JP2004271342A - Charging and discharging control system - Google Patents

Charging and discharging control system Download PDF

Info

Publication number
JP2004271342A
JP2004271342A JP2003062613A JP2003062613A JP2004271342A JP 2004271342 A JP2004271342 A JP 2004271342A JP 2003062613 A JP2003062613 A JP 2003062613A JP 2003062613 A JP2003062613 A JP 2003062613A JP 2004271342 A JP2004271342 A JP 2004271342A
Authority
JP
Japan
Prior art keywords
charge
battery
discharge
internal resistance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003062613A
Other languages
Japanese (ja)
Other versions
JP4415074B2 (en
Inventor
Akihiko Kudo
彰彦 工藤
Masaki Nagaoka
正樹 長岡
Noriyoshi Sasazawa
憲佳 笹澤
Shigeyuki Yoshihara
重之 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Resonac Corp
Original Assignee
Hitachi Ltd
Shin Kobe Electric Machinery Co Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Shin Kobe Electric Machinery Co Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003062613A priority Critical patent/JP4415074B2/en
Publication of JP2004271342A publication Critical patent/JP2004271342A/en
Application granted granted Critical
Publication of JP4415074B2 publication Critical patent/JP4415074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging and discharging control system which will not make wrong decision in the degradation of a secondary battery. <P>SOLUTION: The charging and discharging current I a secondary battery and the charging and discharging voltage V of the same are measured at regular intervals (S112), and the measured values are stored in a nonvolatile RAM. The internal resistance R of the battery is calculated (S122) by the regression analysis of the constant amount of the stored measurement data. The accumulated electric charge quantity or the accumulated electric discharge quantity of the battery is calculated from the integrated value of the charging and discharging current; and the degradation state of the battery is decided, based on the calculated values of the internal resistance R and the accumulated electrically charged and discharged quantity (S128). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は充放電制御システムに係り、特に、二次電池の充放電電流と充放電電圧とを一定時間毎に測定し、該測定値から充電状態を推定して電池の充放電を制御する充放電制御システムに関する。
【0002】
【従来の技術】
従来、二次電池の簡易充放電制御システムでは、充電終了後状態を検出したときを満充電状態として電池の充電を終了させ、放電終止電圧を検出したときを完全放電状態として放電を終了させる方式が用いられてきた。一方、高精度充放電制御システムでは、二次電池の充放電電気量を測定して制御する方式も用いられている。この方式では、充放電電気量を測定しているので、電池の残存容量を把握できるという利点がある。また、満充電状態から放電末期状態まで放電した場合には満充電容量を実測しているので、この放電容量から電池の劣化状態を把握することができる。
【0003】
しかしながら、例えば、二次電池とモータジェネレータ及びエンジンとを用いたハイブリッド車等の、完全な充放電を繰り返さない用途では、二次電池は短時間の充放電を頻繁に繰り返して使用される。ハイブリッド車では、二次電池として鉛電池、ニッケル水素電池、リチウムイオン電池等が用いられており、最近では高エネルギー密度のリチウムイオン電池が使用されるようになってきている。この場合、電池の入出力特性を最大限に引き出し、かつ寿命を長くするためには、充放電させる残存容量乃至充電状態の値(SOC:満充電が100%、完全放電が0%)が重要であり、SOCの管理を行わないと充分な入出力特性が得られないだけでなく、寿命が短くなってしまう。
【0004】
また、ハイブリッド車用等の短時間の充放電を行うシステムでは、電池の満充電容量よりも最大入出力電力が重要であり、この最大入出力電力を決定する電池の内部抵抗が電池の状態を示すパラメータとして劣化判断に用いられている。このような劣化判断方法として、一定時間毎に電池の入出力電圧と電流とを測定し、その測定値の一定数量のデータを回帰分析して内部抵抗を算出する技術が知られている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平10−106635公報
【0006】
【発明が解決しようとする課題】
ところが、従来の方式では、回帰分析して得られた内部抵抗の値にバラツキが生ずるため、二次電池の劣化判断を誤る可能性を持っている。
【0007】
この例を図面を参照して説明する。図3は定格3.6Ah、SOC50%で内部抵抗約4mΩのリチウムイオン電池に短時間の充放電を繰り返した場合の電流推移を示し、図4はそのときの電圧推移を示している。なお、これらの電流、電圧推移は1sec毎に測定したものである。また、図5は60秒間の電流と電圧の測定値を回帰分析して内部抵抗を算出した結果を、図6は30秒間の回帰分析結果の内部抵抗値をそれぞれ示している。
【0008】
図5に示すように、内部抵抗の算出値は0から6mΩまで変化しており、バラツキが大きい。この例は回帰分析を60秒間行ったものであるが、図6に示す30秒間回帰分析を行った結果では更にバラツキが大きくなり、内部抵抗の計算値は−1から10mΩまで変化している。このリチウムイオン電池では内部抵抗が約8mΩまで上昇した場合に所定の入出力特性が得られないため寿命と判定されるが、この結果のみから劣化を判断すると充放電電流によっては寿命との判定がなされ、劣化判定を誤る可能性があることになる。
【0009】
本発明は上記事案に鑑み、二次電池の劣化判定を誤ることのない充放電制御システムを提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明は、二次電池の充放電電流と充放電電圧とを一定時間毎に測定し、該測定値から充電状態(SOC)を推定して前記電池の充放電を制御する充放電制御システムにおいて、前記充放電電流及び充放電電圧測定値の一定数量のデータから回帰分析を行って前記電池の内部抵抗を算出すると共に、前記充放電電流の積算値から前記電池の累積充電電気量又は累積放電電気量を算出し、前記内部抵抗及び前記累積充放電電気量の算出値に基づいて前記電池の劣化状態を判定することを特徴とする。
【0011】
本発明によれば、回帰分析で求めた内部抵抗の算出値だけでなく、累積の充放電電気量を含めて二次電池の劣化判断を行うので、バラツキの大きい回帰分析から求めた内部抵抗の算出値からの劣化判定ミスを無くすことができる。なお、二次電池にリチウムイオン電池を用いる場合には、充電効率がほぼ100%のため、充電電気量及び放電電気量のいずれを用いてもよい。
【0012】
この場合に、電池の内部抵抗が所定値以上、かつ、電池の累積充電電気量又は累積放電電気量が所定値以上となったときに、電池が劣化したと判定することが好ましい。また、電池が充放電されているときの電池温度を測定し、この測定値と充放電電流又は充放電電圧から算出した充電状態とを、電池温度と充電状態とをパラメータとするマップに当てはめて内部抵抗の算出値の補正を行い、補正後の値を内部抵抗の算出値として電池の劣化状態を判定すれば、回帰分析で求めた内部抵抗の算出値を温度とSOCとで補正しているので、真の値に近い内部抵抗値で劣化判断が可能なため、更に正確に二次電池の劣化判定を行うことができる。このとき、内部抵抗の算出値の補正は、予め定められた標準温度及び標準充電状態における内部抵抗値に補正することが望ましい。
【0013】
また、何らかの原因で真に内部抵抗が大きくなった場合には、回帰分析で求めたバラツキを含む内部抵抗の算出値も大きくなる可能性が大きいので、電池が充放電されているときの電池温度を測定し、この測定値と充放電電流又は充放電電圧から算出した充電状態とを、電池温度と充電状態とをパラメータとするマップに当てはめて内部抵抗の算出値の補正を行うことで得られた内部抵抗値が所定値以上となったときに電池が劣化したと判定してもよく、又は、電池の劣化は電池の充放電電気量に概ね比例するので、電池の累積充電電気量若しくは累積放電電気量が所定値以上となったときに電池が劣化したと判定してもよい。
【0014】
【発明の実施の形態】
以下、本発明が適用可能な充放電制御システムの実施の形態について説明する。
【0015】
(構成)
図1に示すように、本実施形態の充放電制御システムは、ホール素子等の電流センサを有しリチウムイオン電池が96直列に接続されたリチウムイオン電池群1に流れる充放電電流を測定する充放電電流測定回路2、リチウムイオン電池群1の総電圧を測定する総電圧測定回路3、サーミスタ等の温度センサを有しリチウムイオン電池群1のうち略中央部に配置された特定のリチウムイオン電池の電池温度を測定する温度測定回路4、及び、中央演算処理装置として機能するCPU、充放電制御システムの基本制御プログラム及び後述するテーブルデータ等を記憶したROM、CPUのワークエリアとして機能するRAM、並びにA/Dコンバータ等を有するデータ処理用のマイクロコンピュータ部5を備えている。マイクロコンピュータ部5には測定したデータを記憶する不揮発性RAM7が接続されている。従って、充放電制御システムは、電源の供給が停止しても、不揮発性RAM7に記憶されたデータは保存される構成を有している。
【0016】
リチウムイオン電池群1は、例えば、直列接続された2つの電池モジュール(不図示)で構成されており、各電池モジュールには48個のリチウムイオン電池が直列に接続されている。各電池モジュールは図示しないマイクロコンピュータ部を内蔵しており、このマイクロコンピュータ部の制御により、リチウムイオン電池群1の充放電中に、電池モジュールを構成する各リチウムイオン電池がほぼ同一の容量を維持するように容量調整が実行される。
【0017】
実際のリチウムイオン電池群1の充放電は、上位の充放電電流制御部により制御される。充放電システムは、後述するように、リチウムイオン電池群1の充電状態(SOC)やリチウムイオン電池群1の劣化判定結果等の情報を報知するために、マイクロコンピュータ部5に接続された通信インターフエイス部6を介して上位の充放電電流制御部に接続されている。
【0018】
(動作)
次に、フローチャートを参照して充放電制御システムの動作について、マイクロコンピュータ部5のCPUを主体として説明する。なお、マイクロコンピュータ部5に電源が投入されると、リチウムイオン電池群1を構成するリチウムイオン電池の劣化を判定する劣化判定ルーチンが実行される。
【0019】
図2に示すように、劣化判定ルーチンでは、まずステップ112で、総電圧測定回路3及び電流測定回路2からのアナログデータをA/Dコンバータでデジタルデータに変換してリチウムイオン電池群1の総電圧V及びリチウムイオン電池群1に流れる充放電電流Iを取り込み(測定し)、RAM7に格納する。次にステップ114で、リチウムイオン電池群1に流れる充放電電流Iの積算値Q(Q=∫Idt)を不揮発性RAM7に格納する。このような処理は、例えば、RAM7に前回格納した積算値Qを読み出して、前回の積算値Qに、今回測定した放電電流Iと前回からの今回までの時間Δtとを掛けた値、を加算してRAM7に格納すればよい。
【0020】
次にステップ116において、電池温度Tを測定するタイミングか否かを判断する。このような測定タイミングを判断するために、例えば、カウンタを用いることができる。肯定判断のときは、ステップ118で温度測定回路4からのアナログデータをA/Dコンバータでデジタルデータに変換して電池温度Tを取り込み(測定し)、否定判断のときは、次のステップ120へ進む。すなわち、電池温度Tは、総電圧V及び充放電電流Iの測定周期より長い周期で測定される。なお、ステップ112〜ステップ118で測定されるデータは、総電圧V、充放電電流I、電池温度Tの3種類であり、従来の充放電制御システムと何ら変わるところはない。
【0021】
次いでステップ120では、ステップ112で測定された総電圧Vの値と充放電電流Iの値とから電池の充電状態(以下、SOCという。)を演算し、次のステップ122において、RAM7に格納した総電圧V及び充放電電流Iの値の時系列的な変化データのうち直近の一定数量(例えば、各100個)のデータから、最小二乗法等の回帰分析により電池の内部抵抗Rを演算する。
【0022】
次にステップ124では、ステップ118で測定された電池温度Tとステップ120で演算したSOCとをパラメータとするマップにより係数αを求め、この係数αをステップ122で演算した内部抵抗Rの値に乗じることで、標準SOC、標準温度での内部抵抗の値に変換(補正)する。なお、本例では、下表1に示すように、マップにSOCが50%、電池温度Tが25°Cに変換可能なテーブルを使用した。表1は離散値のテーブルであるが、ステップ120では補完によって正確な値に変換可能である。
【0023】
【表1】

Figure 2004271342
【0024】
ステップ126ではSOC及び補正後の内部抵抗Rを上位の充放電電流制御部へ報知し、次のステップ128において、電池が劣化したか否かを判定する。電池の劣化判定は下表2に示す劣化判定テーブルに基づいて行われる。表2は補正後の内部抵抗と累積充放電電気量をパラメータとするテーブルであり、内部抵抗値がある設定値以上、かつ、累積充放電電気量がある設定値以上の場合に劣化したと判定するテーブルである。
【0025】
【表2】
Figure 2004271342
【0026】
ステップ128で肯定判定のときは、次のステップ130で上位の充放電電流制御部へ電池の劣化を報知し、否定判定のときは、ステップ112へ戻る。電池の劣化の報知を受けた上位の充放電電流制御部は、インストールメンタルパネル(インパネ)を制御する表示制御部(不図示)又はその上位の制御部(不図示)へインパネに電池の劣化を表示すべき旨を報知する。これにより、インパネに電池の劣化が表示され、ドライバは電池が劣化したことを知ることができる。
【0027】
(作用等)
本実施形態の充放電制御システムでは、表2に示したように、内部抵抗Rと累積充放電電気量との両者で電池の劣化判定を行うので(ステップ126)、回帰分析から求めた内部抵抗のバラツキが大きくても、誤ることなく電池の劣化判定を行うことができる。図7に本例での累積充放電電気量と内部抵抗との関係を示す。図7に示すように、充放電を行って累積充放電電気量が増えると内部抵抗は間違いなく増加するので、累積充放電電気量が設定値以上となった場合に、電池が劣化している可能性は大きく、劣化判定ミスを行う可能性は少ない。
【0028】
また、本実施形態の充放電制御システムでは、表1に示したように、回帰分析で求めた内部抵抗を電池温度とSOCとで補正するので(ステップ124)、真の値に近い内部抵抗値で正確に電池の劣化判定を行うことが可能である(ステップ126)。図8に本例での内部抵抗の温度依存性を、図9に内部抵抗のSOC依存性をそれぞれ示す。このように、内部抵抗は温度とSOCとによって変化するので、基準の温度と基準のSOCとを決定しておけば、より正確な内部抵抗値で劣化判定を行うことが可能である。
【0029】
更に、本実施形態の充放電制御システムは累積充放電電気量を測定できればよく、従来の充放電制御システムに不揮発性RAM7等の記憶装置を付加するだけの構成で、劣化判定を正確に行うことが可能である。
【0030】
なお、本実施形態では、内部抵抗R及び累積充放電電気量で電池の劣化判定を行う例を示したが、補正後の内部抵抗は真の内部抵抗値に近く、また、図7に示したように累積充放電電気量と内部抵抗とには相関関係が存在するので、補正後の内部抵抗及び累積充放電電気量の一方で電池の劣化判定を行うようにしてもよい。
【0031】
また、本実施形態では、表1に「正常」と「劣化」の2状態の区別を行うだけのテーブルを例示したが、本発明はこれに限定されず、要求特性に応じて「要注意」等の3段階以上の判断を行うテーブルとしてもよい。更に、本実施形態では、マップにテーブルを例示したが、数式等を用いるようにしてもよい。
【0032】
そして、本実施形態では、説明を簡単にするために、温度センサを1個とした例を示したが、電池モジュール毎に1個又は複数個でリチウムイオン電池の温度を測定し、測定した温度の平均値や体操平均値等を用いるようにしてもよい。
【0033】
【発明の効果】
以上説明したように、本発明によれば、回帰分析で求めた内部抵抗の算出値だけでなく、累積の充放電電気量を含めて二次電池の劣化判断を行うので、バラツキの大きい回帰分析から求めた内部抵抗の算出値からの劣化判定ミスを無くすことができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の充放電制御システムの概略構成を示すブロック回路図である。
【図2】実施形態の充放電制御システムの劣化判定ルーチンのフローチャートである。
【図3】充放電時の充放電電流の推移を示す特性線図である。
【図4】充放電時の充放電電圧の推移を示す特性線図である。
【図5】60秒間の電圧と電流の回帰分析値から算出した内部抵抗の推移を示す特性線図である。
【図6】30秒間の電圧と電流の回帰分析値から算出した内部抵抗の推移を示す特性線図である。
【図7】累積充放電電気量と内部抵抗の関係を示す特性線図である。
【図8】内部抵抗の温度依存性を示す特性線図である。
【図9】内部抵抗のSOC依存性を示す特性線図である。
【符号の説明】
1 リチウムイオン電池群
2 充放電電流測定回路
3 総電圧測定回路
4 温度測定回路
5 マイクロコンピュータ部
6 通信インターフエイス部
7 不揮発性RAM[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charge / discharge control system, and in particular, measures a charge / discharge current and a charge / discharge voltage of a secondary battery at regular intervals, estimates a state of charge from the measured values, and controls the charge / discharge of the battery. It relates to a discharge control system.
[0002]
[Prior art]
Conventionally, in a simple charge / discharge control system for a secondary battery, a method of terminating charging of a battery when a state after the end of charge is detected is set to a fully charged state and terminating discharge when a discharge end voltage is detected is set to a complete discharge state. Has been used. On the other hand, in a high-precision charge / discharge control system, a method of measuring and controlling the amount of charge / discharge of a secondary battery is also used. In this method, since the amount of charge / discharge electricity is measured, there is an advantage that the remaining capacity of the battery can be grasped. Further, when the battery is discharged from the fully charged state to the end of discharge state, the fully charged capacity is actually measured, so that the state of deterioration of the battery can be grasped from the discharged capacity.
[0003]
However, in applications in which complete charge / discharge is not repeated, such as a hybrid vehicle using a secondary battery, a motor generator, and an engine, the secondary battery is frequently used by repeatedly charging and discharging for a short time. In a hybrid vehicle, a lead battery, a nickel-metal hydride battery, a lithium ion battery, or the like is used as a secondary battery, and a lithium ion battery having a high energy density has recently been used. In this case, in order to maximize the input / output characteristics of the battery and extend the life, the value of the remaining capacity to be charged / discharged or the state of charge (SOC: 100% full charge, 0% complete discharge) is important. However, if the SOC is not managed, not only the sufficient input / output characteristics cannot be obtained, but also the life is shortened.
[0004]
In a system that charges and discharges in a short time, such as for a hybrid vehicle, the maximum input / output power is more important than the full charge capacity of the battery, and the internal resistance of the battery that determines the maximum input / output power determines the state of the battery. These parameters are used for determining deterioration. As such a deterioration determination method, a technique is known in which the input / output voltage and current of a battery are measured at regular intervals, and the internal resistance is calculated by performing regression analysis on a fixed quantity of data of the measured values (eg, for example). And Patent Document 1).
[0005]
[Patent Document 1]
JP-A-10-106635
[Problems to be solved by the invention]
However, in the conventional method, since the value of the internal resistance obtained by the regression analysis varies, there is a possibility that the deterioration judgment of the secondary battery is erroneously made.
[0007]
This example will be described with reference to the drawings. FIG. 3 shows a current transition when a short-time charge / discharge operation is repeatedly performed on a lithium ion battery having a rating of 3.6 Ah and an SOC of 50% and an internal resistance of about 4 mΩ, and FIG. 4 shows a voltage transition at that time. Note that these current and voltage transitions are measured every 1 sec. FIG. 5 shows the result of regression analysis of the measured values of current and voltage for 60 seconds to calculate the internal resistance, and FIG. 6 shows the internal resistance value of the result of regression analysis for 30 seconds.
[0008]
As shown in FIG. 5, the calculated value of the internal resistance changes from 0 to 6 mΩ, and the variation is large. In this example, the regression analysis was performed for 60 seconds. However, the result of the regression analysis performed for 30 seconds shown in FIG. 6 shows that the variation was further increased, and the calculated value of the internal resistance changed from -1 to 10 mΩ. In this lithium ion battery, when the internal resistance rises to about 8 mΩ, a predetermined input / output characteristic cannot be obtained, so that the life is judged. However, when the deterioration is judged only from this result, the life is judged depending on the charging / discharging current. That is, there is a possibility that the deterioration determination is erroneously made.
[0009]
The present invention has been made in view of the above circumstances, and has as its object to provide a charge / discharge control system that does not erroneously judge deterioration of a secondary battery.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention measures the charging / discharging current and charging / discharging voltage of a secondary battery at regular intervals, estimates a state of charge (SOC) from the measured values, and charges / discharges the battery. In the charge / discharge control system that controls the battery, a regression analysis is performed from a fixed number of data of the charge / discharge current and the charge / discharge voltage measurement value to calculate the internal resistance of the battery, and the battery is calculated from the integrated value of the charge / discharge current. And calculating the accumulated state of charge of the battery based on the internal resistance and the calculated value of the accumulated state of charge and discharge.
[0011]
According to the present invention, not only the calculated value of the internal resistance obtained by the regression analysis, but also the deterioration judgment of the secondary battery including the cumulative amount of charge and discharge electricity, so that the internal resistance of the internal resistance obtained from the regression analysis with large variation It is possible to eliminate a deterioration determination error from the calculated value. In the case where a lithium ion battery is used as the secondary battery, the charging efficiency is almost 100%. Therefore, any of the charged electricity amount and the discharged electricity amount may be used.
[0012]
In this case, it is preferable to determine that the battery has deteriorated when the internal resistance of the battery is equal to or more than a predetermined value and the accumulated charge amount or the accumulated discharge amount of the battery is equal to or more than a predetermined value. Also, the battery temperature when the battery is charged and discharged is measured, and the measured value and the charge state calculated from the charge / discharge current or the charge / discharge voltage are applied to a map using the battery temperature and the charge state as parameters. If the calculated value of the internal resistance is corrected, and the corrected value is used as the calculated value of the internal resistance to determine the state of deterioration of the battery, the calculated value of the internal resistance obtained by the regression analysis is corrected by the temperature and the SOC. Therefore, the deterioration can be determined by the internal resistance value close to the true value, so that the deterioration of the secondary battery can be more accurately determined. At this time, it is desirable that the calculated value of the internal resistance is corrected to the internal resistance value at a predetermined standard temperature and standard charging state.
[0013]
Also, if the internal resistance really increases for some reason, the calculated value of the internal resistance including the variation obtained by regression analysis is likely to increase, so the battery temperature when the battery is charged and discharged Is obtained by correcting the calculated value of the internal resistance by applying the measured value and the charge state calculated from the charge / discharge current or the charge / discharge voltage to a map using the battery temperature and the charge state as parameters. It may be determined that the battery has deteriorated when the internal resistance value is equal to or greater than a predetermined value, or since the deterioration of the battery is substantially proportional to the charge / discharge electricity amount of the battery, the accumulated charge electricity amount or the accumulated charge amount of the battery may be determined. The battery may be determined to have deteriorated when the amount of discharged electricity is equal to or greater than a predetermined value.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a charge / discharge control system to which the present invention can be applied will be described.
[0015]
(Constitution)
As shown in FIG. 1, the charge / discharge control system of the present embodiment measures a charge / discharge current flowing through a lithium ion battery group 1 having a current sensor such as a Hall element and having 96 lithium ion batteries connected in series. A specific lithium-ion battery having a discharge current measurement circuit 2, a total voltage measurement circuit 3 for measuring the total voltage of the lithium-ion battery group 1, and a temperature sensor such as a thermistor, which is disposed substantially in the center of the lithium-ion battery group 1 A temperature measuring circuit 4 for measuring the battery temperature, a CPU functioning as a central processing unit, a ROM storing a basic control program of a charge / discharge control system and table data described later, a RAM functioning as a work area of the CPU, And a data processing microcomputer unit 5 having an A / D converter and the like. The microcomputer unit 5 is connected to a nonvolatile RAM 7 for storing measured data. Therefore, the charge / discharge control system has a configuration in which the data stored in the nonvolatile RAM 7 is saved even when the power supply is stopped.
[0016]
The lithium-ion battery group 1 is composed of, for example, two battery modules (not shown) connected in series, and 48 lithium-ion batteries are connected in series to each battery module. Each battery module has a built-in microcomputer unit (not shown). Under the control of the microcomputer unit, during charging and discharging of the lithium ion battery group 1, each lithium ion battery constituting the battery module maintains substantially the same capacity. Capacity adjustment is performed.
[0017]
The actual charge / discharge of the lithium ion battery group 1 is controlled by a higher-order charge / discharge current controller. As will be described later, the charge / discharge system communicates with the microcomputer unit 5 to notify information such as the state of charge (SOC) of the lithium ion battery group 1 and the result of the deterioration determination of the lithium ion battery group 1. It is connected to a higher-order charge / discharge current control unit via a face unit 6.
[0018]
(motion)
Next, the operation of the charge / discharge control system will be described mainly with the CPU of the microcomputer unit 5 with reference to a flowchart. When the microcomputer unit 5 is turned on, a deterioration determination routine for determining the deterioration of the lithium ion batteries constituting the lithium ion battery group 1 is executed.
[0019]
As shown in FIG. 2, in the deterioration determination routine, first, in step 112, the analog data from the total voltage measurement circuit 3 and the current measurement circuit 2 are converted into digital data by an A / D converter, and the total The voltage V and the charging / discharging current I flowing through the lithium ion battery group 1 are taken (measured) and stored in the RAM 7. Next, at step 114, the integrated value Q (Q = ∫Idt) of the charge / discharge current I flowing through the lithium ion battery group 1 is stored in the nonvolatile RAM 7. In such processing, for example, the integrated value Q previously stored in the RAM 7 is read, and a value obtained by multiplying the previous integrated value Q by the discharge current I measured this time and the time Δt from the previous time to the present time is added. And store it in the RAM 7.
[0020]
Next, in step 116, it is determined whether or not it is time to measure the battery temperature T. In order to determine such a measurement timing, for example, a counter can be used. If the determination is affirmative, the analog data from the temperature measurement circuit 4 is converted into digital data by the A / D converter to take in (measure) the battery temperature T in step 118, and to the next step 120 if the determination is negative. move on. That is, the battery temperature T is measured in a cycle longer than the measurement cycle of the total voltage V and the charging / discharging current I. It should be noted that the data measured in steps 112 to 118 are three types of the total voltage V, the charge / discharge current I, and the battery temperature T, and there is no difference from the conventional charge / discharge control system.
[0021]
Next, at step 120, the state of charge (hereinafter referred to as SOC) of the battery is calculated from the value of the total voltage V and the value of the charge / discharge current I measured at step 112, and stored in the RAM 7 at the next step 122. The internal resistance R of the battery is calculated by regression analysis such as the least squares method from the latest fixed quantity (for example, 100 pieces) of the data of the time series change data of the total voltage V and the charge / discharge current I. .
[0022]
Next, in step 124, a coefficient α is obtained from a map using the battery temperature T measured in step 118 and the SOC calculated in step 120 as parameters, and the coefficient α is multiplied by the value of the internal resistance R calculated in step 122. Thus, the value is converted (corrected) into the value of the internal resistance at the standard SOC and the standard temperature. In this example, as shown in Table 1 below, a table that can convert the SOC to 50% and the battery temperature T to 25 ° C. was used for the map. Table 1 is a table of discrete values, but in step 120, it can be converted to an accurate value by interpolation.
[0023]
[Table 1]
Figure 2004271342
[0024]
In step 126, the SOC and the corrected internal resistance R are notified to the upper-level charge / discharge current controller, and in the next step 128, it is determined whether or not the battery has deteriorated. The battery deterioration determination is performed based on the deterioration determination table shown in Table 2 below. Table 2 is a table in which the internal resistance after correction and the accumulated charge / discharge electricity amount are used as parameters. When the internal resistance value is equal to or greater than a certain set value and the accumulated charge / discharge electricity amount is equal to or greater than a certain set value, it is determined that the battery is deteriorated It is a table to do.
[0025]
[Table 2]
Figure 2004271342
[0026]
If the determination in step 128 is affirmative, the next step 130 is to notify the higher-order charge / discharge current control unit of the deterioration of the battery, and if the determination is negative, the process returns to step 112. The upper-level charge / discharge current control unit that has received the notification of the battery deterioration notifies the display control unit (not shown) or the upper-level control unit (not shown) that controls the installation mental panel (instrument panel) of the battery deterioration to the instrument panel. Notify that it should be displayed. Thereby, the deterioration of the battery is displayed on the instrument panel, and the driver can know that the battery has deteriorated.
[0027]
(Action, etc.)
In the charge / discharge control system of the present embodiment, as shown in Table 2, the deterioration of the battery is determined based on both the internal resistance R and the accumulated charge / discharge electricity amount (step 126). Even if the variation of the battery is large, the battery deterioration can be determined without error. FIG. 7 shows the relationship between the accumulated charge / discharge electricity amount and the internal resistance in this example. As shown in FIG. 7, the internal resistance definitely increases when charging / discharging is performed to increase the accumulated charge / discharge electricity amount. Therefore, when the accumulated charge / discharge electricity amount exceeds a set value, the battery is deteriorated. The possibility is large, and the possibility of making a deterioration determination error is small.
[0028]
Further, in the charge / discharge control system of this embodiment, as shown in Table 1, the internal resistance obtained by the regression analysis is corrected by the battery temperature and the SOC (step 124), so that the internal resistance value close to the true value is obtained. Thus, it is possible to accurately determine the deterioration of the battery (step 126). FIG. 8 shows the temperature dependence of the internal resistance in this example, and FIG. 9 shows the SOC dependence of the internal resistance. As described above, since the internal resistance changes depending on the temperature and the SOC, if the reference temperature and the reference SOC are determined, it is possible to determine the deterioration with a more accurate internal resistance value.
[0029]
Furthermore, the charge / discharge control system of the present embodiment only needs to be able to measure the accumulated charge / discharge electricity amount, and is configured to simply add a storage device such as the non-volatile RAM 7 to the conventional charge / discharge control system. Is possible.
[0030]
In the present embodiment, an example in which the deterioration of the battery is determined based on the internal resistance R and the accumulated charge / discharge amount of electricity has been described. However, the internal resistance after correction is close to the true internal resistance value, and is shown in FIG. As described above, since there is a correlation between the accumulated charge / discharge electricity amount and the internal resistance, the deterioration of the battery may be determined based on the corrected internal resistance and the accumulated charge / discharge electricity amount.
[0031]
Further, in the present embodiment, Table 1 merely exemplifies a table for distinguishing between two states of “normal” and “deteriorated”, but the present invention is not limited to this, and “need attention” according to required characteristics. The table may be a table that makes a determination of three or more steps such as. Further, in the present embodiment, a table is exemplified in the map, but a mathematical expression or the like may be used.
[0032]
In the present embodiment, for simplicity of description, an example in which one temperature sensor is used has been described. However, the temperature of the lithium ion battery is measured with one or more battery modules for each battery module, and the measured temperature is measured. May be used.
[0033]
【The invention's effect】
As described above, according to the present invention, not only the calculated value of the internal resistance obtained by the regression analysis but also the deterioration judgment of the secondary battery including the accumulated charge / discharge electricity amount is performed. Thus, it is possible to obtain an effect that it is possible to eliminate a deterioration judgment error from the calculated value of the internal resistance obtained from the above.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram illustrating a schematic configuration of a charge / discharge control system according to an embodiment to which the present invention can be applied.
FIG. 2 is a flowchart of a deterioration determination routine of the charge / discharge control system of the embodiment.
FIG. 3 is a characteristic diagram showing a transition of a charge / discharge current during charge / discharge.
FIG. 4 is a characteristic diagram showing transition of a charge / discharge voltage during charge / discharge.
FIG. 5 is a characteristic diagram showing changes in internal resistance calculated from regression analysis values of voltage and current for 60 seconds.
FIG. 6 is a characteristic diagram showing changes in internal resistance calculated from regression analysis values of voltage and current for 30 seconds.
FIG. 7 is a characteristic diagram showing the relationship between the accumulated charge / discharge electricity amount and the internal resistance.
FIG. 8 is a characteristic diagram showing the temperature dependence of the internal resistance.
FIG. 9 is a characteristic diagram showing SOC dependence of internal resistance.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lithium ion battery group 2 Charge / discharge current measuring circuit 3 Total voltage measuring circuit 4 Temperature measuring circuit 5 Microcomputer part 6 Communication interface part 7 Nonvolatile RAM

Claims (5)

二次電池の充放電電流と充放電電圧とを一定時間毎に測定し、該測定値から充電状態を推定して前記電池の充放電を制御する充放電制御システムにおいて、前記充放電電流及び充放電電圧測定値の一定数量のデータから回帰分析を行って前記電池の内部抵抗を算出すると共に、前記充放電電流の積算値から前記電池の累積充電電気量又は累積放電電気量を算出し、前記内部抵抗及び前記累積充放電電気量の算出値に基づいて前記電池の劣化状態を判定することを特徴とする充放電制御システム。A charge / discharge control system that measures a charge / discharge current and a charge / discharge voltage of a secondary battery at predetermined time intervals, estimates a state of charge from the measured values, and controls the charge / discharge of the battery. Performing a regression analysis from a certain number of data of the discharge voltage measurement value to calculate the internal resistance of the battery, and calculating the cumulative charge amount or the cumulative discharge amount of the battery from the integrated value of the charge / discharge current, A charge / discharge control system, wherein a deterioration state of the battery is determined based on an internal resistance and a calculated value of the accumulated charge / discharge electricity amount. 前記電池の内部抵抗が所定値以上、かつ、前記電池の累積充電電気量又は累積放電電気量が所定値以上となったときに、前記電池が劣化したと判定することを特徴とする請求項1に記載の充放電制御システム。2. The battery according to claim 1, wherein the battery is determined to have deteriorated when an internal resistance of the battery is equal to or more than a predetermined value and an accumulated charge amount or an accumulated discharge amount is equal to or more than a predetermined value. 3. The charge / discharge control system according to item 1. 前記電池が充放電されているときの電池温度を測定し、この測定値と前記充放電電流又は充放電電圧から算出した充電状態とを、電池温度と充電状態とをパラメータとするマップに当てはめて前記内部抵抗の算出値の補正を行い、補正後の値を前記内部抵抗の算出値として前記電池の劣化状態を判定することを特徴とする請求項1又は請求項2に記載の充放電制御システム。The battery temperature when the battery is being charged and discharged is measured, and the measured value and the charge state calculated from the charge / discharge current or charge / discharge voltage are applied to a map in which the battery temperature and the charge state are used as parameters. The charge / discharge control system according to claim 1, wherein the calculated value of the internal resistance is corrected, and a deterioration state of the battery is determined using the corrected value as the calculated value of the internal resistance. 4. . 前記内部抵抗の算出値の補正は、予め定められた標準温度及び標準充電状態における内部抵抗値に補正することを特徴とする請求項3に記載の充放電制御システム。The charge / discharge control system according to claim 3, wherein the correction of the calculated value of the internal resistance is corrected to an internal resistance value at a predetermined standard temperature and standard charge state. 前記電池が充放電されているときの電池温度を測定し、この測定値と前記充放電電流又は充放電電圧から算出した充電状態とを、電池温度と充電状態とをパラメータとするマップに当てはめて前記内部抵抗の算出値の補正を行うことで得られた内部抵抗値が所定値以上となったとき、又は、前記電池の累積充電電気量若しくは累積放電電気量が所定値以上となったときに、前記電池が劣化したと判定することを特徴とする請求項1に記載の充放電制御システム。The battery temperature when the battery is being charged and discharged is measured, and the measured value and the charge state calculated from the charge / discharge current or charge / discharge voltage are applied to a map in which the battery temperature and the charge state are used as parameters. When the internal resistance value obtained by performing the correction of the calculated value of the internal resistance is equal to or more than a predetermined value, or when the accumulated charge amount or the accumulated discharge amount of the battery is equal to or more than a predetermined value. The charge / discharge control system according to claim 1, wherein it is determined that the battery has deteriorated.
JP2003062613A 2003-03-10 2003-03-10 Charge / discharge control system Expired - Fee Related JP4415074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062613A JP4415074B2 (en) 2003-03-10 2003-03-10 Charge / discharge control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062613A JP4415074B2 (en) 2003-03-10 2003-03-10 Charge / discharge control system

Publications (2)

Publication Number Publication Date
JP2004271342A true JP2004271342A (en) 2004-09-30
JP4415074B2 JP4415074B2 (en) 2010-02-17

Family

ID=33124428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062613A Expired - Fee Related JP4415074B2 (en) 2003-03-10 2003-03-10 Charge / discharge control system

Country Status (1)

Country Link
JP (1) JP4415074B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338944A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Battery control device
JP2008128802A (en) * 2006-11-21 2008-06-05 Furukawa Electric Co Ltd:The Battery state estimation method, battery state monitoring device, and battery power source system
JP2008532472A (en) * 2005-03-04 2008-08-14 エルジー・ケム・リミテッド Method for estimating the maximum output of a battery for a hybrid electric vehicle
JP2010022155A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Degradation determining apparatus for power storage device and degradation determining method for power storage device
JP2010066161A (en) * 2008-09-11 2010-03-25 Mitsumi Electric Co Ltd Battery state detection device, battery pack incorporated therewith and battery state detection method
JP2010249770A (en) * 2009-04-20 2010-11-04 Nissan Motor Co Ltd Internal resistance operation method of secondary battery
JP2011008593A (en) * 2009-06-26 2011-01-13 Toshiba Corp Information processing apparatus and battery degradation detection method
JP2011075558A (en) * 2009-09-30 2011-04-14 Tesla Motors Inc Method for determining dc impedance of battery
JP4763050B2 (en) * 2005-06-30 2011-08-31 エルジー・ケム・リミテッド Battery state estimation method and apparatus
JP2012079446A (en) * 2010-09-30 2012-04-19 Nec Personal Computers Ltd Battery pack and information processing unit
EP2432067A3 (en) * 2008-01-24 2013-02-27 Toyota Jidosha Kabushiki Kaisha Battery system, vehicle, and battery mounted device
JP2014006245A (en) * 2012-05-29 2014-01-16 Gs Yuasa Corp Internal resistance estimation device and internal resistance estimation method
WO2014155921A1 (en) * 2013-03-28 2014-10-02 三洋電機株式会社 Secondary battery charge status estimation device and secondary battery charge status estimation method
EP1777794B1 (en) * 2005-10-20 2018-05-02 Samsung SDI Co., Ltd. Battery management system and method of determining a state of charge of a battery
JPWO2018051442A1 (en) * 2016-09-14 2019-04-04 株式会社東芝 Storage capacity estimation device, method and program
WO2019116815A1 (en) * 2017-12-11 2019-06-20 日立オートモティブシステムズ株式会社 Device for monitoring secondary cell, device for computing state of secondary cell, and method for estimating state of secondary cell

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532472A (en) * 2005-03-04 2008-08-14 エルジー・ケム・リミテッド Method for estimating the maximum output of a battery for a hybrid electric vehicle
JP2006338944A (en) * 2005-05-31 2006-12-14 Nissan Motor Co Ltd Battery control device
JP4763050B2 (en) * 2005-06-30 2011-08-31 エルジー・ケム・リミテッド Battery state estimation method and apparatus
EP1777794B1 (en) * 2005-10-20 2018-05-02 Samsung SDI Co., Ltd. Battery management system and method of determining a state of charge of a battery
JP2008128802A (en) * 2006-11-21 2008-06-05 Furukawa Electric Co Ltd:The Battery state estimation method, battery state monitoring device, and battery power source system
EP2432067A3 (en) * 2008-01-24 2013-02-27 Toyota Jidosha Kabushiki Kaisha Battery system, vehicle, and battery mounted device
US8423233B2 (en) 2008-07-11 2013-04-16 Toyota Jidosha Kabushiki Kaisha Degradation determining apparatus for power storage device and degradation determining method for power storage device
JP2010022155A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Degradation determining apparatus for power storage device and degradation determining method for power storage device
JP4650532B2 (en) * 2008-07-11 2011-03-16 トヨタ自動車株式会社 Storage device deterioration determination device and storage device deterioration determination method
JP2010066161A (en) * 2008-09-11 2010-03-25 Mitsumi Electric Co Ltd Battery state detection device, battery pack incorporated therewith and battery state detection method
US8749204B2 (en) 2008-09-11 2014-06-10 Mitsumi Electric Co., Ltd. Battery condition detector, battery pack including same, and battery condition detecting method
JP2010249770A (en) * 2009-04-20 2010-11-04 Nissan Motor Co Ltd Internal resistance operation method of secondary battery
JP2011008593A (en) * 2009-06-26 2011-01-13 Toshiba Corp Information processing apparatus and battery degradation detection method
US8483983B2 (en) 2009-06-26 2013-07-09 Kabushiki Kaisha Toshiba Information processing apparatus and battery degradation detection method
US11415635B2 (en) 2009-09-30 2022-08-16 Tesla, Inc. Determining battery DC impedance
US8965721B2 (en) 2009-09-30 2015-02-24 Tesla Motors, Inc. Determining battery DC impedance
JP2011075558A (en) * 2009-09-30 2011-04-14 Tesla Motors Inc Method for determining dc impedance of battery
JP2012079446A (en) * 2010-09-30 2012-04-19 Nec Personal Computers Ltd Battery pack and information processing unit
JP2014006245A (en) * 2012-05-29 2014-01-16 Gs Yuasa Corp Internal resistance estimation device and internal resistance estimation method
JP6029745B2 (en) * 2013-03-28 2016-11-24 三洋電機株式会社 Secondary battery charge state estimation device and secondary battery charge state estimation method
US9897659B2 (en) 2013-03-28 2018-02-20 Sanyo Electric Co., Ltd. Secondary battery charge status estimation device and secondary battery charge status estimation method
CN105051559A (en) * 2013-03-28 2015-11-11 三洋电机株式会社 Secondary battery charge status estimation device and secondary battery charge status estimation method
CN105051559B (en) * 2013-03-28 2018-06-26 三洋电机株式会社 The charged state apparatus for predicting of secondary cell and the charged state estimating method of secondary cell
WO2014155921A1 (en) * 2013-03-28 2014-10-02 三洋電機株式会社 Secondary battery charge status estimation device and secondary battery charge status estimation method
JPWO2018051442A1 (en) * 2016-09-14 2019-04-04 株式会社東芝 Storage capacity estimation device, method and program
WO2019116815A1 (en) * 2017-12-11 2019-06-20 日立オートモティブシステムズ株式会社 Device for monitoring secondary cell, device for computing state of secondary cell, and method for estimating state of secondary cell
JPWO2019116815A1 (en) * 2017-12-11 2021-01-14 ビークルエナジージャパン株式会社 Secondary battery monitoring device, secondary battery status calculation device and secondary battery status estimation method

Also Published As

Publication number Publication date
JP4415074B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP6823162B2 (en) Battery management device and method for calibrating the charge status of the battery
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
JP5248764B2 (en) Storage element abnormality detection device, storage element abnormality detection method, and abnormality detection program thereof
JP4275078B2 (en) Battery current limit control method
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
CN108663620B (en) Power battery pack state of charge estimation method and system
JP5515524B2 (en) Secondary battery deterioration state determination system and secondary battery deterioration state determination method
US7928736B2 (en) Method of estimating state of charge for battery and battery management system using the same
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
US7652449B2 (en) Battery management system and driving method thereof
EP3343689B1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP5348987B2 (en) How to detect battery deterioration
US8203305B1 (en) Enhanced voltage-based fuel gauges and methods
EP1835297B1 (en) A method and device for determining characteristics of an unknown battery
JP2006112786A (en) Remaining capacity of battery detection method and electric power supply
JP2006129588A (en) Power control method of secondary battery, and power unit
JP2004271342A (en) Charging and discharging control system
KR20040060998A (en) Method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
CN112534283B (en) Battery management system, battery management method, battery pack, and electric vehicle
CN112470017B (en) Battery management device, battery management method, and battery pack
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
JP2003257501A (en) Secondary battery residual capacity meter
JP2003243042A (en) Detecting method and device for degree of deterioration of lithium battery as component of package battery
CN112119317B (en) Battery management device, battery management method, and battery pack
JP6631377B2 (en) Charge amount calculation device, computer program, and charge amount calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071018

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees