【0001】
【発明の属する技術分野】
本発明は、線膨張係数が小さく、透明性、耐熱性、耐溶剤性に優れ、ガラスに代替可能な透明複合体組成物に関する。本発明の透明複合体組成物は、例えば、液晶表示素子用基板、有機EL表示素子用基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などの光学シート、透明板、光学レンズ、光学素子、光導波路、LED封止材などに好ましい。
【0002】
【従来の技術】
一般に、液晶表示素子や有機EL表示素子用の表示素子基板(特にアクティブマトリックスタイプ)、カラーフィルター基板、太陽電池用基板等としては、ガラス板が広く用いられている。しかしながらガラス板は、割れ易い、曲げられない、比重が大きく軽量化に不向きなどの理由から、近年、その代替としてプラスチック素材が検討されている。
例えば、エポキシ樹脂、酸無水物系硬化剤及び硬化触媒を含むエポキシ樹脂組成物を硬化して得られる硬化体からなる液晶表示素子用透明樹脂基板が検討されている。(例えば、特許文献1参照。)
しかしながら、これら従来のガラス代替用プラスチック材料は、ガラス板に比べ線膨張係数が大きく、特に、アクティブマトリックス表示素子基板に用いるとその製造工程において反りやアルミ配線の断線などの問題が生じ、これら用途への使用は困難である。したがって、表示素子基板、特にアクティブマトリックス表示素子用基板に要求される、透明性、耐溶剤性、耐液晶性、耐熱性等を満足しつつ線膨張係数の小さなプラスチック素材が求められている。
【0003】
線膨張係数を低減するためには、従来、樹脂にガラスパウダーやガラス繊維等の無機フィラーを配合する材料の複合化も種々行われている。しかしながら、これら樹脂と無機フィラーとの複合材では基材の透明性が損なわれることが多い。これは無機フィラーの屈折率と樹脂の屈折率とが異なるため、樹脂中を透過する光が乱屈折することが主な原因である。
【0004】
このような問題を解決するため、樹脂と無機フィラーとの屈折率を合わせて透明化することが種々検討されている。例えば、酸無水物で硬化したエポキシ樹脂と実質的に同じ屈折率の充填材からなる光透過性エポキシ樹脂組成物など、光半導体装置用には屈折率を合わせて透明化したエポキシ樹脂組成物が種々報告されている。(例えば、特許文献2参照。)しかしながら、従来の光半導体装置用の材料では、特殊なフィラーが用いられており、汎用なガラスフィラー等の無機フィラーの使用により幅広い用途への展開が求められている。
【0005】
【特許文献1】
特開平6−337408号公報(第2頁)
【特許文献2】
特開平4−236217号公報(第2頁)
【0006】
【発明が解決しようとする課題】
本発明の目的は、線膨張係数が小さく、透明性、耐熱性、耐溶剤性に優れ、ガラスに代替可能な透明複合体組成物を提供することにある。本発明の透明複合体組成物は、アクティブマトリックスタイプを含む液晶表示素子用基板、有機EL表示素子基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などの光学シート、透明板、光学レンズ、光学素子、光導波路、LED封止材等に好適に用いられる。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく鋭意検討した。その結果、エポキシ樹脂(a)及び球相当直径が0.1μm〜2mmである無機フィラー(b)よりなる透明樹脂複合体であって、エポキシ樹脂(a)は、硬化後の屈折率が無機フィラー(b)よりも低い1種以上のエポキシ樹脂と、無機フィラー(b)よりも高い1種以上のエポキシ樹脂とからなる透明複合体組成物であって、(a)と(b)との屈折率差が0.01以下である透明複合体組成物は、波長550nmにおける光線透過率が80%以上と透明性が高く、しかも低線膨張係数であって、耐熱性、耐溶剤性にも優れるとの知見を得て、本発明を完成するに至った。
【0008】
すなわち本発明は、エポキシ樹脂(a)及び無機フィラー(b)からなり、波長550nmにおける光線透過率が80%以上である透明複合体組成物を提供するものである。
【0009】
本発明の好ましい透明樹脂組成物は硬化後のエポキシ樹脂(a)の屈折率と無機フィラー(b)の屈折率との差が0.01以下である。
【0010】
【発明の詳述】
つぎに、本発明をさらに詳細に説明する。
本発明の透明複合体組成物に用いるエポキシ樹脂(a)は可視光線に対して高い透過性を有し、厚さ200μmのシートとした時、波長550nmの光線透過率が好ましくは80%以上であり、さらに好ましくは85%以上、最も好ましくは88%以上である。波長550nmの光線透過率が80%以下の場合は、プラスチック基板の表示性能が低下し好ましくない。
本発明にて用いるエポキシ樹脂(a)は、無機フィラー(b)と複合化して波長550nmの光線透過率が80%以上になるものであれば特に限定されない。
【0011】
本発明にて用いるエポキシ樹脂(a)の硬化後のガラス転移温度は、150℃以上であるのが好ましく、より好ましくは180℃以上、さらに好ましくは200℃以上である。樹脂のガラス転移温度が150℃未満であると、TFT素子形成工程、特にアクティブマトリックス表示素子用基板のTFT素子形成工程で変形やうねりが生じる恐れがある。
【0012】
本発明の複合体組物を、液晶表示素子用プラスチック基板など、光学用途に用いる場合は、波長550nmの光線透過率が80%以上であることが好ましく、85%以上であるのがより好ましい。光線透過率がこれよりさらに低いと光の利用効率が低下し光効率が重要な用途には好ましくない。
【0013】
かかる複合体において、波長550nmの光線透過率を80%以上にする方法としては、(1)エポキシ樹脂と無機フィラーの屈折率を合わせる、(2)光の波長以下の微細な無機フィラーを用いる、などがあげられるが、材料入手の容易さから屈折率を一致させるのが好ましい。
【0014】
エポキシ樹脂(a)の硬化後の屈折率と無機フィラー(b)の屈折率との差は、優れた透明性を維持するため0.01以下であることが好ましく、0.005以下がより好ましい。屈折率差が0.01より大きい場合には、得られるプラスチック基板の透明性が劣る傾向がある。
【0015】
エポキシ樹脂(a)と無機フィラー(b)との屈折率差を0.01以下にするには、▲1▼ガラスフィラーとの屈折率差が0.01以下の樹脂を選択する、▲2▼無機フィラーの屈折率を調整して樹脂の屈折率に合わせる、▲3▼樹脂の屈折率を調整して無機フィラーの屈折率を合わせる方法などが採用し得る。
【0016】
しかしながら表示素子用基板に要求される種々の特性を満足しつつ、樹脂と無機フィラーとの屈折率差が0.01以下の組み合わせを選択することは容易でないため、樹脂または無機フィラーの屈折率を調整して屈折率差を0.01以下にするのが好ましい。無機フィラーの屈折率を調整して樹脂の屈折率に合わせる方法では特殊な無機フィラーを用いることになり、コストの面からは、樹脂の屈折率を調整して無機フィラーの屈折率に合わせる方法が好ましい。
【0017】
無機フィラーの屈折率に樹脂の屈折率を合わせるには、▲1▼屈折率の異なる2種以上の樹脂を組み合わせる方法、▲2▼樹脂よりも屈折率が大きいか、小さい添加剤を添加して調整する方法などが挙げられる。なかでも、無機フィラー(b)よりも屈折率の高い樹脂と無機フィラー(b)よりも屈折率の低い樹脂を組み合わせて屈折率を調整する方法が好ましい。この方法によれば、樹脂の屈折率を、たとえば、Eガラス、Sガラス、NEガラスなどの汎用的なガラスフィラーの屈折率に合わすことが比較的容易である。
【0018】
屈折率の異なるエポキシ樹脂の組み合わせとしては、▲1▼屈折率の異なる2種以上のエポキシ樹脂の組み合わせ、▲2▼屈折率の異なる2種以上の硬化剤の組み合わせ、▲3▼エポキシ樹脂と屈折率の異なる他の樹脂との組み合わせなど、無機フィラー(b)の屈折率に調整できるものであれば特に限定されないが、樹脂同士の相容牲が高く、かつ広い範囲で屈折率の調整ができことから屈折率の異なる2種以上のエポキシ樹脂の組み合わせが好ましい。
【0019】
すなわち、無機フィラー(b)の屈折率に調整可能な好ましい樹脂の組み合わせは、硬化したときの屈折率が無機フィラー(b)よりも低い1種以上のエポキシ樹脂と、硬化したときの屈折率が無機フィラー(b)よりも高い1種以上のエポキシ樹脂との組み合わせである。
硬化後のエポキシ樹脂の屈折率は使用した硬化剤によっても異なり、本発明にて用いられる、屈折率の低いエポキシ樹脂、或いは高いエポキシ樹脂としては、各々、硬化後の屈折率が、用いられる無機フィラーの屈折率よりも低く、或いは高くなるものであれば特に限定されない。
【0020】
無機フィラーとして、EガラスやSガラスなど屈折率が1.52以上のガラスフィラーを用いる場合、酸無水物を硬化剤として、
(i)比較的屈折率の低い脂環式エポキシ樹脂(下式(3)〜(8)など)、及び屈折率が中程度であるトリグリシジルイソシアヌレート(下式(9))から選ばれた少なくとも1種のエポキシ樹脂と、
(ii)比較的屈折率の高いイオウ含有エポキシ樹脂(下式(1))及びフルオレン骨格含有エポキシ樹脂(下式(2))から選ばれた少なくとも1種のエポキシ樹脂
の組み合わせなどが好ましい。前記成分(i)としては、それらのうち、トリグリシジルイソシアヌレートが耐熱性の点からより好ましい。
【0021】
一方、NEガラスなど屈折率が1.52未満のガラスフィラーを用いる場合は酸無水物を硬化剤として、
(i)比較的屈折率の低い脂環式エポキシ樹脂(下式(3)〜(8)など)から選ばれた少なくとも1種のエポキシ樹脂と、
(ii)屈折率が中程度であるトリグリシジルイソシアヌレート(下式(9))、並びに比較的屈折率の高いイオウ含有エポキシ樹脂(下式(1))及びフルオレン骨格含有エポキシ樹脂(下式(2))から選ばれた少なくとも1種のエポキシ樹脂
の組み合わせなどが好ましい。
【0022】
前記の比較的屈折率の低いエポキシ樹脂としては、下式(3)〜(8)にて示される脂環式エポキシ樹脂などが挙げられる。
【化3】
【0023】
【化4】
【0024】
【化5】
【0025】
【化6】
(式中、R6はアルキル基またはトリメチロールプロパン残基を示し、qは1〜20である。)
【0026】
【化7】
(式中、R7及びR8は各々独立して水素原子又はメチル基を示し、rは0〜2である。)
【0027】
【化8】
(式中、sは0〜2である。)
【0028】
また、前記の屈折率が中程度であるトリグリシジルイソシアヌレートは下式(9)にて示される。
【化9】
【0029】
前記の比較的屈折率の高いイオウ含有エポキシ樹脂、及びフルオレン骨格含有エポキシ樹脂は、下記の式(1)及び式(2)にて表される。
【0030】
イオウ含有エポキシ樹脂
イオウ含有エポキシ樹脂としては、イオウを含有し、2つ以上のエポキシ基を有するエポキシ樹脂であれば特に限定されず、耐熱性や透明性の点から下式(1)に示すエポキシ樹脂が好ましい。
【0031】
【化10】
(式中、XはSまたはSO2を示し、YはOまたはSを示す。R1〜R4は各々独立に水素原子又はメチル基を示し、nは0〜2である。)
式(1)で示されるエポキシ樹脂の中でも、反応性、耐熱性や取り扱い安さからXがSO2、Yが酸素、R5〜R10がすべて水素、nが0〜1であるビスフェノールSが最も好ましい。
【0032】
フルオレン骨格含有エポキシ樹脂
フルオレン骨格含有エポキシ樹脂としては、フルオレン骨格を含有し、2つ以上のエポキシ基を有するエポキシ樹脂であれば特に限定されないが、耐熱性や透明性の点から下式(2)で示されるエポキシ樹脂が好ましい。
【0033】
【化11】
(式中、R5は水素又はメチル基を示し、mは0〜2である。)
【0034】
硬化後の屈折率の異なるエポキシ樹脂は、目的とする屈折率に応じて適宜の配合割合で混合し硬化することができ、エポキシ樹脂(a)の屈折率を無機フィラーの屈折率に調整することができる。
【0035】
本発明で用いられるエポキシ樹脂には、柔軟性付与するなどのため、所望の特性を損なうことのない範囲で、単官能のエポキシ化合物を併用してもよい。この場合、樹脂全体の屈折率を無機フィラーの屈折率に合うように配合量を調整する。
【0036】
本発明に用いるエポキシ樹脂(a)は、硬化剤もしくは重合開始剤存在下、加熱又は活性エネルギー線を照射し、硬化して用いる。硬化剤は、特に限定されないが、優れた透明性の硬化物が得られやすいことから、酸無水物系の硬化剤やカチオン系触媒が好ましい。
【0037】
酸無水物の硬化剤としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチル無水ナジック酸、無水ナジック酸、無水グルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチル水添無水ナジック酸、水添無水ナジック酸などがあげられ、なかでも透明性が優れることからメチルヘキサヒドロ無水フタル酸やメチル水添無水ナジック酸が好ましい。
【0038】
酸無水物系硬化剤を使用する場合は、硬化促進剤を併用することが好ましい。この硬化促進剤としては、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン等の三級アミン類、2−エチル−4−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート等のリン化合物、四級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられ、これらのなかでもリン化合物が好ましい。これら硬化促進剤は、単独で用いてもよく2種以上を併用してもよい。
【0039】
酸無水物系硬化剤の使用量は、エポキシ樹脂(a)中のエポキシ基1当量に対して、酸無水物系硬化剤における酸無水物基を0.5〜1.5当量に設定することが好ましく、0.7〜1.2当量がより好ましい。
【0040】
また、カチオン系触媒としては、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸、三フッ化ホウ素アミン錯体、三フッ化ホウ素のアンモニウム塩、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨウドニウム塩、アルミニウム錯体を含有するカチオン系触媒等をあげることができ、これらのなかでもアルミニウム錯体を含有するカチオン系触媒が好ましい。
【0041】
(無機フィラー)
本発明の無機フィラー(b)の球相当直径は0.1μm〜2mmである。球相当直径が0.1μm未満であると、線膨張係数の低減への効果が小さく、2mmを超えると均一に分散することが困難である。
本発明の無機フィラー(b)の形状は、面内方向の線膨張係数を下げる効果が大きいことから、平板状,棒状または棒状の集合体であることが好ましい。平板状のものである場合、その厚みは0.1μm以上100μm以下程度であることが好ましく、棒状または棒状の集合体である場合、1本の棒状の直径は0.1μm以上100μm以下であることが好ましいが、特に限定されるものではない。
【0042】
本発明の無機フィラー(b)の材質の例を挙げるとシリカ,アルミナ,酸化チタン等の金属酸化物,マイカ等の鉱物,ガラス等であるがこれらに限定されるものではない。これらのうちで透明性が良好で種々の形状のものが安価に入手しやすいガラスが好ましい。ガラスの種類としては、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、低誘導率ガラス、高誘導率ガラスなどがあげられ、中でもアルカリ金属などのイオン性不純物が少なく、入手が容易なEガラス、Sガラス、Tガラス、NEガラスが好ましい。
【0043】
本発明の透明複合体組成物に配合する無機フィラー(b)の屈折率は特に限定されるものではないが、組み合わせる樹脂の屈折率の調整が容易なように1.50〜1.57の範囲にあるのが好ましい。特に無機フィラーがガラスフィラーでありその屈折率が1.50〜1.54である場合は、ガラスのアッベ数に近い樹脂が選択でき好ましい。樹脂とガラスとのアッベ数が近いと広い波長領域において両者の屈折率が一致し、広い波長領域で高い光線透過率が得られる。
【0044】
(透明複合体組成物)
透明複合体組成物における無機フィラー(b)の含有率は10重量%以上95重量%以下であることが好ましい。含有率が10重量%より少ないと線膨張係数を低減する効果が得られにくく、95重量%以上であると均一に分散することが難しい。
【0045】
本発明の透明複合体組成物においては、無機フィラーと樹脂とが密着しているほど、表示素子用プラスチック基板など複合体組成物の透明性がよくなるため、無機フィラー表面をシランカップリング剤などの公知の表面処理剤で処理するのが好ましい。具体的には、エポキシ基を有するシラン化合物で処理するのが好ましい。
【0046】
(他の配合成分)
表示素子用プラスチック基板など本発明の複合体組成物には、必要に応じて、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、熱可塑性又は熱硬化性のオリゴマーやポリマーを併用してよい。この場合、吸水率の低減などのため、脂環式構造やカルド骨格を有するオリゴマーやポリマーを使用することが好ましい。これら熱可塑性または熱硬化性のオリゴマーやポリマーを併用する場合は、全体の屈折率が無機フィラーの屈折率に合うように組成比を調整する必要がある。
【0047】
また、本発明の複合体組成物中には、必要に応じて、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、少量の酸化防止剤、紫外線吸収剤、染顔料、他の無機フィラー等の充填剤等を含んでいても良い。
【0048】
複合体組成物の成形方法に制限はなく、例えば、流延法や注型法などがあり、連続生産が可能であることから流延法が好ましい。
【0049】
本発明の複合体組成物を、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル等の光学用途として用いる場合、基板の厚さは好ましくは50〜2000μmであり、より好ましくは50〜1000μmである。基板の厚さがこの範囲にあると平坦性に優れ、ガラス基板と比較して基板の軽量化を図ることができる。
【0050】
また、この透明複合体組成物を前記光学用途として用いる場合、30〜150℃における平均線膨張係数が40ppm以下であることが好ましく、より好ましくは30ppm以下である。例えば、この複合体組成物をアクティブマトリックス表示素子基板に用いた場合、この上限値を越えると、その製造工程において反りやアルミ配線の断線などの問題が生じる恐れがある。
【0051】
表示素子用プラスチック基板とする場合、平滑牲を向上させるために両面に樹脂のコート層を設けても良い。かかる樹脂は優れた透明性、耐熱性、耐薬品性を有していることが好ましく、具体的には多官能アクリレートやエポキシ樹脂などが好ましい。コート層の厚みは0.1〜50μmが好ましく、0.5〜30μmがより好ましい。
【0052】
本発明の表示素子用プラスチック基板は、必要に応じて水蒸気や酸素に対するガスバリア層や透明電極層を設けても良い。
【0053】
【実施例】
以下に本発明を実施例及び比較例によりさらに具体的に説明するが、本発明はこれらにより限定されるものではない。
【0054】
(実施例1)
平均投影円相当直径約10μm,平均厚さ約0.1μmであるSガラス(屈折率1.530)の平板状フィラーを、焼きだしし有機物を除去した後、γ−グリシドキシプロピルトリメトキシシラン(エポキシシラン)で処理した。この無機フィラー90重量部をトリグリシジルイソシアヌレート90重量部、ビスフェノールS型エポキシ樹脂10重量部、メチル水添無水ナジック酸(酸無水物(1))170重量部、及びテトラフェニルホスホニウムブロマイド(硬化促進剤(1))2重量部を110℃にて溶融混合した液状の樹脂中に分散し、脱泡した。これを、厚さ100μmのポリエステルフィルムをスペーサーとして離型処理したガラス板に挟み込んで、オーブン中、100℃にて2時間加熱後、さらに120℃にて2時間、150℃にて2時間、175℃にて2時間、順次加熱し厚さ0.1mmの透明複合体のシートを得た。
【0055】
(実施例2)
実施例1と同様の処理を行った平均直径約18μm,平均長さ約1cmであるSガラスの棒状フィラー80重量部を、トリグリシジルイソシアヌレート62.5重量部、ビスフェノールS型エポキシ樹脂27.5重量部、メチルヘキサヒドロ無水フタル酸(酸無水物(2))120重量部、及びテトラフェニルホスホニウムブロマイド(硬化促進剤(1))1.4重量部を110℃にて溶融混合した樹脂中に分散し、脱泡した。これを、厚さ100μmのポリエステルフィルムをスペーサーとして離型処理したガラス板に挟み込んで、実施例1と同条件にて加熱処理を行い厚さ0.1mmの透明複合体のシートを得た。
【0056】
(実施例3)
実施例1と同様の処理を行った平均投影円相当直径約5μm,平均厚さ約0.1μmであるEガラス(屈折率1.560)の平板状フィラー90重量部を、トリグリシジルイソシアヌレート20重量部、ビスフェノールS型エポキシ樹脂80重量部、メチル水添無水ナジック酸(酸無水物(1))75重量部、及びテトラフェニルホスホニウムブロマイド(硬化促進剤(1))1重量部を100℃にて溶融混合した樹脂に分散し、脱泡した。これを、厚さ100μmのポリエステルフィルムをスペーサーとして離型処理したガラス板に挟み込んで、実施例1と同条件にて加熱処理を行い厚さ0.1mmの透明複合体のシートを得た。
【0057】
(実施例4)
実施例1と同様の処理を行った平均直径約13μm,平均長さ約3mmであるEガラスの棒状フィラー80重量部を、トリグリシジルイソシアヌレート45.5重量部、フルオレン骨格含有エポキシ樹脂54.5重量部、メチル水添無水ナジック酸(酸無水物(1))113重量部、テトラフェニルホスホニウムブロマイド(硬化促進剤(1))1.3重量部を100℃で溶融混合した樹脂に分散し、脱泡した。これを、厚さ100μmのポリエステルフィルムをスペーサーとして離型処理したガラス板に挟み込んで、実施例1と同条件にて加熱処理を行い厚さ0.1mmの透明複合体のシートを得た。
【0058】
(実施例5)
実施例1と同様の処理を行った平均投影円相当直径約5μm,平均厚さ約0.1μmであるNEガラス(屈折率1.510)の平板状フィラー90重量部を、トリグリシジルイソシアヌレート40重量部、脂環式エポキシ樹脂60重量部、メチル水添無水ナジック酸(酸無水物(1))139重量部、1−ベンジル−2−フェニルイミダゾール(硬化促進剤(2))1重量部を100℃で溶融混合した樹脂に分散し、脱泡した。これを、厚さ100μmのポリエステルフィルムをスペーサーとして離型処理したガラス板に挟み込んで、実施例1と同条件にて加熱処理を行い厚さ0.1mmの透明複合体のシートを得た。
【0059】
(比較例1)
脂環式エポキシ樹脂100重量部、メチルヘキサヒドロ無水フタル酸(酸無水物(2))81重量部、及びテトラフェニルホスホニウムブロマイド(硬化促進剤(1))1重量部を50℃にて溶融混合した。これを、厚さ100μmのポリエステルフィルムをスペーサーとして離型処理したガラス板に挟み込んで、実施例1と同条件にて加熱処理を行い厚さ0.1mmの樹脂シートを得た。
【0060】
(比較例2)
実施例3と同様の処理を行ったEガラスの平板状フィラー90重量部を、脂環式エポキシ樹脂100重量部、メチルヘキサヒドロ無水フタル酸(酸無水物(2))81重量部、及びテトラフェニルホスホニウムブロマイド(硬化促進剤(1))1重量部を50℃にて溶融混合した樹脂に分散し、脱泡した。これを、厚さ100μmのポリエステルフィルムをスペーサーとして離型処理したガラス板に挟み込んで、実施例1と同条件にて加熱処理を行い厚さ0.1mmの複合体のシートを得た。
【0061】
(評価方法)
前記の実施例、比較例にて作製した樹脂シート(表示素子用プラスチック基板)について、下記の評価方法により各種の特性を測定した。
【0062】
a)平均線膨張係数
セイコー電子(株)製TMA/SS120C型熱応力歪測定装置を用いて、窒素雰囲気下、1分間に5℃の割合で温度を30℃から150℃まで上昇させた後、一旦0℃まで冷却し、再び1分間に5℃の割合で温度を上昇させて30℃〜150℃の時の値を測定して求めた。荷重を5gにし、引張モードで測定を行った。
【0063】
測定は、独自に設計した石英引張チャック(材質:石英,線膨張係数0.5ppm)を用いた。一般に使われているインコネル製のチャックは、それ自体の線膨張が高いことやサンプルの支持形態に不具合があり、100μmを超える厚いシートに適用すると線膨張係数が圧縮モードで測定した結果よりも大きめに出たり、測定ばらつきが大きくなる問題があった。したがって、石英引張チャックを独自に設計し、それを用いて線膨張係数を測定することにした。この引張チャックを用いることにより、圧縮モードで測定した場合とほぼ同様の値で測定できることを確認している。
【0064】
b)耐熱性(Tg)
セイコー電子(株)製DMS―210型粘弾性測定装置で測定し、1Hzでのtanδの最大値をガラス転移温度(Tg)とした。
【0065】
c)耐溶剤性
60℃のジメチルスルホキシド(DMSO)溶液に試料を浸漬して60分間放置。試料を取り出した後、目視にて外観を観察した。完全に変形、変色を伴わず、侵食されないもののみ○、他は×とした。
【0066】
d)光線透過率
分光光度計U3200(日立製作所製)で400nm及び550nmの光線透過率を測定した。
【0067】
g)屈折率
アタゴ社製アッベ屈折率計DR−M2を用いて、25℃で波長589nmの屈折率を測定した。
【0068】
これらの評価方法により、前記実施例、比較例にて得られた試料を評価した。結果をつぎの表1及び表2に示す。
【0069】
【表1】
【0070】
【表2】
【0071】
【発明の効果】
本発明の透明複合体組成物は、低線膨張係数で透明性、耐熱性、耐溶剤性等に優れるため、例えば、液晶表示素子基板や有機EL素子基板(特にアクティブマトリックスタイプ)に好ましいほか、透明板、光学レンズ、カラーフィルター用基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材などに好ましい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transparent composite composition having a small coefficient of linear expansion, excellent transparency, heat resistance, and solvent resistance and which can be substituted for glass. The transparent composite composition of the present invention includes, for example, a liquid crystal display element substrate, an organic EL display element substrate, a color filter substrate, a touch panel substrate, an optical sheet such as a solar cell substrate, a transparent plate, an optical lens, and an optical element. , An optical waveguide, an LED sealing material and the like.
[0002]
[Prior art]
Generally, a glass plate is widely used as a display element substrate (particularly an active matrix type) for a liquid crystal display element or an organic EL display element, a color filter substrate, a solar cell substrate, and the like. However, in recent years, plastic materials have been studied as a substitute for glass plates because they are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction.
For example, a transparent resin substrate for a liquid crystal display element, which is made of a cured product obtained by curing an epoxy resin composition containing an epoxy resin, an acid anhydride-based curing agent and a curing catalyst, has been studied. (For example, refer to Patent Document 1.)
However, these conventional plastic materials for glass replacement have a larger linear expansion coefficient than glass plates, and in particular, when used for an active matrix display element substrate, there are problems such as warpage and disconnection of aluminum wiring in the manufacturing process. Is difficult to use. Therefore, a plastic material having a small linear expansion coefficient while satisfying transparency, solvent resistance, liquid crystal resistance, heat resistance, and the like required for a display element substrate, particularly a substrate for an active matrix display element, is required.
[0003]
In order to reduce the coefficient of linear expansion, various kinds of composites of a material in which an inorganic filler such as glass powder or glass fiber is mixed with a resin have been conventionally performed. However, composite materials of these resins and inorganic fillers often impair the transparency of the substrate. This is mainly because the refractive index of the inorganic filler and the refractive index of the resin are different from each other, and thus the light transmitted through the resin is irregularly refracted.
[0004]
In order to solve such a problem, various studies have been made to make the resin and the inorganic filler transparent by matching the refractive indices. For example, a light-transmitting epoxy resin composition comprising a filler having substantially the same refractive index as an epoxy resin cured with an acid anhydride, such as a light-transmitting epoxy resin composition for an optical semiconductor device, an epoxy resin composition that is made transparent by adjusting the refractive index. Various reports have been made. (For example, see Patent Document 2.) However, special fillers are used in conventional materials for optical semiconductor devices, and the use of inorganic fillers such as general-purpose glass fillers is required to expand to a wide range of applications. I have.
[0005]
[Patent Document 1]
JP-A-6-337408 (page 2)
[Patent Document 2]
JP-A-4-236217 (page 2)
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a transparent composite composition having a small linear expansion coefficient, excellent transparency, heat resistance, and solvent resistance and which can be substituted for glass. The transparent composite composition of the present invention is a liquid crystal display element substrate including an active matrix type, an organic EL display element substrate, a color filter substrate, a touch panel substrate, an optical sheet such as a solar cell substrate, a transparent plate, an optical lens, It is suitably used for optical elements, optical waveguides, LED sealing materials, and the like.
[0007]
[Means for Solving the Problems]
The present inventors have intensively studied to achieve the above object. As a result, a transparent resin composite comprising the epoxy resin (a) and the inorganic filler (b) having a sphere equivalent diameter of 0.1 μm to 2 mm, wherein the epoxy resin (a) has a cured refractive index of the inorganic filler A transparent composite composition comprising one or more epoxy resins lower than (b) and one or more epoxy resins higher than an inorganic filler (b), wherein a refraction between (a) and (b) is obtained. The transparent composite composition having a rate difference of 0.01 or less has a high light transmittance at a wavelength of 550 nm of 80% or more, has high transparency, has a low linear expansion coefficient, and is excellent in heat resistance and solvent resistance. Thus, the present invention was completed.
[0008]
That is, the present invention provides a transparent composite composition comprising an epoxy resin (a) and an inorganic filler (b) and having a light transmittance at a wavelength of 550 nm of 80% or more.
[0009]
In the preferred transparent resin composition of the present invention, the difference between the refractive index of the cured epoxy resin (a) and the refractive index of the inorganic filler (b) is 0.01 or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
The epoxy resin (a) used for the transparent composite composition of the present invention has high transmittance to visible light, and when formed into a sheet having a thickness of 200 μm, the light transmittance at a wavelength of 550 nm is preferably 80% or more. Yes, more preferably at least 85%, most preferably at least 88%. If the light transmittance at a wavelength of 550 nm is 80% or less, the display performance of the plastic substrate is undesirably reduced.
The epoxy resin (a) used in the present invention is not particularly limited as long as it is compounded with the inorganic filler (b) so that the light transmittance at a wavelength of 550 nm becomes 80% or more.
[0011]
The glass transition temperature after curing of the epoxy resin (a) used in the present invention is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, even more preferably 200 ° C. or higher. If the glass transition temperature of the resin is less than 150 ° C., deformation or undulation may occur in the TFT element forming step, particularly in the step of forming the TFT element of the substrate for an active matrix display element.
[0012]
When the composite assembly of the present invention is used for optical applications such as a plastic substrate for a liquid crystal display device, the light transmittance at a wavelength of 550 nm is preferably 80% or more, more preferably 85% or more. If the light transmittance is lower than this, the light use efficiency is reduced, which is not preferable for applications where light efficiency is important.
[0013]
In such a composite, as a method for increasing the light transmittance at a wavelength of 550 nm to 80% or more, (1) adjusting the refractive indexes of the epoxy resin and the inorganic filler, (2) using a fine inorganic filler having a wavelength equal to or less than the wavelength of light, And the like, but it is preferable to match the refractive indices in view of the availability of materials.
[0014]
The difference between the refractive index of the epoxy resin (a) after curing and the refractive index of the inorganic filler (b) is preferably 0.01 or less, more preferably 0.005 or less in order to maintain excellent transparency. . If the refractive index difference is larger than 0.01, the transparency of the obtained plastic substrate tends to be poor.
[0015]
In order to reduce the refractive index difference between the epoxy resin (a) and the inorganic filler (b) to 0.01 or less, (1) select a resin having a refractive index difference of 0.01 or less from the glass filler, (2) A method of adjusting the refractive index of the inorganic filler to match the refractive index of the resin, and (3) a method of adjusting the refractive index of the resin to match the refractive index of the inorganic filler can be adopted.
[0016]
However, while satisfying various characteristics required for the display element substrate, it is not easy to select a combination in which the refractive index difference between the resin and the inorganic filler is 0.01 or less. It is preferable that the refractive index difference be adjusted to 0.01 or less. In the method of adjusting the refractive index of the inorganic filler to match the refractive index of the resin, a special inorganic filler is used.From the viewpoint of cost, a method of adjusting the refractive index of the resin to match the refractive index of the inorganic filler is used. preferable.
[0017]
In order to match the refractive index of the resin to the refractive index of the inorganic filler, (1) a method of combining two or more resins having different refractive indices, (2) adding an additive having a refractive index larger or smaller than the resin Adjustment methods and the like can be mentioned. Above all, a method of adjusting the refractive index by combining a resin having a higher refractive index than the inorganic filler (b) and a resin having a lower refractive index than the inorganic filler (b) is preferable. According to this method, it is relatively easy to adjust the refractive index of the resin to the refractive index of a general-purpose glass filler such as E glass, S glass, and NE glass.
[0018]
Examples of the combination of epoxy resins having different refractive indices include: (1) a combination of two or more epoxy resins having different refractive indices; (2) a combination of two or more curing agents having different refractive indices; There is no particular limitation as long as the refractive index of the inorganic filler (b) can be adjusted, such as a combination with another resin having a different refractive index, but the compatibility between the resins is high and the refractive index can be adjusted in a wide range. Therefore, a combination of two or more epoxy resins having different refractive indices is preferable.
[0019]
That is, a preferable resin combination that can be adjusted to the refractive index of the inorganic filler (b) is one or more epoxy resins having a lower refractive index than the inorganic filler (b) when cured, and a resin having a refractive index when cured. It is a combination with one or more epoxy resins higher than the inorganic filler (b).
The refractive index of the epoxy resin after curing also differs depending on the curing agent used. As the epoxy resin having a low refractive index or the epoxy resin having a high refractive index used in the present invention, the refractive index after curing is the same as that of the inorganic resin used. There is no particular limitation as long as it is lower or higher than the refractive index of the filler.
[0020]
When using a glass filler having a refractive index of 1.52 or more such as E glass or S glass as an inorganic filler, an acid anhydride is used as a curing agent,
(I) selected from alicyclic epoxy resins having a relatively low refractive index (such as the following formulas (3) to (8)) and triglycidyl isocyanurate having a moderate refractive index (the following formula (9)) At least one epoxy resin;
(Ii) at least one epoxy resin selected from a sulfur-containing epoxy resin having a relatively high refractive index (the following formula (1)) and a fluorene skeleton-containing epoxy resin (the following formula (2))
Are preferred. As the component (i), among them, triglycidyl isocyanurate is more preferable from the viewpoint of heat resistance.
[0021]
On the other hand, when using a glass filler having a refractive index of less than 1.52 such as NE glass, an acid anhydride is used as a curing agent,
(I) at least one epoxy resin selected from alicyclic epoxy resins having a relatively low refractive index (such as the following formulas (3) to (8));
(Ii) Triglycidyl isocyanurate having a middle refractive index (the following formula (9)), a sulfur-containing epoxy resin having a relatively high refractive index (the following formula (1)), and a fluorene skeleton-containing epoxy resin (the following formula ( 2) at least one epoxy resin selected from)
Are preferred.
[0022]
Examples of the epoxy resin having a relatively low refractive index include alicyclic epoxy resins represented by the following formulas (3) to (8).
Embedded image
[0023]
Embedded image
[0024]
Embedded image
[0025]
Embedded image
(Where R6Represents an alkyl group or a trimethylolpropane residue, and q is 1 to 20. )
[0026]
Embedded image
(Where R7And R8Each independently represents a hydrogen atom or a methyl group, and r is 0 to 2. )
[0027]
Embedded image
(In the formula, s is 0 to 2.)
[0028]
The triglycidyl isocyanurate having a medium refractive index is represented by the following formula (9).
Embedded image
[0029]
The sulfur-containing epoxy resin having a relatively high refractive index and the fluorene skeleton-containing epoxy resin are represented by the following formulas (1) and (2).
[0030]
Sulfur-containing epoxy resin
The sulfur-containing epoxy resin is not particularly limited as long as it contains sulfur and has two or more epoxy groups. From the viewpoint of heat resistance and transparency, an epoxy resin represented by the following formula (1) is preferable.
[0031]
Embedded image
(Where X is S or SO2And Y represents O or S. R1~ R4Each independently represents a hydrogen atom or a methyl group, and n is 0 to 2. )
Among the epoxy resins represented by the formula (1), X is SO because of its reactivity, heat resistance and ease of handling.2, Y is oxygen, R5~ R10Are all hydrogen, and bisphenol S wherein n is 0 to 1 is most preferred.
[0032]
Epoxy resin containing fluorene skeleton
The fluorene skeleton-containing epoxy resin is not particularly limited as long as it is an epoxy resin containing a fluorene skeleton and having two or more epoxy groups, but from the viewpoint of heat resistance and transparency, an epoxy resin represented by the following formula (2) Is preferred.
[0033]
Embedded image
(Where R5Represents hydrogen or a methyl group, and m is 0 to 2. )
[0034]
Epoxy resins having different refractive indexes after curing can be mixed and cured at an appropriate mixing ratio according to the target refractive index, and the refractive index of the epoxy resin (a) can be adjusted to the refractive index of the inorganic filler. Can be.
[0035]
The epoxy resin used in the present invention may be used in combination with a monofunctional epoxy compound as long as desired properties are not impaired in order to impart flexibility. In this case, the compounding amount is adjusted so that the refractive index of the entire resin matches the refractive index of the inorganic filler.
[0036]
The epoxy resin (a) used in the present invention is cured by heating or irradiating with an active energy ray in the presence of a curing agent or a polymerization initiator. The curing agent is not particularly limited, but an acid anhydride-based curing agent or a cationic catalyst is preferable because a cured product having excellent transparency is easily obtained.
[0037]
As the curing agent for the acid anhydride, phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride, Methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhydrogenated nadic anhydride, hydrogenated nadic anhydride, etc., among which methylhexahydrophthalic anhydride and methylhydrogenated nadic anhydride are excellent because of their excellent transparency Acids are preferred.
[0038]
When an acid anhydride-based curing agent is used, it is preferable to use a curing accelerator in combination. Examples of the curing accelerator include tertiary amines such as 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, imidazoles such as 2-ethyl-4-methylimidazole, and triphenylphosphine. And quaternary ammonium salts, organometallic salts, and derivatives thereof, among which phosphorus compounds are preferable. These curing accelerators may be used alone or in combination of two or more.
[0039]
The amount of the acid anhydride-based curing agent used is such that the acid anhydride group in the acid anhydride-based curing agent is set to 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin (a). Is preferable, and 0.7 to 1.2 equivalents are more preferable.
[0040]
Examples of the cation-based catalyst include organic acids such as acetic acid, benzoic acid, salicylic acid, and paratoluenesulfonic acid, boron trifluoride amine complex, ammonium salts of boron trifluoride, aromatic diazonium salts, aromatic sulfonium salts, and aromatic salts. Examples thereof include a group iodonium salt and a cationic catalyst containing an aluminum complex. Among these, a cationic catalyst containing an aluminum complex is preferable.
[0041]
(Inorganic filler)
The spherical equivalent diameter of the inorganic filler (b) of the present invention is 0.1 μm to 2 mm. If the equivalent sphere diameter is less than 0.1 μm, the effect on the reduction of the coefficient of linear expansion is small, and if it exceeds 2 mm, it is difficult to uniformly disperse.
The shape of the inorganic filler (b) of the present invention is preferably a flat plate-like, rod-like, or rod-like aggregate because it has a great effect of lowering the linear expansion coefficient in the in-plane direction. When it is a flat plate, its thickness is preferably about 0.1 μm or more and 100 μm or less, and when it is a rod or a rod-shaped aggregate, the diameter of one rod is 0.1 μm or more and 100 μm or less. Is preferred, but is not particularly limited.
[0042]
Examples of the material of the inorganic filler (b) of the present invention include metal oxides such as silica, alumina, and titanium oxide, minerals such as mica, and glass, but are not limited thereto. Among them, glass having good transparency and various shapes is easily available at low cost. Examples of the type of glass include E glass, C glass, A glass, S glass, D glass, NE glass, T glass, low dielectric constant glass, and high dielectric constant glass, among which ionic impurities such as alkali metals are contained. E glass, S glass, T glass, and NE glass which are small and easily available are preferable.
[0043]
The refractive index of the inorganic filler (b) blended in the transparent composite composition of the present invention is not particularly limited, but is in the range of 1.50 to 1.57 so that the refractive index of the resin to be combined can be easily adjusted. Is preferred. In particular, when the inorganic filler is a glass filler and has a refractive index of 1.50 to 1.54, a resin close to the Abbe number of glass can be selected, which is preferable. When the Abbe numbers of the resin and the glass are close to each other, the refractive indices of the two coincide in a wide wavelength region, and a high light transmittance can be obtained in a wide wavelength region.
[0044]
(Transparent composite composition)
The content of the inorganic filler (b) in the transparent composite composition is preferably from 10% by weight to 95% by weight. When the content is less than 10% by weight, it is difficult to obtain the effect of reducing the coefficient of linear expansion, and when the content is more than 95% by weight, it is difficult to uniformly disperse.
[0045]
In the transparent composite composition of the present invention, the closer the inorganic filler and the resin are, the better the transparency of the composite composition such as a plastic substrate for a display element, and thus the surface of the inorganic filler such as a silane coupling agent. It is preferable to treat with a known surface treatment agent. Specifically, it is preferable to treat with a silane compound having an epoxy group.
[0046]
(Other ingredients)
The composite composition of the present invention such as a plastic substrate for a display element, if necessary, transparency or solvent resistance, as long as properties such as heat resistance are not impaired, a thermoplastic or thermosetting oligomer or polymer. May be used in combination. In this case, it is preferable to use an oligomer or polymer having an alicyclic structure or cardo skeleton in order to reduce the water absorption. When these thermoplastic or thermosetting oligomers or polymers are used in combination, it is necessary to adjust the composition ratio so that the entire refractive index matches the refractive index of the inorganic filler.
[0047]
Further, in the composite composition of the present invention, if necessary, a small amount of an antioxidant, an ultraviolet absorber, a dye and a pigment, as long as properties such as transparency, solvent resistance, and heat resistance are not impaired. And a filler such as an inorganic filler.
[0048]
There is no limitation on the method for molding the composite composition. For example, there are a casting method and a casting method, and the casting method is preferable because continuous production is possible.
[0049]
When the composite composition of the present invention is used for optical applications such as a plastic substrate for a liquid crystal display device, a substrate for a color filter, a plastic substrate for an organic EL display device, a solar cell substrate, and a touch panel, the thickness of the substrate is preferably 50. 20002000 μm, more preferably 50-1000 μm. When the thickness of the substrate is in this range, the flatness is excellent, and the weight of the substrate can be reduced as compared with a glass substrate.
[0050]
When this transparent composite composition is used for the optical application, the average linear expansion coefficient at 30 to 150 ° C. is preferably 40 ppm or less, more preferably 30 ppm or less. For example, when this composite composition is used for an active matrix display element substrate, if it exceeds this upper limit, problems such as warpage and disconnection of aluminum wiring may occur in the manufacturing process.
[0051]
When a plastic substrate for a display element is used, a resin coating layer may be provided on both surfaces to improve smoothness. Such a resin preferably has excellent transparency, heat resistance, and chemical resistance, and specifically, a polyfunctional acrylate or an epoxy resin is preferable. The thickness of the coat layer is preferably from 0.1 to 50 μm, more preferably from 0.5 to 30 μm.
[0052]
The plastic substrate for a display element of the present invention may be provided with a gas barrier layer against water vapor or oxygen or a transparent electrode layer as necessary.
[0053]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0054]
(Example 1)
After baking out a flat filler of S glass (refractive index: 1.530) having an average projected circle equivalent diameter of about 10 μm and an average thickness of about 0.1 μm to remove organic substances, γ-glycidoxypropyltrimethoxysilane (Epoxy silane). 90 parts by weight of this inorganic filler are 90 parts by weight of triglycidyl isocyanurate, 10 parts by weight of bisphenol S type epoxy resin, 170 parts by weight of methyl hydrogenated nadic anhydride (acid anhydride (1)), and tetraphenylphosphonium bromide (curing acceleration). 2 parts by weight of the agent (1) were dispersed in a liquid resin melt-mixed at 110 ° C. and defoamed. This was sandwiched between glass plates that had been subjected to a mold release treatment using a polyester film having a thickness of 100 μm as a spacer, and heated in an oven at 100 ° C. for 2 hours, and further at 120 ° C. for 2 hours, 150 ° C. for 2 hours, and 175 C. for 2 hours to obtain a transparent composite sheet having a thickness of 0.1 mm.
[0055]
(Example 2)
80 parts by weight of an S glass rod-shaped filler having an average diameter of about 18 μm and an average length of about 1 cm, which was treated in the same manner as in Example 1, was mixed with 62.5 parts by weight of triglycidyl isocyanurate and bisphenol S type epoxy resin 27.5 parts. Parts by weight, 120 parts by weight of methyl hexahydrophthalic anhydride (acid anhydride (2)) and 1.4 parts by weight of tetraphenylphosphonium bromide (curing accelerator (1)) were melt-mixed at 110 ° C. in a resin. Dispersed and defoamed. This was sandwiched between glass plates subjected to a release treatment using a polyester film having a thickness of 100 μm as a spacer, and subjected to a heat treatment under the same conditions as in Example 1 to obtain a transparent composite sheet having a thickness of 0.1 mm.
[0056]
(Example 3)
90 parts by weight of an E glass (refractive index: 1.560) plate-like filler having an average projected circle equivalent diameter of about 5 μm and an average thickness of about 0.1 μm, which was treated in the same manner as in Example 1, 80 parts by weight of bisphenol S type epoxy resin, 75 parts by weight of methyl hydrogenated nadic anhydride (acid anhydride (1)) and 1 part by weight of tetraphenylphosphonium bromide (curing accelerator (1)) at 100 ° C. The mixture was dispersed in the melt-mixed resin and defoamed. This was sandwiched between glass plates subjected to a release treatment using a polyester film having a thickness of 100 μm as a spacer, and subjected to a heat treatment under the same conditions as in Example 1 to obtain a transparent composite sheet having a thickness of 0.1 mm.
[0057]
(Example 4)
80 parts by weight of a rod-shaped filler of E glass having an average diameter of about 13 μm and an average length of about 3 mm and subjected to the same treatment as in Example 1 were mixed with 45.5 parts by weight of triglycidyl isocyanurate and an epoxy resin containing a fluorene skeleton 54.5 parts Parts by weight, 113 parts by weight of methyl hydrogenated nadic anhydride (acid anhydride (1)) and 1.3 parts by weight of tetraphenylphosphonium bromide (curing accelerator (1)) were dispersed in a resin melt-mixed at 100 ° C., Defoamed. This was sandwiched between glass plates subjected to a release treatment using a polyester film having a thickness of 100 μm as a spacer, and subjected to a heat treatment under the same conditions as in Example 1 to obtain a transparent composite sheet having a thickness of 0.1 mm.
[0058]
(Example 5)
90 parts by weight of a NE glass (refractive index: 1.510) flat filler having an average projected circle equivalent diameter of about 5 μm and an average thickness of about 0.1 μm treated in the same manner as in Example 1 was mixed with triglycidyl isocyanurate 40. Parts by weight, alicyclic epoxy resin 60 parts by weight, methyl hydrogenated nadic anhydride (acid anhydride (1)) 139 parts by weight, 1-benzyl-2-phenylimidazole (curing accelerator (2)) 1 part by weight It was dispersed in the resin melt-mixed at 100 ° C. and defoamed. This was sandwiched between glass plates subjected to a release treatment using a polyester film having a thickness of 100 μm as a spacer, and subjected to a heat treatment under the same conditions as in Example 1 to obtain a transparent composite sheet having a thickness of 0.1 mm.
[0059]
(Comparative Example 1)
100 parts by weight of an alicyclic epoxy resin, 81 parts by weight of methylhexahydrophthalic anhydride (acid anhydride (2)), and 1 part by weight of tetraphenylphosphonium bromide (curing accelerator (1)) are melt-mixed at 50 ° C. did. This was sandwiched between glass plates subjected to a release treatment using a polyester film having a thickness of 100 μm as a spacer, and subjected to a heat treatment under the same conditions as in Example 1 to obtain a resin sheet having a thickness of 0.1 mm.
[0060]
(Comparative Example 2)
90 parts by weight of the E glass flat filler treated in the same manner as in Example 3 were mixed with 100 parts by weight of an alicyclic epoxy resin, 81 parts by weight of methylhexahydrophthalic anhydride (acid anhydride (2)), 1 part by weight of phenylphosphonium bromide (curing accelerator (1)) was dispersed in a resin mixed at 50 ° C. and defoamed. This was sandwiched between release-treated glass plates using a polyester film having a thickness of 100 μm as a spacer, and subjected to heat treatment under the same conditions as in Example 1 to obtain a composite sheet having a thickness of 0.1 mm.
[0061]
(Evaluation method)
Various characteristics of the resin sheets (plastic substrates for display elements) produced in the above Examples and Comparative Examples were measured by the following evaluation methods.
[0062]
a) Average coefficient of linear expansion
Using a TMA / SS120C type thermal stress strain measuring device manufactured by Seiko Denshi Co., Ltd., the temperature is increased from 30 ° C. to 150 ° C. at a rate of 5 ° C./min in a nitrogen atmosphere, and then cooled to 0 ° C. once. The temperature was again raised at a rate of 5 ° C. per minute and the value at 30 ° C. to 150 ° C. was measured and found. The measurement was performed in a tensile mode with a load of 5 g.
[0063]
For the measurement, a quartz tension chuck (material: quartz, linear expansion coefficient: 0.5 ppm) designed uniquely was used. Inconel chucks, which are commonly used, have high linear expansion and have problems with sample support.When applied to thick sheets exceeding 100 μm, the linear expansion coefficient is larger than that measured in compression mode. And there is a problem that the measurement dispersion becomes large. Therefore, we decided to design the quartz tension chuck independently and use it to measure the linear expansion coefficient. It has been confirmed that by using this tension chuck, it is possible to measure with substantially the same value as when measuring in the compression mode.
[0064]
b) Heat resistance (Tg)
The maximum value of tan δ at 1 Hz was measured with a DMS-210 type viscoelasticity measuring device manufactured by Seiko Electronics Co., Ltd., and was taken as the glass transition temperature (Tg).
[0065]
c) Solvent resistance
The sample was immersed in a dimethylsulfoxide (DMSO) solution at 60 ° C. and left for 60 minutes. After taking out the sample, the appearance was visually observed. Only those which were not eroded without complete deformation and discoloration were rated as 、, and others were rated as ×.
[0066]
d) Light transmittance
The light transmittance at 400 nm and 550 nm was measured with a spectrophotometer U3200 (manufactured by Hitachi, Ltd.).
[0067]
g) Refractive index
The refractive index at a wavelength of 589 nm was measured at 25 ° C. using an Abago refractometer DR-M2 manufactured by Atago.
[0068]
The samples obtained in the above Examples and Comparative Examples were evaluated by these evaluation methods. The results are shown in Tables 1 and 2 below.
[0069]
[Table 1]
[0070]
[Table 2]
[0071]
【The invention's effect】
The transparent composite composition of the present invention has a low linear expansion coefficient and is excellent in transparency, heat resistance, solvent resistance, and the like, and thus is preferable for, for example, a liquid crystal display device substrate or an organic EL device substrate (particularly, an active matrix type). It is preferable for a transparent plate, an optical lens, a substrate for a color filter, a solar cell substrate, a touch panel, an optical element, an optical waveguide, an LED sealing material, and the like.