cable 101 is drawn into the manhole 107A from the tip (retracting end) thereof and passed through a pipeline (in the case of Japan, usually, the inside diameter φ75 mm) to the next manhole 107B, a spring is used. A metal fitting called an eye is attached to the tip. In each of the manholes 107A to 107D, each optical fiber of the multi-core optical fiber ribbon 103 is connected in each of the closures 109A to 109D.
[0006]
However, when the tip of the multi-core optical cable 101 becomes large, it is not possible to pass through the inside of the pipeline, and it is necessary to adjust the distance between the manholes 107A to 107D and the length of the multi-core optical cable 101 on site. Usually, the MT connector 105 is attached to only the terminal end of the multi-core optical cable 101 before shipment. For example, in FIG. 4, the second multi-core optical cable 101B is routed between the first manhole 107A and the second manhole 107B. In the first closure 109A of the first manhole 107A, a multiplicity of multi-core optical fiber ribbons 103 are connected by the MT connector 105, and in the second closure 109B of the second manhole 107B, a multiplicity of multicores. The optical fiber ribbon 103 is fusion-spliced.
[0007]
On the other hand, the third multi-core optical cable 101C is routed from the third manhole 107C to the second manhole 107B, that is, in the direction opposite to the second multi-core optical cable 101B. In this manner, the connection by the MT connector 105 and the fusion connection are alternately repeated in the manholes 107A to 107D for each connection.
[0008]
In a metropolitan area, construction that causes traffic congestion is allowed only for a short time at night, but the MT connector 105 is attached to the multi-core optical cable 101 at the factory and shipped, so that the multi-core optical cable is It is possible to connect the optical fibers 101 in a short time.
[0009]
The above description relates to a case where the multi-core optical cable 101 is newly laid. If a situation different from the initial demand forecast after a certain period elapses after the laying, the multi-core optical cable 101 is laid out. In some cases, it is necessary to change the wiring of the fiber ribbon 103. In such a case, the closures 109A and 109C connected by the MT connector 105 are opened, the MT connector 105 is detached, and the wiring is changed to meet the new demand. At this time, since a large number of MT connectors 105 exist in the closures 109A and 109C, it is necessary to individually identify the MT connectors 105 in order to avoid erroneous attachment / detachment and erroneous connection.
[0010]
5 and 6, as the MT connector 105, in the JIS (standard number JIS C5981), a ferrule 111 for a 2-core, 4-core, 8-core, 10-core, and 12-core optical fiber tape is used. It has been standardized. The MT connector 105 is exposed on the joint surface 115 of each ferrule 111 by positioning and abutting two ferrules 111 previously attached to the multi-core optical fiber ribbon 103 with two precision guide pins 113. The plurality of optical fibers 117 are connected to each other.
[0011]
The ferrule 111 of the MT connector 105 exposes the plurality of optical fibers 117 of the multi-core optical fiber ribbon 103 at predetermined positions on the joint surface and connects them. For example, a filler (typically silica) of 60 to 80 Wt% is used. It is a small resin molded product that is transfer-molded from an epoxy resin containing a fine powder), a polyphenylene sulfide resin (hereinafter abbreviated as PPS), or the like. The ferrule 111 of the MT connector 105 contains a filler as a component thereof, thereby increasing the Young's modulus from that of a resin alone to reduce distortion during transfer molding, and has excellent polishing properties of the joint surface. Elastic deformation can be suppressed.
[0012]
A boot 119 is attached to the ferrule 111. The boot 119 is made of synthetic rubber, and is located at a portion where the multi-core optical fiber ribbon 103 is inserted into the ferrule 111 on the side opposite to the joint surface 115. The boot 119 is provided to avoid stress concentration when the multi-core optical fiber ribbon 103 is bent near the base of the ferrule 111.
[0013]
The two guide pins 113 are made of stainless steel, and are inserted into the guide holes 121 provided in the ferrule 111 to be connected to the ferrule 111 of the pair of (two) MT connectors 105 facing each other. This is for aligning the axis of the tape core 103.
[0014]
As described above, the ferrule 111 of the pair (one set) of the MT connector 105 in which the axes of the multi-core optical fiber ribbon 103 are aligned by the guide pins 113 is, as shown in FIG. Since a constant pressing force is applied in the axial direction of the optical fiber 117 by the steel clamp spring 123, a stable fitted state is maintained.
[0015]
In FIG. 6, the marking surface 125 of the ferrule 111 of the MT connector 105 has two mating combinations due to the structure of the MT connector 105. The connection direction is uniquely determined by coloring only one of the side surfaces of 0.0 mm.
[0016]
Further, one or more surfaces of the ferrule 111 are removed except for a surface on which the pair of ferrules 111 face each other and a surface on which the boot 119 is inserted (a surface on which the multi-core optical fiber ribbon 103 is inserted). The identification information such as characters, numbers, or bar codes is directly printed on the information display surface 127, or a label on which the identification information is printed is attached, so that the MT connector 105 can be individually identified (for example, Patent Documents 1 and 2).
[0017]
[Patent Document 1]
JP-A-9-197194
[Patent Document 2]
JP 2002-116345 A
[Problems to be solved by the invention]
By the way, in the conventional MT connector 105, as shown in FIG. 6, identification information is directly printed on the information display surface 127 of the small-sized ferrule 111 in characters, numerals, bar codes, or the like for individual identification. Or a label printed with letters, numbers, barcodes, or the like is affixed, so that after a long period of time, the above-described printing becomes unclear or the label is peeled off. In addition, in the conventional method, since the area of the information display surface 127 of the ferrule 111 is small, the number of prints is limited and the amount of identification information is also limited, so that it is impossible to describe all necessary information. There was a problem that.
[0020]
In addition, the user cannot confirm the MT connector 105 housed in the closures 109A and 109C or the MDF without exposing the MT connector 105. Further, there is a problem that it takes a lot of time to find a target MT connector 105 from a large number of MT connectors 105, so that the construction cost increases.
[0021]
Also, if the wrong MT connector 105 is disconnected, a device controlled by a signal flowing through the optical fiber of the MT connector 105 may malfunction or stop information, resulting in a serious accident. There was a problem of being connected.
[0022]
The present invention has been made to solve the above-described problem, and an object of the present invention is to individually identify each MT connector from among a number of MT connectors for connecting each optical fiber in a laid multicore optical cable. An object of the present invention is to provide an MT connector, a clamp member used in the MT connector, and an optical fiber management method using the MT connector, which can be easily performed and the amount of identification information can be significantly increased.
[0023]
[Means for Solving the Problems]
In order to achieve the above object, an MT connector according to the present invention according to claim 1 has an MT connector having a joint surface for connecting optical fibers, and a pair of connector bodies having a joint surface for joining optical fibers. A plurality of guide holes provided for aligning the optical fiber of the joining surface with the one connector body of the pair of connector bodies, and the guide holes are mounted on the other connector body of the pair of connector bodies. And a clamp member that clamps the pair of connector bodies in a state where the pair of connector bodies abut against each other at a joint surface, and an RFID that is provided on the clamp member and stores identification information. is there.
[0024]
Therefore, at the time of line switching or the like, the identification information of the corresponding MT connector can be easily read from the RFID provided on the clamp member. It also contributes to reduction. Further, the amount of identification information that can be handled by the RFID increases.
[0025]
An MT connector according to a second aspect of the present invention is the MT connector according to the first aspect, wherein the RFID can read and write the identification information from outside without contact.
[0026]
Accordingly, the identification information of the MT connector can be easily written in the RFID, and the written identification information of the MT connector does not disappear with the passage of time. Easily identified.
[0027]
According to a third aspect of the present invention, there is provided a clamp member for clamping a pair of MT connectors for aligning an optical fiber with each other in an abutting state, wherein the clamp member is provided with an RFID for storing identification information. It is characterized by having.
[0028]
Therefore, by clamping the pair of MT connectors with the clamp member in a state where the MT connectors are brought into contact with each other, the identification information of the corresponding MT connector can be easily read from the RFID at the time of line switching or the like. And incorrect connection is avoided, which also contributes to a reduction in line switching construction costs. Further, the amount of identification information that can be handled by the RFID increases.
[0029]
According to a fourth aspect of the present invention, there is provided the clamp member according to the third aspect, wherein the RFID can read and write the identification information from outside without contact.
[0030]
Accordingly, the identification information of the MT connector can be easily written in the RFID, and the written identification information of the MT connector does not disappear with the passage of time. Easily identified.
[0031]
According to a fifth aspect of the present invention, there is provided an optical fiber management method comprising: laying an optical cable sheathed with a plurality of optical fibers made of a plurality of strands or tapes and connecting a plurality of optical fibers of the optical cable by a plurality of pairs of MT connectors. And an optical fiber management method for managing the lines of the plurality of optical fibers configured by clamping with a clamp member for each pair of MT connectors,
An RFID storing identification information for identifying the corresponding MT connector is provided in advance for each of the clamp members, and the identification information of the RFID of each of the MT connectors is individually identified by a reader using the reading device. Thus, the line state of each optical fiber is managed.
[0032]
Therefore, when the optical cable is connected, information such as the core of the optical fiber, the line, and the construction is included in the RFID provided for each clamp member of each pair of MT connectors. At the time of line switching or the like, the identification information of the optical fiber is read from the RFID of the MT connector provided on each clamp member, so that the necessary optical fiber can be connected without touching the optical fiber carrying the line. Since the comparison and identification of the cords can be easily performed, significant labor saving can be achieved.
[0033]
An optical fiber management method according to a sixth aspect of the present invention is the optical fiber management method according to the fifth aspect, wherein the RFID can read and write the identification information from outside without contact.
[0034]
Therefore, the identification information of the optical fiber can be easily written into the RFID, and the written identification information of the optical fiber does not disappear with the passage of time. Easily identified.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0036]
Referring to FIGS. 1 and 3, a multi-core optical cable 1 according to this embodiment is a cable in which a plurality of multi-core optical fiber tape core wires 3 are sheathed, for example. When the multi-core optical cable 1 is laid in the ground or on a utility pole, the length of the multi-core optical cable 1 is limited, so that another multi-core optical cable 1 is connected and extended. At this time, the multi-core optical cable 1 is extended by connecting each optical fiber 5 of each multi-core optical fiber ribbon 3 of the multi-core optical cable 1 by a pair of MT connectors 7.
[0037]
As shown in FIG. 1, a pair of MT connectors 7 according to this embodiment is an example for a four-core optical fiber ribbon, but in JIS (standard number JIS C5981), two MT connectors are used. Ferrules for 4-core, 8-core, 10-core, and 12-core optical fiber ribbons are standardized. The MT connector 7 includes, for example, two precision guide pins 11 as guide members provided on each of the ferrules 9 on the right side in FIG. 1 as a pair of connector bodies previously attached to the multi-core optical fiber ribbon 3. 1, a plurality of optical fibers 5 exposed at the joint surface 13 of each ferrule 9 are connected to each other by being mounted on a guide hole 15 provided in each ferrule 9 on the left side in FIG. is there.
[0038]
The ferrule 9 of the pair of MT connectors 7 exposes the plurality of optical fibers 5 of the multi-core optical fiber ribbon 3 at predetermined positions on the joint surface 13 and connects them. For example, a filler (60 to 80 Wt%) is used. It is a small resin molded product that is transfer-molded from epoxy resin, PPS resin, etc. containing silica fine powder). The ferrule 9 of each MT connector 7 contains a filler as a component thereof, thereby increasing the Young's modulus compared to a resin alone to reduce distortion during transfer molding, and is excellent in abrasion of the joint surface 13. In use, elastic deformation can be suppressed.
[0039]
A boot 17 is attached to each ferrule 9. The boot 17 is made of synthetic rubber, and is located at a portion where the multi-core optical fiber ribbon 3 is inserted on the opposite side of the joint surface 13 of each ferrule 9. are doing. The boots 17 are provided to avoid stress concentration when the multi-core optical fiber ribbon 3 is bent near the base of each ferrule 9.
[0040]
The guide pin 11 is made of, for example, a metal such as stainless steel, and is inserted into a guide hole 15 provided in the ferrule 9 on the left side in FIG. It is a positioning guide member for aligning each optical fiber 5 of the connected multi-core optical fiber ribbon 3.
[0041]
The ferrule 9 of the pair of two MT connectors 7 has a multi-core optical fiber 5 whose axial alignment is performed by a pair of guide pins 11, and as shown in FIG. A stable pressing state is maintained by applying a constant pressing force in the axial direction of the optical fiber 5 by the clamp spring 19 made of stainless steel.
[0042]
Clamp springs 19 constituting a main part of the embodiment of the present invention oppose each other on both ends in a longitudinal direction (a direction connecting obliquely upper right and obliquely lower left in FIG. 1) of flat plate portion 21. The hook portion 23 rises upward in FIG. 1 and is integrated. The hook portion 23 has a spring property (elasticity) so as to clamp the rear end surfaces of the pair of ferrules 9 butted against each other. The hooks 23 at both ends in the longitudinal direction are provided with cutouts 25 into which the boots 17 can be fitted. Therefore, in this embodiment, the clamp spring 19 is provided with a total of four hook portions 23.
[0043]
In addition, a total of four curved portions 27 which are curved outward in the longitudinal direction of the clamp spring 19 are integrated on the upper portion of each hook portion 23. An RFID 29 (Radio Frequency Identification) is provided inside one of the four bending portions 27.
[0044]
Referring to FIG. 2, the above-described RFID 29 will be described in detail. In this embodiment, the RFID 29 has a tuning capacitor, a power supply capacitor, and an MT connector 7 which constitute the RFID 29 in a plastic tubular case 31. An IC package 33 containing an IC (Integrated Circuit) chip storing identification information, and an antenna coil 35 electrically connected to the IC package 33 are built in. The antenna coil 35 plays a role of a minute antenna, and is formed by a straight rod-shaped or plate-shaped magnetic core member 37 and spirally wound around the magnetic core member 37 around the axis of the magnetic core member 37. And a covered copper wire 39 as a coil body.
[0045]
Since the ferrule 9 of the MT connector 7 is a thermosetting resin and the RFID 29 is exposed at both ends in the width direction of one curved portion 27 of the clamp spring 19, as shown in FIG. Signals can be transmitted between the RFID 29 of the clamp spring 19 that clamps 7 and an RFID reader 41 (lead device or read / writer device) as a reader using electromagnetic induction.
[0046]
The RFID 29 stores management information of the MT connector 7 stored in an IC chip in the IC package 33 via an antenna coil 35 by a radio wave transmitted from an antenna 45 connected to the RFID reader 41 by a cable 43, The identification information such as the optical fiber information of the multi-core optical fiber ribbon 3 connected to the optical fiber and information at the time of connection work can be read and written. That is, electromagnetic waves are exchanged between the antenna 45 of the RFID reader 41 and the antenna coil 35 of the RFID 29, and the MT connector 7 clamped by the clamp spring 19 provided with the RFID 29 can be individually identified.
[0047]
The identification information of the MT connector 7 including the multi-core optical fiber ribbon 3, the line, the construction, and the like connected as described above is previously stored in the RFID 29 by, for example, a read / write device.
[0048]
As described above, the multi-core optical cable 1 is extended and laid by connecting the multi-core optical fiber ribbons 3 of the multi-core optical cable 1 by the pair of MT connectors 7. In addition, an RFID 29 storing identification information of the MT connector 7 is provided on the clamp spring 19 for the pair of connected MT connectors 7.
[0049]
FIG. 3 shows a state of an identification test of the MT connector 7 of the multi-core optical cable 1 at a site. When rewiring the multi-core optical fiber ribbon 3 of the laid multi-core optical cable 1, the closure (not shown) connected with the MT connector 7 is opened, and the MT connector 7 existing in the closure is opened. In order to identify the target MT connector 7, an electromagnetic wave of 294 kHz is radiated to the surroundings as an interrogation signal from an antenna 45 connected to the RFID reader 41 by a cable 43. The above-mentioned electromagnetic wave is usually at or below 295 kHz, but is not limited to this.
[0050]
On the other hand, since the clamp connector 19 provided with the RFID 29 is used for the MT connector 7 to be identified, the RFID 29 uses a 294 kHz electromagnetic wave as an interrogation signal transmitted from the antenna 45 as an energy source and a power supply capacitor. Then, an electromagnetic wave as a response signal including the identification information of the MT connector 7 and the like stored in the IC chip is returned to the antenna 45.
[0051]
As described above, when the line is switched, the identification information of the RFID 29 is read by the RFID reader 41 (read device or read / writer device) by the exchange of the electromagnetic wave between the antenna 45 of the RFID reader 41 and the RFID 29. Since the MT connector 7 to which the RFID 29 is attached is easily identified, the erroneous attachment / detachment and erroneous connection of the MT connector 7 can be reliably avoided, and the line switching work cost can be reduced.
[0052]
Further, since the amount of identification information that can be handled is increased by using the clamp spring 19 provided with the RFID 29, the management information of the MT connector 7 and the multi-core optical fiber ribbon 3 connected to the MT connector 7 are controlled. By inputting a remarkable amount of identification information such as the information of the optical fiber and the information at the time of connection work to the RFID 29, it is also possible to control and identify the respective optical fibers 5 of the corresponding multi-core optical fiber tape core 3. Therefore, the optical cable manufacturing process management and the optical cable management become easy.
[0053]
The present invention is not limited to the above-described embodiment, but can be embodied in other modes by making appropriate changes. Although an example in which stainless steel is used as the material of the clamp spring 19 has been described, a material integrally formed of a thermosetting resin may be used.
[0054]
【The invention's effect】
As can be understood from the above description of the embodiment of the invention, according to the invention of claim 1, when the line is switched, the identification information of the corresponding MT connector can be easily obtained from the RFID provided on the clamp member. Since the data can be read out in a timely manner, erroneous connection / removal of the MT connector and erroneous connection can be reliably avoided, thereby contributing to a reduction in line switching work costs. Further, the amount of identification information that can be handled by the RFID can be increased.
[0055]
According to the second aspect of the present invention, the identification information of the MT connector can be easily written in the RFID, and the written identification information of the MT connector does not disappear over time. Can be easily identified in a short time without contact.
[0056]
According to the third aspect of the present invention, by clamping the two MT connectors in a state where they abut each other, the identification information of the corresponding MT connector can be easily read from the RFID at the time of line switching or the like. As a result, erroneous attachment / detachment and erroneous connection of the MT connector can be reliably avoided, which also contributes to reduction of line switching work costs. Further, the amount of identification information that can be handled by the RFID can be increased.
[0057]
According to the fourth aspect of the present invention, the identification information of the MT connector can be easily written in the RFID, and the written identification information of the MT connector does not disappear over time. Can be easily identified in a short time without contact.
[0058]
According to the invention of claim 5, when the optical cable is connected, information such as the core of the optical fiber, the line, and the construction can be included in the RFID provided for each clamp member of each pair of MT connectors. At the time of line switching, etc., the identification information of the optical fiber can be read from the RFID of each MT connector, and the required optical fiber can be easily compared and identified without touching the optical fiber carrying the line. Since it can be performed, it is possible to greatly reduce labor.
[0059]
According to the sixth aspect of the present invention, the identification information of the MT connector can be easily written into the RFID, and the written identification information of the MT connector does not disappear with the passage of time. Can be easily identified in a short time without contact.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an MT connector according to an embodiment of the present invention.
FIG. 2 is a perspective view of an RFID used in the embodiment of the present invention.
FIG. 3 is a schematic diagram illustrating an MT connector management method according to the embodiment of the present invention;
FIG. 4 is a schematic explanatory diagram of a conventional MT connector management method.
FIG. 5 is a schematic perspective view of a conventional MT connector.
FIG. 6 is a schematic perspective view of a conventional MT connector.
[Explanation of symbols]
1 multi-core optical cable 3 multi-core optical fiber tape 5 optical fiber 7 MT connector (multi-core optical connector)
9 Ferrule (connector body)
11 Guide pin (guide member)
13 joining surface 15 guide hole 19 clamp spring (clamp member)
21 Plate part 23 Hook part 27 Curved part 29 RFID
31 case 33 IC package 35 antenna coil 41 RFID reader (lead device or read / writer device)
45 antenna

Claims (6)

光ファイバを接合するための接合面を有する一対のコネクタ本体と、この一対のコネクタ本体の一方のコネクタ本体に接合面の光ファイバを軸心合わせするために設けられた複数のガイド孔と、前記一対のコネクタ本体の他方のコネクタ本体に前記ガイド孔に装着されたガイド部材と、前記一対のコネクタ本体を互いに接合面で突き合わせた状態にクランプするクランプ部材と、このクランプ部材に設けられ識別情報を記憶するRFIDと、を備えてなることを特徴とするMTコネクタ。A pair of connector bodies having a joining surface for joining an optical fiber, and a plurality of guide holes provided for axially aligning the optical fiber of the joining surface to one connector body of the pair of connector bodies; A guide member mounted on the guide hole in the other connector body of the pair of connector bodies, a clamp member for clamping the pair of connector bodies in a state where the connector bodies abut against each other at a joint surface, and identification information provided on the clamp member; And an RFID for storing the MT connector. 前記RFIDが、外部から非接触で前記識別情報を読み書き可能であることを特徴とする請求項1記載のMTコネクタ。The MT connector according to claim 1, wherein the RFID is capable of reading and writing the identification information from outside without contact. 光ファイバを軸心合わせする一対のMTコネクタを互いに突き合わせた状態にクランプするクランプ部材であって、このクランプ部材に識別情報を記憶するRFIDが設けられていることを特徴とするクランプ部材。What is claimed is: 1. A clamp member for clamping a pair of MT connectors for aligning an optical fiber with each other in an abutted state, wherein said clamp member is provided with an RFID for storing identification information. 前記RFIDが、外部から非接触で前記識別情報を読み書き可能であることを特徴とする請求項3記載のクランプ部材。The clamp member according to claim 3, wherein the RFID is capable of reading and writing the identification information from outside without contact. 複数の素線又はテープ心線からなる光ファイバ心線をシースした光ケーブルを敷設すると共にこの光ケーブルの複数の光ファイバを複数対のMTコネクタで接続し且つ各一対のMTコネクタ毎にクランプ部材にてクランプして構成される前記複数の光ファイバの回線を管理する光ファイバ管理方法において、
予め、前記各クランプ部材毎に、該当するMTコネクタを識別するための識別情報を記憶したRFIDを設け、前記各MTコネクタのRFIDの識別情報を読取り装置によって該当するMTコネクタを個別に識別することにより、各光ファイバの回線状態を管理することを特徴とする光ファイバ管理方法。
An optical cable sheathed with an optical fiber core comprising a plurality of strands or a tape core is laid, and a plurality of optical fibers of the optical cable are connected by a plurality of pairs of MT connectors, and a clamp member is provided for each pair of MT connectors. An optical fiber management method for managing the lines of the plurality of optical fibers configured by clamping,
An RFID storing identification information for identifying the corresponding MT connector is provided in advance for each of the clamp members, and the identification information of the RFID of each of the MT connectors is individually identified by a reader using the reading device. An optical fiber management method for managing the line state of each optical fiber by using the method.
前記RFIDが、外部から非接触で前記識別情報を読み書き可能であることを特徴とする請求項5記載の光ファイバ管理方法。6. The optical fiber management method according to claim 5, wherein the RFID is capable of reading and writing the identification information from outside without contact.
JP2003110545A 2003-04-15 2003-04-15 Mt connector, guide members used in the same and optical fiber management method using the same connector Pending JP2004317737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110545A JP2004317737A (en) 2003-04-15 2003-04-15 Mt connector, guide members used in the same and optical fiber management method using the same connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110545A JP2004317737A (en) 2003-04-15 2003-04-15 Mt connector, guide members used in the same and optical fiber management method using the same connector

Publications (1)

Publication Number Publication Date
JP2004317737A true JP2004317737A (en) 2004-11-11

Family

ID=33471375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110545A Pending JP2004317737A (en) 2003-04-15 2003-04-15 Mt connector, guide members used in the same and optical fiber management method using the same connector

Country Status (1)

Country Link
JP (1) JP2004317737A (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350985B2 (en) * 2006-03-24 2008-04-01 Honeywell Federal Manufacturing & Technologies, Llc Miniature MT optical assembly (MMTOA)
WO2009048063A1 (en) 2007-10-12 2009-04-16 Sony Corporation Connector system, connecting cable and receiving tool
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
JP2011211871A (en) * 2010-03-30 2011-10-20 Energia Communications Inc Communication facility, communication cable laying method, and laying information management system
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
GB2499245A (en) * 2012-02-10 2013-08-14 United Technologists Europe Ltd Bar code identification of fibre-optic connections
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
WO2014153393A3 (en) * 2013-03-19 2015-04-02 Texas Instruments Incorporated Dielectric waveguide
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US20170108653A1 (en) * 2012-07-11 2017-04-20 Commscope Technologies Llc Managed fiber connectivity systems
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
JP7178457B1 (en) 2021-06-22 2022-11-25 古河電気工業株式会社 Ferrule for optical connector

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350985B2 (en) * 2006-03-24 2008-04-01 Honeywell Federal Manufacturing & Technologies, Llc Miniature MT optical assembly (MMTOA)
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US8264355B2 (en) 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US10200122B2 (en) 2007-03-06 2019-02-05 Sony Corporation Connector system, connecting cable and receiving tool
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US9749048B2 (en) 2007-10-12 2017-08-29 Sony Corporation Connector system, connecting cable and receiving tool
US9246588B2 (en) 2007-10-12 2016-01-26 Sony Corporation Connector system, connecting cable and receiving tool
WO2009048063A1 (en) 2007-10-12 2009-04-16 Sony Corporation Connector system, connecting cable and receiving tool
US9118417B2 (en) 2007-10-12 2015-08-25 Sony Corporation Connector system, connecting cable and receiving tool
EP2683039A1 (en) 2007-10-12 2014-01-08 Sony Corporation Connector system, connecting cable and receiving tool
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US9058529B2 (en) 2008-08-28 2015-06-16 Corning Optical Communications LLC RFID-based systems and methods for collecting telecommunications network information
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8264366B2 (en) 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9159012B2 (en) 2009-11-30 2015-10-13 Corning Incorporated RFID condition latching
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
JP2011211871A (en) * 2010-03-30 2011-10-20 Energia Communications Inc Communication facility, communication cable laying method, and laying information management system
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US8333518B2 (en) 2010-05-06 2012-12-18 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
GB2499245A (en) * 2012-02-10 2013-08-14 United Technologists Europe Ltd Bar code identification of fibre-optic connections
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
US20170108653A1 (en) * 2012-07-11 2017-04-20 Commscope Technologies Llc Managed fiber connectivity systems
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
WO2014153393A3 (en) * 2013-03-19 2015-04-02 Texas Instruments Incorporated Dielectric waveguide
US9312591B2 (en) 2013-03-19 2016-04-12 Texas Instruments Incorporated Dielectric waveguide with corner shielding
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
JP7178457B1 (en) 2021-06-22 2022-11-25 古河電気工業株式会社 Ferrule for optical connector
WO2022270434A1 (en) * 2021-06-22 2022-12-29 古河電気工業株式会社 Optical connector ferrule
JP2023002409A (en) * 2021-06-22 2023-01-10 古河電気工業株式会社 Ferrule for optical connector

Similar Documents

Publication Publication Date Title
JP2004317737A (en) Mt connector, guide members used in the same and optical fiber management method using the same connector
US11347008B2 (en) Fiber optic connection device with ruggedized tethers
CN100492983C (en) Automatic registration system for dynamically-updating information related to network and its method
US8410909B2 (en) Cables and connector assemblies employing a furcation tube(s) for radio-frequency identification (RFID)-equipped connectors, and related systems and methods
US9361600B2 (en) Physical layer management (PLM) system for use with an optical distribution frame in which trays can be selectively removed and re-attached
US7336883B2 (en) Indexing optical fiber adapter
US20100079248A1 (en) Optical fiber connector assembly with wire-based RFID antenna
TW201428372A (en) Fiber optic cassette
CN203422501U (en) Optical fiber connector having radio frequency identification tag
JP2004245958A (en) Optical fiber cable and method and apparatus for manufacturing optical fiber cable
JP4071705B2 (en) Multi-fiber optical connector
JP2004139041A (en) Data communication optical interface
JP2005092107A (en) Management system of transmission component using connector plug with memory
US6767136B1 (en) Device having multiple optical fibers
JP2004317560A (en) Mt connector, guide member used in the same and optical fiber management method using the same connector
US20180225487A1 (en) Optical jumper
CN111213150B (en) Optical fiber connector assembly
JP2004343834A (en) Outdoor wire anchor and outdoor wire managing method using the same
CN218728161U (en) Vertical coupling optical fiber array fixing tool
JPH11258448A (en) Optical mutual connecting device and its manufacture
US20070127871A1 (en) Boot for MT connector
CN102326212A (en) Composite harness and method for producing same
CN222028623U (en) Electronic tag cutting ferrule, electronic tag subassembly
JP2970959B2 (en) Optical fiber ribbon
JP2004317838A (en) Optical branching and coupling unit and optical fiber management method using same optical branching and coupling unit