JP2004292900A - Alloy powder having excellent sinterability - Google Patents

Alloy powder having excellent sinterability Download PDF

Info

Publication number
JP2004292900A
JP2004292900A JP2003087644A JP2003087644A JP2004292900A JP 2004292900 A JP2004292900 A JP 2004292900A JP 2003087644 A JP2003087644 A JP 2003087644A JP 2003087644 A JP2003087644 A JP 2003087644A JP 2004292900 A JP2004292900 A JP 2004292900A
Authority
JP
Japan
Prior art keywords
alloy powder
alloy
particle size
powder
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087644A
Other languages
Japanese (ja)
Other versions
JP4275438B2 (en
Inventor
Noriyuki Umano
則之 馬野
Toshiyuki Sawada
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2003087644A priority Critical patent/JP4275438B2/en
Publication of JP2004292900A publication Critical patent/JP2004292900A/en
Application granted granted Critical
Publication of JP4275438B2 publication Critical patent/JP4275438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide alloy powder which has excellent sinterability, and can obtain a sintered compact having a reduced shrinkage rate and stable quality in a short sintering time. <P>SOLUTION: In the alloy powder having excellent sinterability, particle size regulation is performed in such a manner that the ratio of the particles with particle diameters of 80 to 250 μm is controlled to 12 to 17%, the ratio of the particles with particle diameters of 30 to <80 μm is controlled to 25 to 30%, and the ratio of the particles with particle diameters of <30 μm is controlled to 40 to 45%, and the balance is controlled to the particle diameters of >250 μm. Further, the alloy powder consists of one or more kinds selected from Fe-based alloys, Ni-based, Co-based alloys, Cu-based alloys and Mn-based alloys. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、寸法精度の厳しい焼結部品に関し、例えば、ギヤ、軸受け、および電子部品等に使用される寸法精度の厳しい焼結部品に関するものである。
【0002】
【従来の技術】
従来、OA、コンピューター関連分野さらには機械産業分野のメカトロニクス化に伴い、小型高性能な複雑形状部品のニーズが高まりつつある。このような要求を満たすために、粉末冶金法を応用して、成型と焼結により製造することが考えられている。この焼結のメカニズムは、一般に充填された粉末に熱を加えることで粉末同士が接した部分のネックが成長していき焼結体ができるものである。しかし、焼結材は、密度が上がりにくく、溶製材と比較して特性的に劣っているのが現状である。これを改善するために、例えば特開昭62−103343号公報(特許文献1)においては、平均粒径60〜200μmのガスアトマイズ球状粉末を圧縮成形した後、真空焼結し、O0.02%以下とする鉄−ニッケル系軟磁性焼結材料が提案されている。
【0003】
また、特開平5−117721号公報(特許文献2)に開示しているように、ガスアトマイズ法により得られた80〜95重量%銅−5〜20重量%クロム組成の合金粉体に、粒径が150μm以下の銅粉を5重量%以上50重量%以下の割合で添加し、得られた混合粉末を加圧成形し、得られた成形体を不活性雰囲気で加熱して焼結させた電極材料の製造方法が提案されている。
【0004】
(1)特許文献1(特開昭62−103343号公報)
(2)特許文献2(特開平5−117721号公報)
【0005】
【発明が解決しようとする課題】
上述した特許文献1または特許文献2のいずれも、粒度コントロールされていない粉末、または製造方法のために、粉末の粒度分布により焼結の進行に変化が生じたり、また収縮にバラツキが生じて焼結体の寸法コントロールが難しく、粉末の特性である収縮率が増大し、寸法精度が悪く、また焼結時間が長い等の問題がある。
【0006】
【課題を解決するための手段】
上述した問題を解消するために、発明者らは鋭意開発を進めた結果、焼結の進行や収縮率に最適な粉末粒度を制御することにより、短い焼結時間で収縮率の小さい安定した品質の焼結体を得ることが出来る焼結性に優れた合金粉末を提供するものである。その発明の要旨とするところは、
(1)粒径80〜250μm:12〜17%、粒径30〜80未満μm:25〜30%、粒径30μm未満:40〜45%、残部250μm超に粒度調整されたことを特徴とする焼結性に優れた合金粉末。
【0007】
(2)前記(1)記載の合金粉末の収縮率が20%以下であることを特徴とする焼結性に優れた合金粉末。
(3)前記(1)または(2)記載の合金粉末が、Fe基合金、Ni基合金、Co基合金、Cu基合金、Mn基合金のうち、1種以上であることを特徴とする焼結性に優れた合金粉末である。
【0008】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明において、粒径80〜250μm:12〜17%、粒径30〜80未満μm:25〜30%、粒径30μm未満:40〜45%、残部250μm超に粒度調整した粉末を加熱温度700〜1500℃の範囲で3〜7時間焼結した場合はネックの成長が最適に行われ、かつ収縮性を極めて小さくおさえることができる。この粒径粒径80〜250μm:12〜17%、粒径30〜80未満μm:25〜30%、粒径30μm未満:40〜45%、残部250μm超に粒度調整した理由は、この範囲を外れると、焼結時間が7時間を超え、生産性が著しく低下する。合金粉末の収縮率が20%以下とした理由は、合金粉末の収縮率が20%を超えると、焼結体の寸法コントロールが難しくなり、また、収縮率のバラツキも大きくなるため、寸法精度が悪くなる。
【0009】
また、本発明に係る合金粉末としては、Fe基合金、Ni基合金、Co基合金、Cu基合金、Mn基合金のうち1種以上である。具体的には、Fe基合金としては粉末ハイス(Fe−1.3C−4Cr−5Mo−3V−6W−8Co)、SUS316L(Fe−13Ni−17Cr−2Mo)等、Ni基合金としては、PHC(Ni−16Cr−16Mo−3.5W−6.5Fe)等、Co基合金としては、PS6(Co−1.1C−29Cr−5W)等、Cu基合金としては、BCuP2(Cu−7P)等、Mn基合金としては、MnAlC(Mn−30Al−0.5C)等を挙げることができる。
【0010】
【実施例】
以下、本発明について実施例によって詳細に説明する。
表1に掲げる粉末ハイス、SUS316L、PHC、PS6、BCuP2、MnAlCの6種について、ガスアトマイズ法により製造し、篩分けし計量して粒度調整した後ブレード付混合機にて混合した後、梱包して出荷し、その合金粉末を焼結し、再び計量した後金型に充填してプレス加工し、加熱、保持後取り出し、検査工程で検査を行なった。その結果を表1に示す。
【0011】
【表1】

Figure 2004292900
【0012】
表1に示すように、No.1〜18は本発明例であり、No.19〜36は、比較例である。本発明でのNo.1〜6、No.7〜12、No.13〜18は6種の合金粉末を1000〜750mm、750〜500mm、500〜250mm、250〜80mm、80〜30mm、30mm以下に区分してそれぞれの割合に混合して焼結後の収縮率を示している。いずれも収縮率が低いことが分かる。これに対し、比較例においても本発明例と同様にNo.19〜24、No.25〜30、No.31〜36において6種の合金粉末を各粒度でそれぞれの混合割合で焼結した後の収縮率はいずれも焼結時間が長いにもかかわらず収縮率が20%以上と本発明より高いことが分かる。
【0013】
【発明の効果】
以上述べたように、本発明による粒度調整を行なうことにより、焼結時間が短縮され、かつ寸法精度に優れた焼結体を得ることが出来る極めて優れた効果を奏するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sintered part having strict dimensional accuracy, for example, a sintered part having strict dimensional accuracy used for gears, bearings, electronic components, and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, with the development of mechatronics in the OA, computer-related fields, and the machine industry, there is a growing need for small-sized, high-performance, and complex-shaped components. In order to satisfy such requirements, it has been considered to apply powder metallurgy to manufacture by molding and sintering. The mechanism of this sintering is that, generally, by applying heat to the filled powder, the neck of the portion where the powders are in contact grows to form a sintered body. However, at present, sintered materials are hard to increase in density and are inferior in characteristics as compared with ingot materials. In order to improve this, for example, in Japanese Patent Application Laid-Open No. Sho 62-103343 (Patent Document 1), a gas atomized spherical powder having an average particle diameter of 60 to 200 μm is compression-molded, then vacuum-sintered, and O 2 0.02 % Iron-nickel-based soft magnetic sintering material has been proposed.
[0003]
As disclosed in JP-A-5-117721 (Patent Document 2), an alloy powder having a composition of 80 to 95% by weight of copper and 5 to 20% by weight of chromium obtained by a gas atomizing method has An electrode obtained by adding copper powder having a particle size of 150 μm or less at a ratio of 5% by weight or more and 50% by weight or less, pressing the obtained mixed powder under pressure, and heating and sintering the obtained molded body in an inert atmosphere. Methods for producing materials have been proposed.
[0004]
(1) Patent Document 1 (JP-A-62-103343)
(2) Patent Document 2 (JP-A-5-117721)
[0005]
[Problems to be solved by the invention]
In either of Patent Documents 1 and 2 described above, because of the powder whose particle size is not controlled, or the manufacturing method, the progress of sintering is changed due to the particle size distribution of the powder, or the shrinkage is varied, resulting in the firing. There are problems such as difficulty in controlling the size of the compact, increase in shrinkage, which is a characteristic of the powder, poor dimensional accuracy, and long sintering time.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have made intensive developments, and as a result, by controlling the powder size optimal for the progress of sintering and shrinkage, a stable quality with a small shrinkage in a short sintering time. The present invention provides an alloy powder excellent in sinterability, which can obtain a sintered body of (1). The gist of the invention is that
(1) Particle size: 80 to 250 μm: 12 to 17%, particle size: less than 30 to 80 μm: 25 to 30%, particle size: less than 30 μm: 40 to 45%, and the balance is more than 250 μm. Alloy powder with excellent sinterability.
[0007]
(2) An alloy powder having excellent sinterability, wherein the alloy powder according to (1) has a shrinkage of 20% or less.
(3) The sintering method according to (1) or (2), wherein the alloy powder is at least one of an Fe-based alloy, a Ni-based alloy, a Co-based alloy, a Cu-based alloy, and a Mn-based alloy. It is an alloy powder with excellent binding properties.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, a powder having a particle size of 80 to 250 μm: 12 to 17%, a particle size of less than 30 to 80 μm: 25 to 30%, a particle size of less than 30 μm: 40 to 45%, and a balance of more than 250 μm is heated at a heating temperature of 700. When sintering is performed at a temperature in the range of 11500 ° C. for 3 to 7 hours, the growth of the neck is optimally performed, and the shrinkage can be extremely small. The reason why the particle size was adjusted to 80 to 250 μm: 12 to 17%, the particle size to less than 30 to 80 μm: 25 to 30%, the particle size to less than 30 μm: 40 to 45%, and the balance to more than 250 μm is as follows. If it is off, the sintering time exceeds 7 hours, and the productivity is significantly reduced. The reason why the shrinkage of the alloy powder is set to 20% or less is that if the shrinkage of the alloy powder exceeds 20%, the dimensional control of the sintered body becomes difficult, and the variation of the shrinkage also becomes large. become worse.
[0009]
Further, the alloy powder according to the present invention is at least one of an Fe-based alloy, a Ni-based alloy, a Co-based alloy, a Cu-based alloy, and a Mn-based alloy. Specifically, powdered high-speed steel (Fe-1.3C-4Cr-5Mo-3V-6W-8Co), SUS316L (Fe-13Ni-17Cr-2Mo), etc. as the Fe-based alloy, and PHC ( Ni-16Cr-16Mo-3.5W-6.5Fe) and the like, such as PS6 (Co-1.1C-29Cr-5W) as a Co-based alloy, and BCuP2 (Cu-7P) as a Cu-based alloy. Examples of the Mn-based alloy include MnAlC (Mn-30Al-0.5C).
[0010]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
The six types of powdered high-speed steel, SUS316L, PHC, PS6, BCuP2, and MnAlC listed in Table 1 were produced by a gas atomizing method, sieved, weighed, adjusted for particle size, mixed with a mixer with a blade, and packed. After shipping, the alloy powder was sintered, weighed again, filled in a mold, pressed, heated, held, taken out, and inspected in an inspection process. Table 1 shows the results.
[0011]
[Table 1]
Figure 2004292900
[0012]
As shown in Table 1, Nos. 1 to 18 are examples of the present invention. 19 to 36 are comparative examples. No. in the present invention. Nos. 1 to 6; Nos. 7 to 12; 13 to 18 are divided into 1000 to 750 mm, 750 to 500 mm, 500 to 250 mm, 250 to 80 mm, 80 to 30 mm, and 30 mm or less in the six kinds of alloy powders, and mixed in respective proportions to reduce the shrinkage after sintering. Is shown. It can be seen that the shrinkage rate is low in each case. On the other hand, in the comparative example as well as in the present invention example, 19 to 24; 25-30, No. Regarding 31 to 36, the shrinkage rate after sintering the six kinds of alloy powders at the respective particle sizes and the respective mixing ratios is that the shrinkage rate is 20% or more, which is higher than the present invention, despite the long sintering time. I understand.
[0013]
【The invention's effect】
As described above, by performing the grain size adjustment according to the present invention, the sintering time is shortened, and an extremely excellent effect that a sintered body having excellent dimensional accuracy can be obtained can be obtained.

Claims (3)

粒径80〜250μm:12〜17%、粒径30〜80未満μm:25〜30%、粒径30μm未満:40〜45%、残部250μm超に粒度調整されたことを特徴とする焼結性に優れた合金粉末。Particle size 80 to 250 μm: 12 to 17%, particle size 30 to less than 80 μm: 25 to 30%, particle size less than 30 μm: 40 to 45%, and sinterability characterized in that the particle size is adjusted to more than 250 μm. Excellent alloy powder. 請求項1記載の合金粉末の収縮率が20%以下であることを特徴とする焼結性に優れた合金粉末。An alloy powder having excellent sinterability, wherein the alloy powder according to claim 1 has a shrinkage of 20% or less. 請求項1または2記載の合金粉末が、Fe基合金、Ni基合金、Co基合金、Cu基合金、Mn基合金のうち、1種以上であることを特徴とする焼結性に優れた合金粉末。3. The alloy having excellent sinterability, wherein the alloy powder according to claim 1 is at least one of an Fe-based alloy, a Ni-based alloy, a Co-based alloy, a Cu-based alloy, and a Mn-based alloy. Powder.
JP2003087644A 2003-03-27 2003-03-27 Alloy powder with excellent sinterability Expired - Lifetime JP4275438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087644A JP4275438B2 (en) 2003-03-27 2003-03-27 Alloy powder with excellent sinterability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087644A JP4275438B2 (en) 2003-03-27 2003-03-27 Alloy powder with excellent sinterability

Publications (2)

Publication Number Publication Date
JP2004292900A true JP2004292900A (en) 2004-10-21
JP4275438B2 JP4275438B2 (en) 2009-06-10

Family

ID=33401987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087644A Expired - Lifetime JP4275438B2 (en) 2003-03-27 2003-03-27 Alloy powder with excellent sinterability

Country Status (1)

Country Link
JP (1) JP4275438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824778A (en) * 2017-10-20 2018-03-23 广西银英生物质能源科技开发股份有限公司 Powder metallurgy material for gear and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107824778A (en) * 2017-10-20 2018-03-23 广西银英生物质能源科技开发股份有限公司 Powder metallurgy material for gear and preparation method thereof

Also Published As

Publication number Publication date
JP4275438B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JP5682723B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
CN109128166B (en) Near-net forming method for ultrahigh-strength corrosion-resistant soft magnetic ferrite stainless steel
CN109585152B (en) Method for producing R-T-B sintered magnet and diffusion source
JPH02164008A (en) Manufacture of soft magnetic sintered body of fe-si alloy
CN115401216B (en) Method for preparing high-nitrogen stainless steel by alloy powder passing through selective laser melting
JP5682724B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
JP2004292900A (en) Alloy powder having excellent sinterability
JPWO2019111834A1 (en) Partially diffused alloy steel powder
WO2019111833A1 (en) Steel alloy powder
JP2743090B2 (en) How to control the carbon content of metal injection products
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
JP2006503981A (en) Method for controlling dimensional changes during sintering of iron-based powder mixtures
JP5682725B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
JP2003049203A (en) Nickel - iron alloy powder, nickel - iron - molybdenum alloy powder, and method for manufacturing iron core
JPH06172810A (en) Production of tungsten alloy sintered compact
JP3694968B2 (en) Mixed powder for powder metallurgy
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH07179983A (en) Sintered soft-magnetic material having high electric resistance value and its production
JPH10147832A (en) Manufacture of &#39;permalloy(r)&#39; sintered compact
JPH0257613A (en) Production of sintered metallic material and its raw powder
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy
CN111702167A (en) Three-step mixing process for iron-based powder metallurgy
JPH01212705A (en) Manufacture of magnetic material
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Ref document number: 4275438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term