JP2004277877A - Metal powder for metal light mold molding, method of producing the same, method of producing molding with three-dimensional shape by metal light molding and metal light molding - Google Patents

Metal powder for metal light mold molding, method of producing the same, method of producing molding with three-dimensional shape by metal light molding and metal light molding Download PDF

Info

Publication number
JP2004277877A
JP2004277877A JP2003281260A JP2003281260A JP2004277877A JP 2004277877 A JP2004277877 A JP 2004277877A JP 2003281260 A JP2003281260 A JP 2003281260A JP 2003281260 A JP2003281260 A JP 2003281260A JP 2004277877 A JP2004277877 A JP 2004277877A
Authority
JP
Japan
Prior art keywords
powder
metal
copper
nickel
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003281260A
Other languages
Japanese (ja)
Other versions
JP3633607B2 (en
Inventor
Isao Fuwa
勲 不破
Tokuo Yoshida
徳雄 吉田
Shuji Kaminaga
修士 上永
Toshiharu Iwanaga
俊治 岩永
Yoshikazu Azuma
喜万 東
Hirohiko Tougeyama
裕彦 峠山
Satoshi Abe
諭 阿部
Masataka Takenami
正孝 武南
Takashi Shimizu
俊 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003281260A priority Critical patent/JP3633607B2/en
Priority to TW093104612A priority patent/TWI239874B/en
Publication of JP2004277877A publication Critical patent/JP2004277877A/en
Application granted granted Critical
Publication of JP3633607B2 publication Critical patent/JP3633607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a molding which has excellent moldability on metal light molding, and has no microcracks. <P>SOLUTION: In the metal powder for metal light molding, a powder layer consisting of metal powder is irradiated with an optical beam to form a sintered layer, and further, the sintered layers are stacked to obtain a molding with a desired three-dimensional shape. The metal powder consists of iron based powder, the powder of nickel or a nickel based alloy and the powder of copper or a copper based alloy, and further, graphite powder is mixed therein. The graphite powder improves its wettability on melting, and reduces the generation of microcracks on solidification. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形に用いる金属粉末とその製造方法及び金属光造形による三次元形状造形物の製造方法並びに金属光造形物に関するものである。   The present invention provides a metal powder used for metal stereolithography to irradiate a light beam to a powder layer made of a metal powder to form a sintered layer and to laminate the sintered layer to obtain a desired three-dimensional molded object. The present invention relates to a manufacturing method, a method of manufacturing a three-dimensionally shaped object by metal stereolithography, and a metal stereolithography.

金属粉末で形成した粉末層に光ビーム(指向性エネルギービーム、例えばレーザ)を照射して焼結層を形成し、この焼結層の上に新たな粉末層を形成して光ビームを照射することで焼結層を形成するということを繰り返して三次元形状造形物を製造する技術が知られている。金属光造形と称されているこの技術においては、光ビームのエネルギー密度の調整により、造形物に隙間(空孔)が多く存在している状態から、金属粉末がほぼ完全に溶融した後に固化した状態、つまり造形密度(焼結密度)がほぼ100%の状態まで得ることができるものであり、このために表面が滑らかな面となっていることが求められる成形用金型などを形成することもできる。また、表面は高密度、内部は低密度、その間は中密度に形成することも可能であるとともに、このように密度を変化させる場合、滑らかな表面を持つものを造形速度を犠牲にすることなく得ることができる。   A powder layer formed of a metal powder is irradiated with a light beam (directional energy beam, for example, a laser) to form a sintered layer, and a new powder layer is formed on the sintered layer and irradiated with a light beam. A technique for manufacturing a three-dimensionally shaped object by repeating the formation of a sintered layer in this way is known. In this technology, which is called metal stereolithography, by adjusting the energy density of the light beam, the metal powder is almost completely melted and solidified after a large number of gaps (voids) exist in the modeled object It is possible to obtain a molding state (ie, a molding density (sintering density) of up to almost 100%), and therefore, it is necessary to form a molding die or the like that requires a smooth surface. You can also. In addition, it is possible to form a high density surface, a low density inside, and a medium density in the meantime, and when changing the density in this way, without sacrificing the modeling speed, a thing with a smooth surface Obtainable.

しかし、このような密度差が表面と内部とにある造形物を金属光造形で得るにあたっては、通常の粉末焼結に用いられる金属粉末とは異なった特性のものが必要となる。   However, in order to obtain a shaped article having such a density difference between the surface and the inside by metal stereolithography, it is necessary to have a property different from that of a metal powder used for ordinary powder sintering.

たとえば、金属粉末の粒径は、粉末層の厚みよりも小さくする必要があり、この時、粒子径は細かい方が粉末の充填密度が高く、造形時の光ビーム(レーザ)吸収率も良いために造形密度も高くすることができるとともに表面粗さも小さくすることができるが、粉末が細かすぎて凝集を起こしてしまうと、逆に粉末の充填密度は小さくなり、薄く均一に敷けなくなってしまう。   For example, the particle size of the metal powder needs to be smaller than the thickness of the powder layer. At this time, the smaller the particle size, the higher the packing density of the powder and the better the light beam (laser) absorptivity at the time of molding. Although the molding density can be increased and the surface roughness can be reduced, if the powder is too fine and causes agglomeration, on the contrary, the packing density of the powder becomes small, and the powder cannot be spread thinly and uniformly.

また、ある程度の造形強度を得るためには、レーザ照射された造形部とその下層の焼結層との接合面積が大きく、かつその密着強度が高くなければならないと同時に、隣接する焼結層との接合面積が大きくて密着強度が高いものである必要がある。   In addition, in order to obtain a certain level of molding strength, the bonding area between the laser-irradiated modeled part and the underlying sintered layer must be large, and its adhesion strength must be high, and at the same time, the adjacent sintered layer Must have a large bonding area and a high adhesion strength.

さらに、レーザ照射された箇所の上面があまり大きく盛り上がってはならない。次の層を造形するために次の粉末層を敷く際に、盛り上がり量が粉末層の厚み以上となると、粉末層の形成そのものが困難となってしまう場合がある。   Further, the upper surface of the portion irradiated with the laser should not be raised too much. When the next powder layer is laid to form the next layer, if the amount of swelling is greater than the thickness of the powder layer, the formation of the powder layer itself may be difficult.

また、造形された造形物の表面には金属粉末が付着してしまっていることから、この不要な金属粉末を落として高密度な表面を露出させるための切削仕上げ等の加工を行う時の加工性が良いことが望まれる。   In addition, since metal powder has adhered to the surface of the modeled object, processing such as cutting to remove this unnecessary metal powder and expose a high-density surface is performed. It is desirable that the property is good.

もちろん、外観に大きな割れが生じてはならないし、射出成形用金型などの内部に流体(冷却水)を流す場合のことなども考慮すると、内部組織にマイクロクラックが無いことが望まれる。   Of course, no large cracks should be generated in the appearance, and in consideration of the case where a fluid (cooling water) is flown into the interior of an injection molding die or the like, it is desired that the internal structure has no microcracks.

ここにおいて、レーザ照射された金属粉末は、その一部または全部が一旦溶融し、その後急冷凝固されて焼結品となるが、この溶融した時の濡れ性が大きいと隣接する焼結部との接合面積が大きくなり、流動性が大きければ盛り上がりが小さくなることから、溶融した時の流動性が大きく且つ濡れ性も良いことが望まれる。   Here, a part or the whole of the laser powder irradiated with the laser is once melted and then rapidly solidified to form a sintered product. Since the swelling becomes small when the joining area becomes large and the fluidity is large, it is desired that the fluidity when molten is large and the wettability is good.

このような観点から、本出願人は特願平11−335178号(特開2001−152204号公報:特許文献1)において、クロムモリブデン鋼と、リン銅またはマンガン銅並びにニッケルの各粉末の混合物からなる金属光造形用金属粉末を提案した。クロムモリブデン鋼はその強度や靭性の点から、リン銅またはマンガン銅は濡れ性及び流動性の点から、ニッケルは強度及び加工性の点から採用している。   From such a viewpoint, the present applicant disclosed in Japanese Patent Application No. 11-335178 (JP-A-2001-152204: Patent Document 1) a mixture of chromium molybdenum steel, phosphorous copper or manganese copper, and each powder of nickel. A metal powder for metal stereolithography was proposed. Chromium molybdenum steel is employed from the viewpoint of strength and toughness, phosphorous copper or manganese copper is employed from the viewpoint of wettability and fluidity, and nickel is employed from the viewpoint of strength and workability.

上記配合の金属光造形用金属粉末は、金属光造形によって表面と内部とに密度差がある造形物を金属光造形で得るという点において、概ね好ましい結果を得ることができているが、上記濡れ性及び流動性の点で造形時にやや問題があるほか、加工性(切削性)もあまり良好ではなく、そして何よりの問題点として、倍率25倍で示した図11から明らかなように、高密度焼結させた部分にマイクロクラックが多数生じてしまう。このマイクロクラックは、得られた造形物を成型用金型として用いる場合において問題となる。
特開2001−152204号公報
The metal powder for metal stereolithography having the above composition can generally obtain favorable results in that a molded article having a density difference between the surface and the interior is obtained by metal stereolithography by metal stereolithography. There are some problems during molding in terms of fluidity and fluidity, and workability (cuttability) is not very good, and most importantly, as shown in FIG. Many micro cracks are generated in the sintered part. This microcrack becomes a problem when the obtained shaped article is used as a molding die.
JP 2001-152204 A

本発明は上記の点に鑑みなされたものであって、その目的とするところは金属光造形という造形に際しての造形性に優れているとともにマイクロクラックのない造形物を得ることができる金属粉末を提供するにあり、他の目的とするところは複数種の粉末を配合した上記金属粉末を容易に得ることができる金属粉末材料の製造方法を提供するにあり、更に他の目的とするところは射出成形用金型などに好適に使用することができる造形物を容易に得ることができる金属光造形による三次元形状造形物の製造方法を提供するにあり、また射出成形用金型としての利用が可能な金属光造形物を提供するにある。   The present invention has been made in view of the above points, and it is an object of the present invention to provide a metal powder which is excellent in moldability at the time of metal stereolithography and which can obtain a molded article without micro cracks. Another object of the present invention is to provide a method for producing a metal powder material that can easily obtain the above-mentioned metal powder in which a plurality of types of powders are blended, and yet another object is injection molding. In order to provide a method for manufacturing a three-dimensionally shaped object by metal stereolithography, which can easily obtain a shaped object that can be suitably used for a molding die, etc., and can be used as an injection molding die To provide a novel metal stereolithography.

しかして本発明に係る金属光造形用金属粉末は、金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形用の金属粉末であって、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末とからなるとともに、黒鉛粉末が混合されていることに特徴を有している。ここにおける黒鉛粉末は、鉄系の粉末焼結などにおいても焼結材料の融点の低下や焼結密度の向上などを目的としてなされているが、ここでの黒鉛粉末は、溶融時の濡れ性の向上及び凝固時におけるマイクロクラックの発生の低減をもたらす。   Thus, the metal powder for metal stereolithography according to the present invention is formed by irradiating a powder layer made of metal powder with a light beam to form a sintered layer and laminating this sintered layer to form a desired three-dimensionally shaped object. Metal powder for stereolithography, obtained from iron-based powder, nickel or nickel-based alloy powder, copper or copper-based alloy powder, and graphite powder is mixed Has features. The graphite powder here is used for the purpose of lowering the melting point of the sintered material and improving the sintering density in iron-based powder sintering, etc., but the graphite powder here has a wettability during melting. It improves and reduces the occurrence of microcracks during solidification.

黒鉛粉末の配合量は1重量パーセント以内であることが望ましい。1重量パーセントを超えた場合、マイクロクラックの低減効果を得ることができなくなる。   It is desirable that the compounding amount of the graphite powder be within 1% by weight. If it exceeds 1% by weight, the effect of reducing microcracks cannot be obtained.

特に鉄系粉末の配合量が60〜90重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量が5〜35重量パーセント、銅または及び銅系合金の粉末の配合量が5〜15重量パーセントである時、黒鉛粉末の配合量は0.2〜1.0重量パーセントであることが好ましい。黒鉛粉末の添加効果が良好に現れる。   In particular, the compounding amount of the iron-based powder is 60 to 90% by weight, the compounding amount of the nickel or nickel-based alloy powder is 5 to 35% by weight, and the compounding amount of the copper or copper-based alloy powder is 5 to 15% by weight. At one time, the compounding amount of the graphite powder is preferably 0.2 to 1.0% by weight. The effect of adding the graphite powder appears well.

また、鉄系粉末がクロムモリブデン鋼粉末であるか銅系合金粉末が銅マンガン合金粉末であるかの条件の少なくとも一方を満たしていることが、造形性の点や黒鉛粉末の添加による特性向上に好ましい結果を与える。   In addition, satisfying at least one of the conditions of whether the iron-based powder is chromium molybdenum steel powder or the copper-based alloy powder is a copper-manganese alloy powder is advantageous in terms of moldability and the improvement of characteristics due to the addition of graphite powder. Gives favorable results.

そして、クロムモリブデン鋼粉末の配合量が60〜80重量パーセント、ニッケル粉末の配合量が15〜25重量パーセント、銅マンガン合金粉末の配合量が5〜15重量パーセント、黒鉛粉末の配合量が0.2〜0.75重量パーセントである時、マイクロクラックの低減や造形性の向上などの各点において、特に好ましい結果を得ることができる。   The amount of the chromium molybdenum steel powder is 60 to 80% by weight, the amount of the nickel powder is 15 to 25% by weight, the amount of the copper manganese alloy powder is 5 to 15% by weight, and the amount of the graphite powder is 0. When the content is 2 to 0.75% by weight, particularly favorable results can be obtained in various points such as reduction of microcracks and improvement of moldability.

鉄系粉末とニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径が5〜50μmであることが望ましいが、鉄系粉末の平均粒子径が、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径よりも小さいこと、特に鉄系粉末の平均粒子径が、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の平均粒子径のほぼ3/4以下であることがマイクロクラックの低減に関して望ましい。   It is desirable that the average particle size of each of the iron-based powder and nickel or the powder of the nickel-based alloy and the powder of copper or the copper-based alloy is 5 to 50 μm, but the average particle size of the iron-based powder is nickel or And the average particle diameter of each powder of nickel-based alloy powder and copper or copper-based alloy powder, especially the average particle diameter of iron-based powder, nickel or nickel-based alloy powder and copper or copper It is desirable that the average particle size of the powder of the base alloy be approximately 3/4 or less with respect to the reduction of microcracks.

また、金属光造形用金属粉末としては、一般に粉末を高密度且つ均一に積層させるために粉末粒子が球状粒子であるとともに粒度分布が狭いことが好ましいとされているが、黒鉛粉末の添加を行う場合、鉄系粉末が非球形粒子状、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の各粉末が球形粒子状であることが好ましい。特に鉄系粉末がクロムモリブデン鋼粉末である時、その平均粒子径が25μm以下の非球形粒子状であることが好ましい。黒鉛粉末の分散が良くなることや鉄系粉末の溶融が良好になされる点などにおいて効果的である。   In addition, as metal powder for metal stereolithography, it is generally said that the powder particles are preferably spherical particles and have a narrow particle size distribution in order to laminate the powders at high density and uniformity, but graphite powder is added. In this case, the iron-based powder is preferably non-spherical particles, and the nickel or nickel-based alloy powder and the copper or copper-based alloy powder are preferably spherical particles. In particular, when the iron-based powder is chromium molybdenum steel powder, it is preferable that the iron-based powder is non-spherical particles having an average particle diameter of 25 μm or less. This is effective in that the dispersion of the graphite powder is improved, and that the iron-based powder is well melted.

黒鉛粉末としては、その粒子の最大長さが鉄系粉末の平均粒子径以下であるものを好適に用いることができる。黒鉛粉末が細かいと、レーザ照射による溶融時、鉄中に炭素が浸入して融点を下げるために、溶融時の流れ性が向上し、焼結層の表面の凹凸が小さくなる。   As the graphite powder, those having a maximum particle length of not more than the average particle diameter of the iron-based powder can be suitably used. If the graphite powder is fine, carbon will penetrate into iron and lower the melting point when it is melted by laser irradiation, so that the flowability at the time of melting is improved and the unevenness of the surface of the sintered layer is reduced.

炭化物生成元素を混入させていることも好ましい。余剰炭素の析出を防ぐことができるために、高密度・高強度・高硬度の造形を行うことができるとともに、析出炭素がなくなることで切削仕上げ後の表面粗さも向上させることができる。   It is also preferable to mix a carbide-forming element. Since the precipitation of surplus carbon can be prevented, high-density, high-strength, high-hardness modeling can be performed, and the surface roughness after cutting can be improved by eliminating the precipitated carbon.

また、ここでの金属粉末は、造粒粉として形成されたものであってもよい。   Further, the metal powder here may be formed as granulated powder.

そして本発明に係る金属光造形用金属粉末の製造方法は、フレーク状の黒鉛を混合して該混合時にフレーク状黒鉛をすり潰すために、各粉末の配合及び混合に際して、黒鉛の取り扱いが容易となるとともに、黒鉛粉末を均質に分散させることができる。   And the manufacturing method of the metal powder for metal stereolithography according to the present invention is to mix the flake graphite and to grind the flake graphite at the time of mixing, so that the handling of the graphite is easy at the time of blending and mixing each powder. At the same time, the graphite powder can be homogeneously dispersed.

また、本発明に係る金属光造形による三次元形状造形物の製造方法は、上記に記載の金属粉末で形成した粉末層の所望の箇所に光ビームを照射して所望の箇所に焼結層を形成し、次いで上記焼結層の上に新たな粉末層を上記金属粉末で形成するとともに該粉末層の所望の箇所に光ビームを照射して先に形成していた焼結層と一体化された新たな焼結層を形成することを繰り返すことで所望の三次元形状造形物を形成することに特徴を有しており、本発明に係る金属光造形物は、上記製造方法によって製造されていることに特徴を有するものである。   Further, the method for producing a three-dimensionally shaped object by metal stereolithography according to the present invention includes irradiating a light beam on a desired portion of the powder layer formed of the metal powder described above to form a sintered layer on a desired portion. And then forming a new powder layer of the metal powder on the sintered layer and irradiating a desired portion of the powder layer with a light beam to be integrated with the previously formed sintered layer. It is characterized by forming a desired three-dimensionally shaped object by repeating forming a new sintered layer, the metal stereolithography according to the present invention is manufactured by the manufacturing method described above Is characterized by the fact that

上記製造方法によれば、表面と内部とで密度差があるものでも良好な特性を有する金属光造形物を容易に製造することができ、この製造方法で製造した金属光造形物は、外観割れはもちろん内部組織にマイクロクラックも殆どなくて射出成形用金型などにも利用することができるものとなっている。   According to the above manufacturing method, it is possible to easily produce a metal stereolithography having good characteristics even if there is a density difference between the surface and the inside, and the metal stereolithography produced by this production method has an appearance crack. Needless to say, there is almost no microcrack in the internal structure, and it can be used as a mold for injection molding.

本発明の金属光造形用金属粉末においては、黒鉛粉末の添加が、溶融時の濡れ性の向上及び凝固時におけるマイクロクラックの発生の低減に有効であり、また本発明の金属光造形用金属粉末の製造方法においては、黒鉛の取り扱いが容易であるとともに均質に分散させることができ、黒鉛添加による効果を有利に導き出すことができる。   In the metal powder for metal stereolithography of the present invention, the addition of graphite powder is effective for improving wettability during melting and reducing the occurrence of microcracks during solidification, and for the metal powder for metal stereolithography of the present invention. In the production method of (1), the graphite can be easily handled and can be dispersed homogeneously, and the effect of adding graphite can be advantageously derived.

また、本発明に係る金属光造形による三次元形状造形物の製造方法においては、表面と内部とで密度差があるものでも良好な特性を有する金属光造形物を容易に製造することができる。   Further, in the method of manufacturing a three-dimensionally shaped object by metal stereolithography according to the present invention, a metal stereolithographic object having good characteristics can be easily manufactured even if there is a difference in density between the surface and the inside.

以下本発明を実施の形態の一例に基づいて詳述する。なお、図示例では造形途中での切削加工のための除去手段4を備えて、造形途中にそれまでに造形した造形物表面の切削加工を行うものを示しているが、本発明は、この除去手段4を有しておらず、造形途中での切削加工を行わない通常の金属光造形に対しても適用することができる。   Hereinafter, the present invention will be described in detail based on an example of an embodiment. In the illustrated example, there is shown a device provided with a removing means 4 for cutting in the middle of modeling to perform cutting of the surface of the modeled object in the middle of modeling. The present invention can be applied to ordinary metal stereolithography which does not have the means 4 and does not perform cutting during molding.

図2は金属光造形のための装置の一例を示しており、外周が囲まれた空間内をシリンダーで上下に昇降する昇降テーブル20上に供給した金属粉末をスキージング用ブレード21でならすことで所定厚みΔt1の粉末層10を形成する粉末層形成手段2と、レーザー発振器30から出力されたレーザーをガルバノミラー31等のスキャン光学系を介して上記粉末層10に照射することで金属粉末を焼結して焼結層11を形成する焼結層形成手段3と、上記粉末層形成手段2のベース部にXY駆動機構40を介してミーリングヘッド41を設けることで形成した除去手段4とを備えている。   FIG. 2 shows an example of an apparatus for metal stereolithography, in which a metal powder supplied onto an elevating table 20 which moves up and down by a cylinder in a space surrounded by an outer periphery is leveled by a squeezing blade 21. By irradiating the powder layer 10 with the powder layer forming means 2 for forming the powder layer 10 having a predetermined thickness Δt1 via a scanning optical system such as a galvanometer mirror 31 or the like, the metal powder is baked. A sintering layer forming means 3 for sintering to form a sintered layer 11; and a removing means 4 formed by providing a milling head 41 on a base portion of the powder layer forming means 2 via an XY drive mechanism 40. ing.

このものにおける三次元形状造形物の製造は、図3に示すように、焼結層形成手段と焼結層との相対距離を調整する調整手段であるところの昇降テーブル20上面の造形用ベース22表面に金属粉末をブレード21で供給すると同時にブレード21でならすことで第1層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させてベース22と一体化した焼結層11を形成する。   As shown in FIG. 3, the production of the three-dimensionally shaped object is performed by adjusting the relative distance between the sintered layer forming means and the sintered layer, as shown in FIG. The first powder layer 10 is formed by supplying the metal powder to the surface with the blade 21 and leveling it with the blade 21 at the same time. Is sintered to form a sintered layer 11 integrated with the base 22.

この後、昇降テーブル20を少し下げて再度金属粉末を供給してブレード21でならすことで第2層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させて下層の焼結層11と一体化した焼結層11を形成する。   Thereafter, the elevating table 20 is slightly lowered, metal powder is supplied again and leveled by the blade 21 to form a second powder layer 10, and a light beam (laser) is applied to a position where the powder layer 10 is to be hardened. The powder is sintered by irradiating L to form a sintered layer 11 integrated with the lower sintered layer 11.

昇降テーブル20を下降させて新たな粉末層10を形成し、光ビームを照射して所要箇所を焼結層11とする工程を繰り返すことで、目的とする三次元形状造形物を製造するものであり、光ビームとしては炭酸ガスレーザーを好適に用いることができ、粉末層10の厚みΔt1としては、得られた三次元形状造形物を成形用金型などに利用する場合、0.05mm程度とするのが好ましい。   By lowering the elevating table 20 to form a new powder layer 10 and irradiating a light beam to form a sintered layer 11 at a required portion, a process for manufacturing a target three-dimensional shaped object is performed. Yes, a carbon dioxide laser can be suitably used as the light beam, and the thickness Δt1 of the powder layer 10 is about 0.05 mm when the obtained three-dimensionally shaped object is used for a molding die or the like. Is preferred.

光ビームの照射経路は、予め三次元CADデータから作成しておく。すなわち、三次元CADモデルから生成したSTLデータを等ピッチ(Δt1を0.05mmとした場合、0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。この時、三次元形状造形物の少なくとも最表面が高密度(気孔率5%以下)となるように焼結させることができるように光ビームの照射を行い、内部は低密度となるように焼結させることで、つまりは形状モデルデータを予め、表層部と内部とに分割しておき、内部についてはポーラスとなるような焼結条件、表層部はほぼ粉末が溶融して高密度となる条件で光ビームを照射することで、緻密な表面を持つ造形物を高速に得ることができる。   The irradiation path of the light beam is created in advance from the three-dimensional CAD data. That is, the contour shape data of each section obtained by slicing the STL data generated from the three-dimensional CAD model at a constant pitch (0.05 mm pitch when Δt1 is 0.05 mm) is used. At this time, a light beam is irradiated so that at least the outermost surface of the three-dimensionally shaped object can be sintered so as to have a high density (porosity of 5% or less), and the inside is sintered so as to have a low density. In other words, the shape model data is divided into the surface layer and the interior in advance, and the sintering conditions are such that the inside is porous, and the surface layer is the condition where the powder is almost melted and the density is high. By irradiating with a light beam, a model having a dense surface can be obtained at high speed.

そして、上記粉末層10を形成しては光ビームを照射して焼結層11を形成することを繰り返していくのであるが、焼結層11の全厚みがたとえばミーリングヘッド41の工具長さなどから求めた所要の値になれば、いったん除去手段4を作動させてそれまでに造形した造形物の表面を切削する。たとえば、ミーリングヘッド41の工具(ボールエンドミル)が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であり、粉末層10の厚みΔt1が0.05mmであるならば、60層の焼結層11を形成した時点で、除去手段4を作動させる。   Then, the formation of the powder layer 10 and the irradiation of the light beam to form the sintered layer 11 are repeated. The total thickness of the sintered layer 11 is, for example, the tool length of the milling head 41 or the like. When the required value obtained from is obtained, the removing means 4 is once operated to cut the surface of the modeled object formed up to that time. For example, if the tool (ball end mill) of the milling head 41 is capable of cutting with a diameter of 1 mm, an effective blade length of 3 mm, and a depth of 3 mm, and the thickness Δt1 of the powder layer 10 is 0.05 mm, the baking of 60 layers is performed. When the tie layer 11 is formed, the removing means 4 is operated.

この除去手段4による切削加工により、造形物表面に付着した粉末による低密度表面層を除去すると同時に、高密度部まで削り込むことで、造形物表面に高密度部を全面的に露出させる。   The low density surface layer of the powder attached to the surface of the modeled object is removed by the cutting process by the removing unit 4 and the high density portion is entirely exposed on the surface of the modeled object by cutting down to the high density portion.

この除去手段4による切削加工経路は、光ビームの照射経路と同様に予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定するが、Z方向ピッチは焼結時の積層ピッチにこだわる必要はなく、緩い傾斜の場合はZ方向ピッチをより細かくして補間することで、滑らかな表面を得られるようにしておく。   The cutting path by the removing means 4 is created in advance from the three-dimensional CAD data, similarly to the irradiation path of the light beam. At this time, the processing path is determined by applying the contour processing, but the Z-direction pitch does not need to stick to the lamination pitch at the time of sintering, and in the case of a gentle inclination, the Z-direction pitch is made finer and interpolated. Be prepared to obtain a smooth surface.

このような金属光造形での三次元形状造形物の製造にあたっては、前述のように金属粉末としてどのようなものを用いるかが、造形性の点や造形物の出来上がり具合に大きな影響を及ぼすのであるが、この金属光造形用金属粉末として要求されている前述の点から、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末とからなるものを用いているとともに、本発明においては黒鉛粉末を混合したものを用いている。   In manufacturing such a three-dimensionally shaped object by metal stereolithography, as described above, what kind of metal powder is used has a significant effect on the moldability and the finished state of the shaped object. However, from the above-mentioned point required as a metal powder for metal stereolithography, using a powder composed of iron-based powder, nickel or a nickel-based alloy powder, and copper or a copper-based alloy powder In the present invention, a mixture of graphite powder is used.

鉄系の粉末焼結などにおいても焼結材料の融点の低下や焼結密度の向上などを目的として黒鉛の添加がなされているものの、厚みΔt1が0.05mmというきわめて薄い粉末層10に光ビームを照射して溶融させる場合、黒鉛の添加は不要であるとしてこれまで試みられたことはなかったのあるが、本発明者らは、溶融時の濡れ性の向上及び高密度部分の凝固時におけるマイクロクラックの発生の低減に黒鉛粉末の添加が非常に有効であることを見出したものである。なお、黒鉛粉末の添加がマイクロクラックの発生を低減する理由は定かではないが、造形後の断面には黒鉛の塊が点在する状態(図1中の黒い点が黒鉛)が見受けられる。   Even in the case of iron-based powder sintering, graphite is added for the purpose of lowering the melting point of the sintered material or improving the sintering density, but the light beam is applied to the extremely thin powder layer 10 having a thickness Δt1 of 0.05 mm. In the case of irradiating and melting, there has been no attempt so far as the addition of graphite is unnecessary, but the present inventors have improved the wettability at the time of melting and at the time of solidification of the high-density portion. It has been found that the addition of graphite powder is very effective in reducing the occurrence of microcracks. The reason why the addition of the graphite powder reduces the occurrence of microcracks is not clear, but a state in which a lump of graphite is scattered in the cross-section after modeling (black dots in FIG. 1) is observed.

黒鉛粉末の配合量は、他の金属粉末材料の配合にもよるが、概ね1重量パーセント以内であることが望ましく、特に鉄系粉末の配合量が60〜90重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量が5〜35重量パーセント、銅または及び銅系合金の粉末の配合量が5〜15重量パーセントである時、黒鉛粉末の配合量は0.2〜1.0重量パーセントであることが望ましい。黒鉛粉末の配合量が1重量パーセントを超えた場合、マイクロクラックの低減効果が全くなくなり、添加しない場合と同等のマイクロクラックが発生する。   The compounding amount of the graphite powder depends on the compounding of the other metal powder materials, but it is preferable that the compounding amount is approximately 1% by weight or less, particularly, the compounding amount of the iron-based powder is 60 to 90% by weight, nickel or nickel-based alloy. When the amount of the powder is 5 to 35% by weight and the amount of the copper or copper alloy powder is 5 to 15% by weight, the amount of the graphite powder is 0.2 to 1.0% by weight. It is desirable. When the blending amount of the graphite powder exceeds 1% by weight, the effect of reducing microcracks is completely lost, and microcracks equivalent to the case where no graphite powder is added are generated.

そして、金属材料としては、鉄系粉末にクロムモリブデン鋼粉末を、銅系合金粉末として銅マンガン合金粉末を好適に用いることができる。この二つの条件のうちの少なくとも一方を満たしていると、黒鉛粉末の添加による特性向上をより確実に得ることができる。   As the metal material, chromium molybdenum steel powder can be suitably used as the iron-based powder, and copper manganese alloy powder can be suitably used as the copper-based alloy powder. When at least one of these two conditions is satisfied, the improvement of the characteristics by the addition of the graphite powder can be obtained more reliably.

また、クロムモリブデン鋼粉末の配合量が60〜80重量パーセント、ニッケル粉末の配合量が15〜25重量パーセント、銅マンガン合金粉末の配合量が5〜15重量パーセント、黒鉛粉末の配合量が0.2〜0.75重量パーセントである時、高密度部分にマイクロクラックの発生がなく、しかも高密度部分及び低密度部分のいずれについても良好な造形性を得ることができた。   The amount of chromium molybdenum steel powder is 60 to 80% by weight, the amount of nickel powder is 15 to 25% by weight, the amount of copper manganese alloy powder is 5 to 15% by weight, and the amount of graphite powder is 0. When the content was 2 to 0.75% by weight, microcracks did not occur in the high-density portion, and good moldability was obtained in both the high-density portion and the low-density portion.

また、鉄系粉末とニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末はその平均粒子径が5〜50μmであることが望ましいが、粒子径が小さすぎる場合は凝集を起こしてしまうことから、粉末層10の厚みΔt1を0.05mmとする場合、平均粒子径をほぼ30μmとしておくとよい。   The average particle diameter of each of iron-based powder and nickel or nickel-based alloy powder and copper or copper-based alloy powder is preferably 5 to 50 μm. When the thickness Δt1 of the powder layer 10 is set to 0.05 mm, the average particle diameter is preferably set to approximately 30 μm.

もっとも、金属光造形用金属粉末としては一般に粉末を高密度且つ均一に積層させるために粉末粒子が球状粒子であるとともに粒度分布が狭いことが好ましいとされている。しかし、黒鉛粉末の添加を行う場合、鉄系粉末が非球形粒子状、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の各粉末が球形粒子状である場合、特に鉄系粉末がクロムモリブデン鋼粉末でその平均粒子径が25μm以下の非球形粒子状であり、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径のほぼ3/4以下である場合に、良好な結果を得ることができた。   However, as metal powder for metal stereolithography, it is generally considered preferable that the powder particles be spherical particles and have a narrow particle size distribution in order to stack the powders with high density and uniformity. However, when graphite powder is added, the iron-based powder is non-spherical particles, and the nickel- or nickel-based alloy powder and the copper or copper-based alloy powder are each spherical particles, especially the iron-based powder. Chromium molybdenum steel powder having a non-spherical particle shape with an average particle size of 25 μm or less, approximately 3/4 or less of the average particle size of each of nickel or nickel-based alloy powder and copper or copper-based alloy powder , Good results could be obtained.

[実施例]
非球形粒子状で平均粒子径20μmのクロムモリブデン鋼SCM440粉末(図4参照)と、球形粒子状で平均粒子径が30μmのニッケルNi粉末(図5参照)と、球形粒子状で平均粒子径が30μmの銅マンガン合金CuMnNi(たとえばCu−10%Mn−3%Ni)粉末(図6参照)とを用意し、黒鉛Cの配合量を異ならせた次の6種の金属光造形用金属粉末を形成した。なお、各%はいずれも重量%である。
a.70%SCM440−21%Ni−9%CuMnNi
b.(70%SCM440−21%Ni−9%CuMnNi)+0.2%C
c.(70%SCM440−21%Ni−9%CuMnNi)+0.4%C
d.(70%SCM440−21%Ni−9%CuMnNi)+0.5%C
e.(70%SCM440−21%Ni−9%CuMnNi)+0.75%C
f.(70%SCM440−21%Ni−9%CuMnNi)+1.0%C
これらa〜fの6種の金属粉末を用いて金属光造形を行った。粉末層の厚みは0.05mmとし、使用したレーザは炭酸ガスレーザ(出力200Wの90%出力)であり、レーザスキャン速度75mm/sec、スキャンピッチ0.25mmで焼結させたところ、aの黒鉛を添加していないものにおいては多数のマイクロクラックが認められたのに対して、dの黒鉛を0.5%添加したものにおいてはマイクロクラックが認められなかった(図1参照)。また、黒鉛を0.4%添加したものにおいては僅かなマイクロクラックが認められただけであった。そして黒鉛を0.2%添加したもの及び0.75%添加したものにおいては、黒鉛を添加していないものに比してマイクロクラックの低減効果を確認することができ、黒鉛を1%添加したものにおいては、黒鉛を添加していないものに比してほぼ同じか僅かにすくないマイクロクラックが認められた。
[Example]
A chromium molybdenum steel SCM440 powder having a non-spherical particle shape and an average particle size of 20 μm (see FIG. 4), a nickel Ni powder having a spherical particle shape and an average particle size of 30 μm (see FIG. 5), and a spherical particle shape having an average particle size A copper manganese alloy CuMnNi (for example, Cu-10% Mn-3% Ni) powder of 30 μm (see FIG. 6) was prepared, and the following six types of metal powders for metal stereolithography with different amounts of graphite C were prepared. Formed. In addition, each% is weight%.
a. 70% SCM440-21% Ni-9% CuMnNi
b. (70% SCM440-21% Ni-9% CuMnNi) + 0.2% C
c. (70% SCM440-21% Ni-9% CuMnNi) + 0.4% C
d. (70% SCM440-21% Ni-9% CuMnNi) + 0.5% C
e. (70% SCM440-21% Ni-9% CuMnNi) + 0.75% C
f. (70% SCM440-21% Ni-9% CuMnNi) + 1.0% C
Metal stereolithography was performed using the six types of metal powders a to f. The thickness of the powder layer was 0.05 mm, the laser used was a carbon dioxide laser (90% output of 200 W output), and the laser was scanned at a scan speed of 75 mm / sec and a scan pitch of 0.25 mm. Many microcracks were observed in the case where no graphite was added, whereas no microcracks were observed in the case where 0.5% of graphite d was added (see FIG. 1). In addition, in the case where 0.4% of graphite was added, only slight microcracks were observed. In the case where 0.2% of graphite was added and the case where 0.75% was added, the effect of reducing microcracks could be confirmed as compared with the case where graphite was not added, and 1% of graphite was added. Microcracks were found to be almost the same or slightly less than those without the addition of graphite.

また、高密度部はレーザスキャン速度75mm/sec、スキャンピッチ0.25mmで、中密度部はレーザスキャン速度150mm/sec、スキャンピッチ0.5mmで、低密度部はレーザスキャン速度200mm/sec、スキャンピッチ0.3mmで且つ粉末層に対して1層置きでレーザ照射することにより、密度差がある三次元形状造形物を造形したところ、黒鉛粉末を添加したものにおいては、流動性の良さが盛り上がりの少なさから確認することができた。   The high-density portion has a laser scan speed of 75 mm / sec and a scan pitch of 0.25 mm, the medium-density portion has a laser scan speed of 150 mm / sec and a scan pitch of 0.5 mm, and the low-density portion has a laser scan speed of 200 mm / sec. By irradiating the laser with a 0.3 mm pitch and every other layer to the powder layer, a three-dimensional shaped object having a density difference was formed. Could be confirmed from the small number of

また、上記dと同じ配合の金属粉末において、クロムモリブデン鋼粉末として球形粒子状で平均粒子径が他の非鉄金属粉末と同じ30μmのものを用い、粉末層の厚み0.05mm、炭酸ガスレーザ(出力200Wの90%出力)、レーザスキャン速度75mm/sec、スキャンピッチ0.25mmの条件で焼結させたところ、上記dのものに比して、マイクロクラックが少し認められる上に、空孔が生じて造形密度が少々低下したものの、概ね良好な造形物を得ることができた。   In addition, in the metal powder having the same composition as the above d, a chromium molybdenum steel powder having a spherical particle shape and an average particle diameter of 30 μm, which is the same as other non-ferrous metal powders, is used. When sintering was performed under the conditions of a laser scan speed of 75 mm / sec and a scan pitch of 0.25 mm, microcracks were slightly observed and voids were formed as compared with those of the above d. Although the molding density was slightly lowered, a generally good molded product could be obtained.

また上記dの配合における銅マンガン合金に代えて銅リンCuP合金粉末(球形粒子状で平均粒子径は30μm)を用いてやはり同じ条件で焼結させたところ、マイクロクラックの発生が認められるとともに、焼結層上面に凹凸が生じて次の粉末層の形成に支障が生じるものとなった。抗折強度の点でも少し問題があった。   In addition, when sintering was performed under the same conditions using copper phosphorus CuP alloy powder (spherical particles and an average particle diameter of 30 μm) instead of the copper manganese alloy in the above formulation d, generation of microcracks was observed, Irregularities were generated on the upper surface of the sintered layer, which hindered the formation of the next powder layer. There was also a slight problem in the bending strength.

また上記dの配合における銅マンガン合金に代えて銅リン合金粉末(球形粒子状で平均粒子径は30μm)を用いるとともに、クロムモリブデン鋼粉末として球形粒子状で平均粒子径が他の非鉄金属粉末と同じ30μmのものを用いたところ、非球形粒子状で平均粒子径20μmのクロムモリブデン鋼と、球形粒子状で平均粒子径が30μmの銅リンCuP合金粉末とを組み合わせたものよりも良好な結果を得ることができたが、マイクロクラックの発生が認められた。   In addition to the copper-manganese alloy in the above formula d, copper-phosphorus alloy powder (spherical particles having an average particle diameter of 30 μm) is used, and chromium molybdenum steel powder is formed of spherical particles having an average particle diameter of other non-ferrous metal powder. When the same 30 μm was used, a better result was obtained than a combination of chromium molybdenum steel having a non-spherical particle shape and an average particle size of 20 μm and a copper phosphorus CuP alloy powder having a spherical particle shape and an average particle size of 30 μm. Although it could be obtained, generation of microcracks was observed.

銅リン合金粉末を配合したものと、銅マンガン合金粉末を配合したものとでは、マイクロクラックの発生する要因が異なり、銅マンガン合金粉末を配合したものではレーザ焼結時の溶融不足が原因でマイクロクラックが発生したものと考えられ、クロムモリブデン鋼粉末として他の非鉄金属粉末よりも平均粒子径が小さいものを用いることで溶融が促進されてマイクロクラックの発生が減少したものと考えられる。   Factors that cause microcracks are different between those containing copper-phosphorus alloy powder and those containing copper-manganese alloy powder, and those containing copper-manganese alloy powder cause micro-cracking due to insufficient melting during laser sintering. It is considered that cracks were generated, and it is considered that the use of a chromium molybdenum steel powder having a smaller average particle diameter than other non-ferrous metal powders promoted melting and reduced the occurrence of microcracks.

また、クロムモリブデン鋼粉末として非球形粒子状のものを用いた場合、球形粒子状のものを用いた場合よりも黒鉛粉末がクロムモリブデン鋼粉末の各粒子表面に効果的に分散し、黒鉛粉末の添加がより有効に作用しているように思われる。   Also, when non-spherical particles are used as the chromium molybdenum steel powder, the graphite powder is more effectively dispersed on the surface of each particle of the chromium molybdenum steel powder than when spherical particles are used, and the graphite powder is The addition seems to be working more effectively.

ところで、上記黒鉛粉末の添加であるが、鉄系粉末とニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末とに対し、フレーク状の黒鉛(図7参照)を添加して、混合にあたり乳鉢を用いたすり潰しを行った場合、混合粉末(図8参照)中に黒鉛粉末が認められないものとなった。これは金属粉末、殊に非球形粒子状のクロムモリブデン鋼粉末の表面に黒鉛が効果的に分散したためと考えられ、黒鉛粉末を金属粉末に単に混ぜ合わせた場合よりも良好な造形性を得られることができた上にマイクロクラックも少なくなった。   By the way, the addition of the graphite powder is performed by adding flake graphite (see FIG. 7) to iron-based powder, nickel or a nickel-based alloy powder, and copper or a copper-based alloy powder. When the mixture was ground using a mortar, no graphite powder was observed in the mixed powder (see FIG. 8). This is thought to be due to the effective dispersion of graphite on the surface of metal powder, especially non-spherical particulate chromium molybdenum steel powder, and it is possible to obtain better moldability than simply mixing graphite powder with metal powder. In addition to being able to do so, micro cracks were reduced.

また、黒鉛粉末として、その粒子の最大長さが鉄系粉末の平均粒子径以下のもの、特に10μm以下のものを用いた時、レーザ照射による溶融時、鉄中に炭素が浸入して融点を下げる浸炭効果を得ることができて、溶融時の流れ性が向上することから、焼結層の表面の凹凸を小さくすることができた。   When graphite powder having a maximum particle length of less than the average particle diameter of the iron-based powder, particularly 10 μm or less, is used. Since the lower carburizing effect can be obtained and the flowability at the time of melting is improved, the irregularities on the surface of the sintered layer can be reduced.

ちなみに最大長さが1〜数μmという黒鉛粉末の超微粒子は、天然ガス乃至液状炭化水素の不完全燃焼または熱分解によって得られる黒色微粉末であるカーボンブラックとして得ることができ、またジェットミル粉砕法によっても得ることができる。   By the way, ultrafine particles of graphite powder having a maximum length of 1 to several μm can be obtained as carbon black which is a black fine powder obtained by incomplete combustion or thermal decomposition of natural gas or liquid hydrocarbon, and jet mill pulverization. It can also be obtained by the method.

また、前述のように、図1中の黒い点は黒鉛が析出したものであるが、鉄中に炭化物生成元素を予め混入させておくのも好ましい。クロムCrやモリブデンMoやタングステンW、ヴァナジウムVなどの炭化物生成元素を混入させていると、溶融状態から固化する際に析出しようとする炭素が上記炭化物生成元素との結合で炭化物となるために、炭素の析出を防ぐことができる。   In addition, as described above, the black dots in FIG. 1 indicate the precipitate of graphite, but it is also preferable to previously mix carbide-forming elements in iron. If a carbide-forming element such as chromium Cr, molybdenum Mo, tungsten W, or vanadium V is mixed, carbon that tends to precipitate when solidifying from a molten state becomes a carbide by bonding with the carbide-forming element. Precipitation of carbon can be prevented.

図9は上記実施例dにタングステンWの粉末を添加した場合((70%SCM440−21%Ni−9%CuMnNi)+0.5%C+0.5%W)のSEM写真であり、図10は鉄系粉末SCM440を炭化物生成元素を多く含むSKH鋼粉末に変えた場合((70%SKH51−21%Ni−9%CuMnNi)+0.5%C)のSEM写真である。なお、各%はいずれも重量%である。炭素の析出が図1に示した実施例dに係るものに比して明らかに減少している。このように炭素の析出が減少すると、高密度・高強度・高硬度の造形を行うことができ、また、析出炭素がないということは、切削仕上げ後の表面粗さの向上も得ることができる。   FIG. 9 is an SEM photograph when the tungsten W powder is added to Example d ((70% SCM440-21% Ni-9% CuMnNi) + 0.5% C + 0.5% W), and FIG. It is a SEM photograph when the system powder SCM440 is changed to SKH steel powder containing a large amount of carbide-forming elements ((70% SKH51-21% Ni-9% CuMnNi) + 0.5% C). In addition, each% is weight%. The carbon deposition is clearly reduced compared to that according to example d shown in FIG. When the precipitation of carbon is reduced in this manner, high-density, high-strength, high-hardness modeling can be performed, and the absence of precipitated carbon can also improve surface roughness after cutting. .

以上の各例における金属粉末は、造粒粉として形成されたものであってもよい。取り扱いが容易なものとなる。また、このような金属粉末を用いて金属光造形を行って得た三次元形状造形物は、射出成型用金型として用いるのに十分な特性を持つものとなっていた。   The metal powder in each of the above examples may be formed as granulated powder. It becomes easy to handle. Further, a three-dimensionally shaped object obtained by performing metal stereolithography using such a metal powder has characteristics sufficient for use as a mold for injection molding.

本発明の実施の形態の一例の金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a sectional photograph at a magnification of 25 times of a metal stereolithography manufactured with metal powder of an example of an embodiment of the invention. 同上の金属粉末を用いて金属光造形を行う装置の一例の概略斜視図である。It is a schematic perspective view of an example of the apparatus which performs metal stereolithography using the same metal powder. 同上の説明図である。FIG. 同上の非球形粒子状のクロムモリブデン鋼粉末のSEM写真である。It is a SEM photograph of the same non-spherical particle-like chromium molybdenum steel powder. 同上の球形粒子状のニッケル粉末のSEM写真である。It is a SEM photograph of the same spherical particle-like nickel powder. 同上の球形粒子状の銅マンガン合金粉末のSEM写真である。It is a SEM photograph of the same spherical particulate copper manganese alloy powder. 同上のフレーク状黒鉛のSEM写真である。It is a SEM photograph of the same flake graphite. 同上の混合物のSEM写真である。It is a SEM photograph of the same mixture. 炭化物生成元素を添加した金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a cross-sectional photograph at a magnification of 25 times of a metal stereolithography manufactured using a metal powder to which a carbide-forming element is added. 炭化物生成元素を多く含む鉄系粉末を用いた金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a cross-sectional photograph at a magnification of 25 times of a metal stereolithography manufactured using a metal powder using an iron-based powder containing a large amount of a carbide-forming element. 従来例の金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a cross-sectional photograph at a magnification of 25 times of a metal stereolithography manufactured using a metal powder of a conventional example.

Claims (16)

金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形用の金属粉末であって、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末とからなるとともに、黒鉛粉末が混合されていることを特徴とする金属光造形用金属粉末。   A metal powder for metal stereolithography to obtain a desired three-dimensionally shaped object by forming a sintered layer by irradiating a light beam to a powder layer made of a metal powder and laminating this sintered layer, A metal powder for metal stereolithography, comprising: a base powder; a powder of nickel or a nickel-based alloy; a powder of copper or a copper-based alloy; and a mixture of graphite powder. 黒鉛粉末の配合量が1重量パーセント以内であることを特徴とする請求項1記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to claim 1, wherein the amount of the graphite powder is within 1% by weight. 鉄系粉末の配合量が60〜90重量パーセント、ニッケルまたは及びニッケル系合金の粉末の配合量が5〜35重量パーセント、銅または及び銅系合金の粉末の配合量が5〜15重量パーセント、黒鉛粉末の配合量が0.2〜1.0重量パーセントであることを特徴とする請求項1または2記載の金属光造形用金属粉末。   The amount of iron-based powder is 60 to 90% by weight, the amount of nickel or nickel-based alloy powder is 5 to 35% by weight, the amount of copper or copper-based alloy powder is 5 to 15% by weight, graphite The metal powder for metal stereolithography according to claim 1 or 2, wherein the amount of the powder is from 0.2 to 1.0% by weight. 鉄系粉末がクロムモリブデン鋼粉末であるか銅系合金粉末が銅マンガン合金粉末であるかの条件の少なくとも一方を満たしていることを特徴とする請求項1〜3のいずれか1項に記載の金属光造形用金属粉末。   The iron-based powder is a chromium molybdenum steel powder or the copper-based alloy powder is a copper-manganese alloy powder, and satisfies at least one of the conditions of claim 1. Metal powder for metal stereolithography. クロムモリブデン鋼粉末の配合量が60〜80重量パーセント、ニッケル粉末の配合量が15〜25重量パーセント、銅マンガン合金粉末の配合量が5〜15重量パーセント、黒鉛粉末の配合量が0.2〜0.75重量パーセントであることを特徴とする請求項4記載の金属光造形用金属粉末。   The amount of chromium molybdenum steel powder is 60 to 80% by weight, the amount of nickel powder is 15 to 25% by weight, the amount of copper manganese alloy powder is 5 to 15% by weight, and the amount of graphite powder is 0.2 to 0.2%. The metal powder for metal stereolithography according to claim 4, wherein the amount is 0.75% by weight. 鉄系粉末とニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径が5〜50μmであることを特徴とする請求項1〜5のいずれか1項に記載の金属光造形用金属粉末。   The average particle diameter of each powder of iron-based powder and nickel or nickel-based alloy powder and copper or copper-based alloy powder is 5 to 50 µm, according to any one of claims 1 to 5, The metal powder for metal stereolithography according to the above. 鉄系粉末の平均粒子径が、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の各粉末の平均粒子径よりも小さいことを特徴とする請求項6記載の金属光造形用金属粉末。   7. The metal stereolithography according to claim 6, wherein the average particle diameter of the iron-based powder is smaller than the average particle diameter of each powder of nickel or nickel-based alloy powder and copper or copper-based alloy powder. Metal powder. 鉄系粉末の平均粒子径が、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の粉末の平均粒子径のほぼ3/4以下であることを特徴とする請求項7記載の金属光造形用金属粉末。   8. The metallized light according to claim 7, wherein the average particle diameter of the iron-based powder is about 3/4 or less of the average particle diameter of nickel or nickel-based alloy powder and copper or copper-based alloy powder. Molding metal powder. 鉄系粉末が非球形粒子状、ニッケルまたは及びニッケル系合金の粉末と銅または及び銅系合金の各粉末が球形粒子状であることを特徴とする請求項6〜8のいずれか1項に記載の金属光造形用金属粉末。   The iron-based powder is non-spherical particles, and the powder of nickel or nickel-based alloy and the powder of copper or copper-based alloy are spherical particles. Metal powder for stereolithography. 鉄系粉末がクロムモリブデン鋼粉末であってその平均粒子径が25μm以下の非球形粒子状であることを特徴とする請求項9記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to claim 9, wherein the iron-based powder is a chromium molybdenum steel powder and has a non-spherical particle shape having an average particle diameter of 25 µm or less. 黒鉛粉末の粒子の最大長さが鉄系粉末の平均粒子径以下であることを特徴とする請求項1〜10のいずれか1項に記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to any one of claims 1 to 10, wherein a maximum length of particles of the graphite powder is equal to or less than an average particle diameter of the iron-based powder. 造粒粉として形成されていることを特徴とする請求項1〜11のいずれか1項に記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to any one of claims 1 to 11, wherein the metal powder is formed as a granulated powder. 炭化物生成元素を混入させていることを特徴とする請求項1〜12のいずれか1項に記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to any one of claims 1 to 12, wherein a carbide-forming element is mixed. 請求項1〜13のいずれか1項に記載の金属光造形用金属粉末の製造方法であって、鉄系粉末と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末とに対して、フレーク状の黒鉛を混合して該混合時にフレーク状黒鉛をすり潰していることを特徴とする金属光造形用金属粉末の製造方法。   It is a manufacturing method of the metal powder for metal stereolithography of any one of Claims 1-13, Comprising: Iron-based powder, nickel or nickel-based alloy powder, and copper or copper-based alloy powder. A method of producing a metal powder for metal stereolithography, wherein flake graphite is mixed and the flake graphite is ground during the mixing. 請求項1〜13のいずれか1項に記載の金属粉末で形成した粉末層の所望の箇所に光ビームを照射して所望の箇所に焼結層を形成し、次いで上記焼結層の上に新たな粉末層を上記金属粉末で形成するとともに該粉末層の所望の箇所に光ビームを照射して先に形成していた焼結層と一体化された新たな焼結層を形成することを繰り返すことで所望の三次元形状造形物を形成することを特徴とする金属光造形による三次元形状造形物の製造方法。   A light beam is applied to a desired portion of the powder layer formed of the metal powder according to any one of claims 1 to 13 to form a sintered layer at a desired portion, and then on the sintered layer. Forming a new powder layer with the metal powder and irradiating a desired portion of the powder layer with a light beam to form a new sintered layer integrated with the previously formed sintered layer. A method of manufacturing a three-dimensionally shaped object by metal stereolithography, wherein a desired three-dimensionally shaped object is formed by repeating the process. 請求項15記載の金属光造形による三次元形状造形物の製造方法によって製造されていることを特徴とする金属光造形物。   A metal stereolithography manufactured by the method for manufacturing a three-dimensional shaped object by metal stereolithography according to claim 15.
JP2003281260A 2003-02-25 2003-07-28 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography Expired - Fee Related JP3633607B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003281260A JP3633607B2 (en) 2003-02-25 2003-07-28 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
TW093104612A TWI239874B (en) 2003-02-25 2004-02-24 Metal powder composition for use in selective laser sintering, method of making same, and three-dimensional object shaped from same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003048263 2003-02-25
JP2003281260A JP3633607B2 (en) 2003-02-25 2003-07-28 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography

Publications (2)

Publication Number Publication Date
JP2004277877A true JP2004277877A (en) 2004-10-07
JP3633607B2 JP3633607B2 (en) 2005-03-30

Family

ID=33301737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281260A Expired - Fee Related JP3633607B2 (en) 2003-02-25 2003-07-28 Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography

Country Status (2)

Country Link
JP (1) JP3633607B2 (en)
TW (1) TWI239874B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062039A1 (en) * 2004-12-06 2006-06-15 Sunrex Kogyo Co., Ltd. Process for producing metal product and metal product
JP2007231349A (en) * 2006-02-28 2007-09-13 Matsushita Electric Works Ltd Metal powder for metal laser sintering
WO2008026500A1 (en) 2006-08-28 2008-03-06 Panasonic Electric Works Co., Ltd. Metal powder for metal photofabrication and method of metal photofabrication using the same
JP2008050671A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Metal powder for metal stereo lithography
JP2008081840A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Metal powder for metal photofabrication and method of metal photofabrication using the same
JP2008546208A (en) * 2005-06-06 2008-12-18 ザ・ユニバーシティ・オブ・リバプール Composite production process
JP2010505041A (en) * 2006-09-26 2010-02-18 ラングレット,エイブラハム Method for manufacturing an amorphous metal product
JP2015096646A (en) * 2013-10-11 2015-05-21 セイコーエプソン株式会社 Powder for laser sintering and method and apparatus for production of structure
EP3059075A1 (en) 2015-02-16 2016-08-24 Matsuura Machinery Corporation Three-dimensional shaping method
WO2018078701A1 (en) 2016-10-24 2018-05-03 東洋アルミニウム株式会社 Aluminum particle group and method for producing same
JP6362797B1 (en) * 2016-12-28 2018-07-25 三菱電機株式会社 Method for producing alloy molded product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472427B (en) 2012-01-20 2015-02-11 財團法人工業技術研究院 Device and method for powder distribution and additive manufacturing method using the same
KR102283654B1 (en) * 2014-11-14 2021-07-29 가부시키가이샤 니콘 Shaping device and a shaping method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439998B2 (en) 2004-12-06 2013-05-14 Sunrex Kogyo Co., Ltd. Manufacturing method of metal product and metal product
WO2006062039A1 (en) * 2004-12-06 2006-06-15 Sunrex Kogyo Co., Ltd. Process for producing metal product and metal product
JP2008546208A (en) * 2005-06-06 2008-12-18 ザ・ユニバーシティ・オブ・リバプール Composite production process
JP2007231349A (en) * 2006-02-28 2007-09-13 Matsushita Electric Works Ltd Metal powder for metal laser sintering
JP4640216B2 (en) * 2006-02-28 2011-03-02 パナソニック電工株式会社 Metal powder for metal stereolithography
KR101076353B1 (en) * 2006-08-28 2011-10-25 파나소닉 전공 주식회사 Metal powder for metal-laser sintering and metal-laser sintering process using the same
EP2060343A1 (en) * 2006-08-28 2009-05-20 Panasonic Electric Works Co., Ltd Metal powder for metal photofabrication and method of metal photofabrication using the same
JP2008081840A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Metal powder for metal photofabrication and method of metal photofabrication using the same
JP4661842B2 (en) * 2006-08-28 2011-03-30 パナソニック電工株式会社 Method for producing metal powder for metal stereolithography and metal stereolithography
JP2008050671A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Metal powder for metal stereo lithography
EP2060343A4 (en) * 2006-08-28 2012-06-20 Panasonic Corp Metal powder for metal photofabrication and method of metal photofabrication using the same
US8329092B2 (en) 2006-08-28 2012-12-11 Panasonic Corporation Metal powder for metal laser-sintering and metal laser-sintering process using the same
WO2008026500A1 (en) 2006-08-28 2008-03-06 Panasonic Electric Works Co., Ltd. Metal powder for metal photofabrication and method of metal photofabrication using the same
JP2010505041A (en) * 2006-09-26 2010-02-18 ラングレット,エイブラハム Method for manufacturing an amorphous metal product
JP2015096646A (en) * 2013-10-11 2015-05-21 セイコーエプソン株式会社 Powder for laser sintering and method and apparatus for production of structure
EP3059075A1 (en) 2015-02-16 2016-08-24 Matsuura Machinery Corporation Three-dimensional shaping method
KR20160100779A (en) 2015-02-16 2016-08-24 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Three-dimensional shaping method
EP3196004A1 (en) 2015-02-16 2017-07-26 Matsuura Machinery Corporation Three-dimensional shaping method
US10124409B2 (en) 2015-02-16 2018-11-13 Matsuura Machinery Corporation Three-dimensional shaping method
US11077500B2 (en) 2015-02-16 2021-08-03 Matsuura Machinery Corporation Three-dimensional shaping method
WO2018078701A1 (en) 2016-10-24 2018-05-03 東洋アルミニウム株式会社 Aluminum particle group and method for producing same
JP6362797B1 (en) * 2016-12-28 2018-07-25 三菱電機株式会社 Method for producing alloy molded product
US10702919B2 (en) 2016-12-28 2020-07-07 Mitsubishi Electric Corporation Method for manufacturing alloy molded product

Also Published As

Publication number Publication date
TW200427533A (en) 2004-12-16
TWI239874B (en) 2005-09-21
JP3633607B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
KR100586360B1 (en) Metal powder composition for use in selective laser sintering
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
JP4661842B2 (en) Method for producing metal powder for metal stereolithography and metal stereolithography
CN101511509B (en) Metal powder for metal photofabrication and method of metal photofabrication using the same
US9902113B2 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP2023002601A (en) Economical production method of metal component
EP3187285B1 (en) Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing
CN1684786A (en) Casting process and articles for performing the same
JP3633607B2 (en) Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
WO2011155568A1 (en) Method for producing three-dimensionally shaped structure, three-dimensionally shaped structure obtained by same, and method for producing molded article
JP4640216B2 (en) Metal powder for metal stereolithography
JP2007016312A (en) Method for forming sintered compact
JP4737007B2 (en) Metal powder for metal stereolithography
Beal et al. Optimisation of processing parameters in laser fused H13/Cu materials using response surface method (RSM)
JP2016108668A (en) Composite member and manufacturing method of composite member
JP2008184623A (en) Method for producing three-dimensional molding, and material
JP3687667B2 (en) Metal powder for metal stereolithography
Su et al. Investigation of fully dense laser sintering of tool steel powder using a pulsed Nd: YAG (neodymium-doped yttrium aluminium garnet) laser
WO2020080062A1 (en) Cured layer lamination method and production method for laminated molded article
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article
CN105798294A (en) Rapid part prototyping method for refractory materials
Sun et al. Microstructure and properties of Fe-base alloy fabricated using selective laser melting
Dewidar Direct and indirect laser sintering of metals
JP2020012149A (en) Method for manufacturing three-dimensional molded article and three-dimensional molding system
WO2022190574A1 (en) Sintered high-speed steel body and method for producing sintered high-speed steel body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R151 Written notification of patent or utility model registration

Ref document number: 3633607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees