【0001】
【発明の属する技術分野】
本発明は正極、電解質、および負極が積層された固体電池に関し、特に電池の表面に形成する保護膜に関するものである。
【0002】
【従来の技術】
電子機器の小型化、軽量化に伴い、電池についても小型化、軽量化の要望が強くなっている。最近では一気に縮小化を進めるため、固体電解質二次電池を用いた薄膜固体二次電池が注目されている。これら固体電解質二次電池の充電および放電は電池を形成する材料に含まれるイオンが担っており、その電池が置かれる外的環境に影響されることが知られている。
【0003】
例えばリチウムイオン電池の場合は充電および放電を担うのはリチウムイオンであり、水分の影響(湿気)により電池の容量劣化を生じる。このため、確実なパッケージングによって外環境からの影響を絶っている。固体電池においても同様のことが求められ、電池の表面を形成する保護膜がその役割を果たすことになる。保護膜に関しては、窒化珪素を絶縁被膜とするものが提案されている(例えば特許文献1。)。
【0004】
図3は前記特許文献1に記載された従来の固体電池を示す断面図である。図3において、基板31上に正極集電体32、正極活物質膜33、固体電解質膜34、負極活物質膜35、負極集電体36を積層した発電要素の保護膜として窒化シリコン系膜37を用いていた。これにより、その下地の発電要素を外的衝撃や水分(湿気)等から保護していた。
【0005】
【特許文献1】
特開2002−42863号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、窒化珪素膜には以下のような課題がある。ひとつは、窒化シリコン系膜は硬質な膜であるため、発電要素の膨張収縮等により窒化シリコン系膜の剥がれが生じる。また、窒化シリコン膜はSi−Nの未結合部を生じやすいので、充電および放電を担うリチウムイオンがトラップされて電池容量が劣化するという課題を有していた。
【0007】
本発明は、前記従来の課題を解決するもので、膜強度に優れ、電池容量劣化の少ない固体電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の固体電池は基板上に、第1集電体、第1電極、固体電解質、第2電極、第2集電体を積層した発電要素と、保護膜とを備えた固体電池であり、前記保護膜は3層以上積層されてなり、少なくとも一層が窒化シリコン系膜である。
【0009】
さらに、保護膜の最外層は酸化膜である。
【0010】
さらに、保護膜の膜厚は0.1μm以上である。
【0011】
さらに、発電要素に第1の保護膜として酸化シリコン系膜を形成し、さらに第2の保護膜として窒化シリコン系膜を形成し、さらに第3の保護膜として酸化シリコン系膜を形成する。
【0012】
さらに、発電要素に第1の保護膜として酸化シリコン系膜を形成し、さらに第2の保護膜として窒化シリコン系膜を形成し、さらに第3の保護膜として酸化チタン系膜を形成する。
【0013】
【発明の実施の形態】
以下本発明の実施の形態について、図面を参照しながら説明する。
【0014】
(実施の形態1)
図1は、本発明の実施の形態1における固体電池の断面図である。
【0015】
同図において、シリコン基板11上にプラズマCVD法(Chemical Vapor Deposition)によってシリコン酸化膜12を1500Å形成した上に正極集電体として金属アルミ膜13を真空蒸着装置により、縦10mm、横15mmのパターンで形成し、その上にLiCoO2の正極活物質膜14を厚み5μm、縦横8mmの64mm2でスパッタにより形成し、その上にLi2S−SiS2−Li3PO4の固体電解質膜15dを厚み2μm、縦横14mmで形成し、更にその上に、グラファイトの負極活物質膜16を厚み5μm、縦横8mmで形成し、順にレーザーアブレーション法により積層する。それらの成膜はそれぞれ、前述のサイズに空いた金属マスク(SUS304)を用いてパターニングする。更にその上に負極集電体の金属銅膜17をパターニングされた金属マスク(SUS304)を用いて、真空蒸着法で1μm、縦10mm、横15mmで形成して発電要素を構成している。その上に保護膜としてSiO218とSi3N419とSiO218を順にスパッタにより形成したものであり、Si3N419の上下にSiO218を設けた。
【0016】
この構成によれば、発電要素の保護膜としていずれか一層以上を窒化シリコン系膜とすることにより、電気絶縁性に優れた硬質な膜となり、その下地の発電要素は外的衝撃や水分(湿気)から保護される。
【0017】
前記窒化シリコン系膜の下地は前記発電要素を覆う酸化シリコン系膜からなる第1の保護膜を形成することで、前記発電要素に膨張収縮がある場合に対して、前記窒化珪素膜の割れや剥がれを抑制することができ、更に、前記窒化珪素膜はSi−Nの未結合部を生じやすいので、充電および放電を担うイオンがトラップされて電池容量が劣化することも抑制することができる。
【0018】
また、前記窒化シリコン系膜の上に酸化シリコン系膜を形成することで、前記発電要素の保護機能が増し、特にピンホール対策が充分となり安価で信頼性の高い固体電池を提供できる。
【0019】
評価結果を(表1)に示す。
【0020】
本実施の形態にて作成した電池は、正常に充放電が行えて300μAhの容量が得られた。また電池容量の充放電サイクル劣化も見られず(試験▲1▼)、膜のピンホール発生もなく(試験▲2▼)、充放電200サイクル後の保護膜のクラック発生もなかった(試験▲3▼)。
【0021】
【表1】
【0022】
(実施の形態2)
図2は、本発明の実施の形態2における固体電池の断面図である。図2において、図1と同じ構成要素については同じ符合を用い、説明を省略する。
【0023】
同図において、発電要素の上に保護膜としてSiO218とSi3N419とTiO220を順にスパッタにより形成したものであり、Si3N419の上にTiO220を設けた。
【0024】
評価結果を(表1)に示す。
【0025】
この構成によれば前述の実施の形態1と同様の効果を得ることができる。尚、本実施形態にて作成した電池は、正常に充放電が行えて300μAhの容量が得られた。また電池容量の充放電サイクル劣化も見られず(試験▲1▼)、膜のピンホール発生もなく(試験▲2▼)、充放電200サイクル後の保護膜のクラック発生もなかった(試験▲3▼)。
【0026】
(実施の形態3)
実施の形態1および実施の形態2において、前記発電要素の上に積層される第一の保護膜である酸化シリコン系膜、第二の保護膜である窒化シリコン系膜、第三の保護膜である酸化チタン系膜および酸化シリコン系膜のそれぞれの膜厚を0.1μm以上で形成した。
【0027】
この構成によれば、第一の保護膜である酸化シリコン系膜の膜厚が0.1μm以上であるため、発電要素の充放電をになうイオンが第二の保護膜である窒化シリコン系膜にトラップされることを防止でき、また発電要素の充放電等に伴う膨張収縮も押さえ込むことができるため第二の保護膜の剥れやクラックの発生を防止できる。
【0028】
また、第二の保護膜である窒化シリコン系膜膜厚が0.1μm以上であるため、その下地である酸化シリコン系膜の水分吸着も防ぐことができる。更に第三の保護膜である酸化チタン系膜および酸化シリコン系膜のそれぞれの膜厚が0.1μm以上であるため、保護膜のピンホール発生率を下げることができるため、信頼性の高い薄膜の固体電池を提供できる。
【0029】
ここからは、(表1)に示す評価方法の説明をする。
【0030】
評価方法は試験▲1▼から試験▲3▼がある。試験▲1▼とは評価電池について、1C充電と1C放電を10回繰り返し、その10回目の放電容量の1回目の放電容量に対する割合を求め、値が大きい程サイクル特性が良と判断する評価である。
【0031】
試験▲2▼とはシリコン基板上に2000Å、1cm2のアルミ膜を形成し、その上に評価すべき保護膜を形成し、次に70℃の燐酸溶液に10分間浸漬後、アルミエッチングされた箇所を顕微鏡にてカウントする方法で、カウント数が少ないほど膜ピンホールが少なく膜質が良と判断する評価である。
【0032】
試験▲3▼とは評価電池について、1C充電と1C放電を200回繰り返し、次に保護膜のクラック発生の有無を顕微鏡にて観察する方法で、電池の充放電による膨張収縮による保護膜のクラック発生を確認して膜強度を見極める評価である。
【0033】
また、固体電解質薄膜材料としては、銀イオン導電性固体電解質、銅イオン導電性固体電解質、リチウムイオン導電性固体電解質、プロトン導電性固体電解質を用いることができる。
【0034】
ここで、特に、窒化シリコン系膜と酸化シリコン系膜(又は酸化チタンでも良い)との積層構造のうち、窒化シリコン系膜を酸化シリコン系膜によって挟んだ構造において、窒化シリコン系膜の膜厚をt1、窒化シリコン系膜を挟んだ酸化シリコン系膜の膜厚をt2、t3とすると、t1≦t2+t3の関係があれば保護膜の割れが減少することを見出した。例えば、t2、t3をそれぞれ0.2μmに設定して窒化シリコン膜の膜厚t1を大きくしていき顕微鏡により保護膜表面の割れを観察すると、窒化シリコン膜の膜厚がおよそ0.4μm程度まででは保護膜の割れは無かったが、これ以上になると割れの数が次第に増加することが認められた。上記の理由としては、窒化シリコン膜を挟む膜の応力緩和作用が窒化シリコン膜の膜厚増大のために減少するためと考えられる。
【0035】
【発明の効果】
以上のように本発明の固体電池によれば、ピンホールやクラック発生の無い膜強度に優れた保護膜を有し、かつ電池容量の充放電サイクル劣化が見られな固体電池とすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に1おける固体電池の縦断面図
【図2】本発明の実施の形態2における固体電池の縦断面図
【図3】従来の固体電池の縦断面図
【符号の説明】
11 シリコン基板
12 シリコン酸化膜
13 金属アルミ膜
14 正極活物質膜
15 固体電解質膜
16 負極活物質膜
17 金属銅膜
18 SiO2(第1の保護膜)
19 Si3N4(第2の保護膜)
20 TiO2(第3の保護膜)
31 基板
32 正極集電体
33 正極活物質膜
34 固体電解質膜
35 負極活物質膜
36 負極集電体
37 窒化シリコン膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid battery in which a positive electrode, an electrolyte, and a negative electrode are stacked, and more particularly, to a protective film formed on a surface of the battery.
[0002]
[Prior art]
As electronic devices have become smaller and lighter, there has been a growing demand for smaller and lighter batteries. In recent years, thin-film solid-state secondary batteries using solid-state electrolyte secondary batteries have attracted attention in order to rapidly reduce the size. It is known that the charge and discharge of these solid electrolyte secondary batteries are carried by ions contained in the material forming the batteries, and are affected by the external environment in which the batteries are placed.
[0003]
For example, in the case of a lithium ion battery, the charge and discharge are performed by lithium ions, and the capacity of the battery is deteriorated by the influence of moisture (humidity). For this reason, the influence from the external environment is eliminated by reliable packaging. The same is required for a solid-state battery, and a protective film that forms the surface of the battery plays a role. As a protective film, a film using silicon nitride as an insulating film has been proposed (for example, Patent Document 1).
[0004]
FIG. 3 is a sectional view showing a conventional solid-state battery described in Patent Document 1. In FIG. 3, a silicon nitride-based film 37 is formed as a protective film of a power generation element in which a positive electrode current collector 32, a positive electrode active material film 33, a solid electrolyte film 34, a negative electrode active material film 35, and a negative electrode current collector 36 are stacked on a substrate 31. Was used. As a result, the underlying power generating element is protected from external impact, moisture (moisture), and the like.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-42863
[Problems to be solved by the invention]
However, in the conventional configuration, the silicon nitride film has the following problems. One is that the silicon nitride-based film is a hard film, and the silicon nitride-based film is peeled off due to expansion and contraction of the power generation element. In addition, since the silicon nitride film is likely to generate a Si—N unbonded portion, there is a problem that lithium ions that are responsible for charging and discharging are trapped and battery capacity is deteriorated.
[0007]
An object of the present invention is to solve the above-mentioned conventional problems and to provide a solid state battery having excellent film strength and little deterioration in battery capacity.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, a solid-state battery according to the present invention includes a power generation element having a first current collector, a first electrode, a solid electrolyte, a second electrode, and a second current collector laminated on a substrate; And a protective film formed by laminating three or more layers, at least one of which is a silicon nitride-based film.
[0009]
Further, the outermost layer of the protective film is an oxide film.
[0010]
Further, the thickness of the protective film is 0.1 μm or more.
[0011]
Further, a silicon oxide-based film is formed as a first protective film on the power generating element, a silicon nitride-based film is formed as a second protective film, and a silicon oxide-based film is formed as a third protective film.
[0012]
Further, a silicon oxide-based film is formed as a first protective film on the power generating element, a silicon nitride-based film is formed as a second protective film, and a titanium oxide-based film is formed as a third protective film.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
(Embodiment 1)
FIG. 1 is a sectional view of the solid-state battery according to Embodiment 1 of the present invention.
[0015]
In the figure, a silicon oxide film 12 is formed on a silicon substrate 11 by a plasma CVD method (Chemical Vapor Deposition) at 1500 °, and a metal aluminum film 13 serving as a positive electrode current collector is patterned into a 10 mm long and 15 mm wide pattern by a vacuum evaporation apparatus. And a LiCoO 2 cathode active material film 14 is formed thereon by sputtering with a thickness of 5 μm and a length of 8 mm and a width of 64 mm 2 , and a solid electrolyte film 15 d of Li 2 S—SiS 2 —Li 3 PO 4 is formed thereon. A negative electrode active material film 16 of graphite having a thickness of 5 μm and a length and width of 8 mm is further formed thereon by a laser ablation method. Each of these films is patterned using a metal mask (SUS304) having the above-mentioned size. Further, a metal copper film 17 of a negative electrode current collector is formed thereon by using a patterned metal mask (SUS304) to have a thickness of 1 μm, a length of 10 mm, and a width of 15 mm by a vacuum evaporation method to form a power generating element. SiO 2 18, Si 3 N 4 19, and SiO 2 18 were sequentially formed as a protective film by sputtering, and SiO 2 18 was provided above and below Si 3 N 4 19.
[0016]
According to this configuration, by forming at least one of the silicon nitride-based films as the protective film of the power generation element, a hard film having excellent electrical insulation properties is obtained. ) Protected from.
[0017]
By forming a first protective film made of a silicon oxide-based film covering the power generation element as an underlayer of the silicon nitride-based film, cracks in the silicon nitride film can be prevented when the power generation element expands and contracts. Peeling can be suppressed, and the silicon nitride film is liable to form unbonded portions of Si—N. Therefore, it is also possible to suppress that ions responsible for charging and discharging are trapped and the battery capacity is degraded.
[0018]
Further, by forming a silicon oxide-based film on the silicon nitride-based film, the protection function of the power generation element is increased, and particularly, measures against pinholes are sufficient, so that an inexpensive and highly reliable solid-state battery can be provided.
[0019]
The evaluation results are shown in (Table 1).
[0020]
The battery prepared in the present embodiment was able to charge and discharge normally and a capacity of 300 μAh was obtained. In addition, no deterioration in the charge / discharge cycle of the battery capacity was observed (Test 1), no pinhole was generated in the film (Test 2), and no crack was generated in the protective film after 200 cycles of charge / discharge (Test 1). 3 ▼).
[0021]
[Table 1]
[0022]
(Embodiment 2)
FIG. 2 is a cross-sectional view of the solid-state battery according to Embodiment 2 of the present invention. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
[0023]
In the figure, SiO 2 18, Si 3 N 4 19 and TiO 2 20 are sequentially formed as a protective film on the power generating element by sputtering, and TiO 2 20 is provided on Si 3 N 4 19.
[0024]
The evaluation results are shown in (Table 1).
[0025]
According to this configuration, the same effect as in the first embodiment can be obtained. In addition, the battery prepared in the present embodiment was able to normally charge and discharge, and a capacity of 300 μAh was obtained. In addition, no deterioration in the charge / discharge cycle of the battery capacity was observed (Test 1), no pinhole was generated in the film (Test 2), and no crack was generated in the protective film after 200 cycles of charge / discharge (Test 1). 3 ▼).
[0026]
(Embodiment 3)
In the first and second embodiments, a silicon oxide-based film serving as a first protective film, a silicon nitride-based film serving as a second protective film, and a third protective film are stacked on the power generating element. Each of the titanium oxide-based film and the silicon oxide-based film was formed to have a thickness of 0.1 μm or more.
[0027]
According to this configuration, since the thickness of the silicon oxide-based film as the first protective film is 0.1 μm or more, ions that cause charging / discharging of the power generating element are converted into the silicon nitride-based film as the second protective film. Trapping to the film can be prevented, and expansion and contraction caused by charging and discharging of the power generating element can be suppressed, so that peeling and cracking of the second protective film can be prevented.
[0028]
Further, since the thickness of the silicon nitride-based film as the second protective film is 0.1 μm or more, it is possible to prevent moisture adsorption of the underlying silicon oxide-based film. Further, since the thickness of each of the titanium oxide-based film and the silicon oxide-based film as the third protective film is 0.1 μm or more, the pinhole occurrence rate of the protective film can be reduced. Can be provided.
[0029]
Hereinafter, the evaluation methods shown in (Table 1) will be described.
[0030]
Evaluation methods include Test (1) to Test (3). Test (1) is a test in which 1C charging and 1C discharging are repeated 10 times for the evaluation battery, and the ratio of the 10th discharging capacity to the 1st discharging capacity is determined. The larger the value, the better the cycle characteristics are. is there.
[0031]
In test ( 2), an aluminum film of 2000 cm and 1 cm 2 was formed on a silicon substrate, a protective film to be evaluated was formed thereon, and then immersed in a phosphoric acid solution at 70 ° C. for 10 minutes, and then subjected to aluminum etching. The method is a method of counting portions with a microscope, and the evaluation is such that the smaller the number of counts, the smaller the number of film pinholes and the better the film quality.
[0032]
Test (3) is a method in which 1C charge and 1C discharge are repeated 200 times for the evaluation battery, and then the presence or absence of cracks in the protective film is observed under a microscope. This is an evaluation to confirm the occurrence and determine the film strength.
[0033]
Further, as the solid electrolyte thin film material, a silver ion conductive solid electrolyte, a copper ion conductive solid electrolyte, a lithium ion conductive solid electrolyte, and a proton conductive solid electrolyte can be used.
[0034]
Here, in particular, in a stacked structure of a silicon nitride-based film and a silicon oxide-based film (or titanium oxide), in which a silicon nitride-based film is sandwiched between silicon oxide-based films, Where t 1 is the thickness of the silicon oxide-based film sandwiching the silicon nitride-based film and t 2 and t 3 , it is found that cracking of the protective film is reduced if the relationship of t 1 ≦ t 2 + t 3 is satisfied. . For example, when t 2 and t 3 are each set to 0.2 μm and the thickness t 1 of the silicon nitride film is increased and a crack on the surface of the protective film is observed with a microscope, the thickness of the silicon nitride film is about 0.5 μm. There was no cracking of the protective film up to about 4 μm, but it was recognized that the cracking number gradually increased when the thickness was increased to about 4 μm. The above reason is considered to be because the stress relaxation effect of the film sandwiching the silicon nitride film decreases due to the increase in the thickness of the silicon nitride film.
[0035]
【The invention's effect】
As described above, according to the solid state battery of the present invention, it is possible to obtain a solid state battery having a protective film having excellent film strength without pinholes and cracks, and showing deterioration in charge / discharge cycle of battery capacity. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a solid state battery according to an embodiment of the present invention; FIG. 2 is a longitudinal sectional view of a solid state battery according to Embodiment 2 of the present invention; FIG. Explanation of code]
Reference Signs List 11 silicon substrate 12 silicon oxide film 13 metal aluminum film 14 positive electrode active material film 15 solid electrolyte film 16 negative electrode active material film 17 metal copper film 18 SiO 2 (first protective film)
19 Si 3 N 4 (second protective film)
20 TiO 2 (third protective film)
31 substrate 32 positive electrode current collector 33 positive electrode active material film 34 solid electrolyte film 35 negative electrode active material film 36 negative electrode current collector 37 silicon nitride film