【0001】
【発明の属する技術分野】
本発明は、電気脱塩式純水製造装置、二次電池、燃料電池、湿度センサー、イオンセンサー、ガスセンサー、エレクトロクロミック素子、デシカント剤等、種々の電気化学デバイスにおいて好適に用いられる樹脂電解質、樹脂電解質膜、およびそれらの製造方法、並びにこれらを用いた電気化学デバイスに関する。
【0002】
【従来の技術】
電解質は、電気脱塩式純水製造装置、二次電池、燃料電池、湿度センサー、イオンセンサー、ガスセンサー、エレクトロクロミック素子、デシカント剤等、種々の電気化学デバイスにおいて用いられ、それらデバイスの性能に最も大きな影響を及ぼす部材の一つである。電解質の中で、イオン交換体として広く使用されているものに、ダイヤイオン(登録商標)(三菱化学(株))に代表されるポリビニルベンゼンスルホン酸類がある。ポリビニルベンゼンスルホン酸類は、ビニルベンゼンスルホン酸、あるいはビニルベンゼンスルホン酸塩の誘導体をラジカル的に重合させて得る場合と、汎用のポリスチレンを高分子反応でスルホン化して得る場合とがある。これらは、安価でイオン交換容量を制御しやすいうえ、繊維状、多孔膜状、ビーズ状と形状を自由に選択できるため、上記技術分野において広範に使用されている。
【0003】
また、電解質の中で、イオン伝導性材料としては、ポリエチレンオキシドに代表されるポリエーテル類が有用であることも知られている。これらは、分子量などによって粘性を制御でき、各種金属塩をドープすることにより生ずる金属イオン伝導性を応用して、ポリマー電池、各種センサーに応用されている。
【0004】
さらに、化学的に極めて安定な電解質として、フッ素系高分子電解質が知られている。ナフィオン(登録商標)(デュポン(株))に代表されるフッ素系高分子電解質は、化学的耐性の要求される食塩電解隔膜、燃料電池用プロトン伝導体膜等に応用されている(例えば、特許文献1〜4参照)。
【0005】
また、他の高分子電解質としては、主鎖に芳香族を有し、この芳香族にスルホン酸基を結合させた高分子電解質等が知られている(例えば、特許文献5、6参照)。
【特許文献1】
特開平8−164319号公報(第2ページ)
【特許文献2】
特開平4−305219号公報(第2ページ)
【特許文献3】
特開平3−15175号公報(第4ページ)
【特許文献4】
特開平1−253631号公報(第3ページ)
【特許文献5】
特開2001−250567号公報(第2ページ)
【特許文献6】
特開昭63−283707号公報(第1ページ)
【0006】
【発明が解決しようとする課題】
ポリビニルベンゼンスルホン酸類は、安価でイオン交換容量を制御しやすいうえ、繊維状、多孔膜状、ビーズ状と形状を自由に選択できるため広範な用途が期待されるが、スルホン酸基の密度を上げようとすると水溶化してしまい、水中で形状を安定化させるために、例えばジビニルベンゼンなど架橋性モノマーを同時に使用しなければならない。しかし、連鎖反応であるラジカル重合反応の進行とともに溶媒に不溶化してしまうため、ゲル状膨潤体またはビーズ状粉体として重合物を得ることは容易であるが、メッシュ状シート、均一な薄膜として成形することは困難であった。そして、電子線誘起グラフト重合法などを用いれば、用途に適した形状の高分子基剤の表面にポリスチレンを化学的に結合させることが可能であり、これをさらにスルホン化することにより布状、多孔膜状、フィルム状のグラフト重合物を比較的容易に得ることができる。しかし、スルホン化反応が求電子置換反応であるため、用いることのできる高分子基剤はポリエチレンなどポリオレフィン系樹脂に制限されるため、耐熱性、機械的強度などを要求される用途には必ずしも満足するものではなかった。
【0007】
一方、ポリエーテル類は、イオン伝導性などには優れるものの一般にゲル状であり、機械的強度を要求される用途には使用できなかった。
【0008】
さらに、フッ素系高分子電解質は、化学的耐性、機械強度に優れるが、膨潤等による寸法変化が起こることが知られている。また、これらの高分子を得るための原料であるフッ素系モノマーは、対応するフッ素を水素に置換したモノマーに比べ非常に高価であるため、電気化学デバイスに用いるには制限があった。また製造の過程ではフッ素系化合物に親和性の高いハロゲン系有機溶媒等を使用する必要がある。近年、ハロゲン系化合物の環境への影響が懸念される社会状況であり、こうした製造過程でのハロゲン化合物の環境への漏洩、また製造物の使用後の廃棄過程においても焼却処理などにおける有害なハロゲン含有化合物の環境への放出が無いように配慮する必要が有り、こうした観点で環境負荷の小さい非ハロゲン系化合物の使用が望ましい。
【0009】
また、芳香族にスルホン酸基を結合させた高分子電解質は、耐熱性があり、膜にした場合の強度が強いものであるが、製膜性が悪いという問題点があった。
【0010】
本発明は、上記課題を鑑み、電気化学デバイスで使用するに充分なイオン伝導性などの電解質特性を示し、かつ用途に応じて充分な耐熱性、機械的強度を有し、環境負荷の大きなハロゲン元素を含まず、充分に安価に製造可能であり、加えて電気化学デバイスに用いることを考慮すると水、アルコール、非プロトン性極性溶媒あるいは補助電解質液等を含浸させたとき膜の膨潤が抑制され、それによって電極との接合性・密着性に優れることが期待される、高分子(樹脂)電解質、高分子(樹脂)電解質膜の製造方法、および高分子電解質膜を用いた電気化学デバイスを提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意努力検討した結果、本発明を完成するに至った。即ち、アミン硬化型エポキシ樹脂において、それを合成する際、エポキシ化合物およびアミン化合物を適切に選択することによって、目的とする電気化学デバイスで用いる電解質膜に要求される形状、加工性、強度、耐熱性、柔軟性等の性状を制御することが可能であり、環状スルホン酸エステルと反応系中に存在する第一、第二または第三級アミンとを硬化前に反応させることによって樹脂中に共有結合によってスルホン酸基を化学的に固定し、使用に充分なイオン伝導性等の電解質特性を付与できることを見出した。そして、アミン硬化型エポキシ樹脂は、一般に化成品として用いられるエポキシ化合物およびアミン化合物を用いることが出来るため、従来の高分子電解質膜に比べて安価に製造できる。さらに特長として、アミン化合物およびエポキシ化合物を適切に選ぶことにより、樹脂中に三次元的な架橋構造を導入できるため、水、アルコール、非プロトン性極性溶媒あるいは補助電解質液等を含浸させたときの膨潤が抑制され、樹脂の骨格構造中に共有結合によってハロゲン元素を導入していないため製造過程および使用後の廃棄の際の環境負荷の低減にも寄与する電解質膜を提供することが出来る。
【0012】
即ち、本発明は、下記一般式(1)および(2)から選ばれる少なくとも1つの構造を有することを特徴とする、スルホン酸基を有するアミン硬化型エポキシ樹脂またはその成形体に関する。
【化5】
【化6】
(式中、R1、R3は、それぞれ独立に、炭素原子数1〜50の炭化水素基、水酸基、アミノ基、エーテル結合、またはイミン結合、を有する炭素原子数1〜50の炭化水素鎖を、R2は、炭素原子数3または4の炭化水素鎖を示す。)
また、本発明は、上記のスルホン酸基を有するアミン硬化型エポキシ樹脂を含有することを特徴とする電解質または電解質膜に関する。
また、本発明は、さらにリチウムイオンを含有することを特徴とする上記の電解質または電解質膜に関する。
さらに、本発明は、下記一般式(3)および(4)から選ばれる少なくとも1つの構造を有する遊離のスルホン酸基を有するアミン硬化型エポキシ樹脂、を含有することを特徴とする電解質膜に関する。
【化7】
【化8】
(式中、R1、R3は、それぞれ独立に、炭素原子数1〜50の炭化水素基、水酸基、アミノ基、エーテル結合、またはイミン結合、を有する炭素原子数1〜50の炭化水素鎖を、R2は、炭素原子数3または4の炭化水素鎖を、R4は、水素または炭素原子数1〜18の炭化水素基を、X−は、1〜3価の陰イオンを示す。)
また、本発明は、上記の樹脂、成形体、電解質または電解質膜を用いることを特徴とする電気化学デバイスに関する。
本発明は、分子内に少なくとも2以上のエポキシ基を有するエポキシ化合物と、アミン価が2価以上のアミン化合物とを反応させ、さらに反応系中のアミンと環状スルホン酸エステルとを反応させることを特徴とする、スルホン酸基を有するアミン硬化型エポキシ樹脂の製造方法に関する。
さらに、本発明は、分子内に少なくとも2以上のエポキシ基を有するエポキシ化合物と、アミン価が2価以上のアミン化合物とを混合し、エポキシ化合物とアミン化合物との硬化反応が完結する前に環状スルホン酸エステルを加えて製膜し、その後硬化反応および反応系中のアミンと環状スルホン酸エステルとの反応を完結させることを特徴とする、スルホン酸基を有するアミン硬化型エポキシ樹脂を含有する電解質膜の製造方法に関する。
また、本発明は、溶媒キャスト法、スピンコート法、転写法または印刷法により製膜することを特徴とする、上記の電解質膜の製造方法に関する。
また、本発明は、製膜する際、加熱圧延および/または延伸処理を行うことを特徴とする、上記の電解質膜の製造方法に関する。
さらに、本発明は、上記の製造方法により得られた電解質膜、上記の電解質若しくは電解質膜を、さらにリチウムイオンを含む溶媒中に浸蹟することを特徴とする、リチウムイオンを含有する電解質または電解質膜の製造方法に関する。
また、本発明は、上記の製造方法により得られた電解質膜を、さらに無機酸を含む溶媒中に浸蹟することを特徴とする、遊離のスルホン酸基を有するアミン硬化型エポキシ樹脂を含有する電解質膜の製造方法に関する。
さらに、本発明は、上記の製造方法により得られた電解質膜を、さらに有機酸を含む溶媒中に浸蹟することを特徴とする、遊離のスルホン酸基を有するアミン硬化型エポキシ樹脂を含有する電解質膜の製造方法に関する。
また、本発明は、上記の製造方法により得られた電解質膜を、さらにメチル硫酸、ジメチル硫酸、炭素原子数1〜10のハロゲン化アルキル、またはハロゲン化アリルを含む溶媒中に浸蹟することを特徴とする、遊離のスルホン酸基を有するアミン硬化型エポキシ樹脂を含有する電解質膜の製造方法に関する。
【0013】
【発明実施の形態】
以下に本発明をさらに詳細に説明する。
本発明で使用される分子内少なくとも2以上のエポキシ基を有するエポキシ化合物としては、目的の電気化学デバイスに用いるに充分なイオン伝導性、使用環境に耐えうる熱的特性・機械的特性を提供できれば特に制限はないが、具体的には以下で例示されたものが使用可能である。なお、本発明で使用されるエポキシ化合物には、低分子化合物および、オリゴマー、ポリマーなどの高分子化合物も含まれる。
【0014】
【化9】
式(5)から(10)で示される、2官能性エポキシ化合物、
【化10】
式(11)、(12)で示される、2官能性エポキシ化合物を挙げることができる。式中Xは、1以上の整数であり、その上限は特にないが、Xが1〜100のものが好ましく用いられる。
これらのエポキシ化合物は、本発明で得られるアミン硬化型エポキシ樹脂において柔軟且つしなやかな電解質膜を提供するために好適に用いられる成分として例示される。
【0015】
【化11】
また、式(13)、(14)、(15)で示される、2官能性エポキシ化合物、
【化12】
式(16)、(17)(A1、A2、A3、A4は、それぞれ独立に、−O−、−C(=O)O−、−NHC(=O)O−または−OC(=O)O−から選ばれる2価の連結基を、B1は、−H、−CH3または−OCH3のいずれかの置換基を示す。)で示される、2官能性エポキシ化合物、
【化13】
式(18)(A5、A6は、それぞれ独立に、−O−、−C(=O)O−、−NHC(=O)O−または−OC(=O)O−から選ばれる2価の連結基を、B2は、−H、−CH3または−OCH3のいずれかの置換基を、b1は、0〜4の整数を、Dは、単結合、−O−、−C(=O)−、−C(=O)O−、−NHC(=O)−、−NH−、−N=N−、−CH=N−、−CH=CH−、−C(CN)=N−、−C≡C−、−CH2−、−CH2CH2−、−CH2CH2CH2−、−C(CH3)2−または一般式−O−(CH2)m−O−、−O−(CH2CH2O)n−(mは2〜12の整数、nは1〜5の整数)のいずれかの2価の連結基を示す。)で示される、2官能性エポキシ化合物を挙げることができる。
これらエポキシ化合物は、本発明で得られるアミン硬化型エポキシ樹脂において、耐熱性に優れた電解質膜を提供するために好適に用いられる成分として例示される。
【0016】
【化14】
さらに、式(19)(x、y、zは、それぞれ独立に、1〜20の整数を示す。)、(20)、(21)(A7、A8、A9は、それぞれ独立に、−O−、−C(=O)O−、−NHC(=O)O−または−OC(=O)O−から選ばれる2価の連結基を示す。)、(22)(A10、A11、A12は、それぞれ独立に、−O−、−C(=O)O−、−NHC(=O)O−または−OC(=O)O−から選ばれる2価の連結基を示す。)で示される、3官能性エポキシ化合物、または、
【化15】
式(23)(A13は、メチレンまたは一般式(25)、(26)、
【化16】
式中、b2は0〜4の整数、b3は1〜3の整数、b4は0〜2の整数、で示される2価の連結基である。)または(24)で示される、4官能性エポキシ化合物が挙げられる。
これらエポキシ化合物は、本発明で得られるアミン硬化型エポキシ樹脂において、機械的強度に優れた電解質膜を提供するために好適に用いられる成分として例示される。
【0017】
電解質膜のイオン伝導性、耐熱性、機械的特性および生産性を制御するために、例えば式(5)から(24)で示される多官能性エポキシ化合物を2種類以上同時に用いても良い。多価のエポキシ化合物として、例えば特開昭61−247720号公報、特開昭61−246219号公報、特開昭63−10613号公報などで示された多官能型エポキシ樹脂を、単独あるいは式(5)から(24)に例示したようなエポキシ化合物と合わせて用いても、本発明のスルホン酸基を有するアミン硬化型エポキシ樹脂を得ることができる。
【0018】
本発明で使用されるアミン化合物は、目的の電気化学デバイスに用いるに充分なイオン伝導性、使用環境に耐えうる熱的特性・機械的特性を提供できれば特に制限はないが、具体的には次に例示されたものが使用可能である。なお、本発明で使用されるアミン化合物には、低分子化合物および、オリゴマー、ポリマーなどの高分子化合物も含まれる。
【0019】
【化17】
式(25)〜(27)、(28)(B3は、炭素原子数2〜20の炭化水素基、または炭素原子数4〜20の炭化水素鎖中に1つ以上のエーテル結合を有する基を示す。)または(29)で示される、アミン価(一分子中に含まれるアミノ基由来の水素数)が2であるアミン化合物、
【化18】
式(30)、(31)(a1は2〜18の整数、B4は炭素原子数1〜18の炭化水素基、あるいは炭素原子数3〜20の炭化水素鎖中に1つ以上のエーテル結合を有する基を示す。)または(32)で示される、アミノ価が3であるアミン化合物、
【化19】
式(33)(a1は2〜18の整数を示す。)、(34)、(35)(a2は1〜10000の整数を示す。)、(36)または(37)で示される、アミン価が4であるアミン化合物、
【化20】
式(38)(a3は2以上の整数を示す。)、(39)、(40)(x, y, zは、それぞれ独立に1〜20の整数を示す。)、(41)(a4は2以上の整数、B5は水素またはメチル基を示す。)、(42)(p, q, r, sは、それぞれ独立に1〜20の整数を示す。)で示される、アミン価が5以上のアミン化合物を挙げることができる。
これらは、本発明で得られるアミン硬化型エポキシ樹脂において好適に用いられる成分として例示される。また、電解質膜のイオン伝導性、耐熱性、機械的特性および生産性を制御するために例えば式(25)から(42)で示されるアミン化合物を2種類以上同時に用いても良い。
【0020】
本発明で使用される環状スルホン酸エステルは、アミンとの反応により、該エポキシ樹脂中に共有結合によって導入され、さらに目的の電気化学デバイスに用いるに充分なイオン伝導性、使用環境に耐えうる熱的特性・機械的特性を提供できれば特に制限はないが、具体的には実用上入手の容易な式(43)および(44)で示されるものが本発明において使用可能である。
【化21】
【0021】
なお、本発明によって得られるスルホン酸基を有するアミン硬化型エポキシ樹脂の詳細な化学構造の同定については、最終的に得られる樹脂状生成物が三次元的に架橋して、有機溶媒等への再溶解が困難であるため化学的に分析する手段が限られる。例えば、下記一般式(1)、(2)
【化22】
(式中、R1、R3は、それぞれ独立に、炭素原子数1〜50の炭化水素基、水酸基、アミノ基、エーテル結合、またはイミン結合、を有する炭素原子数1〜50の炭化水素鎖を、R2は、炭素原子数3または4の炭化水素鎖を示す。)から選ばれる、少なくとも1つ以上の構造を有することを、該スルホン酸基を有するアミン硬化型エポキシ樹脂の赤外吸収(IR)スペクトルで確認することができる。同定するにあたって樹脂中に存在する一般式(1)または(2)で示される該部分構造を有する、溶媒に可溶な低分子量モデル化合物を別途合成して、そのIRスペクトルの帰属を該スルホン酸基を有するアミン硬化型エポキシ樹脂のIRスペクトルと対応させることにより、樹脂中に一般式(1)、(2)から選ばれる少なくとも一つ以上の構造を有することを確認できる。具体的にはエポキシ化合物としてフェニルグリシジルエーテル、アミン化合物としてn−ブチルアミン、および環状スルホン酸エステルとして1,3−プロパンスルトンを用い、下記反応式<1>で示される反応生成物を核磁気共鳴(NMR)スペクトルおよびIRスペクトルからこれらの構造を同定できる。
【0022】
【化23】
【0023】
反応式<1>中、化合物(45)〜(48)の化合物のスペクトルデータは後述の参考例で示す。また、(45)に過剰量のプロパンスルトンを反応させるか、あるいは化合物(48)にさらにプロパンスルトンを加えても化合物(49)は生成しないことを確認した。モデル化合物等のスペクトルデータの解析結果を基に該樹脂の構成要素である一般式(1)または(2)の構造を特定する赤外吸収バンドを、表1のように決定した。
【0024】
【表1】
【0025】
反応式と表1から明らかなように、合成したスルホン酸基を有するアミン硬化型エポキシ樹脂の赤外吸収スペクトルにおいて、対応する原料のアミン化合物、およびエポキシ化合物に特有の吸収が観測されないかあるいは著しく微弱であり、かつ一般式(1)、(2)の構造に特有の吸収が顕著に認められれば、該エポキシ樹脂中に一般式(1)または(2)で表される構造が形成されていると確定できる。
【0026】
エポキシ化合物とアミン化合物との反応は、硬化前に溶媒キャスト法、スピンコート法、転写法、印刷法等による製膜または圧延・延伸などの機械的処理により膜状に成形できれば特に制限を設けないが、一般に均一に反応を進行させるために有機溶媒を適宜用いることができる。この際、有機溶媒としては、溶媒がエポキシ化合物と反応したり、アミンの求核性を著しく低下させたり、環状スルホン酸エステルと反応したり、あるいは製膜後の形状に悪影響を与えたりしなければ用いることができ、例えば、n−ヘキサン、シクロヘキサン、n−ヘプタン、n−オクタン、エチルセロソルブ、ブチルセロソルブ、ベンゼン、トルエン、キシレン、アニソール、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリジノン、ジメチルスルホキシドなどを使用できる。また必要に応じてこれらの有機溶媒を2種類以上混合して使用したり、さらに水を加えて使用することもできる。反応を進行させるうえでは、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、クロロベンゼン、ジクロロベンゼンなどハロゲン元素を含む有機溶媒を用いることもできるが、本特許の課題の一つである「環境負荷が小さい」という点から、本特許の実施形態として望ましくない。しかし、環境への漏洩の可能性を比較的少ないエネルギー投入で忌避し得ると判断できれば、そのかぎりではない。
【0027】
なお、液体状のエポキシ化合物と液体状のアミン化合物に環状スルホン酸エステルを反応させた樹脂電解質は、高いイオンの輸率などが期待できるが、機械的強度が弱い場合がある。反対に、固体状エポキシ化合物と固体状アミン化合物に環状スルホン酸エステルを反応させた場合、得られる樹脂電解質は堅くて脆くなる傾向がある。機械的強度が要求される用途では、三次元的な架橋の密度も大きな影響を与える。高いイオン輸率と機械的強度など分子設計上相反する樹脂電解質を合成するために、夫々の組成を混合することにより解決することができる。その方法としては、例えば液体状成分と固体状成分、あるいは二官能性成分と多官能性成分を混合して、あるいは夫々を別にある程度反応させて連鎖を伸長してから混合してから、環状スルホン酸エステルを反応させて該樹脂電解質を得ることにより、高いイオン輸率と機械的特性の向上を実現することができる。さらに、例えばイオン輸率に大きな影響を与える柔軟な樹脂成分の領域にスルホン酸を高密度に導入できれば、より効果的となると期待できる。このような場合には、別個に反応させた柔軟な樹脂成分の硬化前溶液にのみ環状スルホン酸エステルを加えて反応させて、それと環状スルホン酸エステルを加えない剛直な樹脂成分の硬化前溶液を混合することによって、得られた樹脂電解質の良溶媒への膨潤を抑えて、機械的特性に優れ、且つイオン輸率の高い樹脂電解質を合成することもできる。環状スルホン酸エステルは、反応系中の一級、二級または三級アミンと反応することによって樹脂中にスルホン酸基を共有結合で導入できる。よって前述の例では、柔軟な樹脂成分に多官能性アミンを用いると柔軟な樹脂成分の領域にスルホン酸を高密度に導入できるので、イオン輸率の向上には効果的である。なお、反応の用いる環状スルホン酸エステルの量は、反応系中のアミノ基由来の窒素原子数以下のモル数とすることが好ましい。
【0028】
本発明で得られるスルホン酸基を有するアミン硬化型エポキシ樹脂を成形することにより、本発明の成形体を製造することができる。成形の方法としては、通常用いられているものあれば特に制限はないが、例えばトランスファー成形等により目的とする成形体を得ることができる。
【0029】
また、本発明で得られるスルホン酸基を有するアミン硬化型エポキシ樹脂、その成形体、電解質または電解質膜を用いることにより、本発明の電気化学デバイスを製造することができる。
電気化学デバイスとしては、電気化学反応を行う装置であれば特に制限はないが、例えば、電気脱塩式純水製造装置、二次電池、燃料電池、湿度センサー、イオンセンサー、ガスセンサー、エレクトロクロミック素子、デシカント剤を挙げることができる。例えば、これらの電気化学デバイスに通常用いられている電解質や電解質膜を、本発明の電解質または電解質膜と置き換えることにより、本発明の電気化学デバイスを製造することができる。
【0030】
本発明で得られるスルホン酸基を有するアミン硬化型エポキシ樹脂において、樹脂中のスルホン酸基とアミン残基が強く相互作用し、用途によっては充分な電解質特性を得られない場合もある。これは、スルホン酸由来のプロトンがアミン残基に配位したり、3級アミンに環状スルホン酸エステルが反応した場合のベタイン構造が影響しているためと考えられる。そこで、該エポキシ樹脂を膜状などに成形後、硫酸等を含む溶液で処理することにより、一般式(1)および(2)の化学構造をそれぞれ一般式(3)および(4)の化学構造へ変換すること、すなわち膜中に遊離のスルホン酸基を導入することによって電解質特性を向上させることができる。このとき同時に膜中に導入される1〜3価の陰イオン種(X−)は補助電解質として機能する。一般式(1)および(2)から、一般式(3)および(4)への変換率は、用いる電気化学デバイスにおいて充分な電解質特性を発現できれば特に制限はない。この変換処理剤は、膜中に遊離のスルホン酸基を生成できれば特に制限はないが、硫酸、硝酸、塩酸、臭化水素、沃化水素、リン酸などの無機酸、ベンゼンスルホン酸、トルエンスルホン酸、フルオロ酢酸、クロロ酢酸、ブロモ酢酸、トリフルオロ酢酸、トリクロロ酢酸などの有機酸、またはメチル硫酸、ジメチル硫酸、炭素原子数1〜10のハロゲン化アルキル、ハロゲン化アリルなどの化合物を用いることができるが、取り扱いの容易さ、安価である点を考慮すると硫酸を用いるのが望ましい。このときの溶媒は、膜を傷めずに変換処理剤が作用できれば特に制限はないが、水、炭素原子数1〜4のアルコール、酢酸、アセトン、テトラヒドロフラン、1,4−ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリジノン、ジメチルスルホキシドなどを単独で、あるいはこれらを2種類以上混合して用いることができる。変換処理は、変換処理剤を上記溶媒に混合した溶液に膜を接触できれば特に制限なく、処理温度は例えば0℃から150℃程度の範囲で溶媒の種類に応じて、また膜への影響を考慮して決めればよい。
【0031】
本発明のスルホン酸基を有するアミン硬化型エポキシ樹脂に、リチウムイオンをドープすることによって、リチウムイオン二次電池用電解質としても用いることができる。実用的なリチウムイオン輸率を実現するには、該エポキシ樹脂を合成する際用いるエポキシ化合物またはアミン化合物としてエーテル結合を多数含むものを用い、該エポキシ樹脂の性状としては柔軟なゲル状電解質となるように、組成を制御すればよい。リチウムイオンのドープ方法等については、例えば「高密度リチウム二次電池」(1998年、テクノシステムズ)に記載の公知な方法を用いればよい。例えば、本発明の電解質または電解質膜を、リチウムイオンを含む水溶液、有機溶媒、または水溶液を含む有機溶媒に浸蹟することにより、リチウムイオンをドープすることができる。
【0032】
膜中からの不純物等の溶離が電気デバイスの性能に悪影響を及ぼす恐れがある場合には、該エポキシ樹脂電解質を洗浄してその用途に供することができる。前述の遊離のスルホン酸を生成させるための変換処理をそのまま洗浄処理として利用することが可能であり、あるいは水、炭素原子数1〜4のアルコール、アセトン、テトラヒドロフラン、1,4−ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどの溶媒に浸蹟して不純物等を溶出させることが可能である。その上で、さらに樹脂電解質を蒸留水で数時間から数日煮沸処理して、洗浄を完結することが望ましい。
【0033】
【実施例】
次に本発明の実施例を示すが、本発明は、以下の実施例に限定されるものではない。
まず、反応式1で示したモデル化合物の合成反応を、参考例として以下に示す。
<参考例1> 化合物(45)の合成
アルゴン雰囲気下、50 ml二口ナスフラスコにDMF 40mlを加えて攪拌し60℃に加温した。そこへフェニルグリシジルエーテル 6.8 ml (50 mmol)を加えて溶解させた後、n−ブチルアミン 5.0 ml (50 mmol)をゆっくり添加した。18時間攪拌した後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(展開液:ジクロロメタン)で精製したところ式(45)で表される白色粉末状の化合物を4.5 g(収率40%)得た。
化合物(45)のスペクトルデータ
1H−NMR,δ(ppm, DMSO−d6, 400 MHz): 0.87 (3H, t, CH3), 1.31 (2H, m, CH2), 1.40 (2H, m, CH2), 2.51 (2H, m, CH2), 2.57 (1H, dd, CH2), 2.65 (1H, dd, CH2), 3.86 (1H, m, CH), 3.86 (1H, m, CH2), 3.94 (1H, m, CH2) , 4.93 (1H, d, OH), 6.91 (3H, m, Ph), 7.27 (2H, m, Ph).
13C−NMR,δ(ppm, DMSO−d6, 400 MHz): 14.8 (CH3), 20.8 (CH2), 32.7 (CH2), 50.1 (CH2), 53.4 (CH2), 69.0 (CH), 71.5 (CH2), 115.3 (Ph), 121.3 (Ph), 130.3 (Ph), 159.6 (Ph).
IR (cm−1, KBr disk): 3267 (s, OH st), 3065, 2929 (s, CH st), 2869 (s, CH st), 2832, 1600 (s, arC−C st), 1587 (m, NH deform), 1499 (s, arC−C st), 1485, 1456, 1293, 1247 (vs, arC−O−alC st as), 1175 (m, arC−O−alC st as), 1142, 1109, 1084, 1037 (arC−O−alC st sy), 1007, 914, 894, 810, 753, 692.
【0034】
<参考例2> 化合物(46)の合成
アルゴン雰囲気下、50 ml二口ナスフラスコにDMF 40mlを加えて攪拌し60℃に加温した。そこへフェニルグリシジルエーテル 6.8 ml (50 mmol)を加えて溶解させた後、n−ブチルアミン 2.5 ml (25 mmol)をゆっくり添加した。24時間攪拌した後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(展開液:酢酸エチル/n−ヘキサン=3/7体積比)で精製したところ式(46)で表される淡黄色粘稠液体の化合物を8.4 g(収率90%)得た。
化合物(46)のスペクトルデータ
1H−NMR,δ(ppm, DMSO−d6, 400 MHz): 0.78 (3H, dt, CH3), 1.20 (2H, m, CH2), 1.35 (2H, m, CH2), 2.62 (2H, m, CH2), 2.47 (4H, m, CH2×2), 3.84 (4H, m, CH2×2), 3.94 (2H, m, CH×2), 4.86 (2H, d, OH×2), 6.88 (6H, m, Ph), 7.25 (4H, m, Ph).
13C−NMR,δ(ppm, DMSO−d6, 400 MHz): 14.8 (CH3), 20.9 (CH2), 29.8 (CH2), 56.1 (CH2), 58.7 (CH2), 59.3 (CH2), 68.1 (CH), 68.4 (CH), 71.3 (CH2×2), 115.2 (Ph), 121.2 (Ph), 130.3 (Ph), 159.6 (Ph).
IR (cm−1, KBr disk): 3396 (broad, OH st), 3063, 3041, 2955 (s, CH st), 2872 (m, CH st), 1600 (s, arC−C st), 1497 (s, arC−C st), 1457, 1301, 1246 (vs, arC−O−alC st as), 1173 (m, arC−O−alC st as), 1079, 1043 (arC−O−alC
st sy), 753, 691.
【0035】
<参考例3> 化合物(47)の合成
参考例2で得られた化合物(46)1.9 g (5.0 mmol)を50 ml二口ナスフラスコに加え、アルゴン雰囲気下、60℃に加温した。アセトン0.5 mlを加えて溶解した後、1,3−プロパンスルトン0.44 ml (5.0 mmol)をゆっくり添加し、80℃に加温した。3時間後、アセトン0.5 mlを追加し、粘稠な溶液をゆっくり攪拌した。3時間後、室温まで冷却し、エーテルを加えたところ固体が析出した。60℃で真空乾燥し、式(47)で表される無色粉末状の化合物を2.15 g(収率87%)得た。
化合物(47)のスペクトルデータ
1H−NMR,δ(ppm, DMSO−d6, 400 MHz): 0.91 (3H, t, CH3), 1.28 (2H, m, CH2), 1.7 (2H, m, CH2), 2.1 (2H, m, CH2), 2.49 (2H, m, CH2), 3.46 (2H, m, CH2), 3.5 (4H, m, CH2×2), 3.62 (2H, m, CH2), 3.93 (4H, m, CH2×2), 4.5 (2H,
m, CH×2), 6.96 (6H, m, Ph), 7.30 (4H, m, Ph).
IR (cm−1, KBr disk): 3301 (broad, OH st), 2964 (m, CH st), 2877 (m, CH st), 1600 (s, arC−C st), 1497 (s, arC−C st), 1472, 1295, 1245 (vs, arC−O−alC st as), 1172 (s, arC−O−alC st as),  ̄1165 (as shoulder, S=O st as), 1080,  ̄1045 (as shoulder, S=O st sy), 1037 (arC−O−alC st sy), 756, 693, 520.
【0036】
<参考例4> 化合物(48)の合成
参考例1で得られた化合物(45)1.1 g (5.0 mmol)を50 ml二口ナスフラスコに加えて攪拌し、アルゴン雰囲気下、50℃に加温した。アセトン5 mlを加え溶解させた後、1,3−プロパンスルトン0.44 ml (5.0 mmol)をゆっくり添加したところ、徐々に乳白色を呈した。5時間後室温まで冷却後、エーテルを加えたところ固体が析出した。これを回収して60℃で真空乾燥し、式(48)で表される無色粉末状の化合物を0.86 g(収率50%)得た。
化合物(48)のスペクトルデータ
1H−NMR,δ(ppm, DMSO−d6, 400 MHz): 0.90 (3H, t, CH3), 1.32 (2H, m, CH2), 1.62 (2H, m, CH2), 2.00 (2H, m, CH2), 2.61 (2H, m, CH2), 3.19 (2H, m, CH2), 3.19 (1H, m, CH2), 3.29 (1H, m, CH2), 3.29 (2H, m, CH2), 3.96 (2H, d, CH2), 4.27 (1H, m, CH), 5.86 (1H, br−s, OH), 6.95 (3H, m, Ph), 7.29 (2H, m, Ph), 9.51 (1H, br−s, OH).
IR (cm−1, KBr disk): 3371 (broad, OH st), 2968 (m, CH st), 2774 (broad), 1600 (m, arC−C st), 1500 (m, arC−C), 1249 (s, arC−O−alC st as), 1222,  ̄1165 (as shoulder, S=O st as), 1150 (vs, S=O st),  ̄1045 (as shoulder, S=O st sy), 1032 (s, arC−O−alC st sy), 756, 695, 600, 590, 531, 522.
【0037】
次に、実施例において使用したエポキシ化合物(E)の構造およびエポキシ化合物に特有の赤外吸収バンドを表2に示す。
【0038】
【表2】
【表3】
【0039】
次に、実施例において使用したアミン化合物(A)の構造およびアミン化合物に特有の赤外吸収バンドを表3に示す。
【0040】
【表4】
【0041】
環状スルホン酸エステル(S)としては、以下に示した式(43)または(44)で示すものを用いた。
【0042】
【化24】
1344 cm−1 (s) −S(=O)2O−非対称伸縮振動
1167 cm−1 (s) −S(=O)2O−対称伸縮振動
779 cm−1 (s) S−O伸縮振動
【化25】
1351 cm−1 (s) −S(=O)2O−非対称伸縮振動
1171 cm−1 (s) −S(=O)2O−対称伸縮振動
783 cm−1 (s) S−O伸縮振動
これら環状スルホン酸エステル類は、アミン化合物誘導体の存在下、容易に環が解裂してアミン化合物誘導体と結合、スルホン酸を生成する。上に示した赤外吸収バンドのうち、 ̄1350 cm−1 のスルホン酸エステル構造に起因する吸収が他の吸収バンドの影響を受けにくく、この吸収バンドが消滅あるいは著しく減少することによって反応の進行を容易に判別でき、スルホン酸の生成が示唆される。
【0043】
これらの原料となる化合物は、主に市販されているものをそのまま用いることができるが、勿論、市販されていないものについては合成して本発明に用いることができる。
【0044】
次にエポキシ化合物の合成例を示す。
<参考例5> E−6の合成
4−(ベンジルオキシ)フェノール34.8 g (174 mmol)および1,5−ジブロモペンタン11.9 ml (87.0 mmol)をアセトン260 mlに溶解した。ここへ炭酸カリウム30.1 gおよびヨウ化カリウム1.4 gを加えて、還流温度で18時間撹拌した。室温でアセトン800 mlを加えて、不溶物を濾別した。濾液を濃縮後、アセトン:テトラヒドロフラン=1:1(体積比)で再結晶精製したところ、無色粉末状固体を36.0 g得た。スペクトル測定の結果、1,5−ビス(4−ベンジルオキシフェノキシ)ペンタンであることを確認した。
1H−NMR, δ (ppm, CDCl3, 400MHz): 1.64 (2H, m, CH2), 1.82 (4H, m, CH2x2), 3.91 (4H, t, CH2x2), 5.00 (4H, m, CH2), 6.82 (4H, d, J=9.2Hz, Ph), 6.90 (4H, d, J=9.2Hz, Ph), 7.40 (10H, m, Ph).
IR, ν (cm−1, KBr disk): 2929 (m, C−H), 2862 (m), 1510 (s, arC−C), 1468 (m), 1454 (m), 1397 (w), 1382 (m), 1287 (m), 1240 (s, arC−O−alC), 1116 (m), 1067 (m), 1018 (s), 946 (m), 828 (s), 741 (m), 734 (m), 692(s), 509 (m).
上記操作で得た粉末状固体2.50 g (5.34 mmol)をエタノール(53.4 ml)、テトラヒドロフラン(53.4 ml)の混合溶媒に加温して溶解し、そこへ5%パラジウム担持カーボン粉末を0.227 g分散した。反応容器を−60℃に冷却し、1時間減圧脱気した後、容器中に水素ガスを導入して75℃で14時間撹拌した。セライトを用いて触媒を除去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム)で精製したところ無色粉末状固体1.40 gを得た。スペクトル測定の結果、1,5−ビス(4−ヒドロキシフェノキシ)ペンタンであることを確認した。収率:91.5%
1H−NMR, δ (ppm, CDCl3, 400MHz): 1.63 (2H, m, CH2), 1.81 (4H, m, CH2x2), 3.92 (4H, t, J=6.4Hz, CH2x2), 4.1−4.9 (2H, broad, PhOH), 6.76 (8H, m, J=9.2Hz, Ph).
IR, ν (cm−1, KBr disk): 3357 (m, phenolO−H), 3040 (w), 2949 (w, C−H), 2928 (m), 2860 (w), 1607 (vw, arC−C), 1513 (s, arC−C), 1472 (m), 1462 (m), 1393 (w), 1376 (m), 1271 (m), 1235 (s, arC−O−alC), 1106 (m), 1068 (m, arC−O−alC), 951 (m), 823 (s), 778 (w), 741 (m), 524 (m).
上記操作で得た無色粉末10.8 g (37.8 mmol)をエピクロロヒドリン29.5 ml (378 mmol)に溶解し、95℃で30分毎に水酸化ナトリウム0.45 g (11.3 mmol)を10回加え、さらに43時間95℃で撹拌した。放冷後、ヘキサン500 mlを加えて、不溶物を回収し、これにクロロホルムと水を加えて有機層を濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/酢酸エチル=12/1 vol. ratio)で精製したところ、無色固体9.91 gを得た。スペクトル測定の結果、1,5−ビス(4−グリシジルオキシフェノキシ)ペンタン(E−6)であることを確認した。収率:65.9%
1H−NMR, δ (ppm, CDCl3, 400MHz): 1.63 (2H, m, CH2), 1.83 (4H, m, CH2x2), 2.74 (2H, dd, J=2.8, 5.2Hz,), 2.90 (2H, dd, J=4.4, 4.8Hz)), 3.34 (2H, m, CHx2), 3.92 (2H, dd, J=5.2, 11.0Hz), 3.93 (4H, t, J=6.4Hz), 4.16 (2H, dd, J=3.4, 11.0Hz, ), 6.82 (4H, d, J=9.1Hz, Ph), 6.85 (4H, d, J=9.1Hz, Ph).
IR, ν (cm−1, KBr disk): 3055 (vw, epoxyC−H), 3005 (vw), 2941 (w, C−H), 2911 (w), 2856 (w), 1509 (s, arC−C), 1466 (m), 1389 (w), 1290 (w), 1237 (s, arC−O−alC), 1130 (w), 1114 (w), 1070 (w), 1039 (m), 991 (w), 914 (w), 848 (w), 820 (m, epoxyC−O), 786 (w), 525 (w).
【0045】
<参考例6> E−7の合成
トリエチレングリコールジ−p−トシラート30.0 g (65.4 mmol)および4−(ベンジルオキシ)フェノール26.7 g (131 mmol)をアセトン200 mlに溶解した。ここへ炭酸カリウム22.6 gを加えて還流温度で30時間攪拌した。室温でアセトン1.0 lを加えて、不溶物を濾別した。濾液を濃縮後、アセトン:ヘキサン=5:1(体積比)で再結晶精製したところ、淡黄色固体12.1 gを得た。スペクトル測定の結果、トリエチレングリコールジ−4−ベンジルオキシフェニルエーテルであることを確認した。収率:35.8%
1H− NMR, δ(ppm, CDCl3, 400MHz): 3.75 (4H, m, CH2x2), 3.84 (4H, m, CH2x2), 4.08 (4H, m, CH2x2), 5.00 (4H, m, CH2), 6.84 (4H, d, J=9.4Hz, Ph), 6.89 (4H, d, J=9.4Hz, Ph), 7.37 (10H, m, Ph).
IR, ( (cm−1, KBr disk) : 3065 (w), 2915 (m, C−H), 2860 (m), 1511(s, ArC−C), 1467 (m), 1454 (s), 1384 (m), 1287(s), 1240 (s, arC−O−alC), 1145 (s), 1115 (s), 1064 (m), 1019(s), 987 (s), 924(m), 862 (m), 827 (s), 766 (m), 732 (s), 692 (s), 522 (m).
上で得た淡黄色固体11.3 g (22.1 mmol)をテトラヒドロフラン100 mlおよびエタノール100 mlの混合溶媒に溶解した後、5%パラジウムカーボン粉末0.94 gを分散した。水素ガス雰囲気下、75℃で18時間攪拌した。セライトを用いて触媒を除去した後、濃縮したところ白色粉末7.23 g を得た。スペクトル測定の結果、トリエチレングリコールジ−4−ヒドロキシフェニルエーテルであることを確認した。収率:98.6%
1H− NMR, δ(ppm, CDCl3, 400MHz): 3.75 (4H, m, CH2x2), 3.84 (4H, m, CH2x2), 4.07 (4H, m, CH2x2), 6.73 (4H, d, J=9.4Hz, Ph), 6.78 (4H, d, J=9.4Hz,
Ph).
IR, ( (cm−1, KBr disk) : 3365 (m, phenolO−H), 3035 (w), 2932 (m, C−H), 2916 (m), 2900 (m), 2877 (s), 1516 (s, arC−C), 1489 (m), 1477 (m), 1458 (m), 1379 (m), 1350 (w), 1303 (m), 1281 (m), 1233 (s, arC−O−alC), 1175 (m), 1134 (s), 1111 (s), 1045 (m), 991 (s), 822 (s), 805 (m), 767 (s), 516
(m).
上で得た白色粉末7.00 g (21.1 mmol)をエピクロロヒドリン16.5 ml (210 mmol)中に溶解させ100℃で、30分ごとに水酸化ナトリウム0.23 g (6.32 mmol)を10回加え、さらに100℃で20時間攪拌した。放冷後、ヘキサン500 mlを加え、不溶物を回収し、アセトン500 mlで洗浄した。アセトン可溶分を濃縮後、シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/酢酸エチル=9/1Vol. ratio)で精製したところ、白色固体5.96 gを得た。スペクトル測定の結果、トリエチレングリコールジ−4−グリシジルオキシフェニルエーテル (E−7)であることを確認した。収率:63.6%
1H− NMR, δ(ppm, CDCl3, 400MHz): 2.74 (2H, dd, J=2.6, 5.2Hz), 2.90 (2H, dd, J=4.0, 4.6Hz), 3.33 (2H, m, CHx2), 3.74 (4H, m, CH2x2), 3.84 (4H, m, CH2x2), 3.90 (2H, dd, J=3.2, 11Hz), 4.08 (4H, m, CH2x2), 4.16 (2H, dd,
J=3.2, 11Hz), 6.84 (8H, m, Ph).
IR, ( (cm−1, KBr disk) : 3118 (w), 3076 (w), 3055 (w, epoxyC−H), 2927 (m, C−H), 2891 (s), 2856 (m), 2833 (m), 1509 (s, arC−C), 1456 (s), 1433 (s), 1378 (m), 1344 (m), 1322 (m), 1288 (s), 1233 (s, arC−O−alC), 1131 (s), 1076 (s), 1049 (s), 971 (m), 928 (m), 913 (m), 880 (m), 865 (m), 846 (m), 827 (s, epoxyC−O), 771 (s), 747 (m), 529 (m), 454 (m).
【0046】
<参考例7> E−12の合成
アルゴン雰囲気下、100 ml三口ナスフラスコに4,4’−ジアミノジフェニルエーテル5.0 g (25 mmol)、炭酸ナトリウム11.0 g (100 mmol)及びエピクロロヒドリン20.0 ml (250 mmol)を加えて攪拌し110℃に加温した。3時間攪拌した後室温に戻しジクロロメタンを加え、ろ過して炭酸ナトリウムを除去した。ジクロロメタンを減圧留去し、アルゴン雰囲気下、水酸化ナトリウム5.0 g (125 mmol)及びエピクロロヒドリン10 ml (125 mmol)を加え60℃に加温した。3時間攪拌した後室温に戻し、ヘキサンを50 ml加え30分攪拌したところ黄白色の粘稠物が生成した。上澄みを除去した後ジクロロメタンを加え溶解し、不溶物をろ別して溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/1vol.)にて精製したところ淡黄色粘稠液体を5.3 g得た。スペクトル測定の結果、4,4’−ビス(N,N−ジグリシジルアミノ)フェニルエーテル (E−12)であることを確認した。収率:50%
1H−NMR, δ (ppm, CDCl3, 400MHz): 2.58 (4H, m, CH2), 2.80 (4H, m, CH2), 3.17(4H, m, CHx4), 3.38 (4H, m, CH2), 3.70 (4H, m, CH2), 6.78 (4H, m, Ph), 6.90 (4H, m, Ph).
13C−NMR, δ (ppm, CDCl3, 400MHz): 45.8 (CH2), 51.1 (CH), 54.1 (CH2), 114.6 (Ph), 119.9 (Ph), 144.9 (Ph), 150.2 (Ph).
IR, ν (cm−1, KBr disk): 3051 (m, epoxyC−H), 2995 (s, C−H), 2922 (m), 1609 (m, arC−C), 1505 (vs, arC−C), 1412 (m), 1386 (s), 1331 (m), 1226 (vs, arC−O−alC), 1190 (s), 1153 (m), 1126 (m), 1006 (w), 974 (m), 941 (m), 907 (m), 871 (m), 828 (s, epoxyC−O), 754 (m), 517 (m).
【0047】
<参考例8> E−13の合成
アルゴン雰囲気下、100 ml三口ナスフラスコに4,4’−ビス(4−アミノフェノキシ)−ビフェニル5.5 g (15 mmol)、炭酸ナトリウム6.4 g (60 mmol)及びエピクロロヒドリン12 ml (150 mmol)を加えて攪拌し110℃に加温した。3時間攪拌した後室温に戻しジクロロメタンを加え、ろ過して炭酸ナトリウムを除去した。ジクロロメタンを減圧留去し、アルゴン雰囲気下、水酸化ナトリウム3.0 g (75 mmol)及びエピクロロヒドリン10 ml (130 mmol)を加え60℃に加温した。3時間攪拌した後室温に戻し、ヘキサンを50 ml加え30分攪拌したところ黄白色の沈殿が生成した。上澄みを除去した後クロロホルムを加え溶解し、不溶物をろ別してシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム)にて精製したところ淡黄色粉末を3.1 g得た。スペクトル測定の結果、4,4’−ビス[4−(N,N−ジグリシジルアミノ)フェノキシ]ビフェニル(E−13)であることを確認した。収率:35%
1H−NMR, δ (ppm, CDCl3, 400MHz): 2.61 (4H, m, CH2), 2.82 (4H, m, CH2), 3.20 (4H, m, CH), 3.41 (4H, m, CH2), 3.75 (4H, m, CH2), 6.83 (4H, m, Ph), 6.99 (8H, m, Ph), 7.46 (4H, m, Ph).
13C−NMR, δ (ppm, CDCl3, 400MHz): 45.8 (CH2), 51.1 (CH), 54.0 (CH2), 114.4 (Ph), 118.0 (Ph), 121.4 (Ph), 128.3 (Ph), 135.2 (Ph), 145.6 (Ph), 148.3 (Ph), 158.5 (Ph).
IR, ν (cm−1, KBr disk): 3044 (w, epoxyC−H), 2983 (w, C−H), 2917 (w), 1611 (m, arC−C), 1513 (s, arC−C), 1490 (s, arC−C), 1387 (m), 1340 (w), 1266 (s, epoxyC−O−C), 1231 (s, arC−O−alC), 1191 (m), 1172 (m), 1000 (w), 968 (m), 941 (w), 907 (w), 869 (m), 826 (s, epoxyC−O−C), 761 (m), 645 (w), 509 (m).
【0048】
<参考例9> E−14の合成
4,4’−ビフェノール(30.0 g, 161 mmol)、炭酸カリウム (37.8 g, 273.9 mmol)およびヨウ化カリウム (2.67 g, 16.1 mmol)をナスフラスコに量り取り、アセトン480 mlを加えた。3−ブロモ−1−プロペン(39.0 g, 322 mmol)を加えて還流温度で4時間撹拌した。さらに3−ブロモ−1−プロペン(39.0 g, 322 mmol)を加えて17時間還流温度で撹拌した。反応液を濾過し、さらに濾別した塩をアセトンで洗浄した。濾液のアセトンを溜去して乾燥したところ無色粉末状の固体が42.9 g得られた。スペクトル測定の結果、4,4’−ジアリルオキシビフェニルであることを確認した。収率:100%
1H−NMR, δ(ppm, CDCl3, 400 MHz): 4.58 (4H, dt, J=1.6, 5.2Hz), 5.31 (2H, ddd, J=1.6, 3.2, 10.4Hz), 5.44 (2H, ddd, J=1.6, 3.2, 17.2Hz), 6.08 (2H, ddt, J=5.2, 10.4, 17.2Hz), 6.97 (4H, d, J=8.8Hz), 7.47 (4H, d, J=8.8Hz).
IR, ν (cm−1, KBr disk): 3085 (w, =C−H), 3022 (w), 2987 (w, C−H), 2915 (w), 2869 (w), 1650 (w, C=C), 1607 (m, arC−C), 1499 (s, arC−C), 1460 (w), 1428 (m), 1365 (w), 1270 (s), 1245 (s, arC−O−alC), 1178 (m), 1031 (m, arC−O−alC), 1010 (m), 993 (m), 943 (m), 824 (s), 803 (m), 570 (w), 519 (w).
4,4’−ジアリルオキシビフェニル(20.0 g, 75.1 mmol)をジクロロメタン260 mlに溶解した後、氷浴で冷却した。m−クロロ過安息香酸(cont. 65%) (49.9 g, 188 mmol)を加えてゆっくり室温に戻しながら20時間撹拌した後、さらにm−クロロ過安息香酸(cont. 65%) (22.4 g, 84.4 mmol)を加えて室温で6時間撹拌した。1 mol/lの炭酸水素ナトリウム水溶液300 mlで有機層を2回洗浄した後、水300mlで1回洗浄した。有機層を硫酸ナトリウムで乾燥後、溶媒を溜去した。シリカゲルクロマトグラフィー(展開液:ジクロロメタン/メタノール=400/1)で精製したところ、淡黄色粉末状の固体を7.72g得た。スペクトル測定の結果、表2記載のE−14であることを確認した。収率:34.5%
1H−NMR, δ(ppm, CDCl3, 400 MHz): 2.78 (2H, dd, J=2.8, 4.8Hz), 2.93 (2H, dd, J=4.4, 4.8Hz), 3.38 (2H, m, CHx2), 4.00 (2H, dd, J=5.6, 11.0Hz), 4.26 (2H, dd, J=3.2, 11.0Hz), 6.98 (4H, d, J=8.8Hz), 7.47 (4H, d, J=8.8Hz).
IR, ν (cm−1, KBr disk): 3062 (w, epoxyC−H), 3012 (w, C−H), 2928 (w, C−H), 1606 (m, arC−C), 1501 (s, arC−C), 1452 (w), 1432 (w), 1347 (w), 1272 (s, epoxyC−O−C), 1243 (s, arC−O−alC), 1180 (m), 1133 (w), 1037 (s, arC−O−alC), 1015 (m), 998 (w), 910 (m), 864 (w), 814 (s, epoxyC−O−C), 761 (w), 588 (w), 518 (w).
【0049】
<実施例1>
エポキシ化合物としてE−1、アミン化合物としてA−1、環状スルホン酸エステルとして(43)を用いたアミン硬化型エポキシ樹脂電解質膜の作成について具体的に示す。
2,2−ビス(4−グリシジルオキシフェニル)プロパン (E−1)を3.1 g (9.0 mmol)をナスフラスコに量り取り、アルゴン雰囲気下、乾燥N,N−ジメチルホルムアミド (DMF)を12 ml加えた。トリエチレンテトラミン(A−1)を0.45 ml (3.0 mmol)を溶液に加えて、80℃で2時間撹拌した。反応溶液を8.9 ml分取し、ここへ1,3−プロパンスルトン (S−1)を0.39 ml (4.5 mmol)加えて、室温で15分間撹拌した。恒温槽内に水平に設置した10x5 cm2のガラス板(縁はテフロン(登録商標)でシール)上に反応溶液の2.5mlを溜延した。60℃で16時間処理した後、120℃で6時間処理したところ、99μmの厚さの淡褐色透明なフィルムが得られた。E−1、A−1および得られたフィルムのIR測定を行ったところ、E−1のエポキシ環に由来する3057 cm−1および829 cm−1の吸収ピーク、A−1のアミノ基に由来する3300 cm−1付近および1571 cm−1の吸収ピークがそれぞれ消失し、3387 cm−1に水酸基に由来する吸収ピーク、1164 cm−1(エーテル結合に由来する1183 cm−1の吸収ピークの肩ピークとして観測された。)および1035 cm−1にスルホン酸に由来する吸収ピークが観測されたことから、(1)または(2)の構造が形成されたことが確認された。
【0050】
同様な方法によって、種々の化合物の組み合わせでアミン硬化型エポキシ樹脂を作製した。それらの結果を表4にまとめた。
【0051】
【表5】
【表6】
【表7】
【表8】
【0052】
これらの実施例によって得られたアミン硬化型エポキシ樹脂は、比較的入手の容易で安価な原料を基に作製でき、その構造中にスルホン酸基を有するため電解質としての性質が期待できる。加えて組成によりゲル状の膜から自立性のしなやか且つ丈夫な膜まで性状を任意に制御して作製できることから様々な電気化学デバイスへの応用が可能となる。
【0053】
<実施例33>
以上の実施例で作製したスルホン酸基を有するアミン硬化型エポキシ樹脂の電解質特性の一例として、交流インピーダンス測定による伝導度測定を行った。
実施例1、2、9、28および29で得られた膜を2 cmx5 cmの大きさに切り、1 mol/lの硫酸水溶液で1時間煮沸処理した。続いて蒸留水で1時間煮沸した膜を2枚の0.5 cmx4 cmの金電極で挟み、恒温恒湿槽内で90℃、相対湿度90%に制御しながらインピーダンスアナライザ(Solartron1260)を用いて周波数0.5 Hz 〜10 MHzの範囲でインピーダンス測定を行った。得られたNyquist Plotの結果より伝導度を算出した。結果を表5に示した。
【0054】
【表9】
【0055】
<実施例34>
本発明によれば、エポキシ樹脂を三次元的に架橋させることが可能であるため、通常の未架橋型の電解質膜が著しく膨潤してしまう条件下においても寸法の変化を最小限に抑えることができる。そこで、本発明による樹脂電解質膜と、比較例として未架橋型の電解質膜として良く用いられるフッ素系高分子電解質膜(ナフィオン(登録商標) 115(デュポン社製))との膨潤による寸法変化を比較した。
実施例1、2および29で得られた電解質膜と比較例の電解質膜をそれぞれ乾燥状態で1 cm x 1 cmの大きさに切り分け、縦横の寸法を正確に測った。試験片を蒸留水中で1時間煮沸した後試験片を取り出し、すぐに縦横の寸法を正確に測った。寸法変化を数式(1)にしたがって計算し結果を表6に示した。
【0056】
【数1】
【0057】
【表10】
【0058】
<実施例35>
実施例1、2、26、27、28および29で得られた電解質膜と比較例の電解質膜をそれぞれ乾燥状態で1 cm x 1 cmの大きさに切り分け、縦横の寸法を正確に測った。試験片をメタノール/水=1/1(モル比)の溶液中で1時間煮沸した後試験片を取り出し、すぐに縦横の寸法を正確に測った。寸法変化を式(1)にしたがって計算し結果を表7に示した。
【0059】
【表11】
【0060】
上に示した結果のように、本発明のスルホン酸基を有するアミン硬化型エポキシ樹脂の電解質膜は、未架橋型の電解質膜と比較して溶媒などによる膨潤が著しく抑制されているので、電気化学デバイスへの応用において、電極への密着性の向上などが期待できる。
【0061】
【発明の効果】
本発明によれば、原料組成を制御することにより、ゲル状から自立性のしなやか且つ丈夫な膜まで様々な性状のスルホン酸を有するアミン硬化型エポキシ樹脂を得ることができ、これを電解質あるいは電解質膜として用いると、膨潤などによる寸法変化が小さいことから電極等への密着性を向上させることができる。さらに、これまでのものに比べ安価で環境負荷の小さな電解質、電解質膜および電気化学デバイスを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a desalination type pure water production apparatus, a secondary battery, a fuel cell, a humidity sensor, an ion sensor, a gas sensor, an electrochromic element, a desiccant agent, and the like, a resin electrolyte suitably used in various electrochemical devices, The present invention relates to a resin electrolyte membrane, a method for producing the same, and an electrochemical device using the same.
[0002]
[Prior art]
Electrolytes are used in various electrochemical devices such as electrodeionized pure water production equipment, secondary batteries, fuel cells, humidity sensors, ion sensors, gas sensors, electrochromic elements, desiccants, etc. It is one of the most influential members. Among the electrolytes, polyvinyl benzene sulfonic acids represented by Diaion (registered trademark) (Mitsubishi Chemical Corporation) are widely used as ion exchangers. Polyvinyl benzene sulfonic acids may be obtained by radically polymerizing vinyl benzene sulfonic acid or a derivative of vinyl benzene sulfonic acid, or obtained by sulfonating general-purpose polystyrene by a polymer reaction. These are widely used in the above technical fields because they are inexpensive, easy to control the ion exchange capacity, and can be freely selected from fibrous, porous membrane, and bead shapes.
[0003]
It is also known that polyethers represented by polyethylene oxide are useful as an ion conductive material in the electrolyte. These can be controlled in viscosity by molecular weight and the like, and are applied to polymer batteries and various sensors by applying metal ion conductivity generated by doping various metal salts.
[0004]
Further, a fluorine-based polymer electrolyte is known as an extremely chemically stable electrolyte. Fluoropolymer electrolytes represented by Nafion (registered trademark) (DuPont Co., Ltd.) have been applied to salt electrolyte membranes requiring chemical resistance, proton conductor membranes for fuel cells, etc. References 1 to 4).
[0005]
Further, as another polymer electrolyte, a polymer electrolyte having an aromatic main chain and a sulfonic acid group bonded to the aromatic is known (for example, see Patent Documents 5 and 6).
[Patent Document 1]
JP-A-8-164319 (page 2)
[Patent Document 2]
JP-A-4-305219 (page 2)
[Patent Document 3]
JP-A-3-15175 (page 4)
[Patent Document 4]
Japanese Patent Application Laid-Open No. 1-25331 (page 3)
[Patent Document 5]
JP 2001-250567 A (page 2)
[Patent Document 6]
JP-A-63-283707 (page 1)
[0006]
[Problems to be solved by the invention]
Polyvinylbenzene sulfonic acids are inexpensive, easy to control ion exchange capacity, and can be freely selected from fibrous, porous membrane, and bead-like shapes. If so, it becomes water-soluble, and a crosslinkable monomer such as divinylbenzene must be used at the same time in order to stabilize the shape in water. However, it becomes insoluble in the solvent as the radical polymerization reaction, which is a chain reaction, progresses, so it is easy to obtain the polymer as a gel-like swollen body or bead-like powder, but it is formed into a mesh-like sheet and a uniform thin film. It was difficult to do. Then, by using an electron beam-induced graft polymerization method or the like, it is possible to chemically bond polystyrene to the surface of the polymer base having a shape suitable for the intended use, and further sulfonate this to form a cloth, The graft polymer in the form of a porous film or a film can be obtained relatively easily. However, since the sulfonation reaction is an electrophilic substitution reaction, the polymer base that can be used is limited to polyolefin resins such as polyethylene, so it is not always satisfactory for applications requiring heat resistance, mechanical strength, etc. Was not something to do.
[0007]
On the other hand, polyethers are excellent in ionic conductivity and the like, but are generally in a gel state and cannot be used for applications requiring mechanical strength.
[0008]
Furthermore, although a fluorine-based polymer electrolyte is excellent in chemical resistance and mechanical strength, it is known that a dimensional change due to swelling or the like occurs. In addition, fluorine-based monomers, which are raw materials for obtaining these polymers, are much more expensive than monomers in which the corresponding fluorine has been replaced by hydrogen, and thus have been limited in use in electrochemical devices. In the production process, it is necessary to use a halogen-based organic solvent having a high affinity for the fluorine-based compound. In recent years, there has been a social situation in which the impact of halogen compounds on the environment is a concern. Leakage of halogen compounds into the environment during such manufacturing processes, and harmful halogens caused by incineration in the disposal process after use of products, are also considered. Care must be taken not to release the contained compounds into the environment. From such a viewpoint, it is desirable to use a non-halogen compound having a small environmental load.
[0009]
Further, a polymer electrolyte in which a sulfonic acid group is bonded to an aromatic has heat resistance and high strength when formed into a membrane, but has a problem in that the film-forming property is poor.
[0010]
The present invention has been made in view of the above problems, and has sufficient electrolyte properties such as ionic conductivity to be used in an electrochemical device, and has sufficient heat resistance and mechanical strength depending on the application, and has a large environmental load. It does not contain any elements and can be manufactured sufficiently inexpensively.In addition, considering the use in electrochemical devices, swelling of the membrane is suppressed when impregnated with water, alcohol, aprotic polar solvent or auxiliary electrolyte solution, etc. Provided are a polymer (resin) electrolyte, a method for producing a polymer (resin) electrolyte membrane, and an electrochemical device using the polymer electrolyte membrane, which are expected to have excellent bonding and adhesion properties to electrodes. Is to do.
[0011]
[Means for Solving the Problems]
The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. In other words, when synthesizing an amine-curable epoxy resin, by appropriately selecting an epoxy compound and an amine compound, the shape, processability, strength, and heat resistance required for an electrolyte membrane used in a target electrochemical device are obtained. It is possible to control properties such as properties and flexibility, and to share in the resin by reacting the cyclic sulfonic acid ester with the primary, secondary or tertiary amine present in the reaction system before curing It has been found that the sulfonic acid group can be chemically fixed by the bond, and that the electrolyte properties such as ion conductivity sufficient for use can be imparted. Since the amine-curable epoxy resin can use an epoxy compound and an amine compound that are generally used as chemical products, it can be manufactured at a lower cost than conventional polymer electrolyte membranes. As a further feature, by appropriately selecting the amine compound and the epoxy compound, a three-dimensional cross-linked structure can be introduced into the resin, so that it can be used when impregnated with water, alcohol, an aprotic polar solvent or an auxiliary electrolyte solution. Since the swelling is suppressed and the halogen element is not introduced into the skeleton structure of the resin by a covalent bond, it is possible to provide an electrolyte membrane which also contributes to reduction of an environmental load in a manufacturing process and disposal after use.
[0012]
That is, the present invention relates to an amine-curable epoxy resin having a sulfonic acid group or a molded article thereof, having at least one structure selected from the following general formulas (1) and (2).
Embedded image
Embedded image
(Where R 1 , R 3 Is independently a hydrocarbon chain having 1 to 50 carbon atoms having a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, an amino group, an ether bond or an imine bond, 2 Represents a hydrocarbon chain having 3 or 4 carbon atoms. )
The present invention also relates to an electrolyte or an electrolyte membrane containing the above-mentioned amine-curable epoxy resin having a sulfonic acid group.
Further, the present invention relates to the above electrolyte or electrolyte membrane further containing lithium ions.
Furthermore, the present invention relates to an electrolyte membrane containing an amine-curable epoxy resin having a free sulfonic acid group and having at least one structure selected from the following general formulas (3) and (4).
Embedded image
Embedded image
(Where R 1 , R 3 Is independently a hydrocarbon chain having 1 to 50 carbon atoms having a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, an amino group, an ether bond or an imine bond, 2 Represents a hydrocarbon chain having 3 or 4 carbon atoms represented by R 4 Represents hydrogen or a hydrocarbon group having 1 to 18 carbon atoms, X − Represents a 1 to 3 valent anion. )
Further, the present invention relates to an electrochemical device using the above resin, molded body, electrolyte or electrolyte membrane.
The present invention relates to reacting an epoxy compound having at least 2 or more epoxy groups in a molecule with an amine compound having an amine value of 2 or more, and further reacting an amine in the reaction system with a cyclic sulfonic acid ester. The present invention relates to a method for producing an amine-curable epoxy resin having a sulfonic acid group.
Further, the present invention provides a method of mixing an epoxy compound having at least two or more epoxy groups in a molecule with an amine compound having an amine value of two or more, and forming a cyclic compound before the curing reaction between the epoxy compound and the amine compound is completed. An electrolyte containing an amine-curable epoxy resin having a sulfonic acid group, wherein a film is formed by adding a sulfonic acid ester, and thereafter, a curing reaction and a reaction between an amine in the reaction system and a cyclic sulfonic acid ester are completed. The present invention relates to a method for producing a film.
The present invention also relates to the above-mentioned method for producing an electrolyte membrane, which is characterized in that the film is formed by a solvent casting method, a spin coating method, a transfer method or a printing method.
Further, the present invention relates to the above-mentioned method for producing an electrolyte membrane, which comprises performing a hot rolling and / or a stretching treatment when forming the film.
Furthermore, the present invention is characterized in that the electrolyte membrane obtained by the above-mentioned production method, the above-mentioned electrolyte or electrolyte membrane is further immersed in a solvent containing lithium ions, and the electrolyte or electrolyte containing lithium ions. The present invention relates to a method for producing a film.
Further, the present invention comprises an amine-curable epoxy resin having a free sulfonic acid group, wherein the electrolyte membrane obtained by the above production method is further immersed in a solvent containing an inorganic acid. The present invention relates to a method for manufacturing an electrolyte membrane.
Further, the present invention comprises an amine-curable epoxy resin having a free sulfonic acid group, characterized in that the electrolyte membrane obtained by the above production method is further immersed in a solvent containing an organic acid. The present invention relates to a method for manufacturing an electrolyte membrane.
Further, the present invention provides that the electrolyte membrane obtained by the above production method is further immersed in a solvent containing methyl sulfate, dimethyl sulfate, an alkyl halide having 1 to 10 carbon atoms, or an allyl halide. The present invention relates to a method for producing an electrolyte membrane containing an amine-curable epoxy resin having a free sulfonic acid group.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The epoxy compound having at least two or more epoxy groups in the molecule used in the present invention is provided as long as it can provide sufficient ionic conductivity for use in a target electrochemical device, and thermal and mechanical properties that can withstand the use environment. There is no particular limitation, but specifically those exemplified below can be used. The epoxy compound used in the present invention includes a low molecular compound and a high molecular compound such as an oligomer and a polymer.
[0014]
Embedded image
Bifunctional epoxy compounds represented by formulas (5) to (10),
Embedded image
Examples thereof include bifunctional epoxy compounds represented by the formulas (11) and (12). In the formula, X is an integer of 1 or more, and there is no particular upper limit, but those in which X is 1 to 100 are preferably used.
These epoxy compounds are exemplified as components suitably used for providing a flexible and flexible electrolyte membrane in the amine-curable epoxy resin obtained in the present invention.
[0015]
Embedded image
Also, bifunctional epoxy compounds represented by the formulas (13), (14) and (15),
Embedded image
Equations (16) and (17) (A 1 , A 2 , A 3 , A 4 Is independently a divalent linking group selected from -O-, -C (= O) O-, -NHC (= O) O- or -OC (= O) O-, 1 Is -H, -CH 3 Or -OCH 3 Represents any of the substituents. A) a bifunctional epoxy compound,
Embedded image
Equation (18) (A 5 , A 6 Is independently a divalent linking group selected from -O-, -C (= O) O-, -NHC (= O) O- or -OC (= O) O-, 2 Is -H, -CH 3 Or -OCH 3 Is substituted with any of b 1 Is an integer of 0 to 4, D is a single bond, -O-, -C (= O)-, -C (= O) O-, -NHC (= O)-, -NH-, -N = N-, -CH = N-, -CH = CH-, -C (CN) = N-, -C≡C-, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -C (CH 3 ) 2 -Or a general formula -O- (CH 2 ) m -O-, -O- (CH 2 CH 2 O) n — (M is an integer of 2 to 12, n is an integer of 1 to 5). )).
These epoxy compounds are exemplified as components suitably used for providing an electrolyte membrane having excellent heat resistance in the amine-curable epoxy resin obtained in the present invention.
[0016]
Embedded image
Furthermore, formula (19) (x, y, and z each independently represent an integer of 1 to 20), (20), (21) (A 7 , A 8 , A 9 Each independently represents a divalent linking group selected from -O-, -C (= O) O-, -NHC (= O) O-, or -OC (= O) O-. ), (22) (A 10 , A 11 , A 12 Each independently represents a divalent linking group selected from -O-, -C (= O) O-, -NHC (= O) O-, or -OC (= O) O-. A) a trifunctional epoxy compound represented by
Embedded image
Equation (23) (A Thirteen Is methylene or a compound of the general formula (25), (26),
Embedded image
Where b 2 Is an integer of 0 to 4, b 3 Is an integer of 1 to 3, b 4 Is a divalent linking group represented by an integer of 0 to 2. ) Or (24).
These epoxy compounds are exemplified as components suitably used to provide an electrolyte membrane having excellent mechanical strength in the amine-curable epoxy resin obtained in the present invention.
[0017]
In order to control the ion conductivity, heat resistance, mechanical properties and productivity of the electrolyte membrane, for example, two or more polyfunctional epoxy compounds represented by the formulas (5) to (24) may be used at the same time. As the polyvalent epoxy compound, for example, polyfunctional epoxy resins disclosed in JP-A-61-247720, JP-A-61-246219, JP-A-63-10613, etc., alone or in the form of a compound represented by the formula ( The amine-curable epoxy resin having a sulfonic acid group of the present invention can be obtained even when used in combination with an epoxy compound as exemplified in 5) to (24).
[0018]
The amine compound used in the present invention is not particularly limited as long as it can provide ionic conductivity sufficient for use in a target electrochemical device, and thermal and mechanical properties that can withstand the use environment. Can be used. The amine compound used in the present invention includes a low molecular compound and a high molecular compound such as an oligomer and a polymer.
[0019]
Embedded image
Equations (25) to (27), (28) (B 3 Represents a hydrocarbon group having 2 to 20 carbon atoms or a group having at least one ether bond in a hydrocarbon chain having 4 to 20 carbon atoms. Or (29), an amine compound having an amine value (the number of hydrogens derived from an amino group contained in one molecule) of 2,
Embedded image
Equations (30), (31) (a 1 Is an integer of 2 to 18, B 4 Represents a hydrocarbon group having 1 to 18 carbon atoms or a group having at least one ether bond in a hydrocarbon chain having 3 to 20 carbon atoms. ) Or an amine compound having an amino value of 3, represented by (32),
Embedded image
Equation (33) (a 1 Represents an integer of 2 to 18. ), (34), (35) (a 2 Represents an integer of 1 to 10000. ), (36) or (37), an amine compound having an amine value of 4;
Embedded image
Equation (38) (a 3 Represents an integer of 2 or more. ), (39), (40) (x, y, and z each independently represent an integer of 1 to 20), (41) (a 4 Is an integer of 2 or more, B 5 Represents hydrogen or a methyl group. ) And (42) (p, q, r, and s each independently represent an integer of 1 to 20), and an amine compound having an amine value of 5 or more.
These are exemplified as components suitably used in the amine-curable epoxy resin obtained in the present invention. Further, in order to control the ion conductivity, heat resistance, mechanical properties and productivity of the electrolyte membrane, for example, two or more amine compounds represented by the formulas (25) to (42) may be used at the same time.
[0020]
The cyclic sulfonic acid ester used in the present invention is introduced into the epoxy resin by a covalent bond by reacting with an amine, and further has sufficient ion conductivity to be used for a target electrochemical device and heat which can withstand the use environment. There is no particular limitation as long as the mechanical characteristics and mechanical characteristics can be provided, but concretely, those represented by formulas (43) and (44), which are easily available in practice, can be used in the present invention.
Embedded image
[0021]
In addition, regarding the identification of the detailed chemical structure of the amine-curable epoxy resin having a sulfonic acid group obtained according to the present invention, the resinous product finally obtained is three-dimensionally cross-linked to an organic solvent or the like. Due to the difficulty of re-dissolution, the means for chemical analysis is limited. For example, the following general formulas (1) and (2)
Embedded image
(Where R 1 , R 3 Is independently a hydrocarbon chain having 1 to 50 carbon atoms having a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, an amino group, an ether bond or an imine bond, 2 Represents a hydrocarbon chain having 3 or 4 carbon atoms. ) Having at least one structure can be confirmed by an infrared absorption (IR) spectrum of the amine-curable epoxy resin having the sulfonic acid group. For identification, a solvent-soluble low molecular weight model compound having the partial structure represented by the general formula (1) or (2) present in the resin is separately synthesized, and its IR spectrum is assigned to the sulfonic acid. By matching the IR spectrum of the amine-curable epoxy resin having a group, it can be confirmed that the resin has at least one structure selected from the general formulas (1) and (2). Specifically, phenylglycidyl ether is used as an epoxy compound, n-butylamine is used as an amine compound, and 1,3-propanesultone is used as a cyclic sulfonic acid ester. The reaction product represented by the following reaction formula <1> is subjected to nuclear magnetic resonance ( NMR) and IR spectra can identify these structures.
[0022]
Embedded image
[0023]
In the reaction formula <1>, the spectral data of the compounds (45) to (48) are shown in Reference Examples described later. In addition, it was confirmed that the compound (49) was not formed even when an excessive amount of propane sultone was reacted with (45) or when propane sultone was further added to the compound (48). Based on the analysis results of the spectrum data of the model compound and the like, the infrared absorption band specifying the structure of the general formula (1) or (2), which is a component of the resin, was determined as shown in Table 1.
[0024]
[Table 1]
[0025]
As is clear from the reaction formula and Table 1, in the infrared absorption spectrum of the synthesized amine-curable epoxy resin having a sulfonic acid group, absorption specific to the corresponding starting material amine compound and epoxy compound was not observed or was significantly reduced. If it is weak and the absorption specific to the structures of the general formulas (1) and (2) is remarkably recognized, the structure represented by the general formula (1) or (2) is formed in the epoxy resin. Can be determined.
[0026]
The reaction between the epoxy compound and the amine compound is not particularly limited as long as it can be formed into a film by mechanical processing such as film formation or rolling / stretching by a solvent casting method, a spin coating method, a transfer method, a printing method or the like before curing. However, generally, an organic solvent can be appropriately used in order to allow the reaction to proceed uniformly. In this case, as the organic solvent, the solvent must react with the epoxy compound, significantly reduce the nucleophilicity of the amine, react with the cyclic sulfonic acid ester, or adversely affect the shape after film formation. For example, n-hexane, cyclohexane, n-heptane, n-octane, ethyl cellosolve, butyl cellosolve, benzene, toluene, xylene, anisole, methanol, ethanol, isopropanol, butanol, ethylene glycol, diethyl ether, tetrahydrofuran , 1,4-dioxane, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidinone, dimethyl sulfoxide and the like. If necessary, these organic solvents may be used as a mixture of two or more kinds, or may be used by further adding water. In promoting the reaction, an organic solvent containing a halogen element such as chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, chlorobenzene, and dichlorobenzene can be used. This is not desirable as an embodiment of the present invention because of its low environmental load. However, if it is determined that the possibility of leakage into the environment can be avoided with relatively little energy input, this is not the case.
[0027]
A resin electrolyte obtained by reacting a liquid epoxy compound and a liquid amine compound with a cyclic sulfonic acid ester can be expected to have a high ion transport number, but may have low mechanical strength. Conversely, when a cyclic sulfonic acid ester is reacted with a solid epoxy compound and a solid amine compound, the resulting resin electrolyte tends to be hard and brittle. In applications where mechanical strength is required, the three-dimensional crosslink density also has a significant effect. In order to synthesize resin electrolytes that conflict with each other in molecular design such as high ion transport number and mechanical strength, the problem can be solved by mixing the respective compositions. As the method, for example, a liquid component and a solid component, or a difunctional component and a polyfunctional component are mixed, or each is separately reacted to some extent to extend the chain and then mixed, and then the cyclic sulfone is mixed. By obtaining the resin electrolyte by reacting an acid ester, a high ion transport number and an improvement in mechanical properties can be realized. Further, if sulfonic acid can be introduced at a high density into a region of a flexible resin component that greatly affects the ion transport number, it can be expected that the sulfonic acid will be more effective. In such a case, the cyclic sulfonic acid ester is added only to the pre-curing solution of the flexible resin component which has been separately reacted, and the reaction is carried out. By mixing, it is possible to suppress swelling of the obtained resin electrolyte in a good solvent, and to synthesize a resin electrolyte having excellent mechanical properties and a high ion transport number. The cyclic sulfonic acid ester can covalently introduce a sulfonic acid group into the resin by reacting with a primary, secondary or tertiary amine in the reaction system. Therefore, in the above-described example, when a polyfunctional amine is used for the flexible resin component, sulfonic acid can be introduced into the region of the flexible resin component at a high density, which is effective for improving the ion transport number. The amount of the cyclic sulfonic acid ester used in the reaction is preferably set to a number of moles equal to or less than the number of nitrogen atoms derived from amino groups in the reaction system.
[0028]
The molded article of the present invention can be produced by molding the amine-curable epoxy resin having a sulfonic acid group obtained in the present invention. The molding method is not particularly limited as long as it is a commonly used method. For example, a desired molded product can be obtained by transfer molding or the like.
[0029]
The electrochemical device of the present invention can be manufactured by using the amine-curable epoxy resin having a sulfonic acid group obtained by the present invention, a molded article thereof, an electrolyte or an electrolyte membrane.
The electrochemical device is not particularly limited as long as it is an apparatus that performs an electrochemical reaction. Examples thereof include an electrodesalination type pure water production apparatus, a secondary battery, a fuel cell, a humidity sensor, an ion sensor, a gas sensor, and an electrochromic device. An element and a desiccant agent can be mentioned. For example, the electrochemical device of the present invention can be manufactured by replacing the electrolyte or the electrolyte membrane normally used for these electrochemical devices with the electrolyte or the electrolyte membrane of the present invention.
[0030]
In the amine-curable epoxy resin having a sulfonic acid group obtained in the present invention, a sulfonic acid group in the resin and an amine residue strongly interact with each other, and depending on the application, sufficient electrolyte characteristics may not be obtained. This is probably because the proton derived from the sulfonic acid is coordinated to the amine residue, or the betaine structure when the cyclic sulfonic acid ester reacts with the tertiary amine influences. Then, the epoxy resin is molded into a film or the like, and then treated with a solution containing sulfuric acid or the like, whereby the chemical structures of general formulas (1) and (2) are changed to those of general formulas (3) and (4), respectively. , That is, by introducing free sulfonic acid groups into the membrane, the electrolyte properties can be improved. At this time, a 1 to 3 valent anionic species (X − ) Functions as an auxiliary electrolyte. The conversion rate from the general formulas (1) and (2) to the general formulas (3) and (4) is not particularly limited as long as the electrochemical device used can exhibit sufficient electrolyte characteristics. The conversion treatment agent is not particularly limited as long as a free sulfonic acid group can be generated in the membrane, but inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, hydrogen bromide, hydrogen iodide, and phosphoric acid, benzenesulfonic acid, and toluenesulfonic acid. Organic acids such as acids, fluoroacetic acid, chloroacetic acid, bromoacetic acid, trifluoroacetic acid, and trichloroacetic acid, or compounds such as methylsulfuric acid, dimethylsulfuric acid, alkyl halides having 1 to 10 carbon atoms, and allyl halides can be used. Although it is possible, it is preferable to use sulfuric acid in consideration of easy handling and low cost. The solvent at this time is not particularly limited as long as the conversion treatment agent can act without damaging the film, but water, alcohol having 1 to 4 carbon atoms, acetic acid, acetone, tetrahydrofuran, 1,4-dioxane, N, N- Dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidinone, dimethylsulfoxide and the like can be used alone or in combination of two or more. The conversion treatment is not particularly limited as long as the film can be brought into contact with a solution in which the conversion treatment agent is mixed with the above-mentioned solvent. And decide.
[0031]
By doping lithium ion into the amine-curable epoxy resin having a sulfonic acid group of the present invention, it can be used also as an electrolyte for a lithium ion secondary battery. In order to realize a practical lithium ion transport number, an epoxy compound or an amine compound used when synthesizing the epoxy resin contains a large number of ether bonds, and the epoxy resin becomes a flexible gel electrolyte. Thus, the composition may be controlled. As a method of doping lithium ions, a known method described in, for example, “High Density Lithium Secondary Battery” (1998, Techno Systems) may be used. For example, lithium ions can be doped by immersing the electrolyte or the electrolyte membrane of the present invention in an aqueous solution containing lithium ions, an organic solvent, or an organic solvent containing an aqueous solution.
[0032]
When elution of impurities or the like from the film may adversely affect the performance of the electric device, the epoxy resin electrolyte can be washed and provided for the purpose. The above conversion treatment for producing free sulfonic acid can be used as it is as a washing treatment, or water, an alcohol having 1 to 4 carbon atoms, acetone, tetrahydrofuran, 1,4-dioxane, N, Impurities and the like can be eluted by immersing in a solvent such as N-dimethylformamide or N, N-dimethylacetamide. After that, it is desirable to further boil the resin electrolyte with distilled water for several hours to several days to complete the washing.
[0033]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited to the following examples.
First, a synthesis reaction of the model compound represented by Reaction Formula 1 is shown below as a reference example.
<Reference Example 1> Synthesis of compound (45)
Under an argon atmosphere, 40 ml of DMF was added to a 50 ml two-necked eggplant flask, stirred and heated to 60 ° C. After 6.8 ml (50 mmol) of phenylglycidyl ether was added and dissolved therein, 5.0 ml (50 mmol) of n-butylamine was slowly added. After stirring for 18 hours, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (eluent: dichloromethane) to obtain 4.5 g (yield: 40%) of a white powdery compound represented by the formula (45).
Spectral data of compound (45)
1 H-NMR, δ (ppm, DMSO-d 6 , 400 MHz): 0.87 (3H, t, CH) 3 ), 1.31 (2H, m, CH 2 ), 1.40 (2H, m, CH 2 ), 2.51 (2H, m, CH 2 ), 2.57 (1H, dd, CH 2 ), 2.65 (1H, dd, CH 2 ), 3.86 (1H, m, CH), 3.86 (1H, m, CH) 2 ), 3.94 (1H, m, CH 2 ), 4.93 (1H, d, OH), 6.91 (3H, m, Ph), 7.27 (2H, m, Ph).
Thirteen C-NMR, δ (ppm, DMSO-d 6 , 400 MHz): 14.8 (CH 3 ), 20.8 (CH 2 ), 32.7 (CH 2 ), 50.1 (CH 2 ), 53.4 (CH 2 ), 69.0 (CH), 71.5 (CH 2 ), 115.3 (Ph), 121.3 (Ph), 130.3 (Ph), 159.6 (Ph).
IR (cm -1 , KBr disk): 3267 (s, OH st), 3065, 2929 (s, CH st), 2869 (s, CH st), 2832, 1600 (s, arC-C st), 1587 (m, NH deform) , 1499 (s, arC-C st), 1485, 1456, 1293, 1247 (vs, arC-O-alC stas), 1175 (m, arC-O-alC stas), 1142, 1109, 1084, 1037. (ArC-O-alC st sy), 1007, 914, 894, 810, 753, 692.
[0034]
<Reference Example 2> Synthesis of compound (46)
Under an argon atmosphere, 40 ml of DMF was added to a 50 ml two-necked eggplant flask, stirred and heated to 60 ° C. After 6.8 ml (50 mmol) of phenylglycidyl ether was added and dissolved therein, 2.5 ml (25 mmol) of n-butylamine was slowly added. After stirring for 24 hours, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solution: ethyl acetate / n-hexane = 3/7 volume ratio), and 8.4 g (yield) of a pale yellow viscous liquid compound represented by the formula (46) was obtained. 90%).
Compound (46) spectral data
1 H-NMR, δ (ppm, DMSO-d 6 , 400 MHz): 0.78 (3H, dt, CH 3 ), 1.20 (2H, m, CH 2 ), 1.35 (2H, m, CH 2 ), 2.62 (2H, m, CH 2 ), 2.47 (4H, m, CH2 × 2), 3.84 (4H, m, CH 2 × 2), 3.94 (2H, m, CH × 2), 4.86 (2H, d, OH × 2), 6.88 (6H, m, Ph), 7.25 (4H, m, Ph) ).
Thirteen C-NMR, δ (ppm, DMSO-d 6 , 400 MHz): 14.8 (CH 3 ), 20.9 (CH 2 ), 29.8 (CH 2 ), 56.1 (CH 2 ), 58.7 (CH 2 ), 59.3 (CH 2 ), 68.1 (CH), 68.4 (CH), 71.3 (CH 2 × 2), 115.2 (Ph), 121.2 (Ph), 130.3 (Ph), 159.6 (Ph).
IR (cm -1 , KBr disk): 3396 (broad, OH st), 3063, 3041, 2955 (s, CH st), 2872 (m, CH st), 1600 (s, arC-C st), 1497 (s, arC-C) st), 1457, 1301, 1246 (vs, arC-O-alC stas), 1173 (m, arC-O-alC stas), 1079, 1043 (arC-O-alC).
st sy), 753, 691.
[0035]
<Reference Example 3> Synthesis of compound (47)
1.9 g (5.0 mmol) of the compound (46) obtained in Reference Example 2 was added to a 50 ml two-necked eggplant flask, and heated to 60 ° C under an argon atmosphere. After adding and dissolving 0.5 ml of acetone, 0.44 ml (5.0 mmol) of 1,3-propanesultone was slowly added, and the mixture was heated to 80 ° C. After 3 hours, 0.5 ml of acetone was added and the viscous solution was slowly stirred. After 3 hours, the mixture was cooled to room temperature, and ether was added, whereby a solid precipitated. It was vacuum dried at 60 ° C. to obtain 2.15 g (yield: 87%) of a colorless powdery compound represented by the formula (47).
Spectral data of compound (47)
1 H-NMR, δ (ppm, DMSO-d 6 , 400 MHz): 0.91 (3H, t, CH) 3 ), 1.28 (2H, m, CH 2 ), 1.7 (2H, m, CH 2 ), 2.1 (2H, m, CH 2 ), 2.49 (2H, m, CH 2 ), 3.46 (2H, m, CH 2 ), 3.5 (4H, m, CH 2 × 2), 3.62 (2H, m, CH 2 ), 3.93 (4H, m, CH 2 × 2), 4.5 (2H,
m, CH × 2), 6.96 (6H, m, Ph), 7.30 (4H, m, Ph).
IR (cm -1 , KBr disk): 3301 (broad, OH st), 2964 (m, CH st), 2877 (m, CH st), 1600 (s, arC-C st), 1497 (s, arC-C st), 1472 , 1295, 1245 (vs, arC-O-alC stas), 1172 (s, arC-O-alC stas),  ̄1165 (as shoulder, S = O stas), 1080,  ̄1045 (as shoder, S = O st sy), 1037 (arC-O-alC st sy), 756, 693, 520.
[0036]
<Reference Example 4> Synthesis of compound (48)
1.1 g (5.0 mmol) of the compound (45) obtained in Reference Example 1 was added to a 50 ml two-necked eggplant flask, stirred, and heated to 50 ° C. under an argon atmosphere. After adding and dissolving 5 ml of acetone, 0.44 ml (5.0 mmol) of 1,3-propane sultone was slowly added, and the mixture gradually became milky white. After 5 hours, the mixture was cooled to room temperature, and ether was added to precipitate a solid. This was recovered and vacuum-dried at 60 ° C. to obtain 0.86 g (yield 50%) of a colorless powdery compound represented by the formula (48).
Spectral data of compound (48)
1 H-NMR, δ (ppm, DMSO-d 6 , 400 MHz): 0.90 (3H, t, CH) 3 ), 1.32 (2H, m, CH 2 ), 1.62 (2H, m, CH 2 ), 2.00 (2H, m, CH 2 ), 2.61 (2H, m, CH 2 ), 3.19 (2H, m, CH 2 ), 3.19 (1H, m, CH 2 ), 3.29 (1H, m, CH 2 ), 3.29 (2H, m, CH 2 ), 3.96 (2H, d, CH 2 ), 4.27 (1H, m, CH), 5.86 (1H, br-s, OH), 6.95 (3H, m, Ph), 7.29 (2H, m, Ph), 9.9. 51 (1H, br-s, OH).
IR (cm -1 , KBr disk): 3371 (broad, OH st), 2968 (m, CH st), 2774 (broad), 1600 (m, arC-Cst), 1500 (m, arC-C), 1249 (s, arC). −O-alC st as), 1222,  ̄1165 (as shoulder, S = O st as), 1150 (vs, S = O st),  ̄1045 (as shoulder, S = O st sy), 1032 (s, arC-O-alC st sy), 756, 699, 600, 590, 531, 522.
[0037]
Next, Table 2 shows the structure of the epoxy compound (E) used in the examples and the infrared absorption band specific to the epoxy compound.
[0038]
[Table 2]
[Table 3]
[0039]
Next, Table 3 shows the structure of the amine compound (A) used in the examples and the infrared absorption band specific to the amine compound.
[0040]
[Table 4]
[0041]
As the cyclic sulfonic acid ester (S), those represented by the following formula (43) or (44) were used.
[0042]
Embedded image
1344 cm -1 (S) -S (= O) 2 O-asymmetric stretching vibration
1167 cm -1 (S) -S (= O) 2 O-symmetric stretching vibration
779 cm -1 (S) SO stretching vibration
Embedded image
1351 cm -1 (S) -S (= O) 2 O-asymmetric stretching vibration
1171 cm -1 (S) -S (= O) 2 O-symmetric stretching vibration
783 cm -1 (S) SO stretching vibration
In the presence of the amine compound derivative, these cyclic sulfonic acid esters are easily cleaved at the ring and bond with the amine compound derivative to form sulfonic acid. Of the infrared absorption bands shown above, $ 1350 cm -1 The absorption due to the sulfonic acid ester structure is hardly affected by other absorption bands, and the disappearance or remarkable reduction of this absorption band makes it easy to determine the progress of the reaction, suggesting the formation of sulfonic acid.
[0043]
As these starting compounds, commercially available compounds can be mainly used as they are. Of course, those not commercially available can be synthesized and used in the present invention.
[0044]
Next, a synthesis example of an epoxy compound will be described.
<Reference Example 5> Synthesis of E-6
34.8 g (174 mmol) of 4- (benzyloxy) phenol and 11.9 ml (87.0 mmol) of 1,5-dibromopentane were dissolved in 260 ml of acetone. To this, 30.1 g of potassium carbonate and 1.4 g of potassium iodide were added, and the mixture was stirred at a reflux temperature for 18 hours. At room temperature, 800 ml of acetone was added, and insolubles were removed by filtration. The filtrate was concentrated and then recrystallized and purified with acetone: tetrahydrofuran = 1: 1 (volume ratio) to obtain 36.0 g of a colorless powdery solid. As a result of spectrum measurement, it was confirmed that the substance was 1,5-bis (4-benzyloxyphenoxy) pentane.
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 1.64 (2H, m, CH) 2 ), 1.82 (4H, m, CH 2 x2), 3.91 (4H, t, CH 2 x2), 5.00 (4H, m, CH 2 ), 6.82 (4H, d, J = 9.2 Hz, Ph), 6.90 (4H, d, J = 9.2 Hz, Ph), 7.40 (10H, m, Ph).
IR, ν (cm -1 , KBr disk): 2929 (m, CH), 2682 (m), 1510 (s, arC-C), 1468 (m), 1454 (m), 1397 (w), 1382 (m), 1287 ( m), 1240 (s, arC-O-alC), 1116 (m), 1067 (m), 1018 (s), 946 (m), 828 (s), 741 (m), 734 (m), 692 (S), 509 (m).
2.50 g (5.34 mmol) of the powdery solid obtained by the above operation was dissolved in a mixed solvent of ethanol (53.4 ml) and tetrahydrofuran (53.4 ml) by heating, and 5% palladium was added thereto. 0.227 g of the supported carbon powder was dispersed. After the reaction vessel was cooled to -60 ° C and degassed under reduced pressure for 1 hour, hydrogen gas was introduced into the vessel and stirred at 75 ° C for 14 hours. After removing the catalyst using celite, the residue was purified by silica gel column chromatography (developing solvent: chloroform) to obtain 1.40 g of a colorless powdery solid. As a result of spectrum measurement, it was confirmed that the substance was 1,5-bis (4-hydroxyphenoxy) pentane. Yield: 91.5%
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 1.63 (2H, m, CH) 2 ), 1.81 (4H, m, CH 2 x2), 3.92 (4H, t, J = 6.4 Hz, CH 2 x2), 4.1-4.9 (2H, broad, PhO) H ), 6.76 (8H, m, J = 9.2 Hz, Ph).
IR, ν (cm -1 , KBr disk): 3357 (m, phenol OH), 3040 (w), 2949 (w, CH), 2928 (m), 2860 (w), 1607 (vw, arC-C), 1513 (s) , ArC-C), 1472 (m), 1462 (m), 1393 (w), 1376 (m), 1271 (m), 1235 (s, arC-O-alC), 1106 (m), 1068 (m , ArC-O-alC), 951 (m), 823 (s), 778 (w), 741 (m), 524 (m).
10.8 g (37.8 mmol) of the colorless powder obtained by the above operation was dissolved in 29.5 ml (378 mmol) of epichlorohydrin, and 0.45 g of sodium hydroxide (11 0.3 mmol) was added 10 times, and the mixture was further stirred at 95 ° C for 43 hours. After cooling, 500 ml of hexane was added to collect insolubles, and chloroform and water were added thereto, and the organic layer was concentrated. The residue was purified by silica gel column chromatography (eluent: dichloromethane / ethyl acetate = 12/1 vol. Ratio) to obtain 9.91 g of a colorless solid. As a result of spectrum measurement, it was confirmed to be 1,5-bis (4-glycidyloxyphenoxy) pentane (E-6). Yield: 65.9%
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 1.63 (2H, m, CH) 2 ), 1.83 (4H, m, CH 2 x2), 2.74 (2H, dd, J = 2.8, 5.2 Hz,), 2.90 (2H, dd, J = 4.4, 4.8 Hz)), 3.34 (2H, m , CHx2), 3.92 (2H, dd, J = 5.2, 11.0 Hz), 3.93 (4H, t, J = 6.4 Hz), 4.16 (2H, dd, J = 3. 4, 11.0 Hz,), 6.82 (4H, d, J = 9.1 Hz, Ph), 6.85 (4H, d, J = 9.1 Hz, Ph).
IR, ν (cm -1 , KBr disk): 3055 (vw, epoxyC-H), 3005 (vw), 2941 (w, CH), 2911 (w), 2856 (w), 1509 (s, arC-C), 1466 (m ), 1389 (w), 1290 (w), 1237 (s, arC-O-alC), 1130 (w), 1114 (w), 1070 (w), 1039 (m), 991 (w), 914 ( w), 848 (w), 820 (m, epoxyC-O), 786 (w), 525 (w).
[0045]
<Reference Example 6> Synthesis of E-7
30.0 g (65.4 mmol) of triethylene glycol di-p-tosylate and 26.7 g (131 mmol) of 4- (benzyloxy) phenol were dissolved in 200 ml of acetone. 22.6 g of potassium carbonate was added thereto, and the mixture was stirred at a reflux temperature for 30 hours. At room temperature, 1.0 l of acetone was added, and the insolubles were filtered off. The filtrate was concentrated and then recrystallized and purified with acetone: hexane = 5: 1 (volume ratio) to obtain 12.1 g of a pale yellow solid. As a result of spectrum measurement, it was confirmed to be triethylene glycol di-4-benzyloxyphenyl ether. Yield: 35.8%
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 3.75 (4H, m, CH) 2 x2), 3.84 (4H, m, CH 2 x2), 4.08 (4H, m, CH 2 x2), 5.00 (4H, m, CH 2 ), 6.84 (4H, d, J = 9.4 Hz, Ph), 6.89 (4H, d, J = 9.4 Hz, Ph), 7.37 (10H, m, Ph).
IR, ((cm -1 , KBr disk): 3065 (w), 2915 (m, CH), 2860 (m), 1511 (s, ArC-C), 1467 (m), 1454 (s), 1384 (m), 1287 ( s), 1240 (s, arC-O-alC), 1145 (s), 1115 (s), 1064 (m), 1019 (s), 987 (s), 924 (m), 862 (m), 827 (S), 766 (m), 732 (s), 692 (s), 522 (m).
After dissolving 11.3 g (22.1 mmol) of the pale yellow solid obtained above in a mixed solvent of 100 ml of tetrahydrofuran and 100 ml of ethanol, 0.94 g of 5% palladium carbon powder was dispersed. The mixture was stirred at 75 ° C. for 18 hours under a hydrogen gas atmosphere. After removing the catalyst using celite, the mixture was concentrated to obtain 7.23 g of a white powder. As a result of spectrum measurement, it was confirmed to be triethylene glycol di-4-hydroxyphenyl ether. Yield: 98.6%
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 3.75 (4H, m, CH) 2 x2), 3.84 (4H, m, CH 2 x2), 4.07 (4H, m, CH 2 x2), 6.73 (4H, d, J = 9.4 Hz, Ph), 6.78 (4H, d, J = 9.4 Hz,
Ph).
IR, ((cm -1 , KBr disk): 3365 (m, phenolol-H), 3035 (w), 2932 (m, CH), 2916 (m), 2900 (m), 2877 (s), 1516 (s, arC-C) ), 1489 (m), 1477 (m), 1458 (m), 1379 (m), 1350 (w), 1303 (m), 1281 (m), 1233 (s, arC-O-alC), 1175 ( m), 1134 (s), 1111 (s), 1045 (m), 991 (s), 822 (s), 805 (m), 767 (s), 516
(M).
7.00 g (21.1 mmol) of the white powder obtained above was dissolved in 16.5 ml (210 mmol) of epichlorohydrin and, at 100 ° C., 0.23 g (6 .32 mmol) 10 times and further stirred at 100 ° C. for 20 hours. After allowing to cool, 500 ml of hexane was added to collect insolubles, which were washed with 500 ml of acetone. After the acetone-soluble matter was concentrated, the residue was purified by silica gel column chromatography (developing solvent: dichloromethane / ethyl acetate = 9/1 Vol. Ratio) to obtain 5.96 g of a white solid. As a result of spectrum measurement, it was confirmed to be triethylene glycol di-4-glycidyloxyphenyl ether (E-7). Yield: 63.6%
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 2.74 (2H, dd, J = 2.6, 5.2 Hz), 2.90 (2H, dd, J = 4.0, 4.6 Hz), 3.33 (2H, m, CHx2), 3.74 (4H, m, CH 2 x2), 3.84 (4H, m, CH 2 x2), 3.90 (2H, dd, J = 3.2, 11 Hz), 4.08 (4H, m, CH 2 x2), 4.16 (2H, dd,
J = 3.2, 11 Hz), 6.84 (8H, m, Ph).
IR, ((cm -1 , KBr disk): 3118 (w), 3076 (w), 3055 (w, epoxyCH), 2927 (m, CH), 2891 (s), 2856 (m), 2833 (m), 1509 (w) s, arC-C), 1456 (s), 1433 (s), 1378 (m), 1344 (m), 1322 (m), 1288 (s), 1233 (s, arC-O-alC), 1131 ( s), 1076 (s), 1049 (s), 971 (m), 928 (m), 913 (m), 880 (m), 865 (m), 846 (m), 827 (s, epoxyC-O) ), 771 (s), 747 (m), 529 (m), 454 (m).
[0046]
<Reference Example 7> Synthesis of E-12
Under an argon atmosphere, 5.0 g (25 mmol) of 4,4′-diaminodiphenyl ether, 11.0 g (100 mmol) of sodium carbonate and 20.0 ml (250 mmol) of epichlorohydrin were put into a 100 ml three-neck eggplant flask. The mixture was stirred and heated to 110 ° C. After stirring for 3 hours, the temperature was returned to room temperature, dichloromethane was added, and the mixture was filtered to remove sodium carbonate. Dichloromethane was distilled off under reduced pressure, and 5.0 g (125 mmol) of sodium hydroxide and 10 ml (125 mmol) of epichlorohydrin were added under an argon atmosphere, and the mixture was heated to 60 ° C. After stirring for 3 hours, the temperature was returned to room temperature, 50 ml of hexane was added, and the mixture was stirred for 30 minutes to produce a yellow-white viscous substance. After removing the supernatant, dichloromethane was added and dissolved, the insoluble matter was filtered off, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate = 1/1 vol.) To obtain 5.3 g of a pale yellow viscous liquid. As a result of spectrum measurement, it was confirmed to be 4,4′-bis (N, N-diglycidylamino) phenyl ether (E-12). Yield: 50%
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 2.58 (4H, m, CH 2 ), 2.80 (4H, m, CH 2 ), 3.17 (4H, m, CHx4), 3.38 (4H, m, CH) 2 ), 3.70 (4H, m, CH 2 ), 6.78 (4H, m, Ph), 6.90 (4H, m, Ph).
Thirteen C-NMR, δ (ppm, CDCl 3 , 400 MHz): 45.8 (CH 2 ), 51.1 (CH), 54.1 (CH 2 ), 114.6 (Ph), 119.9 (Ph), 144.9 (Ph), 150.2 (Ph).
IR, ν (cm -1 , KBr disk): 3051 (m, epoxyC-H), 2995 (s, C-H), 2922 (m), 1609 (m, arC-C), 1505 (vs, arC-C), 1412 (m) , 1386 (s), 1331 (m), 1226 (vs, arC-O-alC), 1190 (s), 1153 (m), 1126 (m), 1006 (w), 974 (m), 941 (m) ), 907 (m), 871 (m), 828 (s, epoxyC-O), 754 (m), 517 (m).
[0047]
<Reference Example 8> Synthesis of E-13
Under an argon atmosphere, 5.5 g (15 mmol) of 4,4'-bis (4-aminophenoxy) -biphenyl, 6.4 g (60 mmol) of sodium carbonate and 12 ml of epichlorohydrin were placed in a 100 ml three-necked eggplant flask. (150 mmol), and the mixture was stirred and heated to 110 ° C. After stirring for 3 hours, the temperature was returned to room temperature, dichloromethane was added, and the mixture was filtered to remove sodium carbonate. Dichloromethane was distilled off under reduced pressure, and 3.0 g (75 mmol) of sodium hydroxide and 10 ml (130 mmol) of epichlorohydrin were added under an argon atmosphere, and the mixture was heated to 60 ° C. After stirring for 3 hours, the temperature was returned to room temperature, 50 ml of hexane was added, and the mixture was stirred for 30 minutes to produce a yellow-white precipitate. After removing the supernatant, chloroform was added and dissolved, and the insoluble matter was filtered off and purified by silica gel column chromatography (developing solvent: chloroform) to obtain 3.1 g of a pale yellow powder. As a result of spectrum measurement, it was confirmed to be 4,4′-bis [4- (N, N-diglycidylamino) phenoxy] biphenyl (E-13). Yield: 35%
1 H-NMR, δ (ppm, CDCl3, 400 MHz): 2.61 (4H, m, CH2), 2.82 (4H, m, CH2), 3.20 (4H, m, CH), 3.41 ( 4H, m, CH2), 3.75 (4H, m, CH2), 6.83 (4H, m, Ph), 6.99 (8H, m, Ph), 7.46 (4H, m, Ph) .
Thirteen C-NMR, δ (ppm, CDCl3, 400 MHz): 45.8 (CH2), 51.1 (CH), 54.0 (CH2), 114.4 (Ph), 118.0 (Ph), 121. 4 (Ph), 128.3 (Ph), 135.2 (Ph), 145.6 (Ph), 148.3 (Ph), 158.5 (Ph).
IR, ν (cm -1 , KBr disk): 3044 (w, epoxyC-H), 2983 (w, CH), 2917 (w), 1611 (m, arC-C), 1513 (s, arC-C), 1490 (s, arC-C), 1387 (m), 1340 (w), 1266 (s, epoxyC-OC), 1231 (s, arC-O-alC), 1191 (m), 1172 (m), 1000 (w) ), 968 (m), 941 (w), 907 (w), 869 (m), 826 (s, epoxyC-OC), 761 (m), 645 (w), 509 (m).
[0048]
<Reference Example 9> Synthesis of E-14
4,4'-biphenol (30.0 g, 161 mmol), potassium carbonate (37.8 g, 273.9 mmol) and potassium iodide (2.67 g, 16.1 mmol) were weighed into an eggplant flask. And 480 ml of acetone were added. 3-Bromo-1-propene (39.0 g, 322 mmol) was added, and the mixture was stirred at reflux temperature for 4 hours. Further, 3-bromo-1-propene (39.0 g, 322 mmol) was added, and the mixture was stirred at reflux temperature for 17 hours. The reaction solution was filtered, and the filtered salt was washed with acetone. The acetone in the filtrate was distilled off and dried to obtain 42.9 g of a colorless powdery solid. As a result of spectrum measurement, it was confirmed to be 4,4′-diallyloxybiphenyl. Yield: 100%
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 4.58 (4H, dt, J = 1.6, 5.2 Hz), 5.31 (2H, ddd, J = 1.6, 3.2, 10.4 Hz), 5.44 (2H, ddd, J = 1.6, 3.2, 17.2 Hz), 6.08 (2H, ddt, J = 5.2, 10.4, 17.2 Hz), 6.97 (4H, d , J = 8.8 Hz), 7.47 (4H, d, J = 8.8 Hz).
IR, ν (cm -1 , KBr disk): 3085 (w, = CH), 3022 (w), 2987 (w, CH), 2915 (w), 2869 (w), 1650 (w, C = C), 1607 ( m, arC-C), 1499 (s, arC-C), 1460 (w), 1428 (m), 1365 (w), 1270 (s), 1245 (s, arC-O-alC), 1178 (m ), 1031 (m, arC-O-alC), 1010 (m), 993 (m), 943 (m), 824 (s), 803 (m), 570 (w), 519 (w).
4,4'-Diallyloxybiphenyl (20.0 g, 75.1 mmol) was dissolved in 260 ml of dichloromethane and cooled in an ice bath. m-Chloroperbenzoic acid (cont. 65%) (49.9 g, 188 mmol) was added, and the mixture was stirred for 20 hours while slowly returning to room temperature, and further m-chloroperbenzoic acid (cont. 65%) (22) .4 g, 84.4 mmol) and stirred at room temperature for 6 hours. The organic layer was washed twice with 300 ml of a 1 mol / l aqueous sodium hydrogen carbonate solution, and then washed once with 300 ml of water. After the organic layer was dried over sodium sulfate, the solvent was distilled off. Purification by silica gel chromatography (developing solution: dichloromethane / methanol = 400/1) yielded 7.72 g of a pale yellow powdery solid. As a result of spectrum measurement, it was confirmed to be E-14 shown in Table 2. Yield: 34.5%
1 H-NMR, δ (ppm, CDCl 3 , 400 MHz): 2.78 (2H, dd, J = 2.8, 4.8 Hz), 2.93 (2H, dd, J = 4.4, 4.8 Hz), 3.38 (2H, m) , CHx2), 4.00 (2H, dd, J = 5.6, 11.0 Hz), 4.26 (2H, dd, J = 3.2, 11.0 Hz), 6.98 (4H, d, J = 8.8 Hz), 7.47 (4H, d, J = 8.8 Hz).
IR, ν (cm -1 , KBr disk): 3062 (w, epoxyC-H), 3012 (w, C-H), 2928 (w, C-H), 1606 (m, arC-C), 1501 (s, arC-C), 1452 (w), 1432 (w), 1347 (w), 1272 (s, epoxyC-OC), 1243 (s, arC-O-alC), 1180 (m), 1133 (w), 1037 (s) , ArC-O-alC), 1015 (m), 998 (w), 910 (m), 864 (w), 814 (s, epoxyC-OC), 761 (w), 588 (w), 518 (W).
[0049]
<Example 1>
Preparation of an amine-curable epoxy resin electrolyte membrane using E-1 as an epoxy compound, A-1 as an amine compound, and (43) as a cyclic sulfonic acid ester will be specifically described.
3.1 g (9.0 mmol) of 2,2-bis (4-glycidyloxyphenyl) propane (E-1) was weighed into a recovery flask, and dried under an argon atmosphere, dried N, N-dimethylformamide (DMF). Was added in an amount of 12 ml. 0.45 ml (3.0 mmol) of triethylenetetramine (A-1) was added to the solution, and the mixture was stirred at 80 ° C for 2 hours. 8.9 ml of the reaction solution was separated, 0.39 ml (4.5 mmol) of 1,3-propane sultone (S-1) was added thereto, and the mixture was stirred at room temperature for 15 minutes. 10x5 cm placed horizontally in a thermostat 2 2.5 ml of the reaction solution was spread on a glass plate (the edge was sealed with Teflon (registered trademark)). After treatment at 60 ° C. for 16 hours and then at 120 ° C. for 6 hours, a light brown transparent film having a thickness of 99 μm was obtained. IR measurement of E-1, A-1 and the obtained film revealed that the film was 3057 cm derived from the epoxy ring of E-1. -1 And 829 cm -1 Absorption peak, 3300 cm derived from the amino group of A-1 -1 Near and 1571 cm -1 Disappeared, and the absorption peak derived from a hydroxyl group at 3387 cm −1, 1164 cm −1. -1 (1183 cm derived from ether bond) -1 Was observed as a shoulder peak of the absorption peak. ) And 1035 cm -1 In addition, an absorption peak derived from sulfonic acid was observed, which confirmed that the structure of (1) or (2) was formed.
[0050]
In a similar manner, amine-curable epoxy resins were prepared by combining various compounds. The results are summarized in Table 4.
[0051]
[Table 5]
[Table 6]
[Table 7]
[Table 8]
[0052]
The amine-curable epoxy resins obtained by these examples can be prepared from relatively easily available and inexpensive raw materials, and since they have a sulfonic acid group in their structure, properties as an electrolyte can be expected. In addition, since the composition can be arbitrarily controlled from a gel film to a self-supporting flexible and durable film depending on the composition, it can be applied to various electrochemical devices.
[0053]
<Example 33>
As an example of the electrolyte characteristics of the amine-curable epoxy resin having a sulfonic acid group prepared in the above examples, conductivity was measured by AC impedance measurement.
The films obtained in Examples 1, 2, 9, 28 and 29 were cut into a size of 2 cm × 5 cm, and were boiled with a 1 mol / l aqueous sulfuric acid solution for 1 hour. Subsequently, the membrane boiled with distilled water for 1 hour was sandwiched between two 0.5 cm × 4 cm gold electrodes, and controlled at 90 ° C. and 90% relative humidity in a constant temperature and humidity chamber using an impedance analyzer (Solartron 1260). The impedance was measured in the frequency range of 0.5 Hz to 10 MHz. The conductivity was calculated from the result of the obtained Nyquist Plot. Table 5 shows the results.
[0054]
[Table 9]
[0055]
<Example 34>
According to the present invention, since it is possible to crosslink the epoxy resin three-dimensionally, it is possible to minimize the change in dimensions even under conditions where a normal uncrosslinked electrolyte membrane swells significantly. it can. Therefore, a dimensional change due to swelling of the resin electrolyte membrane according to the present invention and a fluorine-based polymer electrolyte membrane (Nafion (registered trademark) 115 (manufactured by DuPont)) which is often used as an uncrosslinked electrolyte membrane as a comparative example were compared. did.
The electrolyte membranes obtained in Examples 1, 2 and 29 and the electrolyte membrane of the comparative example were each cut into a size of 1 cm × 1 cm in a dry state, and the vertical and horizontal dimensions were measured accurately. After the test piece was boiled in distilled water for 1 hour, the test piece was taken out and immediately measured in the vertical and horizontal dimensions. The dimensional change was calculated according to equation (1) and the results are shown in Table 6.
[0056]
(Equation 1)
[0057]
[Table 10]
[0058]
<Example 35>
The electrolyte membranes obtained in Examples 1, 2, 26, 27, 28 and 29 and the electrolyte membrane of the comparative example were each cut into a size of 1 cm × 1 cm in a dry state, and the vertical and horizontal dimensions were measured accurately. The test piece was boiled for 1 hour in a solution of methanol / water = 1/1 (molar ratio), and then the test piece was taken out and immediately measured in length and width. The dimensional change was calculated according to equation (1) and the results are shown in Table 7.
[0059]
[Table 11]
[0060]
As shown above, the electrolyte membrane of the amine-curable epoxy resin having a sulfonic acid group of the present invention has a significantly reduced swelling due to solvents and the like as compared with the non-crosslinked electrolyte membrane. In application to chemical devices, improvement of adhesion to electrodes can be expected.
[0061]
【The invention's effect】
According to the present invention, by controlling the raw material composition, it is possible to obtain an amine-curable epoxy resin having a sulfonic acid of various properties from a gel state to a self-supporting pliable and durable film. When used as a film, dimensional change due to swelling or the like is small, so that adhesion to an electrode or the like can be improved. Further, it is possible to provide an electrolyte, an electrolyte membrane, and an electrochemical device which are inexpensive and have a small environmental load as compared with conventional ones.