JP2004193100A - Dc relay - Google Patents

Dc relay Download PDF

Info

Publication number
JP2004193100A
JP2004193100A JP2003277160A JP2003277160A JP2004193100A JP 2004193100 A JP2004193100 A JP 2004193100A JP 2003277160 A JP2003277160 A JP 2003277160A JP 2003277160 A JP2003277160 A JP 2003277160A JP 2004193100 A JP2004193100 A JP 2004193100A
Authority
JP
Japan
Prior art keywords
contact
contacts
conductor
conductor plate
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003277160A
Other languages
Japanese (ja)
Inventor
Takeshi Ariyoshi
剛 有吉
Hiroyuki Imanishi
啓之 今西
Akinobu Yoshimura
明展 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003277160A priority Critical patent/JP2004193100A/en
Publication of JP2004193100A publication Critical patent/JP2004193100A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Contacts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC relay which has a simple and compact structure. <P>SOLUTION: The DC relay is provided with a pair of contacts 10, 20 to open/close for each other at least one of which is a travelling contact, and a conductive plate 30 which is interposed between the contacts 10, 20, is in contact with both the contacts to carry current during electric communication, and divides the voltage with a space between the conductive plate 30 and each of the contacts during electric breaking. Since the space between one side of the conductive plate 30 and the one contact 10 and the space between the other side of the conductive plate 30 and the other contact 20 make a series contact structure on opening both the contacts, the one side and the other side of the conductive plate 30 divide the breaking voltage at breaking to suppress the occurrence of arc, thereby achieving short-time breaking. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、直流電流のリレーに関するものである。特に、簡易な構造にて確実に直流電流を遮断できるリレーに関するものである。   The present invention relates to a direct current relay. In particular, the present invention relates to a relay that can reliably cut off direct current with a simple structure.

電力用(交流用)リレーとしては、使用する消弧媒体・消弧方法により分類すると、(1)油リレー、(2)水リレー、(3)磁気リレー、(4)空気リレー、(5)ガスリレー、(6)真空リレーなどがある。交流の場合、電流ゼロ点が存在するため、このゼロ点を利用して電流を遮断することが一般に行われている。   Power (AC) relays can be classified according to the arc extinguishing medium and arc extinguishing method used: (1) oil relay, (2) water relay, (3) magnetic relay, (4) air relay, (5) There are gas relays and (6) vacuum relays. In the case of alternating current, since there is a zero current point, it is common practice to interrupt the current using this zero point.

また、近年、環境問題からハイブリッド自動車や燃料電池自動車のような高電圧(約300V)の自動車が開発されてきている。これらの自動車は、直流高電圧の主電池と高電圧回路からなる制御回路を具えている。また、主電池は直流高電圧であるので、事故時などには電池を制御回路から切り離す必要があり、電池と制御回路との間にはメカニカル接点の直流リレーを具える。   In recent years, high-voltage (about 300 V) vehicles such as hybrid vehicles and fuel cell vehicles have been developed due to environmental problems. These vehicles are equipped with a control circuit comprising a DC high voltage main battery and a high voltage circuit. Further, since the main battery has a high DC voltage, it is necessary to disconnect the battery from the control circuit in the event of an accident or the like, and a DC relay having mechanical contacts is provided between the battery and the control circuit.

ところで、直流では電流ゼロ点がないことから遮断が難しい。一般に、直流アークを消弧することは、接点間の導電率を急激に変化させることである。理想的には抵抗値を0から無限大に変化させることが望まれる。その具体的手段としては、(1)接点開放距離を広くとる、(2)接点間開放速度を速くする、(3)磁界によりアークを引き伸ばす(例えば特許文献1)、(4)冷却ガスや消弧室により冷却あるいは気密して抵抗を増加させる(例えば特許文献2)、などがある。   By the way, it is difficult to cut off the direct current because there is no current zero point. In general, extinguishing a DC arc is a rapid change in conductivity between contacts. Ideally, it is desired to change the resistance value from 0 to infinity. Specific means include (1) increasing the contact opening distance, (2) increasing the contact opening speed, (3) extending the arc by a magnetic field (for example, Patent Document 1), (4) cooling gas or The resistance is increased by cooling or airtightness by an arc chamber (for example, Patent Document 2).

特開平8-203368号公報JP-A-8-203368 特開平9-320411号公報JP-A-9-320411

しかし、従来の直流リレーでは、サイズが大型化せざるを得ず、コスト高にも
つながると言う問題があった。例えば、大気中において直流アークを遮断する場合は、接点間距離を大きくとる必要があり、そのためのスペースを確保する必要がある。また、完全気密構造におかれた電気接点の開放により切断する場合は、ガスの密閉構造が必要である。その他、磁界の作用によりアークを引き伸ばす場合も、この引き伸ばしに必要な空間が求められる。このように、従来の直流リレーではいずれの構成でも小型化することが難しかった。
However, there has been a problem that the size of the conventional DC relay has to be increased, which leads to an increase in cost. For example, when interrupting a DC arc in the atmosphere, it is necessary to increase the distance between the contacts, and it is necessary to secure a space therefor. Further, in the case of cutting by opening an electric contact in a completely airtight structure, a gas tight structure is required. In addition, when the arc is extended by the action of a magnetic field, a space necessary for the extension is required. Thus, it has been difficult to reduce the size of any of the conventional DC relays.

従って、本発明の主目的は、簡易な構造で小型化できる直流リレーを提供することにある。   Therefore, a main object of the present invention is to provide a DC relay that can be reduced in size with a simple structure.

本発明は、接点を開閉すると共に、この接点間に導体板を介在させることで上記の目的を達成する。   The present invention achieves the above object by opening and closing the contacts and interposing a conductor plate between the contacts.

すなわち、本発明直流リレーは、少なくとも一方が可動接点で、互いに開閉する接点を有する接点対と、これら接点の間に介在されて、通電時は両接点と接触して導通をとり、遮断時は各接点と間隔をとって電圧を分圧する導体板とを具えることを特徴とする。   That is, the DC relay of the present invention has at least one movable contact, a contact pair having contacts that open and close with each other, and is interposed between these contacts. It is characterized by comprising a conductor plate for dividing a voltage at intervals with each contact.

上記の構成により、両接点間に導体板を挟み込むことで接点間の導通をとる。また、両接点間を開くことで遮断を行う。このように、接点の開閉駆動という簡易な構成にて確実に遮断を行うことができる。特に、両接点間を開いた際、導体板の片面と一方の接点との間および導体板の他面と他方の接点との間の2箇所の直列接点構造となるため、遮断時に導体板の片面側と他面側で遮断電圧を分圧してアークの発生を抑制し、短時間で遮断を実現することができる。また、本発明リレーは、導体板の駆動源や気密構造が不要で、小型かつ安価に製造することができる。   With the above configuration, conduction between the contacts is obtained by sandwiching the conductor plate between the two contacts. In addition, disconnection is performed by opening between both contacts. In this way, it is possible to reliably perform the shut-off with a simple configuration of opening and closing the contact. In particular, when both contacts are opened, there are two series contact structures between one surface of the conductor plate and one contact and between the other surface of the conductor plate and the other contact. The generation of an arc can be suppressed by dividing the cutoff voltage on one side and the other side, and the cutoff can be realized in a short time. Further, the relay of the present invention does not require a driving source or an airtight structure for the conductor plate, and can be manufactured at a small size and at low cost.

ここで、本発明リレーに用いる接点は、ブロック状、柱状、棒状などの金属体が好ましい。この接点は、少なくとも一方を可動接点とする。従って、一方が可動接点で他方が固定接点の場合はもちろん、双方を可動接点としてもよい。   Here, the contact used for the relay of the present invention is preferably a metal body such as a block, a column, and a bar. At least one of the contacts is a movable contact. Therefore, not only the case where one is a movable contact and the other is a fixed contact, but also both may be movable contacts.

接点の開閉動作には、種々の駆動源を利用できる。回転系駆動源ではモータが、直動系駆動源ではソレノイドやシリンダが利用できる。回転系駆動源では回転運動を往復運動に変換する変換機構を介して、直動系駆動源では直接接点を往復駆動する。   Various driving sources can be used for the opening and closing operations of the contacts. A motor can be used for the rotary drive source, and a solenoid or cylinder can be used for the linear drive source. The rotating system drive source directly reciprocates the contacts via a conversion mechanism that converts the rotational motion into reciprocating motion, and the direct drive system drive source.

導体板は、導電性に優れた銅、銅合金、アルミニウム、アルミニウム合金及びリレー、ブレーカー用の接点材料が好適である。   The conductor plate is preferably made of copper, copper alloy, aluminum, an aluminum alloy, and a contact material for relays and breakers having excellent conductivity.

本発明では、一方の接点と導体板の間および他方の接点と導体板の間に絶縁性の弾性材を介在して導体板を挟持することが好ましい。弾性材を介して導体板を挟持することにより、導通時における接点と導体板の接触と、遮断時における接点と導体板の離隔を容易に実現できる。絶縁性の弾性材としては、ばね、特に圧縮ばねが好適である。   In the present invention, it is preferable that the conductor plate is sandwiched between one contact and the conductor plate and between the other contact and the conductor plate with an insulating elastic material interposed therebetween. By sandwiching the conductor plate via the elastic material, the contact between the contact and the conductor plate during conduction and the separation between the contact and the conductor plate during interruption can be easily realized. As the insulating elastic material, a spring, particularly a compression spring, is suitable.

このばねは、プラスチックなどの絶縁材料を用いて構成すれば良い。弾性材を絶縁性とすることで、遮断時に両接点間が弾性材を介して導通することを回避する。特に、一方の接点と導体板の間および他方の接点と導体板の間に介在されるばねは、同一のばね定数を有するばねを用いることが望ましい。遮断時、各接点と金属板との間隔が等しくなり、均等に分圧することができる。   This spring may be formed using an insulating material such as plastic. By making the elastic material insulative, conduction between the two contacts via the elastic material during interruption is avoided. In particular, it is desirable to use springs having the same spring constant between the one contact and the conductor plate and between the other contact and the conductor plate. At the time of interruption, the distance between each contact and the metal plate becomes equal, and the pressure can be divided evenly.

さらに、絶縁性の弾性材で導体板を支持する場合、アークの影響の少ない箇所に弾性材を配置することが好ましい。即ち、各接点における導体板との接触面に保持穴を形成し、この保持穴に接点の開閉方向に伸縮可能な絶縁弾性材を挿入して導体板を絶縁弾性材で挟持する。絶縁弾性材は、一方の接点と導体板の間および他方の接点と導体板の間に配設されて導体板を挟持する。   Further, when the conductive plate is supported by an insulating elastic material, it is preferable to dispose the elastic material at a place where the influence of the arc is small. That is, a holding hole is formed in the contact surface of each contact with the conductor plate, and an insulating elastic material that can expand and contract in the contact opening and closing direction is inserted into the holding hole, and the conductive plate is sandwiched by the insulating elastic material. The insulating elastic material is disposed between one contact and the conductor plate and between the other contact and the conductor plate to sandwich the conductor plate.

このように保持穴に弾性材を挿入させておいて、導体板を挟持しながら、導体板に各接点を接触させることで接点間の導通をとり、両接点間を開くことで遮断を行う。この構成によれば、接点の開閉駆動という簡易な構成にて確実に遮断を行うことができる。   In this way, the elastic material is inserted into the holding hole, and the contacts are brought into contact with the conductor plate while the conductor plate is held therebetween, thereby establishing electrical continuity between the contacts. According to this configuration, it is possible to reliably perform the cutoff with a simple configuration of opening and closing the contact.

絶縁弾性材は、プラスチックなどの絶縁材料を用いて構成すれば良い。例えば、絶縁性を有する合成樹脂製のコイル状圧縮ばねや弾性ゴムなどが挙げられ、特にコイル状の圧縮ばねが好適である。ばねを絶縁性とすることで、遮断時に両接点間が弾性材を介して導通することを回避する。   The insulating elastic material may be configured using an insulating material such as plastic. For example, a coiled compression spring made of synthetic resin having an insulating property, elastic rubber, or the like can be used, and a coiled compression spring is particularly preferable. By making the spring insulative, conduction between the two contacts via the elastic material at the time of interruption is avoided.

保持穴は、例えば、絶縁弾性材としてコイル状の圧縮ばねを用いる場合、ばねが自由長のときにばねの一端側が保持穴から突出され、ばね圧縮時には、ばねが保持穴内に完全に収納される深さに形成する。そして、保持穴内にばねの一端部を挿入してばねを保持穴で支持するとともに、ばねの他端部で導体板を支持する。絶縁ばねは、接点の開閉動作にともなって導体板を支持したまま伸縮動作を行う。   For example, when a coil-shaped compression spring is used as the insulating elastic material, one end of the spring projects from the holding hole when the spring has a free length, and when the spring is compressed, the spring is completely housed in the holding hole. Form at depth. Then, one end of the spring is inserted into the holding hole to support the spring with the holding hole, and the other end of the spring supports the conductor plate. The insulating spring expands and contracts while supporting the conductor plate with the opening and closing operation of the contact.

接点が閉動作により導体板に接触した時には、ばねは圧縮されて保持穴内に完全に収納され、接点が開動作により導体板から離隔した時は、ばねは弾性回復により伸びて保持穴から先端部が突出し導体板を支持する。   When the contact comes into contact with the conductor plate by closing operation, the spring is compressed and completely housed in the holding hole, and when the contact is separated from the conductor plate by opening operation, the spring expands by elastic recovery and extends from the holding hole to the tip. Project and support the conductive plate.

各接点の保持穴に支持されるばねにより導体板を挟持することにより、導通時における接点と導体板の接触と、遮断時における接点と導体板の離隔を容易に実現できる。しかも、ばねを接点に設ける保持穴内に挿入して、ばねを接点に支持させているので、遮断時に発生するアークによってばねが損傷するのを抑えることができる。   By sandwiching the conductor plate by the spring supported by the holding hole of each contact, the contact between the contact and the conductor plate during conduction and the separation between the contact and the conductor plate during interruption can be easily realized. In addition, since the spring is inserted into the holding hole provided in the contact and the spring is supported by the contact, it is possible to prevent the spring from being damaged by an arc generated at the time of interruption.

また、接点間に介在される導体板は複数としてもよい。導体板を複数とすることで、遮断時に接点間が複数の導体板によって分断されることになり、各接点と導体板の間ならびに各導体板の間において遮断電圧を分圧してアークの発生を抑制し、短時間での遮断を実現することができる。   Further, a plurality of conductor plates may be interposed between the contacts. By using a plurality of conductor plates, the contacts are separated by the plurality of conductor plates at the time of breaking, and the breaking voltage is divided between each contact and the conductor plate and between the conductor plates to suppress the occurrence of an arc, and The interruption in time can be realized.

複数の導体板を用いる場合、導体板同士の間には、通常、固定電極を介在させれば良い。この固定電極が介在された導体板同士の間にも絶縁性の弾性材を介在させることで、接点を開いた際、導体板同士間の遮断を容易に実現することができる。   When a plurality of conductor plates are used, a fixed electrode may usually be interposed between the conductor plates. By interposing an insulating elastic material also between the conductor plates with the fixed electrode interposed therebetween, it is possible to easily realize the cutoff between the conductor plates when the contact is opened.

また、遮断時、前記各接点と導体板との間に生じるアークを磁界により歪曲させる磁石を具えることが望ましい。遮断する際に、接点と導体板との間にアークが発生するが、このアークを磁石によるローレンツ力で外側に引き伸ばすことによりアーク消弧時間を短縮する。   In addition, it is desirable to provide a magnet for distorting an arc generated between each of the contacts and the conductor plate by a magnetic field at the time of interruption. At the time of interruption, an arc is generated between the contact and the conductor plate, and this arc is extended outward by Lorentz force by a magnet to shorten the arc extinguishing time.

ここで、このアークの経路を導体板で遮断することにより、アークの移動距離をかせいだり、導体板の放熱効果を利用したりすることでアーク消弧時間をさらに短縮することができる。特に、前記磁石は、各接点と導体板の間から外側にアークを引き出すように構成・配置されたものが好適である。一般に、導体板は予めアークの経路に固定設置しておくことが望ましい。   Here, the arc path is interrupted by the conductor plate, thereby increasing the moving distance of the arc or utilizing the heat radiation effect of the conductor plate to further reduce the arc extinguishing time. In particular, it is preferable that the magnet is constructed and arranged so as to draw an arc outward from between each contact and the conductor plate. In general, it is desirable that the conductor plate be fixed and installed in the arc path in advance.

また、磁石を用いてアークを磁界により歪曲させる場合、導体板を、導体部と、この導体部の外周囲に設けられる絶縁部とを具える構成にすることが好ましい。導体部と絶縁部を具える導体板は、固定設置しておき、前記接点間が閉じた状態において接点を前記導体部に接触させ、前記接点間が開いた状態において磁石によりアークを絶縁部に向けて歪曲させるようにする。   Further, when the arc is distorted by a magnetic field using a magnet, it is preferable that the conductor plate be configured to include a conductor portion and an insulating portion provided around the conductor portion. A conductor plate having a conductor portion and an insulating portion is fixedly installed, and the contacts are brought into contact with the conductor portion in a state where the contacts are closed, and an arc is applied to the insulating portion by a magnet in a state where the contacts are open. To be distorted.

さらに、本発明は、接点を開閉すると共に、接点間に導体部と絶縁部とが並列された導体板を往復運動させることでも上記の目的を達成することができる。   Furthermore, the present invention can achieve the above object by opening and closing the contacts and reciprocating a conductor plate having a conductor portion and an insulating portion arranged in parallel between the contacts.

すなわち、本発明直流リレーを、互いに開閉する一対の可動接点と、導体部と絶縁部とが一体になった導体板と、前記接点間が閉じた状態において接点間に前記導体部を介在させ、前記接点間が開いた状態において接点間に絶縁部を介在させる導体板の駆動源とを具える構成とする。   That is, the DC relay of the present invention, a pair of movable contacts that open and close each other, a conductor plate in which a conductor and an insulating portion are integrated, and the conductor is interposed between the contacts in a state where the contacts are closed, A drive source for a conductor plate having an insulating portion interposed between the contacts when the contacts are open.

上記の構成により、両接点間に導体板の導体部を挟み込むことで接点間の導通をとる。また、両接点間を開くことで遮断を行う。その際、開いた接点間に導体板の絶縁部を介在させることでアークを遮断する。このように、接点の開閉駆動と導体板の挿脱駆動の相互作用により、簡易な構成にて確実に遮断を行うことができる。   With the configuration described above, conduction between the contacts is achieved by sandwiching the conductor of the conductor plate between the two contacts. In addition, disconnection is performed by opening between both contacts. At this time, the arc is interrupted by interposing the insulating portion of the conductor plate between the opened contacts. As described above, the interaction between the opening / closing drive of the contact and the insertion / removal drive of the conductor plate enables reliable shutoff with a simple configuration.

この場合も、両接点間を開いた際、導体部の片面と一方の接点との間および導体部の他面と他方の接点との間の2箇所の直列接点構造となるため、遮断時に導体板の片面側と他面側で遮断電圧を分圧してアークの発生を抑制し、短時間で遮断を実現することができる。また、気密構造が不要で、安価に製造することができる。   Also in this case, when both contacts are opened, two series contact structures are provided between one surface of the conductor portion and one contact and between the other surface of the conductor portion and the other contact. The breaking voltage is divided on one side and the other side of the plate to suppress the occurrence of arc, and the breaking can be realized in a short time. Further, an airtight structure is not required, and the device can be manufactured at low cost.

さらに、両接点間が所定の距離になった場合、一方の接点と導体部の間および他方の接点と導体部の間にアークが発生するが、このアークの経路を絶縁部で遮断することにより、アークの移動距離をかせいだり、絶縁部の放熱効果を利用したりすることでアーク消弧時間を短縮する。   Further, when a predetermined distance is established between the two contacts, an arc is generated between one contact and the conductor and between the other contact and the conductor, and the arc path is cut off by the insulating part. The arc extinguishing time is shortened by increasing the moving distance of the arc or utilizing the heat radiation effect of the insulating part.

なお、両接点のうち、一方の接点を板ばねなどで構成して常時両接点が閉じた状態にしておき、両接点間に絶縁板を圧入することも考えられる。その場合、絶縁板の挿入容易性を考慮すると、両接点の接触面積を大きくとることができず、その結果接触抵抗が大きくなり耐アーク性が低下する。また、上記のように接点間に絶縁板を強制挿入する場合、絶縁板と接点間の摩耗によりリレーとしての機械的寿命が短くなる。さらには、接点間への強制挿入に耐えるだけの高強度・高硬度の絶縁板が必要であり、絶縁板の材質が制約される上、高コストになりがちである。   It is also conceivable that one of the two contacts is formed of a leaf spring or the like so that the two contacts are always kept in a closed state, and an insulating plate is press-fitted between the two contacts. In this case, in consideration of the ease of insertion of the insulating plate, the contact area between the two contacts cannot be increased, and as a result, the contact resistance increases and the arc resistance decreases. Further, when the insulating plate is forcibly inserted between the contacts as described above, the mechanical life of the relay is shortened due to wear between the insulating plate and the contacts. Further, an insulating plate having high strength and high hardness enough to withstand forced insertion between the contacts is required, and the material of the insulating plate is restricted, and the cost tends to be high.

しかし、本発明のように両接点間を開く構成とする場合には、接点間に絶縁板を強制挿入する必要がなく、接点同士の接触面積を大きくとって耐アーク性を向上することができる。また、接点と絶縁部が非接触であるため、絶縁部自体の材料選択の幅が広がり、かつリレーとしての機械的寿命も大幅に伸ばすことができる。   However, in the case of a configuration in which both contacts are opened as in the present invention, it is not necessary to forcibly insert an insulating plate between the contacts, and the contact area between the contacts can be increased to improve the arc resistance. . In addition, since the contact and the insulating portion are not in contact with each other, the range of material selection for the insulating portion itself can be widened, and the mechanical life of the relay can be significantly extended.

ここで、接点の開閉動作、導体板の挿脱動作には、種々の駆動源を利用できる。回転系駆動源ではモータが、直動系駆動源ではソレノイドやシリンダが利用できる。回転系駆動源では回転運動を往復運動に変換する変換機構を介して、直動系駆動源では直接接点や導体板に連結して駆動する。いずれも電気的に駆動して、接点の開閉と導体板の挿脱は互いに非接触となるようタイミングをとる。   Here, various driving sources can be used for the opening / closing operation of the contacts and the insertion / removal operation of the conductor plate. A motor can be used for the rotary drive source, and a solenoid or cylinder can be used for the linear drive source. In the case of a rotary drive source, a direct drive drive source is connected directly to a contact or a conductive plate via a conversion mechanism for converting a rotary motion into a reciprocating motion. Both are electrically driven, and the timing for opening and closing the contact and inserting and removing the conductor plate is set so that they are not in contact with each other.

このタイミングをとる具体的な手段としては、電気的なタイミング調整手段と、機械的なタイミング調整手段が考えられる。   As a concrete means for taking this timing, an electric timing adjusting means and a mechanical timing adjusting means can be considered.

まず、電気的なタイミング調整手段としては、タイマー手段を用いたものが挙げられる。つまり、両接点を開く駆動信号を出力後、一定時間経過後に絶縁部を両接点間に挿入する駆動信号を出力し、絶縁部を両接点間から引き抜く駆動信号を出力後、両接点を近接する駆動信号を出力するように調整して、接点と絶縁部とを非接触に保つ。   First, as the electrical timing adjusting means, a means using a timer means can be mentioned. In other words, after outputting a drive signal for opening both contacts, after a lapse of a certain time, a drive signal for inserting the insulating portion between both contacts is output, and after outputting a drive signal for pulling out the insulating portion from between both contacts, the two contacts are brought close to each other Adjustment is made so as to output a drive signal, and the contact and the insulating portion are kept in non-contact.

別の電気的なタイミング調整手段としては、CR回路を用いたものが挙げられる。つまり、抵抗とコンデンサを用い、コンデンサの充電時間を利用することで、接点開閉の駆動源または導体板挿脱の駆動源のうち、一方が遅れて動作するように調整する。それにより、両接点を開いた後、導体部を両接点間から引き抜いて絶縁部を両接点間に挿入し、開いた両接点間から絶縁部を引き抜いて導体部を両接点間に挿入した後、両接点が導体部を挟み込むように接点と導体板の駆動タイミングを制御する。   As another electrical timing adjusting means, there is one using a CR circuit. That is, by using the resistor and the capacitor and utilizing the charging time of the capacitor, one of the driving source for opening and closing the contact and the driving source for inserting and removing the conductor plate is adjusted to operate with a delay. Thereby, after opening both contacts, the conductor part is pulled out from between both contacts, the insulating part is inserted between both contacts, the insulating part is pulled out from between both opened contacts, and the conductor part is inserted between both contacts. The drive timing of the contacts and the conductor plate is controlled such that the two contacts sandwich the conductor.

一方、機械的なタイミング調整手段としては、テーパー面を利用したものが挙げられる。つまり、前記導体板の往復駆動に連動されるテーパー面と、前記テーパー面に接触して両可動接点間を開閉する開閉機構とを具える。この構成により、導体板の往復運動に伴ってテーパー面が連動されて可動接点間が開閉され、絶縁部を接点間に挿入すると接点間が開き、導体部を接点間に挿入すると接点間が閉じるように動作して、絶縁部が接点と摺接することを抑制できる。   On the other hand, as a mechanical timing adjusting means, there is a means using a tapered surface. In other words, it has a tapered surface that is interlocked with the reciprocating drive of the conductor plate, and an opening and closing mechanism that contacts the tapered surface and opens and closes between the two movable contacts. With this configuration, the tapered surface is interlocked with the reciprocating motion of the conductor plate to open and close the movable contacts, and when the insulating portion is inserted between the contacts, the contacts open, and when the conductor is inserted between the contacts, the contacts close. By operating as described above, it is possible to suppress the insulating portion from slidingly contacting the contact.

上記のテーパーを用いた場合、接点の開閉は、駆動源を用いて行っても良いが、駆動源を用いることなくテーパー面と開閉機構との組み合わせにより行っても構わない。後者の場合、駆動源は導体板の往復運動用のみとなり、きわめて簡潔な構成のリレーを実現できる。   When the above-mentioned taper is used, the opening and closing of the contact may be performed using a driving source, but may be performed by a combination of a tapered surface and an opening and closing mechanism without using a driving source. In the latter case, the driving source is only for the reciprocating motion of the conductor plate, and a relay with a very simple configuration can be realized.

導体部と絶縁部を有する導体板を用いるリレーの場合、接点は、ブロック状、柱状、棒状などの金属体が好ましく、双方の接点を可動接点とする。   In the case of a relay using a conductor plate having a conductor portion and an insulating portion, the contact is preferably a metal body such as a block, a column, or a bar, and both contacts are movable contacts.

導体板を構成する導体部は、導電性に優れた銅、銅合金、アルミニウム、アルミニウム合金及びリレー、ブレーカー用の接点材料が好適である。   For the conductor part constituting the conductor plate, copper, copper alloy, aluminum, aluminum alloy, and contact materials for relays and breakers having excellent conductivity are suitable.

絶縁部に用いる絶縁材料としては、プラスチック、セラミックおよびダイヤモンドから選択される少なくとも一種が好ましい。プラスチックとしては、電気絶縁材料として一般的なものが利用できる。例えば、エポキシ樹脂、ポリアミド樹脂、フッ素樹脂、シリコン樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニルなどが好適である。セラミックとしては、周期率表IVa、Va、VIa族元素、AlおよびSiの炭化物、窒化物、硼化物、酸化物およびこれらの固溶体から選択される少なくとも一種が好適である。より具体的には、WC、TiC、TiN、TiCN、TiB2、TiBN、ZrC、ZrN、SiN、AlN、VC、TaC、HfC、Mo2C、SiO、SiO2、Al2O3等がある。その他、石英ガラス、ソーダ石灰ガラス、ホウケイ酸ガラス、鉛ガラス、結晶化ガラスなどのガラス状物質も利用できる。ダイヤモンドは単結晶・多結晶、天然・合成のいずれでも良い。 The insulating material used for the insulating portion is preferably at least one selected from plastic, ceramic, and diamond. As the plastic, a general plastic as an electric insulating material can be used. For example, epoxy resin, polyamide resin, fluorine resin, silicone resin, polyethylene, polypropylene, polyvinyl chloride, and the like are preferable. As the ceramic, at least one selected from the group consisting of elements from the periodic table IVa, Va, and VIa, carbides, nitrides, borides, oxides of Al and Si, and solid solutions thereof is preferable. More specifically, there is a WC, TiC, TiN, TiCN, TiB 2, TiBN, ZrC, ZrN, SiN, AlN, VC, TaC, HfC, Mo 2 C, SiO, SiO 2, Al 2 O 3 or the like. In addition, glassy substances such as quartz glass, soda-lime glass, borosilicate glass, lead glass, and crystallized glass can be used. Diamond may be single crystal or polycrystal, natural or synthetic.

これらの材料のうち、プラスチックは押し出しによりシート状に成型したり、基板上に静電塗装、粉体塗装などの方法によりプラスチックを被覆し、薄膜状の絶縁部を形成することで得られる。また、セラミックやダイヤモンド薄膜は、気相合成法により形成することが好適である。例えば、熱フィラメント法、マイクロ波プラズマ法、高周波プラズマ法、アーク放電プラズマジェット法などのCVD(Chemical vapor deposition)法によりダイヤモンド膜を形成できる。   Among these materials, the plastic can be obtained by molding into a sheet by extrusion, or by coating the substrate with the plastic by a method such as electrostatic coating or powder coating to form a thin-film insulating portion. Further, the ceramic or diamond thin film is preferably formed by a vapor phase synthesis method. For example, a diamond film can be formed by a CVD (Chemical vapor deposition) method such as a hot filament method, a microwave plasma method, a high-frequency plasma method, and an arc discharge plasma jet method.

導体部と絶縁部とは、導体部の外周に絶縁部が設けられ、または、両者が並列されていれば一体化されていても良いし、単に並んでいるだけでも良い。例えば、前者としては導体部と絶縁部との境界に段差が生じないように接合することが挙げられる。また、後者としては、導体部と絶縁部とを、両者の境界に隙間が生じないように端部を合わせて、その側縁を枠で取り囲んで、導体部と絶縁部との位置関係を保持することが挙げられる。   The conductor portion and the insulation portion may be provided with an insulation portion on the outer periphery of the conductor portion, or may be integrated if both are arranged in parallel, or may be simply arranged. For example, the former method includes joining such that a step does not occur at the boundary between the conductor portion and the insulating portion. As the latter, the conductor and the insulating part are aligned so that no gap is formed at the boundary between them, and the side edges are surrounded by a frame to maintain the positional relationship between the conductor and the insulating part. It is mentioned.

また、本発明のリレーは、接点対を複数具え、これら接点対を直列に配置することが好ましい。一つの接点にかかる電圧を下げることでアーク電流による接点の損傷を抑制することができる。   Further, the relay of the present invention preferably includes a plurality of contact pairs, and these contact pairs are preferably arranged in series. By reducing the voltage applied to one contact, damage to the contact due to arc current can be suppressed.

また、接点対を複数具え、これら接点対を並列に配置することも好ましい。一つの接点に流れる電流を下げることでアーク電流による接点の損傷を抑制することができる。   It is also preferable to provide a plurality of contact pairs and arrange these contact pairs in parallel. By reducing the current flowing through one contact, damage to the contact due to the arc current can be suppressed.

さらに、接点の接触面および導体板における接点との接触面は、Snを1〜9質量%含み、Inを1〜9質量%含む化学組成のAg合金からなり、表面部の第一層と内部の第二層とを有し、第一層のマイクロビッカース硬度が190以上、第二層のマイクロビッカース硬度が130以下であり、第一層の厚みが、10〜360μmの範囲内にあるように形成することが好ましい。   Further, the contact surface of the contact and the contact surface of the conductor plate with the contact are made of an Ag alloy having a chemical composition containing 1 to 9% by mass of Sn and 1 to 9% by mass of In. Having a second layer, the micro Vickers hardness of the first layer is 190 or more, the micro Vickers hardness of the second layer is 130 or less, and the thickness of the first layer is in the range of 10 to 360 μm. Preferably, it is formed.

Snの含有量を1〜9質量%とするのは、1質量%未満では、接点の耐溶着特性が低下し、9質量%を超えると接点の温度特性が低下するからである。好ましくは、2〜7質量%である。   The reason why the content of Sn is set to 1 to 9% by mass is that when the content is less than 1% by mass, the welding resistance of the contact decreases, and when the content exceeds 9% by mass, the temperature characteristic of the contact deteriorates. Preferably, it is 2 to 7% by mass.

ここで、耐溶着特性とは、接点が切れない状態、特に接点がくっついたまま離れない溶着の起こりにくさをいう。また、温度特性とは、通電時の接点の温度上昇の度合いをいい、温度特性が良いとは、通電により接点の温度が上昇しにくく、リレーに接続されるケーブルや機器に熱的な影響を与えにくいことをいう。   Here, the welding resistance property refers to a state in which the contact cannot be broken, particularly, the occurrence of welding in which the contact does not separate from the contact. The temperature characteristics refer to the degree of temperature rise of the contacts when energized, and the good temperature characteristics mean that the temperature of the contacts is unlikely to rise due to energization, and the thermal effects on cables and equipment connected to the relay It is difficult to give.

また、Inの含有量を1〜9質量%とするのは、この範囲外の含有量の場合には接点の温度特性が低下するからであり、さらに、9質量%を超えると、Snの含有量にもよるが、耐溶着特性が低下するからである。好ましくは、3〜7質量%である。   The reason why the content of In is set to 1 to 9% by mass is that if the content is out of this range, the temperature characteristic of the contact point is deteriorated. This is because the welding resistance is reduced depending on the amount. Preferably, it is 3 to 7% by mass.

第一層の硬度(通常5g荷重負荷)をマイクロビッカース硬度で190以上にするのは、このレベル未満になると、耐溶着特性や温度特性が低下するからであり、第二層の硬度をマイクロビッカース硬度で130以下にするのは、このレベルを超えると、接点が脆弱化して耐摩耗性が低下するからである。   The reason why the hardness of the first layer (usually a load of 5 g) is 190 or more in terms of micro Vickers hardness is that if the hardness is less than this level, the welding resistance and the temperature characteristics are reduced. The reason for setting the hardness to 130 or less is that if the hardness exceeds this level, the contacts become brittle and the wear resistance decreases.

第一層の硬度は240以上、第二層のそれは120以下であるのが望ましい。なお、本発明での硬度は、接点の表面に垂直な断面上の第一層および第二層のそれぞれの域内における任意の地点でマイクロビッカース硬度にて確認したものである。本発明の接点では、第一層、第二層それぞれの層内に硬度分布があっても構わない。   Preferably, the hardness of the first layer is 240 or more and that of the second layer is 120 or less. In addition, the hardness in the present invention is determined by micro Vickers hardness at an arbitrary point in each of the first layer and the second layer on a cross section perpendicular to the surface of the contact. In the contact of the present invention, a hardness distribution may be present in each of the first layer and the second layer.

また、通常第一層から第二層にかけて境目に硬度落差(マイクロビッカース硬度で60以上)があり、この境目には両層の中間の硬度を有する(すなわちその硬度が、第一層の下限硬度未満かつ第二層の上限硬度を超える範囲内にある)領域(以下中間部という。)がある。   Also, there is usually a hardness drop (micro Vickers hardness of 60 or more) at the boundary between the first layer and the second layer, and the boundary has an intermediate hardness between the two layers (that is, the hardness is the lower limit hardness of the first layer). (Hereinafter, referred to as an intermediate portion).

第一層の厚みは、10〜360μmとする。下限未満では、耐溶着特性や温度特性が低下し、上限を超えると接点の温度特性が低下するからである。好ましくは30〜120μmである。また、第一層と第二層を有する接触面は、中間部のあるものも含まれるが、その場合の中間部の厚みは200μm以下であるのが望ましい。200μmを超えると接点の温度特性が低下しやすくなる。好ましくは100μm以下である。   The thickness of the first layer is 10 to 360 μm. If the amount is less than the lower limit, the welding resistance characteristics and the temperature characteristics decrease, and if the amount exceeds the upper limit, the temperature characteristics of the contact point deteriorate. Preferably it is 30 to 120 μm. In addition, the contact surface having the first layer and the second layer includes a contact surface having an intermediate portion. In this case, the thickness of the intermediate portion is desirably 200 μm or less. If it exceeds 200 μm, the temperature characteristics of the contact are likely to be reduced. Preferably it is 100 μm or less.

前記接触面には、上記基本成分に加え、さらに、Sb、Ca、Bi、Ni、Co、ZnおよびPbの群から選ばれた少なくとも1種の元素が、従成分として含まれていてもよい。通常、これらの成分の大部分は、Agマトリックス中に化合物、特に酸化物の形態で分散される。   The contact surface may further include at least one element selected from the group consisting of Sb, Ca, Bi, Ni, Co, Zn, and Pb as a subsidiary component in addition to the basic components. Usually, most of these components are dispersed in the form of compounds, especially oxides, in the Ag matrix.

但し、個々の成分によって望ましい分散量範囲が異なる。例えば、いずれも元素換算された質量%単位で0.05〜2(Sb)、0.03〜0.3(Ca)、0.01〜1(Bi)、0.02〜1.5(Ni)、0.02〜0.5(Co)、0.02〜8.5(Zn)、0.05〜5(Pb)である。なお、括弧内は対象元素である。以上の各成分種において、その量が上記の範囲外になると、直流リレーの種類によっては温度特性が低下することがあり、特に上限を超えるとリレーの種類によっては同時に耐溶着特性も低下することがある。   However, the desired dispersion range varies depending on the individual components. For example, 0.05 to 2 (Sb), 0.03 to 0.3 (Ca), 0.01 to 1 (Bi), 0.02 to 1.5 (Ni), 0.02 to 0.5 (Co), 0.02 to 8.5 in mass% units converted to elements. (Zn), 0.05 to 5 (Pb). The elements in parentheses are the target elements. In each of the above component types, if the amount is outside the above range, the temperature characteristics may decrease depending on the type of DC relay, and particularly when the amount exceeds the upper limit, the welding resistance characteristics also decrease depending on the type of relay. There is.

通常は、以上の従成分が接点の性能に若干影響を及ぼすが、これ以外の成分としては、例えば以下のものが挙げられる。これらはいずれも本発明の目的の範囲内で微量に含まれても構わない。なお成分によって望ましい含有量が異なるが、括弧内数値のうち元素記号で表示されたものは、元素換算された質量%単位で、分子式で表示のものは、同分子換算された質量%単位で表したその許容上限値である。Ce(5)、Li(5)、Cr(5)、Sr(5)、Ti(5)、Te(5)、Mn(5)、AlF3(5)、CrF3(5)およびCaF2(5)、Ge(3)およびGa(3)、Si(0.5)、Fe(0.1)およびMg(0.1)。 Usually, the above-mentioned auxiliary components slightly affect the performance of the contact, but other components include, for example, the following. Any of these may be included in trace amounts within the scope of the present invention. Although the desired content varies depending on the component, of the values in parentheses, those indicated by element symbols are expressed in units of mass% converted to elements, and those indicated by molecular formulas are expressed in units of mass% converted to the same molecule. This is the allowable upper limit. Ce (5), Li (5 ), Cr (5), Sr (5), Ti (5), Te (5), Mn (5), AlF 3 (5), CrF 3 (5) and CaF 2 ( 5), Ge (3) and Ga (3), Si (0.5), Fe (0.1) and Mg (0.1).

第一層および第二層を有する接触面を作製する方法としては、溶解・鋳造法、粉末冶金法などが挙げられる。   Examples of a method for producing a contact surface having the first layer and the second layer include a melting / casting method and a powder metallurgy method.

例えば、溶解・鋳造法では、以下の手順がある。まず第一層および第二層それぞれの化学組成となるように溶解・鋳造されたインゴットを作り、これらを粗く圧延した後、二種の圧延材を熱間圧着する。その際、またはその後、必要により上記した純Agなどの薄い接続層を圧着する。   For example, in the melting and casting method, the following procedures are available. First, an ingot melted and cast so as to have a chemical composition of each of the first layer and the second layer is produced, and these are roughly rolled, and then two types of rolled materials are hot pressed. At that time or thereafter, a thin connection layer such as the above-described pure Ag is pressure-bonded as necessary.

これをさらに圧延して所定の厚みの板状に形成した後、打ち抜き、またはさらに成形し、最終形状に近いサイズのAg合金素材とし、さらに、この素材を内部酸化(後酸化法)してSn、Inなどの金属成分を酸化物に転換する。   This is further rolled to form a plate having a predetermined thickness, and then punched or further formed into an Ag alloy material having a size close to the final shape, and further, the material is internally oxidized (post-oxidation method) to form a Sn alloy. Converts metal components such as In and In into oxides.

なお、溶解・鋳造に先立ち成分元素の酸化物以外の化合物を含ませることもできる。また、必要に応じて、圧延以降に適宜熱処理や形状を調整する工程などを入れる。この場合、熱処理条件の工夫によって、各層の微細組織を意識的に制御して材料特性やそのレベルなどを変えることができる。   Prior to melting and casting, compounds other than oxides of the component elements may be included. In addition, if necessary, a step of adjusting the shape or heat treatment after the rolling is appropriately performed. In this case, by devising heat treatment conditions, it is possible to consciously control the microstructure of each layer and change the material characteristics and the level thereof.

また、粉末冶金法で接触面を作る場合は、例えば、予めSnやInなどの粉末とAgの粉末とを二種の所定組成にて配合・混合した後、熱処理して内部酸化(前酸化法)させ、得られた二種の粉末を型内に積層・充填して圧縮成形しプリフォームとする。なお、SnやInなどの粉末とAgの粉末とは、他の化合物も一緒に混合してもよい。   When the contact surface is formed by powder metallurgy, for example, a powder of Sn or In and a powder of Ag are blended and mixed in two predetermined compositions in advance, and then heat-treated for internal oxidation (pre-oxidation method). ), And the obtained two kinds of powders are laminated and filled in a mold, and compression molded to obtain a preform. The powder of Sn or In and the powder of Ag may be mixed with other compounds.

そして、このプリフォームには熱間押し出し、熱間・冷間ロール圧延、熱間鍛造など各種の塑性加工が適用できる。さらに上記した鋳造法と同様に、必要に応じて圧延以降に熱処理や形状を調整する工程などを入れる。熱処理条件の工夫によって各層の所望の特性制御が可能になる。   Various plastic workings such as hot extrusion, hot / cold roll rolling, and hot forging can be applied to the preform. Further, similarly to the above-mentioned casting method, a step of adjusting the heat treatment and the shape after rolling is added as necessary. By controlling the heat treatment conditions, desired characteristics of each layer can be controlled.

また、第二層の素材のみを上記に準じた溶解・鋳造法や粉末冶金法の手順で作成した後、第一層を、溶射、CVDなどによる厚膜形成、スクリーン印刷などによる厚膜印刷、塗布後焼付けなど様々な手段によって形成してもよい。さらに、第一層を構成する合金板と第二層を構成する合金板との接合には、例えば熱間静水圧成形法による拡散接合、熱間押し出しなど種々の手段が適用できる。また、熱処理を施すことによって、各層の微細組織を意識的に制御して、所望の特性を得ることもできる。   Also, after preparing only the material of the second layer by the procedure of melting and casting method or powder metallurgy method according to the above, the first layer, thermal spraying, thick film formation by CVD, etc., thick film printing by screen printing, etc. It may be formed by various means such as baking after application. Further, various means such as diffusion bonding by hot isostatic pressing and hot extrusion can be applied to the joining of the alloy plate constituting the first layer and the alloy plate constituting the second layer. In addition, by performing the heat treatment, the fine structure of each layer can be consciously controlled to obtain desired characteristics.

さらに、本発明リレーでは、接触面を形成するAg合金素材を上記の条件の範囲内にあり、第一層と第二層とが同じ化学組成であるものも含まれる。第一層と第二層とを同じ化学組成にする場合、後述する手段により両層の硬度レベルを異なるようにする。   Further, in the relay of the present invention, the Ag alloy material forming the contact surface is within the range of the above-mentioned conditions, and the one in which the first layer and the second layer have the same chemical composition is also included. When the first layer and the second layer have the same chemical composition, the hardness levels of both layers are made different by means described later.

例えば第一層だけを急熱・急冷し、第一層の残留応力を第二層のそれより大きくする方法、表面の第一層だけにショットブラスト加工を施して加工硬化する方法がある。   For example, there is a method in which only the first layer is rapidly heated / quenched so that the residual stress in the first layer is larger than that in the second layer, and a method in which only the first layer on the surface is shot-blasted and hardened.

また、Ag合金板に熱間圧延や冷間圧延に加え熱処理を施す、いわゆるサーモメカニカルプロセッシング(熱加工処理)を行った後、内部酸化を行って、第一層に第二層より微細な針状の酸化物粒子を析出させ、表面の硬度を高める方法がある。また、第一層および第二層のAg合金板を圧延加工や熱間圧着する際に第一層と第二層の鍛錬加工比を変えて行う方法もある。   In addition, after performing so-called thermomechanical processing (thermal processing) on the Ag alloy plate in addition to hot rolling and cold rolling, and performing heat treatment, internal oxidation is performed, and a finer needle is formed on the first layer than on the second layer. There is a method of precipitating oxide particles in a shape and increasing the hardness of the surface. Also, there is a method in which when the Ag alloy sheets of the first layer and the second layer are rolled or hot pressed, the forging ratio of the first layer and the second layer is changed.

さらに、接触面の素材は、上記条件の範囲内にあり、しかも第一層中のSnの含有量が第二層のそれと同じか、またはそれよりも多いものも含まれる。これによって、第二層の硬度よりも第一層の硬度の方が、ほぼ確実に高くなる。   Further, the material of the contact surface is within the range of the above-mentioned conditions, and further includes those in which the content of Sn in the first layer is the same as or higher than that of the second layer. Thereby, the hardness of the first layer is almost certainly higher than the hardness of the second layer.

前記接触面は、溶解・鋳造法や、粉末冶金法などにより形成するが、このとき、第一層および第二層を内部酸化させることが好ましい。内部酸化法には、後酸化法と前酸化法とがある。後酸化法とは、合金の状態で最終接点形状に仕上げるか、その近くまで成形した後に、内部酸化をする方法である。前酸化法とは、合金の粉末または粒を内部酸化させておいて、これらを成形、圧縮・焼結する方法である。   The contact surface is formed by a melting / casting method, a powder metallurgy method, or the like. At this time, it is preferable that the first layer and the second layer are internally oxidized. The internal oxidation method includes a post-oxidation method and a pre-oxidation method. The post-oxidation method is a method of performing internal oxidation after finishing the alloy to a final contact shape or forming the alloy close to the final contact shape. The pre-oxidation method is a method in which powder or grains of an alloy are internally oxidized, and then molded, compressed and sintered.

接点間に導体板を挟むことにより、接点開放構造のリレーと同程度の大きさで導体板右面と左面で直列2接点構造をなすことができる。その結果、遮断時に導体板の右面と左面で遮断電圧を分圧しアークの発生を抑制でき、短時間での遮断を実現することができる。   By sandwiching the conductor plate between the contacts, it is possible to form a series two-contact structure on the right and left sides of the conductor plate with the same size as a relay with an open contact structure. As a result, the breaking voltage can be divided between the right and left surfaces of the conductor plate at the time of breaking, the occurrence of arc can be suppressed, and the breaking can be achieved in a short time.

両端の接点と金属板の間に絶縁性弾性材を介在させる場合には、容易に導体板と可動接点との離隔をとることができる。特に、バネ定数が同じバネを用いて導体板を挟むことにより、遮断時に両可動接点と導体板との間隔が等しくなり、均等に分圧して短時間に遮断することができる。しかも、絶縁弾性材をアークの影響の少ない接点の端面に設ける保持穴に支持させる場合には、接点の離隔時に発生するアークによる損傷を抑えることができる。   When an insulating elastic material is interposed between the contact at both ends and the metal plate, the conductor plate and the movable contact can be easily separated. In particular, when the conductor plate is sandwiched between springs having the same spring constant, the distance between the two movable contacts and the conductor plate becomes equal at the time of interruption, so that the pressure can be equally divided and interruption can be performed in a short time. In addition, in the case where the insulating elastic material is supported by the holding hole provided on the end face of the contact where the influence of the arc is small, it is possible to suppress damage caused by the arc generated when the contact is separated.

両接点間に金属板を複数枚挟む構成とする場合には、更なる直列複数接点を実現することができ、複数に電圧を分圧して短時間に遮断することができる。   In the case where a plurality of metal plates are sandwiched between the two contacts, a further plurality of serial contacts can be realized, and the voltage can be divided into a plurality of pieces and cut off in a short time.

永久磁石を接点近傍に設置し、遮断時発生したアークを周囲に分散させるようにすれば、短時間での遮断を実現することができる。   If a permanent magnet is installed near the contact to disperse the arc generated at the time of interruption, the interruption can be realized in a short time.

このとき、導体板を、導体部と、この導体部の外周囲に設けられる絶縁部とを具える構成にすれば、導体部において遮断電圧を分圧してアークの発生を抑制し、さらにアークが発生しても、アークは磁界により引き伸ばされながら絶縁部で抵抗を受けることになる。その結果、アーク消弧時間をさらに短縮することができる。   At this time, if the conductor plate is configured to include a conductor portion and an insulating portion provided on the outer periphery of the conductor portion, the breaking voltage is divided in the conductor portion to suppress the occurrence of an arc, and furthermore, the arc is generated. Even if it occurs, the arc will receive resistance in the insulation while being stretched by the magnetic field. As a result, the arc extinguishing time can be further reduced.

また、導体板を導体部と絶縁部とを並列させた構成とする場合には、接点の開閉と導体部および絶縁部の移行により、簡易な構成にて確実な遮断を行うことができる。特に、気密構造やアークを引き伸ばすスペースが不要で、安価かつコンパクトに製造することができる。   Further, in the case where the conductor plate has a configuration in which the conductor portion and the insulation portion are arranged in parallel, reliable shutoff can be performed with a simple configuration by opening and closing the contact and shifting the conductor portion and the insulation portion. In particular, an airtight structure or a space for extending the arc is not required, and the device can be manufactured inexpensively and compactly.

この構成の場合、両可動接点間を開いた際は、導体部の片面と一方の接点との間および導体部の他面と他方の接点との間の2箇所の直列接点構造となるため、遮断時に導体板の片面側と他面側で遮断電圧を分圧してアークの発生を抑制し、短時間で遮断を実現することができる。   In the case of this configuration, when the two movable contacts are opened, two series contact structures are provided between one surface of the conductor and one contact and between the other surface of the conductor and the other contact. At the time of interruption, the interruption voltage is divided on one side and the other side of the conductor plate to suppress occurrence of an arc, and interruption can be realized in a short time.

さらに、接点開放後に絶縁部を挿入するので、接点と絶縁部は非接触となり、挿入容易性を考慮する必要がなく、両接点間の接点面積を大きくして、耐アーク性を向上できる。しかも、高硬度・低摩擦係数の絶縁部を使う必要がなく低コストのリレーを実現できる。   Furthermore, since the insulating portion is inserted after the contact is opened, the contact and the insulating portion are not in contact with each other, and there is no need to consider the ease of insertion, so that the contact area between the two contacts can be increased and the arc resistance can be improved. Moreover, it is not necessary to use an insulating portion having a high hardness and a low friction coefficient, and a low-cost relay can be realized.

接点対を複数具え、これら接点対を直列に配置する場合には、更なる直列複数接点を作り出し、電圧を分圧することでアークの発生を抑制して、短時間での遮断を実現することができる。   When a plurality of contact pairs are provided and these contact pairs are arranged in series, a further series of multiple contacts can be created, and the voltage can be divided to suppress the occurrence of arcs and realize short-time interruption. it can.

接点対を複数具え、これら接点対を並列に配置する場合には、電流を分流することができアークの発生を抑制し、短時間で遮断を実現することができる。   When a plurality of contact pairs are provided and these contact pairs are arranged in parallel, current can be shunted, arc generation can be suppressed, and interruption can be realized in a short time.

さらに、接点の接触面および導体板における接点との接触面を耐溶着特性に優れた材料で形成する場合には、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Furthermore, if the contact surface of the contact and the contact surface of the conductor plate with the contact are formed of a material having excellent welding resistance, even if a large current flows when the relay is short-circuited, the contact is reliably shut off without welding. be able to.

(第1実施形態)
図1に示す第1実施形態は、本発明リレーの基本構成であり、リレーの概略構成図を示す。本発明リレーは、一対の可動接点10,20ならびに固定された導体板30を具えている。ここでは、両接点10,20に円柱金属ブロックを用い、しかも、可動接点10,20の接触面10a,20aは、Snを1〜9質量%含み、Inを1〜9質量%含む化学組成のAg合金からなり、表面部の第一層と内部の第二層とを有し、第一層のマイクロビッカース硬度が190以上、第二層のマイクロビッカース硬度が130以下であり、第一層の厚みが、10〜360μmの範囲内にある材料で形成している。さらに各接触面10a,20aは、チップ状態で後酸化法により内部酸化させている。例えば、チップを4気圧(405.3kPa)の酸素雰囲気中750℃で170時間保持する。
(1st Embodiment)
The first embodiment shown in FIG. 1 is a basic configuration of the relay of the present invention, and shows a schematic configuration diagram of the relay. The relay of the present invention includes a pair of movable contacts 10, 20 and a fixed conductor plate 30. Here, a cylindrical metal block is used for both contacts 10, 20, and the contact surfaces 10a, 20a of the movable contacts 10, 20 have a chemical composition containing 1 to 9% by mass of Sn and 1 to 9% by mass of In. It is made of an Ag alloy, has a first layer on the surface and a second layer on the inside, the micro Vickers hardness of the first layer is 190 or more, the micro Vickers hardness of the second layer is 130 or less, and the first layer has a micro Vickers hardness of 130 or less. It is formed of a material having a thickness in the range of 10 to 360 μm. Further, the contact surfaces 10a and 20a are internally oxidized in a chip state by a post-oxidation method. For example, the chip is kept at 750 ° C. for 170 hours in an oxygen atmosphere at 4 atm (405.3 kPa).

なお、以下に示す各実施形態も各接点の接触面10a,20aは、第1実施形態と同じ材料で形成している。   In each of the embodiments described below, the contact surfaces 10a and 20a of the respective contacts are formed of the same material as in the first embodiment.

両可動接点10,20は、図示しないソレノイドでその軸方向に往復運動させることで両接点間を開閉する。また、各接点10,20には直流電源(図示せず)が接続されて電流供給が行われ、接点が導体板に接触・離反することで通電・遮断を行う構成としている。   The movable contacts 10, 20 open and close between the two contacts by reciprocating in the axial direction with a solenoid (not shown). Further, a DC power supply (not shown) is connected to each of the contacts 10 and 20 to supply a current, and the contacts are turned on and off by contacting and separating from the conductor plate.

一方、導体板30には厚さ2mmの銅板を用いている。さらに、この銅板の接点との接触面30aは、前記した接点の接触面10a,20aを形成するAg合金と同じAg合金で形成されている。なお、以下に示す各実施形態で用いる導体板(導体部)の接点と接触する接触面も、第1実施形態と同じAg合金で形成している。この銅板は図示しない支持具により固定されている。従って、導体板自体には何らの駆動機構も用いていない。   On the other hand, a copper plate having a thickness of 2 mm is used for the conductor plate 30. Further, the contact surface 30a of the copper plate with the contact is formed of the same Ag alloy as the Ag alloy forming the contact surfaces 10a and 20a of the contact. The contact surface of the conductor plate (conductor portion) used in each of the embodiments described below, which is in contact with the contact, is also formed of the same Ag alloy as in the first embodiment. This copper plate is fixed by a support (not shown). Therefore, no drive mechanism is used for the conductor plate itself.

接点間を閉じている場合、両接点間に導体板30を挟み込むことで導通をとる(図1A)。また、両接点10,20間を開いた際、一方の可動接点と導体板との間、他方の可動接点と導体板との間が離隔されるため、遮断が行われる(図1B)。   When the contacts are closed, conduction is achieved by sandwiching the conductor plate 30 between the contacts (FIG. 1A). In addition, when the two contacts 10 and 20 are opened, the one movable contact and the conductor plate are separated from each other, and the other movable contact and the conductor plate are separated from each other, so that interruption is performed (FIG. 1B).

このように、単に接点間を開くという簡易な構成にて確実に遮断を行うことができる。特に、両接点間を開いた際、一方の可動接点と導体板との間ならびに他方の可動接点と導体板との間の2箇所の直列接点構造となるため、遮断時に導体板30の片面側と他面側とで遮断電圧を分圧してアーク100の発生を抑制し、短時間で遮断を実現することができる。   In this way, it is possible to reliably perform the cutoff with a simple configuration in which the contacts are simply opened. In particular, when both contacts are opened, two series contact structures are provided between one movable contact and the conductor plate and between the other movable contact and the conductor plate. The occurrence of the arc 100 can be suppressed by dividing the breaking voltage between the other side and the other side, and the breaking can be realized in a short time.

また、この構成では、接点周辺を気密構造にする必要やアークを引き伸ばす空間を設ける必要がなく、非常にコンパクトな直流リレーを実現できる。   In addition, in this configuration, it is not necessary to provide an airtight structure around the contact or to provide a space for extending the arc, and a very compact DC relay can be realized.

なお、第1実施形態では両接点を可動接点としたが、一方が可動接点で他方が固定接点としても良い。その場合は、遮断時に導体板を固定接点から離隔させるために、導体板を接点の開閉方向に移動する駆動機構が必要である。   In the first embodiment, the two contacts are movable contacts, but one may be a movable contact and the other may be a fixed contact. In that case, a drive mechanism for moving the conductor plate in the opening and closing direction of the contact is required to separate the conductor plate from the fixed contact at the time of interruption.

さらに、本実施形態では、接点の接触面および導体板における接点との接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Furthermore, in this embodiment, since the contact surface of the contact and the contact surface of the conductor plate with the contact are formed of a material having excellent welding resistance, the contact does not weld even when a large current flows when the relay is short-circuited. Can be reliably shut off.

(第2実施形態)
次に、圧縮ばねを用いた本発明リレーの実施形態について図2に示す第2実施形態に基づいて説明する。図2(A)は通電時、図2(B)は遮断時の状態を示す本発明リレーの概略図である。
(2nd Embodiment)
Next, an embodiment of the relay of the present invention using a compression spring will be described based on a second embodiment shown in FIG. FIG. 2 (A) is a schematic diagram of the relay of the present invention showing a state at the time of energization, and FIG. 2 (B) is a state at the time of interruption.

このリレーは、第1実施形態の構成において、各接点に圧縮ばねを装着した構成とほぼ同様の構成である。   This relay has substantially the same configuration as that of the first embodiment except that a compression spring is attached to each contact.

すなわち、各可動接点10,20は、根元側(導体板との接触面10a,20aと反対側)に段部17,27を有し、この段部17,27に一端が当接し、導体板30に他端が当接する圧縮ばね40がはめ込まれている。これら一対の圧縮ばね40は、プラスチックで構成され、同一のばね定数を持つばねとして構成されている。   That is, each of the movable contacts 10 and 20 has steps 17 and 27 on the base side (the side opposite to the contact surfaces 10a and 20a with the conductor plate), and one end abuts on the steps 17 and 27 and the conductor plate A compression spring 40 whose other end is in contact with 30 is fitted. The pair of compression springs 40 are made of plastic and are configured as springs having the same spring constant.

通電時は、図2(A)に示すように、両可動接点が閉じられて導体板30の両側に各可動接点10,20が接触した状態となるため、両接点間を導通させることができる。一方、遮断時には、導体板30の両側に各接点10,20が離隔することで導通が遮断される。本例においても、導体板30の片面側と他面側とで遮断電圧を分圧してアーク100の発生を抑制し、短時間で遮断を実現することができる。このとき、圧縮ばね40の一端は導電板30に接触しているが、圧縮ばね自体が絶縁体で構成されているため、接点間が導通されることはない。また、同じばね定数の圧縮ばね40を用いているため、遮断時に両可動接点と導体板との間隔が等しくなり、均等に分圧することができる。   At the time of energization, as shown in FIG. 2 (A), both movable contacts are closed and the movable contacts 10, 20 are in contact with both sides of the conductor plate 30, so that the two contacts can be conducted. . On the other hand, at the time of interruption, conduction is interrupted by separating the contacts 10, 20 on both sides of the conductor plate 30. Also in this example, the breaking voltage is divided between the one surface side and the other surface side of the conductor plate 30 to suppress the generation of the arc 100, and the breaking can be realized in a short time. At this time, one end of the compression spring 40 is in contact with the conductive plate 30, but since the compression spring itself is formed of an insulator, there is no conduction between the contacts. Further, since the compression springs 40 having the same spring constant are used, the intervals between the two movable contacts and the conductor plate at the time of interruption are equalized, so that the pressure can be equally divided.

本実施形態でも、接点の接触面および導体板における接点との接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in the present embodiment, since the contact surface of the contact and the contact surface of the conductor plate with the contact are formed of a material having excellent welding resistance, even if a large current flows when the relay is short-circuited, the contact is not welded. Can be shut off.

(第3実施形態)
図3および図4は本発明リレーの第3実施形態を示す概略構成図である。本実施形態のリレーは、一対の可動接点10,20、各可動接点10,20に支持される圧縮ばね40、可動接点10,20の間に配設される導体板30を具えている。
(Third embodiment)
FIGS. 3 and 4 are schematic diagrams showing a third embodiment of the relay of the present invention. The relay according to the present embodiment includes a pair of movable contacts 10, 20, a compression spring 40 supported by each movable contact 10, 20, and a conductor plate 30 disposed between the movable contacts 10, 20.

両接点10,20に円柱金属ブロックを用い、図示しないソレノイドで両可動接点10,20をその軸方向に往復運動させることで両接点間を開閉する。   A cylindrical metal block is used for the contacts 10, 20, and the movable contacts 10, 20 are reciprocated in the axial direction by a solenoid (not shown) to open and close the contacts.

さらに、両接点10,20における導体板30との接触面10a,20aの中心部には、絶縁性のコイル状の圧縮ばね40が挿入され、軸方向に伸びる有底の保持穴8を形成している。そして、保持穴8内に圧縮ばね40の一端部を挿入して圧縮ばね40を保持穴8で支持するとともに、圧縮ばね40の他端部で導体板30を挟持した状態で支持する。これら一対の圧縮ばね40は、第2実施形態と同様にプラスチックで構成され、同一のばね定数を持つばねとして構成されている。   Further, an insulating coil-shaped compression spring 40 is inserted into the center of the contact surfaces 10a, 20a of the contact points 10, 20 with the conductor plate 30, and forms a bottomed holding hole 8 extending in the axial direction. ing. Then, one end of the compression spring 40 is inserted into the holding hole 8, and the compression spring 40 is supported by the holding hole 8, and the conductor plate 30 is supported by the other end of the compression spring 40 while being sandwiched. These paired compression springs 40 are made of plastic similarly to the second embodiment, and are formed as springs having the same spring constant.

圧縮ばね40の一端は導体板30に接触しているが、圧縮ばね40自体が絶縁体で構成されているため、接点間が離隔していても導通されることはない。また、同じばね定数の圧縮ばね40を用いているため、遮断時に両可動接点10,20と導体板30との間隔が等しくなり、均等に電圧を分圧することができる。   One end of the compression spring 40 is in contact with the conductor plate 30, but since the compression spring 40 itself is made of an insulator, there is no conduction even if the contacts are separated. Further, since the compression springs 40 having the same spring constant are used, the distance between the movable contacts 10, 20 and the conductor plate 30 becomes equal at the time of interruption, and the voltage can be divided evenly.

なお、この保持穴8は、接点10,20と導体板30の接触により圧縮ばね40が圧縮された時には、圧縮ばね40が保持穴8内に完全に収納され、接点10,20が離隔して圧縮ばね40が弾性回復した状態の時には、圧縮ばね40の一端側が保持穴8から突出する深さに形成している。   When the compression spring 40 is compressed by the contact between the contacts 10 and 20 and the conductor plate 30, the compression hole 40 is completely housed in the retention hole 8, and the contacts 10 and 20 are separated from each other. When the compression spring 40 is in a state of elastic recovery, one end of the compression spring 40 is formed to have a depth protruding from the holding hole 8.

そして、保持穴8内に支持される圧縮ばね40は、接点10,20の開閉動作にともなって導体板30を支持したまま伸縮動作を行う。   The compression spring 40 supported in the holding hole 8 expands and contracts while supporting the conductor plate 30 with the opening and closing operations of the contacts 10 and 20.

また、各接点10,20には直流電源(図示せず)が接続されて電流供給が行われ、接点10,20が導体板30に接触・離隔することで通電・遮断を行う構成としている。   Further, a DC power supply (not shown) is connected to each of the contacts 10, 20 to supply a current, and the contacts 10, 20 are energized and cut off by contacting and separating from the conductor plate 30.

一方、導体板30は、第1実施形態と同様に、厚さ2mmの銀系の接点材料を用いている。この導体板30は圧縮ばね40を介して接点10,20に支持されているので、導体板自体には何らの駆動機構も用いていない。   On the other hand, as in the first embodiment, a silver-based contact material having a thickness of 2 mm is used for the conductor plate 30. Since the conductor plate 30 is supported by the contacts 10 and 20 via the compression spring 40, no drive mechanism is used for the conductor plate itself.

さらに、本実施形態でも、接点の接触面10a,20aおよび導体板30における接点との接触面30aを第1実施形態と同じ耐溶着特性に優れた材料で形成しており、導体板30の接触面30aは、リング状の板材を本体部分に接合して形成している。   Further, also in this embodiment, the contact surfaces 10a and 20a of the contacts and the contact surface 30a of the conductor plate 30 with the contacts are formed of the same material having excellent welding resistance as in the first embodiment. The surface 30a is formed by joining a ring-shaped plate to the main body.

次に、接点の通電・遮断について説明する。接点間を閉じて通電させる場合、接点10,20を閉動作により導体板30に接触させる。この時、圧縮ばね40は圧縮されて保持穴8内に完全に収納され、各接点10,20は導体板30に接触し、両接点間に導体板30が挟み込まれた状態で導通をとる(図3)。   Next, the energization / interruption of the contact will be described. When energizing by closing the contacts, the contacts 10 and 20 are brought into contact with the conductor plate 30 by the closing operation. At this time, the compression spring 40 is compressed and completely housed in the holding hole 8, and each of the contacts 10, 20 contacts the conductor plate 30, and conducts in a state where the conductor plate 30 is sandwiched between both contacts ( Figure 3).

また、両接点10,20間を開いて遮断する場合、接点10,20の開動作により、一方の可動接点10と導体板30との間、他方の可動接点20と導体板30との間が離隔され、遮断が行われる。この時、圧縮ばね40は、導体板30を支持したまま弾性回復により伸びて保持穴8から先端部が突出した状態となる(図4)。   When the contacts 10 and 20 are opened and cut off, the opening operation of the contacts 10 and 20 causes a gap between one movable contact 10 and the conductor plate 30 and a gap between the other movable contact 20 and the conductor plate 30. Separated and shut off. At this time, the compression spring 40 is extended by elastic recovery while supporting the conductor plate 30, and the distal end projects from the holding hole 8 (FIG. 4).

このように、各接点10,20の保持穴8に支持される圧縮ばね40によって導体板30を挟持することにより、一方の可動接点10と導体板30との間、他方の可動接点20と導体板30との間の導通時における接触と、遮断時における離隔を容易に実現できる。   As described above, by sandwiching the conductor plate 30 by the compression spring 40 supported by the holding hole 8 of each of the contacts 10, 20, between the one movable contact 10 and the conductor plate 30, and between the other movable contact 20 and the conductor It is possible to easily realize contact with the plate 30 during conduction and separation at the time of interruption.

本実施形態でも、両接点間を開いた際、一方の可動接点10と導体板30との間ならびに他方の可動接点20と導体板30との間の2箇所の直列接点構造となる。その結果、遮断時に導体板30の片面側と他面側とで遮断電圧を分圧してアーク100の発生を抑制し、短時間で遮断を実現することができる。   Also in the present embodiment, when both contacts are opened, two series contact structures are provided between one movable contact 10 and the conductor plate 30 and between the other movable contact 20 and the conductor plate 30. As a result, at the time of interruption, the interruption voltage is divided between the one surface side and the other surface side of the conductor plate 30, the occurrence of the arc 100 is suppressed, and the interruption can be realized in a short time.

しかも、圧縮ばね40をアークの影響の少ない保持穴8内に挿入して、圧縮ばね40を接点10,20に支持させているので、遮断時に発生するアークによって圧縮ばね40が損傷するのを抑えることができる。   In addition, since the compression spring 40 is inserted into the holding hole 8 where the influence of the arc is small and the compression spring 40 is supported by the contacts 10 and 20, the compression spring 40 is prevented from being damaged by the arc generated at the time of interruption. be able to.

また、この構成では、接点周辺を気密構造にする必要やアークを引き伸ばす空間を設ける必要がなく、非常にコンパクトな直流リレーを実現できる。   In addition, in this configuration, it is not necessary to provide an airtight structure around the contact or to provide a space for extending the arc, and a very compact DC relay can be realized.

なお、本実施形態では両接点を可動接点としたが、一方が可動接点で他方が固定接点としても良い。   In this embodiment, both contacts are movable contacts. However, one contact may be a movable contact and the other may be a fixed contact.

本実施形態でも、接点の接触面および導体板における接点との接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in the present embodiment, since the contact surface of the contact and the contact surface of the conductor plate with the contact are formed of a material having excellent welding resistance, even if a large current flows when the relay is short-circuited, the contact is not welded. Can be shut off.

(第4実施形態)
次に、遮断時に生じるアークを引き伸ばす磁石を用いた本発明リレーの実施形態について図5に示す第4実施形態に基づいて説明する。図5は磁石を用いた本発明リレーの概略構成図である。
(Fourth embodiment)
Next, an embodiment of the relay of the present invention using a magnet for extending an arc generated at the time of interruption will be described based on a fourth embodiment shown in FIG. FIG. 5 is a schematic configuration diagram of the relay of the present invention using a magnet.

このリレーは第1実施形態と同様に、導体板30の両側に往復運動自在の可動接点10,20を具えるものである。導体板30には銅などの非磁性材を用いることが好ましい。導体板30に非磁性材を用いた場合、周囲の磁界の影響を及ぼすことがないため、アークの歪曲効果に悪影響を及ぼすことがなく一層好ましい。   This relay includes movable contacts 10 and 20 that can reciprocate on both sides of a conductor plate 30 as in the first embodiment. It is preferable to use a non-magnetic material such as copper for the conductor plate 30. The use of a non-magnetic material for the conductive plate 30 is more preferable because it does not adversely affect the arc distortion effect because there is no influence of the surrounding magnetic field.

さらに、本実施形態でも、接点の接触面10a,20aおよび導体板30における接点との接触面30aを第1実施形態と同じ耐溶着特性に優れた材料で形成しており、導体板30の接触面30aは、接点とほぼ同じ外径の円板を本体部分に接合して形成している。   Further, also in this embodiment, the contact surfaces 10a and 20a of the contacts and the contact surface 30a of the conductor plate 30 with the contacts are formed of the same material having excellent welding resistance as in the first embodiment. The surface 30a is formed by joining a disk having substantially the same outer diameter as the contact to the main body.

このような可動接点10,20の間に磁石で磁界をかける。本実施形態では可動接点10,20を上下から挟み込む位置に永久磁石50を設けて可動接点間に磁界をかけている。その状態で可動接点10,20を開くと、導体板30と各可動接点10,20が所定間隔になった際にアークが発生する。このアークは磁界よりローレンツ力を受けて引き伸ばされる。従って、アークの移動距離をかせいだり、導体板の放熱効果を利用したりすることでアーク消弧時間を短縮することができる。   A magnetic field is applied between the movable contacts 10 and 20 by a magnet. In the present embodiment, a permanent magnet 50 is provided at a position sandwiching the movable contacts 10 and 20 from above and below, and a magnetic field is applied between the movable contacts. If the movable contacts 10 and 20 are opened in this state, an arc is generated when the conductor plate 30 and each of the movable contacts 10 and 20 have a predetermined interval. This arc is elongated by receiving Lorentz force from a magnetic field. Therefore, the arc extinguishing time can be shortened by increasing the moving distance of the arc or utilizing the heat radiation effect of the conductor plate.

本実施形態でも、接点の接触面および導体板における接点との接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in the present embodiment, since the contact surface of the contact and the contact surface of the conductor plate with the contact are formed of a material having excellent welding resistance, even if a large current flows when the relay is short-circuited, the contact is not welded. Can be shut off.

(第5実施形態)
次に、遮断時に生じるアークを引き伸ばす磁石を用いた本発明リレーの他の実施形態について図6に示す第5実施形態に基づいて説明する。図6は永久磁石を用いた本発明リレーの概略構成図であり、第4実施形態のばね保持構造を変形したものである。
(Fifth embodiment)
Next, another embodiment of the relay of the present invention using a magnet for extending an arc generated at the time of interruption will be described based on a fifth embodiment shown in FIG. FIG. 6 is a schematic configuration diagram of the relay of the present invention using a permanent magnet, which is a modification of the spring holding structure of the fourth embodiment.

このリレーは第3実施形態および第4実施形態と同様に、導体板30の両側に往復運動自在の可動接点10,20を具え、かつ、導体板30を圧縮ばね40を介して接点10,20に支持させるものである。   This relay has movable contacts 10 and 20 reciprocally movable on both sides of a conductor plate 30 as in the third embodiment and the fourth embodiment, and connects the conductor plate 30 to the contacts 10 and 20 via a compression spring 40. Is to be supported.

導体板30には銅などの非磁性材を用いることが好ましい。導体板30に非磁性材を用いた場合、周囲の磁界の影響を及ぼすことがないため、アークの歪曲効果に悪影響を及ぼすことがなく一層好ましい。なお、第5実施形態は、磁石以外の構成は第3実施形態と同じであるので説明を省略する。   It is preferable to use a non-magnetic material such as copper for the conductor plate 30. The use of a non-magnetic material for the conductive plate 30 is more preferable because it does not adversely affect the arc distortion effect because there is no influence of the surrounding magnetic field. In the fifth embodiment, the configuration other than the magnet is the same as that of the third embodiment, and the description is omitted.

さらに、本実施形態でも、接点の接触面10a,20aおよび導体板30における接点との接触面30aを第1実施形態と同じ耐溶着特性に優れた材料で形成しており、導体板30の接触面30aは、リング状の板材を本体部分に接合して形成している。   Further, also in this embodiment, the contact surfaces 10a and 20a of the contacts and the contact surface 30a of the conductor plate 30 with the contacts are formed of the same material having excellent welding resistance as in the first embodiment. The surface 30a is formed by joining a ring-shaped plate to the main body.

このような可動接点10,20の間に磁石で磁界をかける。本実施形態も第4実施形態同様に可動接点10,20を上下から挟み込む位置に永久磁石50を設けて可動接点間に磁界をかけている。その状態で可動接点10,20を開くと、導体板30と各可動接点10,20が所定間隔になった際にアーク100が発生する。このアーク100は磁界よりローレンツ力を受けて引き伸ばされる。従って、アークの移動距離をかせいだり、導体板の放熱効果を利用したりすることでアーク消弧時間を短縮することができる。   A magnetic field is applied between the movable contacts 10 and 20 by a magnet. In this embodiment, a permanent magnet 50 is provided at a position sandwiching the movable contacts 10 and 20 from above and below as in the fourth embodiment, and a magnetic field is applied between the movable contacts. When the movable contacts 10 and 20 are opened in that state, an arc 100 is generated when the conductor plate 30 and each of the movable contacts 10 and 20 have a predetermined interval. The arc 100 is elongated by receiving Lorentz force from a magnetic field. Therefore, the arc extinguishing time can be shortened by increasing the moving distance of the arc or utilizing the heat radiation effect of the conductor plate.

本実施形態でも、接点の接触面および導体板における接点との接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in the present embodiment, since the contact surface of the contact and the contact surface of the conductor plate with the contact are formed of a material having excellent welding resistance, even if a large current flows when the relay is short-circuited, the contact is not welded. Can be shut off.

(第6実施形態)
次に、複数の導体板を用いた本発明リレーの実施形態について図7に示す第6実施形態に基づいて説明する。図7は3枚の導体板を用いた本発明リレーの概略構成図である。
(Sixth embodiment)
Next, an embodiment of the relay of the present invention using a plurality of conductor plates will be described based on a sixth embodiment shown in FIG. FIG. 7 is a schematic configuration diagram of the relay of the present invention using three conductor plates.

このリレーは、互いに近接離反する一対の両端可動接点10,20と、両端可動接点10,20の間に所定の間隔で配置される3枚の導体板31〜33と、導体板同士の間に介在される2つの中間可動接点15,25とを具えている。   This relay has a pair of movable contacts 10, 20 at both ends which are close to and separated from each other, three conductor plates 31 to 33 arranged at a predetermined interval between the movable contacts 10, 20 at both ends, and a gap between the conductor plates. It has two intermediate movable contacts 15, 25 interposed.

第1実施形態から第5実施形態は、いずれも可動接点10,20が単一接点の例について説明しているが、本実施形態のリレーは、両端可動接点10,20と、中間可動接点15,25により3つの接点対が直列に接続された状態となっている。   Although the first to fifth embodiments each describe an example in which the movable contacts 10 and 20 are single contacts, the relay according to the present embodiment includes both ends movable contacts 10 and 20 and an intermediate movable contact 15. , 25, three contact pairs are connected in series.

さらに両端可動接点10,20の接触面10a,20a、導体板31,32,33の接触面31a,32a,33a、中間可動接点15,25の接触面15a,25aは、第1実施形態と同じ耐溶着特性に優れた材料で形成している。   The contact surfaces 10a, 20a of the movable contacts 10, 20 at both ends, the contact surfaces 31a, 32a, 33a of the conductor plates 31, 32, 33, and the contact surfaces 15a, 25a of the intermediate movable contacts 15, 25 are the same as in the first embodiment. It is made of a material with excellent welding resistance.

両端可動接点10,20は、第1実施形態と同様に、ソレノイドにより軸方向に往復運動される。導体板31,32,33は、中央の1枚のみが固定で、その両側の2枚は可動である。ここでは、可動式の導体板32,33を接点の開閉方向に移動できるように構成した。導体板32,33の移動は、ソレノイドやモータなどを利用すれば良い。   The movable contacts 10, 20 at both ends are reciprocated in the axial direction by a solenoid, as in the first embodiment. Of the conductor plates 31, 32, and 33, only one in the center is fixed, and two on both sides are movable. Here, the movable conductor plates 32 and 33 are configured to be movable in the contact opening and closing direction. The conductor plates 32 and 33 may be moved by using a solenoid or a motor.

中間可動接点15,25も、短円柱状の金属ブロックで構成され、その軸方向にソレノイドなどで駆動される。   The intermediate movable contacts 15, 25 are also formed of a short columnar metal block, and are driven by a solenoid or the like in the axial direction.

また、図示していないが、両端可動接点10,20および中間可動接点15,25の各々には絶縁性の圧縮ばねが外側にはめ込まれている。両端可動接点の各々には1つの圧縮ばねが、中間可動接点15,25の各々には2つの圧縮ばねが装着されている。つまり、各中間可動接点には、その中央外周に円環突起があり、円環突起を挟んで両側に圧縮ばねがはめ込まれている。   Although not shown, an insulating compression spring is fitted on each of the movable contacts 10 and 20 and the intermediate movable contacts 15 and 25 on the outside. One compression spring is mounted on each of the movable contacts at both ends, and two compression springs are mounted on each of the intermediate movable contacts 15, 25. That is, each intermediate movable contact has an annular projection on the center outer periphery, and compression springs are fitted on both sides of the annular projection.

このような構成のリレーにおいて、通電時は両端・中間可動接点10,20,15,25および導体板31,32,33が全て接触した状態に配置され、両端可動接点間の導通がとられる。一方、遮断時は、各導体板31,32,33の両側に両端または中間可動接点10,20,15,25と間隔があけられることで導通が遮断される。その際、両可動接点10,20の間には合計6箇所の空間に区切られるため、各区切りで分圧を行うことができ、より一層短時間に遮断を行うことができる。   In a relay having such a configuration, when energized, both ends / middle movable contacts 10, 20, 15, 25 and conductor plates 31, 32, 33 are all placed in contact with each other, and conduction between the movable contacts at both ends is established. On the other hand, at the time of interruption, conduction is interrupted by providing a space between both ends or the intermediate movable contacts 10, 20, 15, 25 on both sides of each conductor plate 31, 32, 33. At that time, since a total of six spaces are defined between the two movable contacts 10 and 20, the partial pressure can be performed at each of the spaces, and the interruption can be performed in a shorter time.

本実施形態も、両端可動接点の接触面、各導体板の接触面、中間可動接点の接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in this embodiment, the contact surfaces of the movable contact at both ends, the contact surfaces of the respective conductor plates, and the contact surface of the intermediate movable contact are formed of a material having excellent welding resistance, so that even when a large current flows when the relay is short-circuited. The contacts can be reliably shut off without welding.

(第7実施形態)
さらに、直列された2つの接点対を具える本発明リレーの実施形態を図8に示す第7実施形態に基づいて説明する。図8は一対の可動接点21,22と、これらに接触・離反する一つの可動接点10の概略図である。ここでは、可動接点21,22には2つの円柱状ブロックを用い、可動接点10にはほぼ円盤状のブロックを用いた。円柱状ブロックは、2つを並べた状態で可動接点10上に余裕をもって乗る程度の大きさとしている。
(Seventh embodiment)
Further, an embodiment of the relay according to the present invention having two series contact points will be described based on a seventh embodiment shown in FIG. FIG. 8 is a schematic view of a pair of movable contacts 21 and 22 and one movable contact 10 that comes into contact with and separates from these. Here, two columnar blocks are used for the movable contacts 21 and 22, and a substantially disk-shaped block is used for the movable contact 10. The columnar block has such a size that it can ride on the movable contact 10 with a margin in a state where two blocks are arranged.

このような可動接点20と可動接点10との間に導体板30を配置する。導体板30は、例えば2枚用い、可動接点21と10との間および可動接点22と10との間の各々に介在させることが考えられる。   The conductor plate 30 is arranged between the movable contact 20 and the movable contact 10. It is conceivable that two conductor plates 30 are used, for example, and are interposed between the movable contacts 21 and 10 and between the movable contacts 22 and 10, respectively.

さらに可動接点10,21,22の接触面10a,21a,22a、導体板30の接触面30aは、第1実施形態と同じ耐溶着特性に優れた材料で形成している。   Further, the contact surfaces 10a, 21a, 22a of the movable contacts 10, 21, 22 and the contact surface 30a of the conductor plate 30 are formed of the same material having excellent welding resistance as in the first embodiment.

このような接点10,20を用いることで、両接点を導通した場合の電流流路は、一方の可動接点21から導体板を経て可動接点10を通り、さらに導体板を経て他方の可動接点22を通ることとなる。従って、直列に配置した2つの可動接点21,22を用いることで電圧を分圧し、遮断特性の向上と接点の耐久性向上を実現できる。そして、可動接点21と10の間は導体板30によって、その片面側と他面側とにアークが分断され、可動接点22と10の間も同様に導体板30によって、その片面側と他面側とにアークが分断されるため、極めて短時間に遮断を行うことができる。   By using such contacts 10 and 20, a current flow path when both contacts are conducted is passed from one movable contact 21 through the conductor plate to the movable contact 10 and further through the conductor plate to the other movable contact 22. Will pass through. Therefore, by using the two movable contacts 21 and 22 arranged in series, the voltage can be divided, and the cutoff characteristics can be improved and the contact durability can be improved. The conductor plate 30 separates the arc between the movable contacts 21 and 10 on one side and the other side, and the conductor plate 30 similarly separates the one side and the other side between the movable contacts 22 and 10. Since the arc is separated from the side, the breaking can be performed in a very short time.

本実施形態も、可動接点の接触面、導体板の接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in this embodiment, since the contact surface of the movable contact and the contact surface of the conductor plate are formed of a material having excellent welding resistance, even if a large current flows when the relay is short-circuited, the contact is reliably welded off without welding. can do.

(第8実施形態)
さらに、直列に接続される2つの接点を具える本発明リレーの他の実施形態を図9に示す第8実施形態に基づいて説明する。図9は2つの固定接点23,24と、これらに接触・離隔する一つの可動接点10の概略図である。
(Eighth embodiment)
Further, another embodiment of the relay of the present invention having two contacts connected in series will be described based on an eighth embodiment shown in FIG. FIG. 9 is a schematic diagram of two fixed contacts 23 and 24 and one movable contact 10 that contacts and separates them.

ここでは、固定接点23,24には2つの円柱状ブロックを用い、可動接点10にはほぼ円盤状のブロックを用いた。円柱状ブロックは、2つを並べた状態で可動接点10上に余裕をもって乗る程度の大きさとしている。   Here, two columnar blocks are used for the fixed contacts 23 and 24, and a substantially disk-shaped block is used for the movable contact 10. The columnar block has such a size that it can ride on the movable contact 10 with a margin in a state where two blocks are arranged.

そして、固定接点23,24と可動接点10との間に導体板30を配置する。導体板30は、例えば2枚用い、一方の固定接点23と可動接点10との間および他方の固定接点24と可動接点10との間の各々に介在させる。   Then, the conductor plate 30 is arranged between the fixed contacts 23, 24 and the movable contact 10. For example, two conductor plates 30 are used and are interposed between one fixed contact 23 and the movable contact 10 and between the other fixed contact 24 and the movable contact 10, respectively.

本実施形態は、第7実施形態の変形であり、固定接点23,24と可動接点10の接触面に保持穴8を形成して、この保持穴8内に導体板30を支持する圧縮ばね40を挿入させている。   The present embodiment is a modification of the seventh embodiment, in which a holding hole 8 is formed in the contact surface between the fixed contacts 23 and 24 and the movable contact 10, and a compression spring 40 for supporting the conductor plate 30 in the holding hole 8. Is inserted.

本実施形態も、固定接点23,24の接触面23a,24aと可動接点10の接触面10a、導体板30の接触面30aは、第1実施形態と同じ耐溶着特性に優れた材料で形成している。   Also in this embodiment, the contact surfaces 23a, 24a of the fixed contacts 23, 24, the contact surface 10a of the movable contact 10, and the contact surface 30a of the conductor plate 30 are formed of the same material having excellent welding resistance as in the first embodiment. ing.

このような接点を用いることで、両接点を導通した場合の電流流路は、一方の固定接点23から導体板30を経て可動接点10を通り、さらに導体板30を経て他方の固定接点24を通ることとなる。従って、直列に配置した2つの固定接点23,24を用いることで電圧を分圧し、遮断特性の向上と接点の耐久性向上を実現できる。   By using such a contact, the current flow path when both contacts are conductive is passed from one fixed contact 23 to the movable contact 10 via the conductor plate 30 and further to the other fixed contact 24 via the conductor plate 30. I will pass. Therefore, by using the two fixed contacts 23 and 24 arranged in series, the voltage is divided, thereby improving the cutoff characteristics and the durability of the contacts.

そして、固定接点23と可動接点10の間は導体板30によって、その片面側と他面側とにアークが分断される。固定接点24と可動接点10の間も同様に導体板30によって、その片面側と他面側とにアークが分断される。その結果、極めて短時間に遮断を行うことができる。   The arc between the fixed contact 23 and the movable contact 10 is divided by the conductor plate 30 into one side and the other side. Similarly, the arc between the fixed contact 24 and the movable contact 10 is divided by the conductor plate 30 into one side and the other side. As a result, the shutoff can be performed in a very short time.

なお、第8実施形態では一方を固定接点としたが、円盤状ブロックを可動接点としてもよい。   In the eighth embodiment, one is a fixed contact, but a disk-shaped block may be a movable contact.

本実施形態も、各接点の接触面、導体板の接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in this embodiment, since the contact surface of each contact and the contact surface of the conductor plate are formed of a material having excellent welding resistance, even when a large current flows when the relay is short-circuited, the contact is reliably welded without welding. can do.

(第9実施形態)
次に、並列された2つの接点対を具える本発明リレーの実施形態を図10に示す第9実施形態に基づいて説明する。図10は可動接点11,12と可動接点21,22の各々を2つとした例の概略図である。ここでは、ほぼ円盤状のブロック91,92の各々に2つの円柱状ブロック11,12,21,22を間隔をあけて固定して可動接点10,20を構成した。
(Ninth embodiment)
Next, an embodiment of the relay of the present invention having two parallel contact pairs will be described based on a ninth embodiment shown in FIG. FIG. 10 is a schematic diagram of an example in which each of the movable contacts 11, 12 and each of the movable contacts 21, 22 is two. Here, the movable contacts 10 and 20 are formed by fixing two columnar blocks 11, 12, 21, and 22 to each of the substantially disk-shaped blocks 91 and 92 with an interval therebetween.

このような可動接点11と21の間および可動接点12と22の間に導体板30を配置する。導体板30は、例えば2枚用い、可動接点11と21との間および可動接点12と22との間の各々に介在させることが考えられる。   The conductor plate 30 is arranged between the movable contacts 11 and 21 and between the movable contacts 12 and 22. It is conceivable that two conductor plates 30 are used, for example, and are interposed between the movable contacts 11 and 21 and between the movable contacts 12 and 22, respectively.

本実施形態も、各接点11,12,21,22の接触面11a,12a,21a,22aと導体板30の接触面30aは、第1実施形態と同じ耐溶着特性に優れた材料で形成している。   Also in this embodiment, the contact surfaces 11a, 12a, 21a, 22a of the contacts 11, 12, 21, 22 and the contact surface 30a of the conductor plate 30 are formed of the same material having excellent welding resistance as in the first embodiment. ing.

このような接点を用いることで、両接点を導通した場合の電流流路は、一方の可動接点21から対向する可動接点11を通る流路と、他方の可動接点22から対向する可動接点12を通る流路との2つの流路に分流される。従って、可動接点11,21と可動接点12,22の2対の接点対を用いることで電流を分流し、遮断特性の向上と接点の耐久性向上を実現できる。   By using such contacts, the current flow path when both contacts are conducted is a flow path that passes through the movable contact 11 facing from one movable contact 21 and a movable contact 12 that faces from the other movable contact 22. It is split into two flow paths, one through and the other through. Therefore, by using the two contact pairs of the movable contacts 11 and 21 and the movable contacts 12 and 22, the current is shunted, and the breaking characteristics and the durability of the contacts can be improved.

特に、可動接点11,21と可動接点12,22の各々の間において、導体板30の片面側と他面側とにアークが分断されるため、極めて短時間にアークを遮断することができる。   In particular, between each of the movable contacts 11 and 21 and each of the movable contacts 12 and 22, the arc is divided on one side and the other side of the conductor plate 30, so that the arc can be interrupted in a very short time.

本実施形態も、各接点の接触面、導体板の接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in this embodiment, since the contact surface of each contact and the contact surface of the conductor plate are formed of a material having excellent welding resistance, even when a large current flows when the relay is short-circuited, the contact is reliably welded without welding. can do.

(第10実施形態)
次に、並列された2つの接点対を具える本発明リレーの他の実施形態を図11に示す第10実施形態に基づいて説明する。図11は2つの固定接点23,24と2つの可動接点13,14を有する例の概略図である。ここでは、ほぼ円盤状のブロック91,92の各々に2つの円柱状ブロックを間隔をあけて固定して固定接点23,24と可動接点13,14を構成した。円盤状ブロック91,92は導電性の金属材料で形成されている。
(Tenth embodiment)
Next, another embodiment of the relay of the present invention having two parallel contact pairs will be described based on a tenth embodiment shown in FIG. FIG. 11 is a schematic view of an example having two fixed contacts 23 and 24 and two movable contacts 13 and 14. Here, two cylindrical blocks are fixed to each of the substantially disk-shaped blocks 91 and 92 with a space therebetween to form the fixed contacts 23 and 24 and the movable contacts 13 and 14. The disk-shaped blocks 91 and 92 are formed of a conductive metal material.

そして、固定接点23と可動接点13の間および固定接点24と可動接点14の間に導体板30を配置する。導体板30は、2枚用い、固定接点23と可動接点13の間および固定接点24と可動接点14の間の各々に介在させる。   Then, the conductor plate 30 is arranged between the fixed contact 23 and the movable contact 13 and between the fixed contact 24 and the movable contact 14. Two conductive plates 30 are used and are interposed between the fixed contact 23 and the movable contact 13 and between the fixed contact 24 and the movable contact 14, respectively.

本実施形態は、第9実施形態の変形であり、固定接点23,24と可動接点13,14のそれぞれの接触面に保持穴8を形成して、この保持穴8内に導体板30を支持する圧縮ばね40を挿入させている。   This embodiment is a modification of the ninth embodiment, in which holding holes 8 are formed in the respective contact surfaces of the fixed contacts 23, 24 and the movable contacts 13, 14, and the conductor plate 30 is supported in the holding holes 8. The compression spring 40 is inserted.

本実施形態も、固定接点23,24の接触面23a,24aと可動接点13,14の接触面13a,14a、導体板30の接触面30aは、第1実施形態と同じ耐溶着特性に優れた材料で形成している。   Also in the present embodiment, the contact surfaces 23a and 24a of the fixed contacts 23 and 24, the contact surfaces 13a and 14a of the movable contacts 13 and 14, and the contact surface 30a of the conductor plate 30 have the same excellent welding resistance as the first embodiment. It is made of material.

このような接点を用いることで、両接点を導通した場合の電流流路は、一方の可動接点13から対向する固定接点23を通る流路と、他方の可動接点14から対向する固定接点24を通る流路との2つの流路に分流される。従って、固定接点23,24と可動接点13,14の2対の接点を用いることで電流を分流し、遮断特性の向上と接点の耐久性向上を実現できる。   By using such a contact, a current flow path when both contacts are conducted is a flow path that passes through a fixed contact 23 facing from one movable contact 13 and a fixed contact 24 that faces from the other movable contact 14. The flow is divided into two flow paths, namely, a flow path and a flow path. Therefore, by using two pairs of contacts, ie, the fixed contacts 23 and 24 and the movable contacts 13 and 14, the current is shunted, so that the breaking characteristics and the durability of the contacts can be improved.

特に、固定接点23,24と可動接点13,14の各々の間において、導体板30の片面側と他面側とにアークが分断されるため、極めて短時間にアークを遮断することができる。なお、本実施形態では、固定接点と可動接点とを逆にしてもよい。   In particular, between each of the fixed contacts 23, 24 and the movable contacts 13, 14, the arc is divided on one side and the other side of the conductor plate 30, so that the arc can be cut off in a very short time. In the present embodiment, the fixed contact and the movable contact may be reversed.

以上の第3実施形態、第8実施形態、第10実施形態において、接点に形成される保持穴は、深さ方向に同一径となるように形成したが、保持穴の開口部に段部を形成したり、テーパーを形成したりするようにしてもよい。このように段部等を形成することにより、保持穴周辺でのアークの発生を抑えることができ、絶縁弾性材のアークによる損傷をより効果的に抑制できる。   In the third, eighth, and tenth embodiments described above, the holding holes formed in the contact point are formed to have the same diameter in the depth direction. It may be formed or a taper may be formed. By forming the step portion or the like in this manner, generation of an arc around the holding hole can be suppressed, and damage to the insulating elastic material by the arc can be more effectively suppressed.

(第11実施形態)
次に、遮断時に生じるアークを引き伸ばす磁石を用いた本発明リレーの他の実施形態について図12に示す第11実施形態に基づいて説明する。図12は磁石を用いた本発明リレーの概略構成図である。
(Eleventh embodiment)
Next, another embodiment of the relay of the present invention using a magnet for extending an arc generated at the time of interruption will be described based on an eleventh embodiment shown in FIG. FIG. 12 is a schematic configuration diagram of the relay of the present invention using a magnet.

このリレーは第4実施形態と同様に、導体板30の両側に往復運動自在の可動接点10,20を具えるとともに、磁石50を具えるものである。   This relay has movable contacts 10 and 20 reciprocally movable on both sides of a conductor plate 30 and a magnet 50 as in the fourth embodiment.

さらに、本実施形態では、導体板30は、導体部34と、この導体部34の外周囲に設けられる絶縁部35とを具える構成としている。導体板30は四角形の板部材からなり、その中心部に円形の導体部34を、導体部34の外周囲を絶縁部35としている。   Further, in the present embodiment, the conductor plate 30 is configured to include the conductor portion 34 and an insulating portion 35 provided around the conductor portion 34. The conductor plate 30 is made of a rectangular plate member, and has a circular conductor portion 34 at the center thereof and an insulating portion 35 around the conductor portion 34.

導体部34には銅などの非磁性材を用いることが好ましい。導体部34に非磁性材を用いた場合、周囲の磁界の影響を及ぼすことがないため、アークの歪曲効果に悪影響を及ぼすことがなく一層好ましい。本実施形態では、導体部34には厚さ2mmの銅からなる円板を用いている。   It is preferable to use a non-magnetic material such as copper for the conductor portion. When a non-magnetic material is used for the conductor portion 34, the influence of the surrounding magnetic field is not exerted, so that it is more preferable that the distortion effect of the arc is not adversely affected. In the present embodiment, a disk made of copper having a thickness of 2 mm is used for the conductor portion.

絶縁部35には例えば、エポキシ樹脂、ポリアミド樹脂、フッ素樹脂、シリコン樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニルなどからなるプラスチック板を用いている。プラスチック板の厚みも2mmとしている。このプラスチック板の中央に導体部34が嵌めこまれる孔を開け、この孔に銅の円板を嵌めて両者を接合する。   For the insulating portion 35, for example, a plastic plate made of epoxy resin, polyamide resin, fluorine resin, silicon resin, polyethylene, polypropylene, polyvinyl chloride, or the like is used. The thickness of the plastic plate is also 2 mm. A hole is formed in the center of the plastic plate into which the conductor portion 34 is to be fitted, and a copper disk is fitted into this hole to join them together.

さらに導体板30は、磁石50とともに固定設置しておき、接点間が閉じた状態において接点10,20を導体部34に接触させ、接点間が開いた状態において磁石50による磁界でアーク100を絶縁部34に向けて歪曲させるようにしている。   Further, the conductor plate 30 is fixedly installed together with the magnet 50, and the contacts 10, 20 are brought into contact with the conductor portion 34 in a state where the contacts are closed, and the arc 100 is insulated by the magnetic field of the magnet 50 in a state where the contacts are open. The distortion is made toward the part 34.

また、本実施形態でも、接点10,20の接触面10a,20aおよび導体板30の導体部34における接点10,20と接触する接触面を第1実施形態と同じ耐溶着特性に優れた材料で形成している。   Also in the present embodiment, the contact surfaces 10a and 20a of the contacts 10 and 20 and the contact surface of the conductor portion 34 of the conductor plate 30 that contacts the contacts 10 and 20 are made of the same material having excellent welding resistance as in the first embodiment. Has formed.

このように可動接点10,20の間に磁石で磁界をかける。本実施形態では可動接点10,20を上下から挟み込む位置に永久磁石50を設けて可動接点間に磁界をかけている。その状態で可動接点10,20を開くと、導体板30と各可動接点10,20が所定間隔になった際にアークが発生する。このアークは磁界よりローレンツ力を受けて所定の方向に引き伸ばされる。   Thus, a magnetic field is applied between the movable contacts 10 and 20 by the magnet. In the present embodiment, a permanent magnet 50 is provided at a position sandwiching the movable contacts 10 and 20 from above and below, and a magnetic field is applied between the movable contacts. If the movable contacts 10 and 20 are opened in this state, an arc is generated when the conductor plate 30 and each of the movable contacts 10 and 20 have a predetermined interval. This arc is extended in a predetermined direction by receiving Lorentz force from a magnetic field.

本実施形態では、導体部34において遮断電圧を分圧してアークの発生を抑制するとともに、アークが発生しても、アークは磁界により引き伸ばされながら絶縁部で抵抗を受けることになる。その結果、アーク消弧時間をさらに短縮することができる。   In the present embodiment, the occurrence of an arc is suppressed by dividing the cutoff voltage in the conductor portion 34, and even if the arc occurs, the arc is subjected to resistance in the insulating portion while being stretched by the magnetic field. As a result, the arc extinguishing time can be further reduced.

また、本実施形態でも、接点の接触面および導体板の導体部の接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in this embodiment, since the contact surface of the contact and the contact surface of the conductor portion of the conductor plate are formed of a material having excellent welding resistance, the contact does not weld even when a large current flows when the relay is short-circuited. Can be reliably shut off.

(第12実施形態)
図13は本発明リレーの他の実施形態を示す概略構成図である。本実施形態では、一対の可動接点10,20ならびに導体板30を具えている。ここでは、両接点10,20に円柱金属ブロックを用い、両可動接点10,20がその軸方向に往復運動することで両接点間を開閉し、遮断・通電を行う構成としている。両接点10,20には直流電源が接続され、接点間を開閉することで遮断・導通を行う。各可動接点10,20には、図示しないソレノイドが連結され、このソレノイドの駆動により可動接点10,20を往復運動させる。
(Twelfth embodiment)
FIG. 13 is a schematic configuration diagram showing another embodiment of the relay of the present invention. In the present embodiment, a pair of movable contacts 10 and 20 and a conductor plate 30 are provided. Here, a cylindrical metal block is used for the two contacts 10, 20, and the movable contacts 10, 20 reciprocate in the axial direction to open and close between the two contacts to perform cut-off and energization. A DC power supply is connected to both contacts 10 and 20, and cuts off and conducts by opening and closing the contacts. A solenoid (not shown) is connected to each of the movable contacts 10, 20, and the movable contacts 10, 20 are reciprocated by driving the solenoids.

一方、導体板30は矩形の導体部36と同じく矩形の絶縁部37とが一体に構成された矩形板である。導体部36には厚さ2mmの銅板を用い、絶縁部37には2枚の人工ダイヤモンド板でプラスチック板を挟み込んだ接合板を用いた。このダイヤモンド板は、適宜な基材の上にCVD法でダイヤモンド膜を合成し、基材を除去して製造した。ダイヤモンド板の厚みは0.5mmであり、プラスチック板の厚みは1.0mmである。導体部と絶縁部とは、両者の境界に隙間が生じないように並列して、その側縁を枠で取り囲んで、導体部と絶縁部との位置関係を保持している。   On the other hand, the conductor plate 30 is a rectangular plate in which a rectangular conductor portion 36 and a rectangular insulating portion 37 are integrally formed. A copper plate having a thickness of 2 mm was used for the conductor portion 36, and a bonding plate in which a plastic plate was sandwiched between two artificial diamond plates was used for the insulating portion 37. This diamond plate was produced by synthesizing a diamond film on an appropriate substrate by a CVD method and removing the substrate. The thickness of the diamond plate is 0.5 mm, and the thickness of the plastic plate is 1.0 mm. The conductor portion and the insulating portion are arranged side by side so that no gap is formed at the boundary between them, and their side edges are surrounded by a frame to maintain the positional relationship between the conductor portion and the insulating portion.

また、本実施形態でも、接点10,20の接触面および導体板30の導体部36における接点10,20と接触する接触面を第1実施形態と同じ耐溶着特性に優れた材料で形成している。   Also in the present embodiment, the contact surfaces of the contacts 10 and 20 and the contact surface of the conductor portion 36 of the conductor plate 30 that contacts the contacts 10 and 20 are formed of the same material having excellent welding resistance as in the first embodiment. I have.

このような導体板は、前記の枠に図示しないソレノイドを連結し、このソレノイドの駆動により、接点間に導体部または絶縁部のいずれかが介在するよう往復運動される。   Such a conductor plate connects a solenoid (not shown) to the frame, and is reciprocated by driving the solenoid so that either a conductor portion or an insulating portion is interposed between the contacts.

接点間を閉じている場合、両接点間に導体部36を挟み込むことで導通をとる(図13A)。また、両接点10,20間を開いた際、接点間の導体板を導体部36から絶縁部37に移行させることにより両接点間の遮断を行う(図13B)。このように、接点間を開くことで遮断を行うと共に、絶縁部37を接点間に挿入することで接点間に生じるアークを遮断し、簡易な構成にて確実に遮断を行うことができる。   When the contacts are closed, conduction is achieved by sandwiching the conductor 36 between the contacts (FIG. 13A). When the contacts 10 and 20 are opened, the conductor plate between the contacts is shifted from the conductor portion 36 to the insulating portion 37 to cut off the contacts (FIG. 13B). As described above, the breaking is performed by opening the contacts, and the arc generated between the contacts is broken by inserting the insulating portion 37 between the contacts, so that the breaking can be reliably performed with a simple configuration.

特に、両接点間を開いた際、導体部36の片面と一方の接点との間および導体部36の他面と他方の接点との間の2箇所の直列接点構造となるため、遮断時に導体板30の片面側と他面側とで遮断電圧を分圧してアークの発生を抑制し、短時間で遮断を実現することができる。   In particular, when both contacts are opened, two series contact structures are provided between one surface of the conductor portion 36 and one contact and between the other surface of the conductor portion 36 and the other contact. Breaking voltage is divided between the one surface side and the other surface side of the plate 30 to suppress the occurrence of an arc, and the breaking can be realized in a short time.

この構成では、接点周辺を気密構造にする必要やアークを引き伸ばす空間を設ける必要がなく、非常にコンパクトな直流リレーを実現できる。また、接点10,20と絶縁部37とが非接触であるため、両者の間に摩耗を生じることもなく長い機械的寿命を有することができる。   With this configuration, it is not necessary to provide an airtight structure around the contact or to provide a space for extending the arc, and a very compact DC relay can be realized. In addition, since the contacts 10, 20 and the insulating portion 37 are not in contact with each other, a long mechanical life can be achieved without causing wear between them.

また、本実施形態でも、接点の接触面および導体板の導体部の接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in this embodiment, since the contact surface of the contact and the contact surface of the conductor portion of the conductor plate are formed of a material having excellent welding resistance, the contact does not weld even when a large current flows when the relay is short-circuited. Can be reliably shut off.

(第13実施形態)
本実施形態は、第12実施形態の構成において、接点の開閉と導体板の挿脱のタイミングをタイマーで調整するものである。ここでは、接点10,20の開閉をソレノイド1で行い、導体板30の挿脱をソレノイド2で行うものとする。
(Thirteenth embodiment)
In this embodiment, in the configuration of the twelfth embodiment, the timing for opening and closing the contact and the timing for inserting and removing the conductor plate are adjusted by a timer. Here, it is assumed that the contacts 10 and 20 are opened and closed by the solenoid 1 and the conductor plate 30 is inserted and removed by the solenoid 2.

まず、図14に示すように、ソレノイド1に電流を流して図13に示すリレーの両可動接点10,20の間を開く。タイマーにより、両接点が導体部から離れた後、ソレノイド2に電流を流して導体板30を駆動し、両接点間に位置する箇所を導体部36から絶縁部37に移行する。   First, as shown in FIG. 14, a current is supplied to the solenoid 1 to open between the two movable contacts 10 and 20 of the relay shown in FIG. After the two contacts are separated from the conductor by the timer, a current is applied to the solenoid 2 to drive the conductor plate 30, and a portion located between the two contacts is shifted from the conductor to the insulating portion 37.

ソレノイド1とソレノイド2の駆動時間差は、両可動接点10,20に導体板が摺って移行されることのないような時間とすればよい。逆に、両接点間を閉じる場合、まずソレノイド2に電流を流して導体板30を駆動して接点間に導体部36を配置させ、その後ソレノイド1に電流を流して接点間を閉じて導体部36を挟み込めばよい。   The drive time difference between the solenoid 1 and the solenoid 2 may be set so that the conductor plate does not slide and move to the two movable contacts 10 and 20. Conversely, when closing between the two contacts, a current is first applied to the solenoid 2 to drive the conductor plate 30 to dispose the conductor portion 36 between the contacts, and then a current is applied to the solenoid 1 to close the contact and close the conductor portion. Just insert 36.

この構成により、接点10,20の開閉動作と導体板30の移行動作が互いに干渉することを確実に防止することができる。   With this configuration, it is possible to reliably prevent the opening and closing operations of the contacts 10 and 20 and the shifting operation of the conductor plate 30 from interfering with each other.

(第14実施形態)
次に、図13に示す第12実施形態にかかるリレーにおいて接点10,20の開閉と導体板30の挿脱のタイミングをCR回路で調整する実施形態について説明する。
(14th embodiment)
Next, a description will be given of an embodiment in which the timing for opening and closing the contacts 10, 20 and inserting / removing the conductor plate 30 in the relay according to the twelfth embodiment shown in FIG.

図15はCR回路を用いてタイミング調整を行う本発明リレーの駆動回路図である。本実施形態でも、接点10,20の開閉をソレノイド1で行い、導体板30の移行をソレノイド2で行うものとする。ここでは、両ソレノイドにプッシュ式ソレノイドを用いた。プッシュ式ソレノイドは、コイル通電時には駆動され、非通電時にはバネの力で元の位置に復帰するソレノイドである。また、回路中のスイッチS1、S2は接点スイッチ、半導体スイッチのいずれでも構わない。   FIG. 15 is a drive circuit diagram of the relay of the present invention for performing timing adjustment using a CR circuit. Also in the present embodiment, the contacts 1 and 2 are opened and closed by the solenoid 1, and the transfer of the conductor plate 30 is performed by the solenoid 2. Here, a push-type solenoid is used for both solenoids. The push type solenoid is a solenoid that is driven when the coil is energized and returns to the original position by the force of the spring when the coil is not energized. The switches S1 and S2 in the circuit may be either contact switches or semiconductor switches.

遮断時、スイッチS1を閉じるとともにスイッチS2を開いて、ソレノイド1、2に電流を流して可動接点10,20の間を開く。その間、コンデンサC1、C2は充電される。抵抗R1≪R2であるから、ソレノイド2への電流量が抑制されるため、結果的にソレノイド1よりもソレノイド2の動作を遅らせることができる(図16)。それにより、接点間が開いた後、導体板30を導体部36から絶縁部37に移行することができ、接点10,20と導体板30の摺接を回避することができる。   At the time of disconnection, the switch S1 is closed and the switch S2 is opened to supply a current to the solenoids 1 and 2 to open between the movable contacts 10 and 20. Meanwhile, the capacitors C1 and C2 are charged. Since the resistance is R1≪R2, the amount of current to the solenoid 2 is suppressed, and as a result, the operation of the solenoid 2 can be delayed more than the operation of the solenoid 1 (FIG. 16). Accordingly, after the gap between the contacts is opened, the conductor plate 30 can be transferred from the conductor portion 36 to the insulating portion 37, and the sliding contact between the contacts 10, 20 and the conductor plate 30 can be avoided.

導通時、スイッチS1を開くと供にスイッチS2を閉じる。コンデンサC1、C2は放電するが、抵抗R3≪R2であるから、ソレノイド2への電流量が抑制され、結果的にソレノイド2への電力供給が早期に終了する(図16)。そのため、バネによりソレノイド2の方がソレノイド1よりも早く元の状態に復帰し、絶縁部37を両接点間から移行して導体部36を両接点間に配置した後、接点間を閉じることができる。   At the time of conduction, when the switch S1 is opened, the switch S2 is closed at the same time. The capacitors C1 and C2 discharge, but since the resistance is R3≪R2, the amount of current to the solenoid 2 is suppressed, and as a result, the power supply to the solenoid 2 ends early (FIG. 16). Therefore, the solenoid 2 returns to the original state earlier than the solenoid 1 due to the spring, the insulating portion 37 is moved from between both contacts, and the conductor portion 36 is arranged between both contacts, and then the contact is closed. it can.

(第15実施形態)
次に、図13に示す第12実施形態にかかるリレーにおいてテーパー面を用いて接点と絶縁部の接触を回避する構成の実施形態について説明する。
(Fifteenth embodiment)
Next, a description will be given of an embodiment of a configuration according to the twelfth embodiment shown in FIG. 13 in which a contact between a contact and an insulating portion is avoided by using a tapered surface.

図17はテーパー面を用いた本発明リレーの概略平面図、図18はその正面図である。このリレーは、揺動する一対の揺動アーム70と、同アーム70に連結されたローラ71と、往復運動してローラ71に摺接する導体板支持機構60とを具えている。   FIG. 17 is a schematic plan view of a relay of the present invention using a tapered surface, and FIG. 18 is a front view thereof. The relay includes a pair of swing arms 70 that swing, a roller 71 connected to the arm 70, and a conductor plate support mechanism 60 that reciprocates and slides on the roller 71.

揺動アーム70は、一端に電流リードの接続端子72が、中間部に回転軸73が、他端にローラ71が設けられている。また、揺動アーム70における回転軸73とローラ71との間には、一対の可動接点10,20と、両揺動アーム70を互いに引き寄せる引張ばね74が装着されている。両可動接点10,20は、次述する導体板支持機構のテーパー面61を利用して開閉され、ソレノイドなどの接点開閉用の駆動源は用いていない。   The swing arm 70 has a current lead connection terminal 72 at one end, a rotating shaft 73 at an intermediate portion, and a roller 71 at the other end. A pair of movable contacts 10 and 20 and a tension spring 74 for pulling the two swing arms 70 together are mounted between the rotation shaft 73 and the roller 71 in the swing arm 70. Both movable contacts 10 and 20 are opened and closed using a tapered surface 61 of a conductor plate support mechanism described below, and do not use a drive source for opening and closing contacts such as a solenoid.

一方、導体板支持機構60は、ソレノイド(図示せず)で往復運動されるブロック部62を有し、その両側にローラ71と摺接するテーパー面61を具えている。ここでは、ローラ71がテーパー面61を上り切った後は平坦面となるようにブロック部62を構成した。このテーパー面61は、可動接点が進退する方向に対して非直角に交差する方向に形成されている。また、前記可動接点の間に導体板30を配置するように、ブロック部62と一体の枠部63を有し、この枠部内に並列された導体部36と絶縁部37とを保持している。ソレノイドの駆動によりブロック部62を往復運動させると、導体部36または絶縁部37が可動接点間に配置される。   On the other hand, the conductor plate support mechanism 60 has a block portion 62 that is reciprocated by a solenoid (not shown), and has a tapered surface 61 that slides on a roller 71 on both sides thereof. Here, the block portion 62 is configured to be a flat surface after the roller 71 has crossed the tapered surface 61. The tapered surface 61 is formed in a direction that intersects at right angles to the direction in which the movable contact moves forward and backward. Further, a frame portion 63 integrated with the block portion 62 is provided so as to arrange the conductor plate 30 between the movable contacts, and holds the conductor portion 36 and the insulating portion 37 arranged in parallel in the frame portion. . When the block portion 62 is reciprocated by driving the solenoid, the conductor portion 36 or the insulating portion 37 is disposed between the movable contacts.

ここで、両接点10,20間が導通される場合、両接点間に導体部36が挟み込まれた状態となり、一方の接続端子→一方の揺動アーム→一方の可動接点→導体部→他方の可動接点→他方の揺動アーム→他方の接続端子の順に電流が流れることになる(図17の矢印参照)。   Here, when the two contacts 10 and 20 are conducted, the conductor 36 is sandwiched between the two contacts, and one connection terminal → one swing arm → one movable contact → conductor → the other Current flows in the order of the movable contact, the other swing arm, and the other connection terminal (see the arrow in FIG. 17).

一方、遮断時には、ソレノイドを駆動してブロック部62を図17の右側に進行させる。それに伴い、ブロック部62の両側のテーパー面61にローラ71が乗り上げ、引張ばね74の引張力に抗して両揺動アーム70のローラ側が開かれる。その結果、両可動接点間は開かれて、両接点間に絶縁部37が配置されることになる。   On the other hand, at the time of shutoff, the solenoid is driven to move the block portion 62 to the right side in FIG. Accordingly, the roller 71 rides on the tapered surfaces 61 on both sides of the block portion 62, and the roller side of the two swing arms 70 is opened against the tensile force of the tension spring 74. As a result, the two movable contacts are opened, and the insulating part 37 is disposed between the two contacts.

このような一連の動作において、遮断時、両可動接点間が開かれると、導体部36の片面と一方の可動接点10との間および導体部36の他面と他方の可動接点20との間の2箇所の直列接点構造となるため、遮断時に導体板30の片面側と他面側で遮断電圧を分圧してアークの発生を抑制し、短時間で遮断を実現することができる。   In such a series of operations, when the two movable contacts are opened at the time of interruption, between one surface of the conductor portion 36 and one movable contact 10 and between the other surface of the conductor portion 36 and the other movable contact 20. Since the two series contact structures are used, the breaking voltage is divided on one side and the other side of the conductor plate 30 at the time of breaking, thereby suppressing generation of an arc and realizing breaking in a short time.

また、このような構成において、まず両ローラ71間にブロック部61が圧入されることにより接点が開くため、接点間の導体板30を導体部36から絶縁部37に移行する際、絶縁部37が接点に摺接することも回避できる。もちろん、逆にブロック部のテーパー面61から両ローラを外すことにより、接点間の導体板30を絶縁部37から導体部36へ移行した後に両接点を閉じることができ、導体板30と接点との摺接を防止することができる。   Further, in such a configuration, since the contacts are first opened by press-fitting the block portion 61 between the two rollers 71, when the conductor plate 30 between the contacts is transferred from the conductor portion 36 to the insulating portion 37, the insulating portion 37 Can also be prevented from sliding on the contact point. Of course, conversely, by removing both rollers from the tapered surface 61 of the block portion, both the contacts can be closed after the conductor plate 30 between the contacts is transferred from the insulating portion 37 to the conductor portion 36, and the conductor plate 30 and the contact Sliding contact can be prevented.

さらに、本例では、接点開閉用の駆動源を用いることなく、ブロック部のテーパー面61を利用することで可動接点間を開閉することができる。   Further, in this example, the movable contacts can be opened and closed by using the tapered surface 61 of the block portion without using a drive source for opening and closing the contacts.

なお、以上の例において、接点開閉用の駆動源を用いても良い。接点開閉用の駆動源としては、ソレノイドなどが好適である。   In the above example, a drive source for contact opening / closing may be used. As a drive source for opening and closing contacts, a solenoid or the like is suitable.

(第16実施形態)
さらに、導体部と絶縁部を具える導体板を用いたリレーであって、直列された2つの接点対を具える本発明リレーの実施形態について説明する。第12実施形態から第15実施形態は、いずれも可動接点10,20が単一接点の例について説明している。図19は一対の可動接点21,22と、これらに接触・離反する一つの可動接点10の概略図である。ここでは、可動接点21,22には2つの円柱状ブロックを用い、可動接点10にはほぼ円盤状のブロックを用いた。円柱状ブロックは、2つを並べた状態で可動接点10上に余裕をもって乗る程度の大きさとしている。
(Sixteenth embodiment)
Further, an embodiment of a relay according to the present invention, which is a relay using a conductor plate having a conductor portion and an insulating portion and has two contact pairs in series, will be described. Each of the twelfth to fifteenth embodiments describes an example in which the movable contacts 10 and 20 are single contacts. FIG. 19 is a schematic diagram of a pair of movable contacts 21 and 22 and one movable contact 10 that comes into contact with and separates from these. Here, two columnar blocks are used for the movable contacts 21 and 22, and a substantially disk-shaped block is used for the movable contact 10. The columnar block has such a size that it can ride on the movable contact 10 with a margin in a state where two blocks are arranged.

本実施形態でも、接点の接触面および導体板の導体部の接触面を第1実施形態と同じ耐溶着特性に優れた材料で形成している。   Also in this embodiment, the contact surface of the contact and the contact surface of the conductor portion of the conductor plate are formed of the same material having excellent welding resistance as in the first embodiment.

このような可動接点20と可動接点10との間に導体板(図19では省略)を挿脱する。導体板は、例えば2枚用い、可動接点21と10との間および可動接点22と10との間の各々に介在させることが考えられる。すなわち、図19における紙面の垂直方向に一対の導体板を往復運動させることで導体部と絶縁部との移行を行う。   A conductor plate (omitted in FIG. 19) is inserted and removed between the movable contact 20 and the movable contact 10. It is conceivable that two conductor plates are used, for example, and are interposed between the movable contacts 21 and 10 and between the movable contacts 22 and 10, respectively. That is, the transfer between the conductor portion and the insulating portion is performed by reciprocating the pair of conductor plates in the direction perpendicular to the paper surface of FIG.

このような接点10,20を用いることで、両接点を導通した場合の電流流路は、一方の可動接点21から導体部を経て可動接点10を通り、さらに導体部を経て他方の可動接点22を通ることとなる。従って、直列に配置した2つの可動接点21,22を用いることで電圧を分圧し、遮断特性の向上と接点の耐久性向上を実現できる。そして、可動接点21と10の間は導体部によって、その片面側と他面側とにアークが分断され、可動接点22と10の間も同様に導体部よって、その片面側と他面側とにアークが分断されるため、極めて短時間に遮断を行うことができる。   By using such contacts 10 and 20, a current flow path when both contacts are conducted is passed from one movable contact 21 through the conductor to the movable contact 10 and further through the conductor to the other movable contact 22. Will pass through. Therefore, by using the two movable contacts 21 and 22 arranged in series, the voltage is divided, so that it is possible to improve the cutoff characteristics and the durability of the contacts. Then, the arc between the movable contacts 21 and 10 is divided into one side and the other side by a conductor, and the one side and the other side are similarly separated between the movable contacts 22 and 10 by the conductor. Since the arc is divided at a short time, the interruption can be performed in a very short time.

本実施形態でも、接点の接触面および導体板の導体部の接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in the present embodiment, since the contact surface of the contact and the contact surface of the conductor portion of the conductor plate are formed of a material having excellent welding resistance, even when a large current flows when the relay is short-circuited, the contact is not welded. Can be shut off.

(第17実施形態)
次に、導体部と絶縁部を具える導体板を用いたリレーであって、並列された2つの接点対を具える本発明リレーの実施形態について説明する。図20は可動接点11,12と可動接点21,22の各々を2つとした例の概略図である。ここでは、ほぼ円盤状のブロック10,20の各々に2つの円柱状ブロック11,12,21,22を間隔をあけて固定して可動接点を構成した。
(Seventeenth embodiment)
Next, an embodiment of a relay according to the present invention, which is a relay using a conductor plate having a conductor portion and an insulating portion and has two parallel contact pairs, will be described. FIG. 20 is a schematic diagram of an example in which each of the movable contacts 11, 12 and each of the movable contacts 21, 22 is two. Here, two columnar blocks 11, 12, 21, and 22 are fixed to each of the substantially disk-shaped blocks 10, 20 at an interval to form a movable contact.

本実施形態でも、接点の接触面および導体板の導体部の接触面を第1実施形態と同じ耐溶着特性に優れた材料で形成している。   Also in this embodiment, the contact surface of the contact and the contact surface of the conductor portion of the conductor plate are formed of the same material having excellent welding resistance as in the first embodiment.

このような可動接点11と21の間および可動接点12と22の間に導体板(図20では省略)を挿脱する。導体板は、例えば2枚用い、可動接点11と21との間および可動接点12と22との間の各々に介在させることが考えられる。すなわち、図20における紙面の垂直方向に一対の導体板を往復運動させることで導体部と絶縁部との移行を行う。   A conductor plate (not shown in FIG. 20) is inserted and removed between the movable contacts 11 and 21 and between the movable contacts 12 and 22. It is conceivable that two conductor plates are used, for example, and are interposed between the movable contacts 11 and 21 and between the movable contacts 12 and 22, respectively. That is, the transfer between the conductor portion and the insulating portion is performed by reciprocating the pair of conductor plates in the direction perpendicular to the paper surface of FIG.

このような接点を用いることで、両接点を導通した場合の電流流路は、一方の可動接点21から対向する可動接点11を通る流路と、他方の可動接点22から対向する可動接点12を通る流路との2つの流路に分流される。従って、可動接点11,21と可動接点12,22の2対の接点を用いることで電流を分流し、遮断特性の向上と接点の耐久性向上を実現できる。   By using such contacts, the current flow path when both contacts are conducted is a flow path that passes through the movable contact 11 facing from one movable contact 21 and a movable contact 12 that faces from the other movable contact 22. The flow is divided into two flow paths, namely, a flow path and a flow path. Therefore, by using two pairs of contacts, ie, the movable contacts 11 and 21 and the movable contacts 12 and 22, the current is shunted, and the cutoff characteristics and the durability of the contacts can be improved.

特に、可動接点11,21と可動接点12,22の各々の間において、導体部の片面側と他面側とにアークが分断されるため、極めて短時間にアークを遮断することができる。   In particular, between each of the movable contacts 11 and 21 and each of the movable contacts 12 and 22, the arc is divided on one side and the other side of the conductor, so that the arc can be interrupted in a very short time.

本実施形態でも、接点の接触面および導体板の導体部の接触面を耐溶着特性に優れた材料で形成しているので、リレーの短絡時に大電流が流れても接点が溶着せずに確実に遮断することができる。   Also in the present embodiment, since the contact surface of the contact and the contact surface of the conductor portion of the conductor plate are formed of a material having excellent welding resistance, even when a large current flows when the relay is short-circuited, the contact is not welded. Can be shut off.

第1実施形態で説明した構造のリレーと、導体板がなく単に可動接点間を開くだけの比較例を作製し、遮断特性を比較した。   A relay having the structure described in the first embodiment and a comparative example in which there was no conductor plate and only the movable contact was opened were produced, and the breaking characteristics were compared.

各可動接点および導体板は、銀メッキ銅で構成した。そして、100V、25Aの条件にて遮断時間の測定を行った。遮断時間は可動接点間を開いてから電圧が0になるまでの時間である。その結果、第1実施形態にかかる構成のものでは遮断時間が0.44msであったのに対し、比較例では2.42msであり、本発明のリレーの方が圧倒的に高速遮断が実現できていることがわかった。   Each movable contact and the conductor plate were made of silver-plated copper. Then, the interruption time was measured under the conditions of 100 V and 25 A. The interruption time is a time from when the movable contacts are opened to when the voltage becomes zero. As a result, while the cutoff time was 0.44 ms in the configuration according to the first embodiment, it was 2.42 ms in the comparative example, and the relay of the present invention was able to realize overwhelmingly high-speed cutoff. I understand.

さらに、前記した第1実施形態に係る構造の直流リレーについて、各接点の接触面10a,20a、及び導体板における接点との接触面30aに表1に示す「化学組成」欄に示す第一層と第二層の二種の化学組成のAg合金を用いたものを作製して耐溶着特性および温度特性を調べてみた。   Further, with respect to the DC relay having the structure according to the first embodiment, the contact surfaces 10a and 20a of the contacts and the contact surface 30a of the conductor plate with the contacts have the first layer shown in the "Chemical composition" column shown in Table 1. The second and third layers were fabricated using Ag alloys of two different chemical compositions, and their welding resistance and temperature characteristics were examined.

これらのAg合金は、まず、第一層と第二層の二種の化学組成のAg合金を溶解・鋳造してインゴットを作製した。これらをそれぞれ粗加工した後、第一層と第二層のインゴットを重ね合わせ、アルゴン雰囲気中850℃で熱間ロールによって熱間圧着し、二層のAg合金からなる複合素材を作製した。   For these Ag alloys, first, Ag alloys having two kinds of chemical compositions of a first layer and a second layer were melted and cast to produce ingots. After rough processing each of these, the ingots of the first layer and the second layer were overlapped and hot-pressed with a hot roll at 850 ° C. in an argon atmosphere to produce a composite material composed of a two-layer Ag alloy.

得られた複合素材を熱間圧着と同じ条件下で予備加熱した後、最終的に全体の厚みの1/10の厚みとなるように薄い純Ag板を第一層とは反対側の第二層の面に熱間圧着した。その後、さらに冷間圧延してフープ状素材とし、これを打ち抜いて、幅6mm、長さ8mm、厚み2.5mmの形状の複合接点チップを作製した。   After pre-heating the obtained composite material under the same conditions as hot pressing, a thin pure Ag plate is finally added to the second layer on the opposite side to the first layer so as to have a thickness of 1/10 of the total thickness. The surface of the layer was hot pressed. Thereafter, the material was further cold-rolled into a hoop-shaped material, which was punched out to produce a composite contact chip having a width of 6 mm, a length of 8 mm, and a thickness of 2.5 mm.

得られたチップを4気圧(405.3kPa)の酸素雰囲気中750℃で170時間保持(内部酸化)して複合接点試片とした。得られた試片の第一層の厚みは表1の通りであり、Ag層の厚みは、各チップ厚みのほぼ1/10であった。   The obtained chip was kept (internal oxidation) at 750 ° C. for 170 hours in an oxygen atmosphere at 4 atm (405.3 kPa) to obtain a composite contact specimen. The thickness of the first layer of the obtained specimen was as shown in Table 1, and the thickness of the Ag layer was approximately 1/10 of the thickness of each chip.

上記第一層の厚みは、接点の中心を通り表面に垂直な断面試片を用いて、例えば、以下のようにして確認することができる。まず、表面付近の試片面上で表面に水平な方向に等間隔に5箇所の起点を設定する。次いで、これら各々の点から表面に垂直な(厚み)方向に表面から順次ほぼ等間隔に硬度を確認し、5本の硬度曲線(折れ線グラフ)をつくる。   The thickness of the first layer can be confirmed, for example, as follows using a cross-sectional specimen passing through the center of the contact and perpendicular to the surface. First, five starting points are set at equal intervals on the specimen surface near the surface in a direction parallel to the surface. Next, the hardness is confirmed from each point in the direction perpendicular to the surface (thickness) in the direction perpendicular to the surface at substantially equal intervals from the surface, and five hardness curves (line graphs) are created.

そして、ある起点において、硬度レベルが190である水平線とこの曲線との交点をとり、表面からこの交点までの水平距離をその起点での第一層の厚みとする。以下、残り4箇所の起点についてもその起点での第一層の厚みをとり、得られた5つのデータの算術平均値を第一層の厚みとしてもよい。第二層の厚みも同様にして測定することができる。   Then, at a certain starting point, an intersection between the horizontal line having a hardness level of 190 and this curve is taken, and the horizontal distance from the surface to this intersection is defined as the thickness of the first layer at the starting point. Hereinafter, the thickness of the first layer at the starting points of the remaining four places is also taken, and the arithmetic average value of the obtained five data may be used as the thickness of the first layer. The thickness of the second layer can be measured similarly.

このとき、硬度レベルが130である水平線との交点をとり、表面からこの交点までの水平距離をある起点における第二層の厚みとするとよい。そして、中間層を具える場合、硬度レベルが190である水平線との交点と、硬度レベルが130である水平線との交点間の水平距離をある起点における中間層の厚みとするとよい。本例では、上記の手順にて第一層の厚みを測定した。   At this time, an intersection with a horizontal line having a hardness level of 130 is taken, and the horizontal distance from the surface to this intersection may be set as the thickness of the second layer at a certain starting point. When an intermediate layer is provided, the horizontal distance between the intersection with the horizontal line having a hardness level of 190 and the intersection with the horizontal line having a hardness level of 130 may be the thickness of the intermediate layer at a certain starting point. In this example, the thickness of the first layer was measured by the above procedure.

Figure 2004193100
Figure 2004193100

なお、表中の試料番号に*を付したものは比較例である。試料11から試料18のその他の成分Sb、Ni、Biの量は、何れも0.2質量%である。また、試料19から試料27の第一層・第二層の化学組成は、何れも同じであり、その他の成分とその量は、両層とも質量%単位でSb、Co、Znが何れも0.2である。   In addition, what attached * to the sample number in a table | surface is a comparative example. The amounts of the other components Sb, Ni, and Bi in Samples 11 to 18 were all 0.2% by mass. The chemical compositions of the first layer and the second layer of Samples 19 to 27 were the same, and the amounts of other components and Sb, Co, and Zn were 0.2% by mass in both layers. It is.

試料28のその他の成分とその量は、質量%単位でSb、Pb、Ni、Bi、Co、Znが何れも0.1、Caが0.2である。試料29のその他の成分とその量は、質量%単位でSb、Ni、Ca、Bi、Co、Znが何れも0.1、Pbが0.5である。試料30から試料32のその他の成分とその量は、質量%単位でNi、Znが何れも0.2である。なお、第一層・第二層の化学組成は、表に記載された成分以外の残部は、Agおよび不可避的不純物からなる。   The other components of Sample 28 and their amounts are 0.1 and 0.1 respectively for Sb, Pb, Ni, Bi, Co, and Zn in mass% units. The other components of Sample 29 and their amounts are 0.1 and 0.5 for Pb and 0.5 for Sb, Ni, Ca, Bi, Co, and Zn, respectively, in mass% units. The other components of Samples 30 to 32 and the amounts thereof are 0.2 in mass% for both Ni and Zn. In the chemical composition of the first layer and the second layer, the balance other than the components described in the table consists of Ag and unavoidable impurities.

なお、表1で試料1から試料10は、SnおよびInの量を変化させて各層の硬度を制御した試料群である。試料11から試料18は、SnおよびInの量を変えるとともに、これら以外のその他の成分をさらに添加した試料群である。試料19から試料27は、第一層の厚みを変化させた試料群である。   Note that, in Table 1, Samples 1 to 10 are sample groups in which the hardness of each layer was controlled by changing the amounts of Sn and In. Samples 11 to 18 are a sample group in which the amounts of Sn and In are changed and other components other than these are further added. Samples 19 to 27 are a group of samples in which the thickness of the first layer is changed.

また試料28から試料34は、第一層・第二層の両層が同じ化学組成のものである。これらのものでは、以下のようにして第一層の硬度を制御した。まず試料28から試料33は、第一層の圧延加工断面積比を第二層の50%増しとするとともに、第一層素材の圧延加工途中において同素材を真空中、450℃で30分間焼鈍を行い、さらに、内部酸化後に♯120のアルミナビーズによって第一層表面に投射圧3kgf/cm2(294kPa)で3分間ショットブラスト加工を加えた。 In Samples 28 to 34, both the first layer and the second layer have the same chemical composition. In these, the hardness of the first layer was controlled as follows. First, samples 28 to 33 were prepared by increasing the cross-sectional area ratio of the first layer by 50% compared to that of the second layer, and annealing the material at 450 ° C. for 30 minutes in a vacuum during the rolling of the first layer material. After the internal oxidation, shot blasting was performed for 3 minutes at a projection pressure of 3 kgf / cm 2 (294 kPa) on the surface of the first layer using # 120 alumina beads.

試料34は、圧延加工途中の焼鈍温度と時間をそれぞれ750℃、5時間とした以外は以上の試料と同じ条件で作製したものである。なお、表1には記載しないが、試料33と試料34ではそれぞれ厚みが190μm、230μmの中間部が形成されていた。   Sample 34 was produced under the same conditions as the above samples except that the annealing temperature and time during the rolling were 750 ° C. and 5 hours, respectively. Although not shown in Table 1, in Samples 33 and 34, intermediate portions having a thickness of 190 μm and 230 μm were formed, respectively.

なお、試料35は、第一層のSnやInの酸化物の量を第二層よりも少なくして、第一層の硬度を第二層の硬度よりも低くしたものであって、表1に記載の化学組成の第一層と第二層のAg合金を溶解鋳造後、熱間圧着・圧延した後、これを上記と同じ条件にて内部酸化したものである。   In Sample 35, the amount of oxides of Sn and In in the first layer was smaller than that of the second layer, and the hardness of the first layer was lower than the hardness of the second layer. After the Ag alloy of the first layer and the second layer having the chemical composition described in (1) is melt-cast, hot-pressed and rolled, and then internally oxidized under the same conditions as above.

また、試料36は、表1に記載の化学組成の第一層と第二層のAg合金を溶解鋳造後、互いの二層の合わせ面上に水平な一方向に1mmピッチで幅1mm、深さ0.5mmの凹凸を形成して、その部分で凹部と凸部とを互いに噛み合わせた状態で熱間圧着し、その後圧延し、さらにそれを上記と同じ条件にて内部酸化したものである。   Sample 36 was prepared by melting and casting the Ag alloy of the first layer and the second layer having the chemical composition shown in Table 1 and then, on a mating surface of the two layers, in a horizontal direction at a pitch of 1 mm and a width of 1 mm and a depth of 1 mm. The unevenness of 0.5 mm is formed, and the concave portion and the convex portion are hot-pressed in such a state that they are engaged with each other, then rolled, and then internally oxidized under the same conditions as described above.

以上の方法で作製した各試料の硬度の第一層の厚みは、前述の手順にて確認した。以上の結果を表1に示した。なお、表には記載されていないが、試料33、試料34以外の試料の中間部の厚みは、何れも100μm未満であった。   The thickness of the first layer of hardness of each sample prepared by the above method was confirmed by the above-described procedure. Table 1 shows the above results. Although not described in the table, the thickness of the intermediate portion of each of the samples other than Sample 33 and Sample 34 was less than 100 μm.

次いで複合接点チップを図1に示す可動接点と導体板に銀ロウ付けして接触面10a,20a,30aを形成した。その後、定格AC30Aフレームおよび50Aフレームの二種の直流リレーに固定した。このようなリレーを各試料番号の複合接点チップ対毎に各5台用意した。まず各試料の全てのアッセンブリーを使って、定格電流を100分間通電してこの通電時の温度を測定することにより初期の温度特性を確認した。   Then, the composite contact chip was soldered to the movable contact and the conductor plate shown in FIG. 1 with silver to form contact surfaces 10a, 20a, and 30a. After that, it was fixed to two types of DC relays of rated AC 30A frame and 50A frame. Five such relays were prepared for each composite contact chip pair of each sample number. First, using all the assemblies of each sample, a rated current was supplied for 100 minutes, and the temperature at the time of the supply was measured to confirm the initial temperature characteristics.

次に、220V負荷状態で、30Aフレームの場合は、1.5kAの遮断電流で、50Aフレームの場合は5kAの遮断電流で、各々1台ずつのアッセンブリーを使って遮断試験を行い、耐溶着特性を確認した。   Next, under a 220V load condition, a breaking test was performed using a single assembly with a breaking current of 1.5kA for a 30A frame and a breaking current of 5kA for a 50A frame. confirmed.

遮断試験後の温度特性は、その後引き続いて定格電流を100分間通電し、この通電時の温度を測定することにより遮断試験後の温度特性を確認した。過負荷試験は、初期温度特性を確認したアッセンブリーを使い、30Aフレーム、50Aフレームとも同定格電流の5倍の電流を流した状態で5秒間隔で開閉を50回繰り返し、その後上記初期確認時と同じ条件で通電時の温度を測定することにより過負荷試験後の温度特性を確認した。   As for the temperature characteristics after the cutoff test, the rated current was continuously applied for 100 minutes, and the temperature at the time of the current supply was measured to confirm the temperature characteristics after the cutoff test. In the overload test, using the assembly whose initial temperature characteristics have been confirmed, switching is repeated 50 times at 5 second intervals with a current of 5 times the same rated current for both the 30 A frame and the 50 A frame, and The temperature characteristics after the overload test were confirmed by measuring the temperature during energization under the same conditions.

耐久試験は、初期温度特性を確認したアッセンブリーを使い、30Aフレーム、50Aフレームとも同定格電流を流した状態で、5秒間隔で開閉を6000回繰り返し、その後上記初期確認時と同じ条件で通電時の温度を測定することにより耐久試験後の温度特性を確認した。   The endurance test uses the assembly whose initial temperature characteristics have been confirmed, with the same rated current flowing through both the 30A frame and the 50A frame, and repeats opening and closing 6000 times at 5 second intervals, and then applying power under the same conditions as the initial confirmation above By measuring the temperature, the temperature characteristics after the durability test were confirmed.

なお、これらの一連の試験での評価は、温度特性については30A・50A両フレームの機種別の結果を総合して5段階評価し、耐溶着特性については、溶着するかしないかで評価した。   In the evaluation of these series of tests, the temperature characteristics were evaluated in five stages based on the results of the models of both the 30A and 50A frames, and the welding resistance was evaluated depending on whether or not welding was performed.

温度特性の5段階評価は、通電時の温度上昇が50℃以下を5、50℃超60℃以下を4、60℃超70℃以下を3、70℃超80℃以下を2、80℃以上を1とした。これらの評価は、表1の試料番号に対応させて表2に示した。なお、表2において、比較例の試料番号には*を付している。   The five-point evaluation of the temperature characteristics is as follows: 5 when the temperature rise during energization is 50 ° C or less; 4 when the temperature is over 50 ° C and 60 ° C or less; 3 when the temperature is over 60 ° C and 70 ° C or less; Was set to 1. These evaluations are shown in Table 2 corresponding to the sample numbers in Table 1. In Table 2, * is added to the sample number of the comparative example.

Figure 2004193100
Figure 2004193100

以上の結果から以下のことがわかる。
(1)第一層、第二層ともSnを1〜9質量%、Inを1〜9質量%の範囲内に制御し、第一層のマイクロビッカース硬度を190以上、第二層のマイクロビッカース硬度を130以下とし、さらに、第一層の厚みを10〜360μmの範囲内に制御した接点を用いたリレーは、上記総合評価において十分実用可能な範囲内にある。一方、上記範囲外の接点を用いたリレーは、総合評価において実用レベルに達していない。
The following can be understood from the above results.
(1) For both the first and second layers, Sn is controlled within the range of 1 to 9% by mass, In is controlled within the range of 1 to 9% by mass, the micro Vickers hardness of the first layer is 190 or more, and the micro Vickers of the second layer is controlled. A relay using a contact having a hardness of 130 or less and a thickness of the first layer controlled within a range of 10 to 360 μm is within a range that is sufficiently practicable in the above comprehensive evaluation. On the other hand, a relay using a contact outside the above range has not reached a practical level in comprehensive evaluation.

(2)SnおよびInに加えSbやNiなどの成分を少量含んだ場合でも、同様のことが言える。
(3)比較例となる試料1、試料10、試料18、試料31、試料32、試料35および試料36の接点チップは、硬度レベルが上記範囲外となり、これらの接点チップを組み込んだ直流リレーは、ともに一部の特性を除き総合的に実用レベルの性能が得られなかった。
(2) The same can be said when a small amount of components such as Sb and Ni are contained in addition to Sn and In.
(3) The hardness levels of the contact tips of Sample 1, Sample 10, Sample 18, Sample 31, Sample 32, Sample 35, and Sample 36, which are comparative examples, are outside the above range. However, in all cases, except for some characteristics, performance of a practical level could not be obtained comprehensively.

前記実施例2における表1の試料24を用いて接点対を構成した模擬的なリレーを作製し、トランスで昇圧してコンデンサを充電し、サイリスタでコンデンサの容量放出とリレーの接点を開くタイミングを調整して、短時間に大電流が流れる間に接点を開くようにしたときの電圧と電流の状態を図21に示す。このとき、2600Aの大電流が流れても、接点は溶着せず、接点間の電圧は急激に上昇し確実に遮断できた。   A simulated relay having a contact pair was prepared using the sample 24 of Table 1 in the second embodiment, and the capacitor was charged by boosting the voltage with a transformer, and the thyristor was used to discharge the capacitance of the capacitor and open the relay contact. FIG. 21 shows the state of the voltage and the current when the contacts are opened while the adjustment is performed and the large current flows in a short time. At this time, even if a large current of 2600 A flowed, the contacts did not weld, and the voltage between the contacts increased rapidly and could be reliably shut off.

なお、図21のグラフは、遮断電圧が200Vに達したときに遮断が完了したと判断して、電力供給をやめるようにしているため、電力供給がなくなった時点で、電圧がゼロになっている。このことから、上記特定の材料を接点材料に用いたリレーは、耐溶着性に優れ、高速で遮断できると推測される。   In the graph of FIG. 21, it is determined that the cutoff is completed when the cutoff voltage reaches 200 V, and the power supply is stopped. Therefore, when the power supply is stopped, the voltage becomes zero. I have. From this, it is presumed that a relay using the above specific material as a contact material is excellent in welding resistance and can be cut off at high speed.

これに対し、試料27を用いて接点対を構成した場合は、図22に示すように1500Aの大電流が流れたとき、接点が瞬時に溶着してしまい、コンデンサは自然放電し、接点間の電圧の挙動は1msの間しか起こらずしかも10V程度しか変動しないことがわかる。   On the other hand, when a contact pair is formed using the sample 27, when a large current of 1500 A flows as shown in FIG. 22, the contacts are instantaneously welded, the capacitor spontaneously discharges, and the It can be seen that the voltage behavior occurs only for 1 ms and fluctuates only by about 10 V.

本発明リレーは、近年環境問題から注目されるハイブリッド自動車や燃料電池自動車のような高電圧(約300V)の自動車における高電圧回路をON・OFFするためのリレーとしての利用が期待される。一般に、自動車ではスペース上の制約が大きいが、本発明リレーであればコンパクトであるため、限られたスペースの有効利用ができる。   The relay of the present invention is expected to be used as a relay for turning on / off a high-voltage circuit in a high-voltage (about 300 V) vehicle such as a hybrid vehicle or a fuel cell vehicle, which has recently attracted attention due to environmental issues. In general, the space in an automobile is greatly restricted, but the relay of the present invention is compact, so that limited space can be effectively used.

本発明の第1実施形態であって、本発明リレーの基本構成を示す概略構成図で、(A)は通電時、(B)は遮断時を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is 1st Embodiment of this invention, Comprising: It is a schematic block diagram which shows the basic structure of this invention relay. 本発明の第2実施形態であって、圧縮ばねを用いたリレーを示す概略図で、(A)は通電時、図2(B)は遮断時の状態を示す。FIG. 2A is a schematic view showing a relay using a compression spring according to a second embodiment of the present invention, in which FIG. 2A shows a state at the time of energization, and FIG. 本発明の第3実施形態であって、リレーの概略構成図で通電時の状態を示す。FIG. 8 is a schematic configuration diagram of a relay according to a third embodiment of the present invention, showing a state at the time of energization. 本発明の第3実施形態であって、リレーの概略構成図で遮断時の状態を示す。FIG. 8 is a schematic configuration diagram of a relay according to a third embodiment of the present invention, showing a state at the time of interruption. 本発明の第4実施形態であって、磁石を用いたリレーの概略構成図である。It is a 4th embodiment of the present invention, and is a schematic structure figure of a relay using a magnet. 本発明の第5実施形態であって、磁石と圧縮ばねを用いたリレーの概略構成図で遮断時の状態を示す。FIG. 14 is a schematic configuration diagram of a relay using a magnet and a compression spring, showing a state at the time of interruption according to a fifth embodiment of the present invention. 本発明の第6実施形態であって、3枚の導体板を用いたリレーの概略構成図である。It is a 6th embodiment of the present invention, and is a schematic structure figure of a relay using three conductor plates. 本発明の第7実施形態であって、一対の可動接点と、これらに接触・離反する一つの可動接点を具えるリレーの概略図である。It is a 7th embodiment of the present invention and is a schematic diagram of a relay provided with a pair of movable contacts and one movable contact which contacts and separates them. 本発明の第8実施形態であって、圧縮ばねを用いた二つの固定接点と、これらに接触・離隔する一つの可動接点を具えるリレーの概略図である。FIG. 16 is a schematic view of a relay having an eighth embodiment of the present invention and including two fixed contacts using a compression spring and one movable contact that comes into contact with and separates them. 本発明の第9実施形態であって、対向する可動接点の各々を2つずつとしたリレーの概略図である。It is a ninth embodiment of the present invention, and is a schematic diagram of a relay which made each of the movable contact which opposes two each. 本発明の第10実施形態であって、圧縮ばねを用いた対向する固定接点と可動接点を2つずつとしたリレーの概略図である。It is a 10th embodiment of the present invention, and is a schematic diagram of a relay which has two fixed contacts and two movable contacts which opposed using a compression spring. 本発明の第11実施形態であって、導体部と絶縁部を有する導体板と磁石を用いたリレーの概略構成図である。It is an eleventh embodiment of the present invention, and is a schematic configuration diagram of a relay using a conductor plate having a conductor portion and an insulation portion and a magnet. 本発明の第12実施形態であって、導体部と絶縁部を有する導体板を用いたリレーの概略構成図で、(A)は導通時、(B)は遮断時を示す。It is a twelfth embodiment of the present invention and is a schematic configuration diagram of a relay using a conductor plate having a conductor portion and an insulating portion, wherein (A) shows a conduction state and (B) shows a interruption state. 本発明の第13実施形態であって、第12実施形態にかかるリレーにおいてタイマーによりタイミング調整を行う際のソレノイド電流を示すグラフである。14 is a graph showing a solenoid current when a timing is adjusted by a timer in a relay according to a twelfth embodiment of the present invention. 本発明の第14実施形態であって、第12実施形態にかかるリレーにおいてCR回路を用いてタイミング調整を行うリレーの駆動回路図である。FIG. 24 is a drive circuit diagram of a relay that adjusts timing using a CR circuit in a relay according to a twelfth embodiment of the present invention. 本発明の第14実施形態であって、CR回路によりタイミング調整を行う際のソレノイド電流を示すグラフである。15 is a graph showing a solenoid current when a timing is adjusted by a CR circuit according to a fourteenth embodiment of the present invention. 本発明の第15実施形態であって、第12実施形態にかかるリレーにおいてテーパー面を用いたときの概略平面図である。It is a 15th embodiment of the present invention, and is a schematic plan view at the time of using a taper surface in a relay concerning a 12th embodiment. 図17のリレーの正面図である。It is a front view of the relay of FIG. 本発明の第16実施形態であって、導体部と絶縁部を有する導体板を用いた片側の可動接点を2つの部材で構成したリレーの接点構成を示す概略図である。It is a 16th embodiment of the present invention, and is a schematic diagram showing the contact composition of the relay which constituted the one side movable contact using two conductors using the conductor board which has a conductor part and an insulating part. 本発明の第17実施形態であって、導体部と絶縁部を有する導体板を用いた両側の可動接点を2つの部材で構成したリレーの接点構成を示す概略図である。It is a 17th embodiment of the present invention, and is a schematic diagram showing the contact composition of the relay which constituted the movable contact on both sides using two conductors using the conductor board which has a conductor part and an insulating part. 実施例3において試料24の接点材料を用いたリレー構成の遮断時における電圧と電流の挙動を示すグラフである。13 is a graph showing the behavior of voltage and current when the relay configuration using the contact material of sample 24 is cut off in Example 3. 実施例3において試料27の接点材料を用いたリレー構成の遮断時における電圧と電流の挙動を示すグラフである。14 is a graph showing the behavior of voltage and current when the relay configuration using the contact material of Sample 27 is cut off in Example 3.

符号の説明Explanation of reference numerals

10,11,12,20,21,22 (両端)可動接点
15,25 中間可動接点
23,24 固定接点
17,27 段部
30,31,32,33 導体板
34,36 導体部
35,37 絶縁部
40 圧縮ばね
50 永久磁石
8 保持穴
91,92 ブロック
60 導体板支持機構
61 テーパー面
62 ブロック部
63 枠部
70 揺動アーム
71 ローラ
72 接続端子
73 回転軸
74 引張ばね
100 アーク
10,11,12,20,21,22 (both ends) movable contact
15,25 Intermediate movable contact
23,24 Fixed contacts
17,27 steps
30,31,32,33 Conductor plate
34,36 conductor
35,37 insulation
40 Compression spring
50 permanent magnet
8 Holding hole
91,92 blocks
60 Conductor plate support mechanism
61 Tapered surface
62 Block
63 Frame
70 Swing arm
71 rollers
72 Connection terminal
73 Rotary axis
74 Tension spring
100 arc

Claims (14)

少なくとも一方が可動接点で、互いに開閉する接点を有する接点対と、
これら接点の間に介在されて、通電時は両接点と接触して導通をとり、遮断する時は各接点と間隔をとって配置される導体板とを具えることを特徴とする直流リレー。
At least one of which is a movable contact, a contact pair having contacts that open and close with each other,
A direct current relay which is interposed between these contacts so as to come into contact with the two contacts when energized to conduct the current, and to interrupt each contact and a conductor plate arranged at an interval.
一方の接点と導体板の間および他方の接点と導体板の間に絶縁性の弾性材を介在して導体板を挟持することを特徴とする請求項1に記載の直流リレー。   2. The DC relay according to claim 1, wherein the conductor plate is sandwiched between one contact and the conductor plate and between the other contact and the conductor plate with an insulating elastic material interposed therebetween. 各接点の導体板との接触面に保持穴を形成し、
これら保持穴に、接点の開閉方向に伸縮可能な絶縁弾性材を挿入して、絶縁弾性材により導体板を挟持することを特徴とする請求項2に記載の直流リレー。
Form a holding hole in the contact surface of each contact with the conductor plate,
3. The DC relay according to claim 2, wherein an insulating elastic material that can expand and contract in the contact opening and closing direction is inserted into the holding holes, and the conductor plate is sandwiched by the insulating elastic material.
接点間に介在される導体板が複数であることを特徴とする請求項1に記載の直流リレー。   2. The DC relay according to claim 1, wherein a plurality of conductor plates are interposed between the contacts. 遮断時、前記各接点と導体板との間に生じるアークを磁界により歪曲させる磁石を具えることを特徴とする請求項1に記載の直流リレー。   2. The DC relay according to claim 1, further comprising: a magnet for distorting an arc generated between each of the contact points and the conductor plate by a magnetic field when interrupted. 導体板は、導体部と、この導体部の外周囲に設けられる絶縁部とを具え、前記接点間が閉じた状態において接点を前記導体部に接触させ、前記接点間が開いた状態において磁石によりアークを絶縁部に向けて歪曲させることを特徴とする請求項5に記載の直流リレー。   The conductor plate includes a conductor portion and an insulating portion provided on the outer periphery of the conductor portion, contacts the contacts with the conductor portion in a state where the contacts are closed, and a magnet in a state where the contacts are open. The direct current relay according to claim 5, wherein the arc is distorted toward the insulating portion. 導体板は、導体部と絶縁部とが並列されており、前記接点間が閉じた状態において接点間に前記導体部を介在させ、前記接点間が開いた状態において接点間に絶縁部を介在させる導体板の駆動源を具えることを特徴とする請求項1に記載の直流リレー。   In the conductor plate, a conductor portion and an insulating portion are arranged in parallel, and the conductor portion is interposed between the contacts when the contacts are closed, and the insulating portion is interposed between the contacts when the contacts are open. The DC relay according to claim 1, further comprising a driving source for the conductive plate. 前記両接点を開く駆動信号を出力後、一定時間経過後に絶縁部を両接点間に挿入する駆動信号を出力し、絶縁部を両接点間から引き抜く駆動信号を出力後、両接点を近接する駆動信号を出力するように接点と導体板の駆動タイミングを制御するタイマー手段を具えることを特徴とする請求項7に記載の直流リレー。   After outputting the drive signal for opening both contacts, after a lapse of a certain time, outputting a drive signal for inserting the insulating part between the two contacts, outputting a drive signal for pulling out the insulating part from between the two contacts, and then driving the two contacts close to each other 8. The DC relay according to claim 7, further comprising timer means for controlling a drive timing of the contact and the conductor plate so as to output a signal. 前記両接点を開いた後、導体部を両接点間から引き抜いて絶縁部を両接点間に挿入し、開いた両接点間から絶縁部を引き抜いて導体部を両接点間に挿入した後、両接点が近接するように接点と導体板の駆動タイミングを制御するCR回路を具えることを特徴とする請求項7に記載の直流リレー。   After opening the two contacts, the conductor is pulled out from between both contacts, the insulating part is inserted between both contacts, the insulating part is pulled out from between both opened contacts, and the conductor is inserted between both contacts. The direct current relay according to claim 7, further comprising a CR circuit that controls a drive timing of the contact and the conductor plate so that the contact is close to the contact. 前記導体板の往復駆動に連動されるテーパー面と、
前記テーパー面に接触して両可動接点間を開閉する開閉機構とを具えることを特徴とする請求項7に記載の直流リレー。
A tapered surface interlocked with the reciprocating drive of the conductor plate,
The direct current relay according to claim 7, further comprising an opening / closing mechanism that opens and closes between the two movable contacts by contacting the tapered surface.
前記接点は駆動源を用いることなく開閉するよう構成されることを特徴とする請求項10に記載の直流リレー。   The DC relay according to claim 10, wherein the contact is configured to be opened and closed without using a driving source. 接点対を複数具え、これら接点対は直列に配置されていることを特徴とする請求項1から請求項11の何れかに記載の直流リレー。   12. The DC relay according to claim 1, comprising a plurality of contact pairs, wherein the contact pairs are arranged in series. 接点対を複数具え、これら接点対は並列に配置されていることを特徴とする請求項1から請求項11の何れかに記載の直流リレー。   12. The DC relay according to claim 1, comprising a plurality of contact pairs, wherein the contact pairs are arranged in parallel. 接点の接触面および導体板における接点との接触面は、Snを1〜9質量%含み、Inを1〜9質量%含む化学組成のAg合金からなり、表面部の第一層と内部の第二層とを有し、第一層のマイクロビッカース硬度が190以上、第二層のマイクロビッカース硬度が130以下であり、第一層の厚みが、10〜360μmの範囲内にあることを特徴とする請求項1から請求項13の何れかに記載の直流リレー。   The contact surface of the contact and the contact surface of the conductor plate with the contact are made of an Ag alloy having a chemical composition containing 1 to 9% by mass of Sn and 1 to 9% by mass of In. With two layers, the micro Vickers hardness of the first layer is 190 or more, the micro Vickers hardness of the second layer is 130 or less, and the thickness of the first layer is in the range of 10 to 360 μm. The DC relay according to any one of claims 1 to 13, wherein:
JP2003277160A 2002-09-10 2003-07-18 Dc relay Pending JP2004193100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277160A JP2004193100A (en) 2002-09-10 2003-07-18 Dc relay

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002264756 2002-09-10
JP2002266450 2002-09-12
JP2002340694 2002-11-25
JP2003277160A JP2004193100A (en) 2002-09-10 2003-07-18 Dc relay

Publications (1)

Publication Number Publication Date
JP2004193100A true JP2004193100A (en) 2004-07-08

Family

ID=32777137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277160A Pending JP2004193100A (en) 2002-09-10 2003-07-18 Dc relay

Country Status (1)

Country Link
JP (1) JP2004193100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244891A (en) * 2011-05-24 2012-12-10 Central Research Institute Of Electric Power Industry Method of suppressing increase of pressure in sealed container caused by arc and electric apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244891A (en) * 2011-05-24 2012-12-10 Central Research Institute Of Electric Power Industry Method of suppressing increase of pressure in sealed container caused by arc and electric apparatus

Similar Documents

Publication Publication Date Title
JP2004311389A (en) Dc relay
US8183489B2 (en) Contact element
US20130264310A1 (en) Switch having a quenching chamber
US7230304B2 (en) Electric contacts and method of manufacturing thereof, and vacuum interrupter and vacuum circuit breaker using thereof
WO2009081659A1 (en) Electrode contact member of vacuum circuit breaker and process for production of the same
KR20100044760A (en) An improved method of removing arc, an arc remover, and an hybrid switch
JP2005005243A (en) Direct current relay
US6437275B1 (en) Vacuum circuit-breaker, vacuum bulb for use therein, and electrodes thereof
CN111742386A (en) Switching device
JP2004193100A (en) Dc relay
JP2005056819A (en) Direct current relay
JP2004288604A (en) Direct current relay
EP0118844A2 (en) Vacuum switch and method of manufacturing the same
EP2161728A2 (en) Electrical contacts and methods of manufacturing the same, and switchgear for electric power
US6791045B1 (en) Shielded-type automotive relay controlling a magnet clutch load of a vehicle air-conditioner
JP2004273413A (en) Dc relay
JPH10303468A (en) Thermoelectric material and its manufacture
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JP2004193099A (en) Dc relay
JP2004311390A (en) Dc relay
JP2005019184A (en) D.c. relay
JP2005108768A (en) Dc relay
JP2005294125A (en) Dc relay
JP2004335436A (en) Dc relay
JP2004288605A (en) Direct current relay