JP2004145718A - 構造解析モデル生成装置及び方法 - Google Patents
構造解析モデル生成装置及び方法 Download PDFInfo
- Publication number
- JP2004145718A JP2004145718A JP2002311216A JP2002311216A JP2004145718A JP 2004145718 A JP2004145718 A JP 2004145718A JP 2002311216 A JP2002311216 A JP 2002311216A JP 2002311216 A JP2002311216 A JP 2002311216A JP 2004145718 A JP2004145718 A JP 2004145718A
- Authority
- JP
- Japan
- Prior art keywords
- line
- structural analysis
- lines
- analysis model
- independent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
【課題】形状データの異常を自動修復して構造解析モデルをより確実に得ること。
【解決手段】複数の線の組み合わせによって形状規定される構造解析対象物100aのCAD(computer aided design)データに対して、各線に各々対応する複数の線データの集合体となる構造解析用の形状データ100bを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデル100cを自動生成する装置及び方法であって、形状データ100bから複数の線が共有していない独立端点P12(P14)を検出し、独立端点P12(P14)を有する独立線L12(L14)を延在方向に伸縮して他の線L11(L13)に当接状態にすることを特徴とする。
【選択図】 図3
【解決手段】複数の線の組み合わせによって形状規定される構造解析対象物100aのCAD(computer aided design)データに対して、各線に各々対応する複数の線データの集合体となる構造解析用の形状データ100bを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデル100cを自動生成する装置及び方法であって、形状データ100bから複数の線が共有していない独立端点P12(P14)を検出し、独立端点P12(P14)を有する独立線L12(L14)を延在方向に伸縮して他の線L11(L13)に当接状態にすることを特徴とする。
【選択図】 図3
Description
【0001】
【発明の属する技術分野】
本発明は、構造解析モデル生成装置及び方法に関する。
【0002】
【従来の技術】
周知のように、コンピュータを用いて有限要素法等の数値解析手法に基づく対象物(構造解析対象物)を構造解析する場合には、コンピュータ内に構造解析対象物の形状データ(構造解析用の形状データ)に基づいて構造解析モデルを生成する必要がある。この場合、近年は、CAD(computer aided design)装置を用いた設計作業が普及しているので、このCAD装置から得られる構造解析対象物のCADデータを専用プログラム(構造解析モデル生成プログラム)で演算処理することにより、構造解析モデルを生成することが広く行なわれている。上記構造解析モデル生成プログラムは、構造解析対象物の形状を規定する各線分を細分割することにより構造解析対象物を複数の要素(3次元要素)にメッシュ分割した構造解析モデルを自動生成する。
【0003】
【特許文献1】
特開平6−64048号公報
【特許文献2】
特開2002−56037号公報
【0004】
【発明が解決しようとする課題】
ところで、通常の構造解析モデルの生成作業では、CADデータをIGES(Initial Graphics Exchange Specification)ファイルのデータ形式に変換した後に構造解析モデル生成プログラムで演算処理する。そして、このようなデータ形式の変換を行うことによって、本来当接関係になった各線分の端点同士が離間したり、或いは交差することが生じる。即ち、正常には当接関係に在るべき端点同士が当接状態にない独立端点となるために、構造解析対象物を正常にメッシュ分割することができず、よって構造解析モデルを自動生成することができないという問題があった。
また、このような形状データに起因した構造解析モデルの生成不能は、線分同士が部分的に重なっている場合にも起こる。
【0005】
本発明は、上述する問題点に鑑みてなされたもので、形状データの異常を自動修復して構造解析モデルをより確実に得ることを目的としている。
【0006】
【発明を解決するための手段】
上記課題を解決するために、本発明は以下の手段を提案している。
第1及び第2の発明は、複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置及び方法であって、
前記形状データから複数の線が共有していない独立端点を検出し、
該独立端点を有する独立線を延在方向に伸縮して他の線に当接状態にすることを特徴とするものである。
ここで、線とは端点を有した線分及び弧、又は円を意味している。
従って、本発明によれば、相互に離間している複数の線を自動的に当接状態にすることによって、構造解析用の形状データの修繕を行うことができる。
【0007】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記独立線と前記他の線との交点を検出し、該交点で前記独立線を分割すると共に前記交点を端点として設定し、該端点と前記独立端点とを両端とする分割線の長さが所定の長さより短い場合に該分割線を削除し、前記独立線と前記他の線とを当接状態にすることを特徴とすることを特徴とするものである。
従って、本発明によれば、交点で独立線を分割するので、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0008】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記独立線と前記他の線とが交差するように前記独立線に前記所定の長さを付加することによって、前記独立線の長さを延長することを特徴とするものである。
従って、本発明によれば、独立線と他の線とが交差状態になるので、この交点で独立線を分割することができ、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0009】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記所定の長さは、前記CADデータに設定された線の精度に基づいて決定されていることを特徴とするものである。
ここで、線分の精度とは一般にトレランスと呼ばれ、CADを扱う際の設定値の一つである。
従って、本発明によれば、トレランスに基づいて好適に独立線を延長することができ、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0010】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、ブーリアン演算によって、前記独立線の延長及び前記分割線の削除を行うことを特徴とするものである。
ここで、ブーリアン演算とは、図形のモデリング技法の一つとして一般的に知られており、集合演算と呼ばれる高度な演算によるモデリングを可能にするものである。重なった複数の形状をひとつの塊にする(和)、重なった形状を削り取る(差)、重なった部分だけを取り出す(積)といった演算処理を施すものである。
従って、本発明によれば、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0011】
また、第3及び第4の発明は、複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置及び方法であって、前記複数の線が相互に重合している重合部分を検出し、該重合部分を構成する複数の重合線のうち少なくともいずれかを短縮し、該複数の重合線が相互に共有する端点で前記複数の重合線を接続することを特徴とするものである。
従って、本発明によれば、重合線を短縮することによって、重合線が端点で自動的に接続されるので、構造解析用の形状データの修繕を行うことができる。
【0012】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記複数の重合線の全てを短縮すると共に新規線を作成し、前記複数の重合線と前記新規線とが相互に共有する端点で前記重合線と前記新規線とを接続することを特徴とするものである。
従って、本発明によれば、重合線を短縮すると共に新規線を作成することによって、重合線及び新規線が端点で自動的に接続されるので、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0013】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、ブーリアン演算によって、前記重合線の短縮を行うことを特徴とするものである。
従って、本発明によれば、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0014】
また、第5及び第6の発明は、複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置及び方法であって、前記形状データを構成する前記複数の線によって包囲された面を設定し、全ての該面を所定の分割数でメッシュ分割することにより前記構造解析モデルを自動生成することを特徴とするものである。
従って、本発明によれば、複数の線によって包囲された全ての面を自動的にメッシュ分割することによって、構造解析モデルを作成することができる。
【0015】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記形状データを内包する内包面を作成した後に前記面を設定し、全ての前記面を設定した後に前記内包面を削除することを特徴とするものである。
従って、本発明によれば、先に記載した構造解析モデルを好適に作成することができる。
【0016】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記所定の分割数は、前記面を包囲する線の曲率に基づいて決定されていることを特徴とするものである。
従って、本発明によれば、例えば応力集中が生じやすい曲線で包囲された面においては、メッシュの分割数が自動的に増えるので、構造解析を高精度に行うことができる。また、先に記載した構造解析モデルを好適に作成することができる。
【0017】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、ブーリアン演算によって、前記面の設定及び前記内包面の削除を行うことを特徴とするものである。
従って、本発明によれば、先に記載した構造解析モデルを好適に作成することができる。
【0018】
【発明の実施の形態】
以下、図面を参照して、本発明に係る構造解析モデル生成装置及び方法の一実施形態について説明する。
【0019】
図1は、本実施形態における構造解析対象物の一例として挙げたH型構造物の平面図であって、図1(a)はH型構造物の全体を示した平面図、図1(b)及び図1(c)は図1(a)の要部を示した拡大図である。
図1に示したH型構造物(構造解析対象物)100aの設計においては、設計者が図示しないコンピュータのCADを用いて複数の線を描画するだけでなく、H型構造物100aに類似した既存のCADデータ(DWG等のファイル)を読み込んで、これらを修正及び改良することによって行われている。このようにH型構造物100aを形状規定している複数の線においては、必ずしも各線の端点で線が相互が接続しているとは限らず、線が相互に離間した状態となっている場合がある。そこで、予めCADの設定値の一つであるトレランス(線の精度)を設定することによって、上記の離間状態にある複数の線を当接状態として扱うことで、H型構造物100aの設計が行われている。
例えば、図1(b)に示すように、線L1と線L2aは交差状態にあるが、トレランスTが設定されることによって、線L2aからトレランスTの長さが差し引かれて短縮し、線L1と線L2bは端点P1において当接している状態として扱われる。また、図1(c)に示すように、線L3と線L4aは非当接状態にあるが、先に記載したようにトレランスTが設定されることによって、線L4aからトレランスTの長さが足されて延長し、線L3と線L4bは端点P2において当接している状態として扱われる。
【0020】
図2は、構造解析モデルを自動生成する構造解析モデル生成装置の機能ブロック図である。この図において、符号1は演算装置であり、H型構造物100aのCADデータをIGESファイルに変換すると共に、有限要素用自動メッシュ分割プログラムに基づいて動作する一種のコンピュータである。符号2は記憶装置であり、前記有限要素用自動メッシュ分割プログラムを記録すると共に、H型構造物100aのCADデータ及びIGESファイルの形状データを記憶するものである。また、記憶装置2は演算装置1における各種演算処理によって演算された演算結果を記憶し、また、入力装置3から入力されたデータ等をも記憶する。
【0021】
符号4は表示装置であり、前記形状データや前記形状データがメッシュ分割された有限要素モデルを表示し、或いは演算装置1の演算結果を表示するためのものである。符号5は印刷装置であり、メッシュ分割されたモデルの演算結果を印刷するためのものである。なお、この表示装置4と印刷装置5は、本実施形態の出力手段を構成するものである。
【0022】
次に、図3に示すフローチャートに沿って、上記H型構造物100aの構造解析モデル生成方法について説明する。
まず、入力装置3によって図1に示したH型構造物100aのCADデータが構造解析モデル生成装置に取り込まれ、また、H型構造物100aのCADデータは演算装置1によってIGESファイルに変換され、構造解析形状データ(構造解析用の形状データ)を作成する(ステップS1)。これによって、CADで設定されていたトレランスが無効になり、従って、トレランスによる線のつながりが解消され、当接状態として扱われていた複数の線は、離間した状態となる。
例えば、図1(b)に示す線L1と線L2bは端点P1で当接状態であったが、IGESファイル変換によってトレランスTが解消されてしまい、線L1と線L2aが交差状態となる。また、図1(c)に示す線L3と線L4bは端点P2で当接状態であったが、IGESファイル変換によってトレランスTが解消されてしまい、線L1と線L4aが離間状態にとなる。
【0023】
図4は、IGESファイルに変換されたH型構造物(構造解析用の形状データ)100bの平面図であって、図4(a)はH型構造物100bの全体を示した平面図、図4(b)から(e)は図4(a)の要部を示した詳細図である。
図4(a)から(c)において、線L11、L12、L13、L14は、図1に示すCADデータのH型構造物の線L1、L2a、L3、L4aとそれぞれ対応した関係となっており、また、線L12及び線L14は、他の線と共有していない独立端点P12及びP14を有している。
また、図4(d)は、線L15と線L16とが相互に重なっている重合部Wを示すものである。
また、図4(e)は、H型構造物100bの角部を示すものであり、この角部においてはフィレットRが形成されており、フィレットRは両端に端点Prを有している。また、H型構造物100bの他の角部においても図4(e)と同様にフィレットRが形成されている。
【0024】
続いて、演算装置1はH型構造物100bのフィレット部をチャンファ部に変更する(ステップ2)。ここでは、所定の設定値より小さい半径のフィレット部を検出し、このフィレット部の両端点を直線で結び、チャンファ部が作成される。
即ち、図4(e)に示すフィレットRの端点Pr−Pr間に線Cを作成し、フィレットRが削除される。また、このようなフィレット部の検出と線Cの作成は、H型構造物100bを形状規定している全ての線において行われる。
【0025】
続いて、更に演算装置1はブーリアン演算を使った自動修繕を行う(ステップ3)。
ここで、ステップ3の詳細について、図5に示したフローチャートに沿って説明し、図6を用いて、図4(b)のH型構造物100bの要部における演算処理過程を説明する。
【0026】
まず、H型構造物100bを形状規定している全ての線の端点のうち、複数の線が共有していない独立端点及び独立線を検出する(ステップ31)。従って、図4(b)及び図4(c)に示す独立端点P12及びP14が検出され、この独立端点P12及びP14を有した独立線L12及びL14が検出される。
次に、独立線と他の線との交点を検出する(ステップ32)。従って、図6(a)に示す独立線L12と線L11との交点Px1が検出される。
続いて、この交点において独立線を分割し、交点を新規端点として設定する(ステップ33)。更に、新規端点と独立端点とを両端とする線を新規線として設定する(ステップ34)。従って、図6(b)に示す交点Px1が端点として設定され、端点Px1によって独立線L12が分割され、端点Px1と独立端点P12とを両端とした線が、新規線Lx1となる。
【0027】
続いて、更に新規線の長さがCADのトレランスより短い場合に新規線を削除する(ステップ35)。従って、新規線Lx1がCADのトレランスより短い場合には新規線Lx1が削除され、図6(c)に示すように独立端点P12が削除されて、線L11と線L12は当接状態となる。
【0028】
また、更に独立線と他の線とが交差するように独立線にCADのトレランスと同じ長さの線を付加して延長する(ステップ36)。
ここでは、図7を用いて、図4(c)のH型構造物100bの演算処理過程を説明する。
従って、図7(a)に示す独立線L14にCADのトレランスと同じ長さの線Lt1が付加され、図7(b)に示すように独立線L14は延長される。
【0029】
次に、独立端点の有無の確認が行われ、独立端点が有る場合には上述のステップ31に戻り、独立端点、独立線及び交点の検出等が行われる。また、独立端点が無い場合には次のステップ38において後述の演算処理を行う(ステップ37)。従って、このステップ37における演算処理においては、図7(b)に示す独立端点P14が検出されるので、ステップ31からステップ36の演算処理を再び行われる。
【0030】
ここで、ステップ31からステップ36までの演算処理については、上述と同様であるため、詳細な説明を省略し、一連の演算処理の流れのみを説明する。
従って、ステップ31からステップ36を施すことによって、独立端点、独立線及び交点の検出が行われるので、独立端点P14が検出される。更に、線L14及び線L13との交点が検出される。この交点において線L14を分割すると共にこの交点を新規端点として設定する。新規端点と独立端点P14とを両端とする新規線を設定する。新規線の長さがCADのトレランスより短い場合に新規線を削除する。
このような一連の演算処理を施すことによって図7(c)に示すように独立端点P14が削除されて、線L13と線L14は当接状態となり、これによって全ての独立端点は削除され、全ての線が相互に当接した状態となる。
【0031】
続いて、ステップ37において独立端点の有無の確認が行われ、ここで独立端点が無いことから、次のステップとして重合している線の整理を行う(ステップ38)。
ここでは、図8を用いて、図4(d)のH型構造物100bの演算処理過程を説明する。
従って、図8(a)に示す重合部Wを有した線L15、L16においては、線L15を端点P16まで短縮すると共に、線L16を端点P15まで短縮し、かつ、端点P15及びP16を両端とする新規線L17を作成する。これによって重合部Wは線L17に代替される。
【0032】
このようにステップ31からステップ38を施すことによって、独立端点及び独立線が削除され、相互に共有する端点で各線が接続されると共に、重合部が削除され、H型構造物100bの自動修繕が終了となる。
【0033】
続いて、図3に戻り、演算装置1はブーリアン演算を使ったメッシュ作成エリアの自動作成を行う(ステップ4)。
ここで、ステップ4の詳細について、図9に示したフローチャートに沿って説明し、図10を用いて、図4のH型構造物100bの演算処理過程を説明する。
まず、H型構造物100bを内包する大きな面(内包面)を作成する(ステップ41)。従って、図10(a)に示すH型構造物100bを内包するような内包面A1が作成される。
次に、H型構造物100bの線によって包囲された面を検出する(ステップ42)。従って、図10(b)に示すH型構造物100bにおいて、線によって形状規定されている面が閉じているか否か、LOOP1、LOOP2及びLOOP3毎に確認される。更に、LOOP1、LOOP2及びLOOP3それぞれにおいて、面が閉じていることが確認されることによって、図10(c)に示す面A2、A3、A4が割り当てられる。
続いて、構造解析データを内包する大きな面を削除する(ステップ44)。従って、図10(c)に示す内包面A1が削除され、図10(d)に示すように面A2、A3、A4によって構成されたH型構造物100bが作成される。
【0034】
続いて、再び図3に戻り、演算装置1は形状データの曲率を考慮したメッシュの細かさの自動設定を行う(ステップ5)。
ここで、ステップ5の詳細について、図11に示したフローチャートに沿って説明し、図12を用いて、H型構造物100bの演算処理過程を説明する。図12(a)は上述のステップ4において作成されたH型構造物100bであり、図12(b)は図12(a)のX部を拡大した詳細図であり、図12(c)は線の分割数を決定するために用いられる関数曲線あり、図12(d)は分割された線を例示したものである。
【0035】
まず、H型構造物100bを構成している各線の長さLを測定する(ステップ51)。従って、図12(b)に示すように端点P21を両端とした弧L21の長さCLが測定される。このようにH型構造物100bを構成している全ての線の長さが測定される。
次に、H型構造物100bを構成している各線の両端の直線距離DLを測定する(ステップ52)。従って、図12(b)に示すように端点P21間の直線距離DLが測定される。このようにH型構造物100bを構成している全ての線の両端の直線距離が測定される。
【0036】
続いて、長さCLを直線距離DLで割った値CL/DLと、関数曲線とによって線の分割数を決める(ステップ53)。従って、弧L21の長さCLを直線距離DLで割った値CL/DLと、図12(c)に示す関数曲線f(CL、DL)とによって線の分割数が決定される。このようにH型構造物100bを構成している全ての線の分割数が決定される。
ここで、関数曲線f(CL、DL)は、右上に上昇する曲線であるので、値CL/DLが大きい程、線の分割数が多くなるようになっている。
図12(d)の線L22及び線L23は、分割された線を例示するものである。線L22及び線L23の直線距離DLは等しく、また、線L22は線L23よりも長さCLが大きく設定されている。従って、線L22は線L23よりも値CL/DLが大きくなり、関数曲線f(CL、DL)に基づいて線L22の分割数は線L23よりも多く設定される。
従って、直線の分割数よりも曲線の分割数が多くなるので、応力集中が生じやすい曲線を有した面においては、高精度に構造解析が行われる。
【0037】
続いて、再び図3に戻り、演算装置1はメッシュ分割を行う(ステップ6)。このメッシュ分割においては、フリーメッシュが用いられる。従って、図13(a)に示すようにステップ5において分割数が決定されたH型構造物100bに対して、フリーメッシュを用いた演算処理が行われ、図13(b)に示すようにメッシュ分割が行われ、H型構造物(構造解析モデル)100cが作成される。
【0038】
このように本実施形態では、図3のステップ1からステップ5に基づいて演算処理することにより、第1にCADデータのH型構造物100a、第2に構造解析形状データのH型構造物100bが順次作成されることによって、最終的にメッシュ分割された構造解析モデルのH型構造物100cが作成される。
また、演算装置1による演算結果は、適宜、図2の表示装置4に表示され、印刷装置5によって印刷される。
【0039】
上述したように、この構造解析モデル生成装置及び方法においては、ブーリアン演算を用いることによって、離間している複数の線を当接状態にすることができると共に、重合線を端点で接続することができる。従って、構造解析用の形状データの修繕を自動的に行うことができる。また、複数の線によって包囲された面を自動的にメッシュ分割することによって構造解析モデルを形成することができる。また、応力集中が生じやすい曲線で包囲された面においては、メッシュ分割数が自動的に増えるので、構造解析を高精度に行うことができる。
【0040】
なお、本実施形態のステップ38においては、端点P15及びP16を両端とする新規線L17を作成したが、端点P15を削除し、かつ、線L15を端点P16まで短縮することで、新規線L17を作成することなく重合部Wを編成してもよい。
【0041】
【発明の効果】
以上説明したように、本発明によれば、ブーリアン演算を用いることによって、離間している複数の線を当接状態にすることができる効果が得られると共に、重合線を端点で接続することができる効果が得られる。従って、構造解析用の形状データの修繕を自動的に行うことができる効果が得られる。また、複数の線によって包囲された面を自動的にメッシュ分割することによって構造解析モデルを形成することができる効果が得られる。また、応力集中が生じやすい曲線で包囲された面においては、メッシュ分割数が自動的に増えるので、構造解析を高精度に行うことができる効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る構造解析対象物のH型構造物の平面図である。
【図2】本発明の一実施の形態に係る構造解析モデル生成装置の機能構成を示すブロック図である。
【図3】本発明の一実施の形態に係る構造解析モデル生成方法のフローチャートの構成図である。
【図4】本発明の一実施の形態に係る構造解析モデル生成方法において構造解析形状データに変換されたH型構造物の平面図である。
【図5】本発明の一実施の形態に係る構造解析モデル生成方法のフローチャートの構成図である。
【図6】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図7】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図8】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図9】本発明の一実施の形態に係る構造解析モデル生成方法のフローチャートの構成図である。
【図10】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図11】本本発明の一実施の形態に係る構造解析モデル生成方法のフローチャートの構成図である。
【図12】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図13】本発明の一実施の形態に係る構造解析モデル生成方法によって演算された構造解析モデルを示す図である。
【符号の説明】
100a H型構造物(構造解析対象物)
100b H型構造物(構造解析用の形状データ)
100c H型構造物(構造解析モデル)
L11、L13 線(他の線)
L12、L14 独立線
P12、P14 独立端点
Px1 交点
W 重合部分
P15、P16 相互に共有する端点
L17 新規線
A1 内包面
A2、A3、A4 面
【発明の属する技術分野】
本発明は、構造解析モデル生成装置及び方法に関する。
【0002】
【従来の技術】
周知のように、コンピュータを用いて有限要素法等の数値解析手法に基づく対象物(構造解析対象物)を構造解析する場合には、コンピュータ内に構造解析対象物の形状データ(構造解析用の形状データ)に基づいて構造解析モデルを生成する必要がある。この場合、近年は、CAD(computer aided design)装置を用いた設計作業が普及しているので、このCAD装置から得られる構造解析対象物のCADデータを専用プログラム(構造解析モデル生成プログラム)で演算処理することにより、構造解析モデルを生成することが広く行なわれている。上記構造解析モデル生成プログラムは、構造解析対象物の形状を規定する各線分を細分割することにより構造解析対象物を複数の要素(3次元要素)にメッシュ分割した構造解析モデルを自動生成する。
【0003】
【特許文献1】
特開平6−64048号公報
【特許文献2】
特開2002−56037号公報
【0004】
【発明が解決しようとする課題】
ところで、通常の構造解析モデルの生成作業では、CADデータをIGES(Initial Graphics Exchange Specification)ファイルのデータ形式に変換した後に構造解析モデル生成プログラムで演算処理する。そして、このようなデータ形式の変換を行うことによって、本来当接関係になった各線分の端点同士が離間したり、或いは交差することが生じる。即ち、正常には当接関係に在るべき端点同士が当接状態にない独立端点となるために、構造解析対象物を正常にメッシュ分割することができず、よって構造解析モデルを自動生成することができないという問題があった。
また、このような形状データに起因した構造解析モデルの生成不能は、線分同士が部分的に重なっている場合にも起こる。
【0005】
本発明は、上述する問題点に鑑みてなされたもので、形状データの異常を自動修復して構造解析モデルをより確実に得ることを目的としている。
【0006】
【発明を解決するための手段】
上記課題を解決するために、本発明は以下の手段を提案している。
第1及び第2の発明は、複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置及び方法であって、
前記形状データから複数の線が共有していない独立端点を検出し、
該独立端点を有する独立線を延在方向に伸縮して他の線に当接状態にすることを特徴とするものである。
ここで、線とは端点を有した線分及び弧、又は円を意味している。
従って、本発明によれば、相互に離間している複数の線を自動的に当接状態にすることによって、構造解析用の形状データの修繕を行うことができる。
【0007】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記独立線と前記他の線との交点を検出し、該交点で前記独立線を分割すると共に前記交点を端点として設定し、該端点と前記独立端点とを両端とする分割線の長さが所定の長さより短い場合に該分割線を削除し、前記独立線と前記他の線とを当接状態にすることを特徴とすることを特徴とするものである。
従って、本発明によれば、交点で独立線を分割するので、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0008】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記独立線と前記他の線とが交差するように前記独立線に前記所定の長さを付加することによって、前記独立線の長さを延長することを特徴とするものである。
従って、本発明によれば、独立線と他の線とが交差状態になるので、この交点で独立線を分割することができ、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0009】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記所定の長さは、前記CADデータに設定された線の精度に基づいて決定されていることを特徴とするものである。
ここで、線分の精度とは一般にトレランスと呼ばれ、CADを扱う際の設定値の一つである。
従って、本発明によれば、トレランスに基づいて好適に独立線を延長することができ、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0010】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、ブーリアン演算によって、前記独立線の延長及び前記分割線の削除を行うことを特徴とするものである。
ここで、ブーリアン演算とは、図形のモデリング技法の一つとして一般的に知られており、集合演算と呼ばれる高度な演算によるモデリングを可能にするものである。重なった複数の形状をひとつの塊にする(和)、重なった形状を削り取る(差)、重なった部分だけを取り出す(積)といった演算処理を施すものである。
従って、本発明によれば、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0011】
また、第3及び第4の発明は、複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置及び方法であって、前記複数の線が相互に重合している重合部分を検出し、該重合部分を構成する複数の重合線のうち少なくともいずれかを短縮し、該複数の重合線が相互に共有する端点で前記複数の重合線を接続することを特徴とするものである。
従って、本発明によれば、重合線を短縮することによって、重合線が端点で自動的に接続されるので、構造解析用の形状データの修繕を行うことができる。
【0012】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記複数の重合線の全てを短縮すると共に新規線を作成し、前記複数の重合線と前記新規線とが相互に共有する端点で前記重合線と前記新規線とを接続することを特徴とするものである。
従って、本発明によれば、重合線を短縮すると共に新規線を作成することによって、重合線及び新規線が端点で自動的に接続されるので、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0013】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、ブーリアン演算によって、前記重合線の短縮を行うことを特徴とするものである。
従って、本発明によれば、先に記載した構造解析用の形状データの修繕を好適に行うことができる。
【0014】
また、第5及び第6の発明は、複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置及び方法であって、前記形状データを構成する前記複数の線によって包囲された面を設定し、全ての該面を所定の分割数でメッシュ分割することにより前記構造解析モデルを自動生成することを特徴とするものである。
従って、本発明によれば、複数の線によって包囲された全ての面を自動的にメッシュ分割することによって、構造解析モデルを作成することができる。
【0015】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記形状データを内包する内包面を作成した後に前記面を設定し、全ての前記面を設定した後に前記内包面を削除することを特徴とするものである。
従って、本発明によれば、先に記載した構造解析モデルを好適に作成することができる。
【0016】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、前記所定の分割数は、前記面を包囲する線の曲率に基づいて決定されていることを特徴とするものである。
従って、本発明によれば、例えば応力集中が生じやすい曲線で包囲された面においては、メッシュの分割数が自動的に増えるので、構造解析を高精度に行うことができる。また、先に記載した構造解析モデルを好適に作成することができる。
【0017】
また、本発明は、先に記載の構造解析モデル生成装置及び方法であり、ブーリアン演算によって、前記面の設定及び前記内包面の削除を行うことを特徴とするものである。
従って、本発明によれば、先に記載した構造解析モデルを好適に作成することができる。
【0018】
【発明の実施の形態】
以下、図面を参照して、本発明に係る構造解析モデル生成装置及び方法の一実施形態について説明する。
【0019】
図1は、本実施形態における構造解析対象物の一例として挙げたH型構造物の平面図であって、図1(a)はH型構造物の全体を示した平面図、図1(b)及び図1(c)は図1(a)の要部を示した拡大図である。
図1に示したH型構造物(構造解析対象物)100aの設計においては、設計者が図示しないコンピュータのCADを用いて複数の線を描画するだけでなく、H型構造物100aに類似した既存のCADデータ(DWG等のファイル)を読み込んで、これらを修正及び改良することによって行われている。このようにH型構造物100aを形状規定している複数の線においては、必ずしも各線の端点で線が相互が接続しているとは限らず、線が相互に離間した状態となっている場合がある。そこで、予めCADの設定値の一つであるトレランス(線の精度)を設定することによって、上記の離間状態にある複数の線を当接状態として扱うことで、H型構造物100aの設計が行われている。
例えば、図1(b)に示すように、線L1と線L2aは交差状態にあるが、トレランスTが設定されることによって、線L2aからトレランスTの長さが差し引かれて短縮し、線L1と線L2bは端点P1において当接している状態として扱われる。また、図1(c)に示すように、線L3と線L4aは非当接状態にあるが、先に記載したようにトレランスTが設定されることによって、線L4aからトレランスTの長さが足されて延長し、線L3と線L4bは端点P2において当接している状態として扱われる。
【0020】
図2は、構造解析モデルを自動生成する構造解析モデル生成装置の機能ブロック図である。この図において、符号1は演算装置であり、H型構造物100aのCADデータをIGESファイルに変換すると共に、有限要素用自動メッシュ分割プログラムに基づいて動作する一種のコンピュータである。符号2は記憶装置であり、前記有限要素用自動メッシュ分割プログラムを記録すると共に、H型構造物100aのCADデータ及びIGESファイルの形状データを記憶するものである。また、記憶装置2は演算装置1における各種演算処理によって演算された演算結果を記憶し、また、入力装置3から入力されたデータ等をも記憶する。
【0021】
符号4は表示装置であり、前記形状データや前記形状データがメッシュ分割された有限要素モデルを表示し、或いは演算装置1の演算結果を表示するためのものである。符号5は印刷装置であり、メッシュ分割されたモデルの演算結果を印刷するためのものである。なお、この表示装置4と印刷装置5は、本実施形態の出力手段を構成するものである。
【0022】
次に、図3に示すフローチャートに沿って、上記H型構造物100aの構造解析モデル生成方法について説明する。
まず、入力装置3によって図1に示したH型構造物100aのCADデータが構造解析モデル生成装置に取り込まれ、また、H型構造物100aのCADデータは演算装置1によってIGESファイルに変換され、構造解析形状データ(構造解析用の形状データ)を作成する(ステップS1)。これによって、CADで設定されていたトレランスが無効になり、従って、トレランスによる線のつながりが解消され、当接状態として扱われていた複数の線は、離間した状態となる。
例えば、図1(b)に示す線L1と線L2bは端点P1で当接状態であったが、IGESファイル変換によってトレランスTが解消されてしまい、線L1と線L2aが交差状態となる。また、図1(c)に示す線L3と線L4bは端点P2で当接状態であったが、IGESファイル変換によってトレランスTが解消されてしまい、線L1と線L4aが離間状態にとなる。
【0023】
図4は、IGESファイルに変換されたH型構造物(構造解析用の形状データ)100bの平面図であって、図4(a)はH型構造物100bの全体を示した平面図、図4(b)から(e)は図4(a)の要部を示した詳細図である。
図4(a)から(c)において、線L11、L12、L13、L14は、図1に示すCADデータのH型構造物の線L1、L2a、L3、L4aとそれぞれ対応した関係となっており、また、線L12及び線L14は、他の線と共有していない独立端点P12及びP14を有している。
また、図4(d)は、線L15と線L16とが相互に重なっている重合部Wを示すものである。
また、図4(e)は、H型構造物100bの角部を示すものであり、この角部においてはフィレットRが形成されており、フィレットRは両端に端点Prを有している。また、H型構造物100bの他の角部においても図4(e)と同様にフィレットRが形成されている。
【0024】
続いて、演算装置1はH型構造物100bのフィレット部をチャンファ部に変更する(ステップ2)。ここでは、所定の設定値より小さい半径のフィレット部を検出し、このフィレット部の両端点を直線で結び、チャンファ部が作成される。
即ち、図4(e)に示すフィレットRの端点Pr−Pr間に線Cを作成し、フィレットRが削除される。また、このようなフィレット部の検出と線Cの作成は、H型構造物100bを形状規定している全ての線において行われる。
【0025】
続いて、更に演算装置1はブーリアン演算を使った自動修繕を行う(ステップ3)。
ここで、ステップ3の詳細について、図5に示したフローチャートに沿って説明し、図6を用いて、図4(b)のH型構造物100bの要部における演算処理過程を説明する。
【0026】
まず、H型構造物100bを形状規定している全ての線の端点のうち、複数の線が共有していない独立端点及び独立線を検出する(ステップ31)。従って、図4(b)及び図4(c)に示す独立端点P12及びP14が検出され、この独立端点P12及びP14を有した独立線L12及びL14が検出される。
次に、独立線と他の線との交点を検出する(ステップ32)。従って、図6(a)に示す独立線L12と線L11との交点Px1が検出される。
続いて、この交点において独立線を分割し、交点を新規端点として設定する(ステップ33)。更に、新規端点と独立端点とを両端とする線を新規線として設定する(ステップ34)。従って、図6(b)に示す交点Px1が端点として設定され、端点Px1によって独立線L12が分割され、端点Px1と独立端点P12とを両端とした線が、新規線Lx1となる。
【0027】
続いて、更に新規線の長さがCADのトレランスより短い場合に新規線を削除する(ステップ35)。従って、新規線Lx1がCADのトレランスより短い場合には新規線Lx1が削除され、図6(c)に示すように独立端点P12が削除されて、線L11と線L12は当接状態となる。
【0028】
また、更に独立線と他の線とが交差するように独立線にCADのトレランスと同じ長さの線を付加して延長する(ステップ36)。
ここでは、図7を用いて、図4(c)のH型構造物100bの演算処理過程を説明する。
従って、図7(a)に示す独立線L14にCADのトレランスと同じ長さの線Lt1が付加され、図7(b)に示すように独立線L14は延長される。
【0029】
次に、独立端点の有無の確認が行われ、独立端点が有る場合には上述のステップ31に戻り、独立端点、独立線及び交点の検出等が行われる。また、独立端点が無い場合には次のステップ38において後述の演算処理を行う(ステップ37)。従って、このステップ37における演算処理においては、図7(b)に示す独立端点P14が検出されるので、ステップ31からステップ36の演算処理を再び行われる。
【0030】
ここで、ステップ31からステップ36までの演算処理については、上述と同様であるため、詳細な説明を省略し、一連の演算処理の流れのみを説明する。
従って、ステップ31からステップ36を施すことによって、独立端点、独立線及び交点の検出が行われるので、独立端点P14が検出される。更に、線L14及び線L13との交点が検出される。この交点において線L14を分割すると共にこの交点を新規端点として設定する。新規端点と独立端点P14とを両端とする新規線を設定する。新規線の長さがCADのトレランスより短い場合に新規線を削除する。
このような一連の演算処理を施すことによって図7(c)に示すように独立端点P14が削除されて、線L13と線L14は当接状態となり、これによって全ての独立端点は削除され、全ての線が相互に当接した状態となる。
【0031】
続いて、ステップ37において独立端点の有無の確認が行われ、ここで独立端点が無いことから、次のステップとして重合している線の整理を行う(ステップ38)。
ここでは、図8を用いて、図4(d)のH型構造物100bの演算処理過程を説明する。
従って、図8(a)に示す重合部Wを有した線L15、L16においては、線L15を端点P16まで短縮すると共に、線L16を端点P15まで短縮し、かつ、端点P15及びP16を両端とする新規線L17を作成する。これによって重合部Wは線L17に代替される。
【0032】
このようにステップ31からステップ38を施すことによって、独立端点及び独立線が削除され、相互に共有する端点で各線が接続されると共に、重合部が削除され、H型構造物100bの自動修繕が終了となる。
【0033】
続いて、図3に戻り、演算装置1はブーリアン演算を使ったメッシュ作成エリアの自動作成を行う(ステップ4)。
ここで、ステップ4の詳細について、図9に示したフローチャートに沿って説明し、図10を用いて、図4のH型構造物100bの演算処理過程を説明する。
まず、H型構造物100bを内包する大きな面(内包面)を作成する(ステップ41)。従って、図10(a)に示すH型構造物100bを内包するような内包面A1が作成される。
次に、H型構造物100bの線によって包囲された面を検出する(ステップ42)。従って、図10(b)に示すH型構造物100bにおいて、線によって形状規定されている面が閉じているか否か、LOOP1、LOOP2及びLOOP3毎に確認される。更に、LOOP1、LOOP2及びLOOP3それぞれにおいて、面が閉じていることが確認されることによって、図10(c)に示す面A2、A3、A4が割り当てられる。
続いて、構造解析データを内包する大きな面を削除する(ステップ44)。従って、図10(c)に示す内包面A1が削除され、図10(d)に示すように面A2、A3、A4によって構成されたH型構造物100bが作成される。
【0034】
続いて、再び図3に戻り、演算装置1は形状データの曲率を考慮したメッシュの細かさの自動設定を行う(ステップ5)。
ここで、ステップ5の詳細について、図11に示したフローチャートに沿って説明し、図12を用いて、H型構造物100bの演算処理過程を説明する。図12(a)は上述のステップ4において作成されたH型構造物100bであり、図12(b)は図12(a)のX部を拡大した詳細図であり、図12(c)は線の分割数を決定するために用いられる関数曲線あり、図12(d)は分割された線を例示したものである。
【0035】
まず、H型構造物100bを構成している各線の長さLを測定する(ステップ51)。従って、図12(b)に示すように端点P21を両端とした弧L21の長さCLが測定される。このようにH型構造物100bを構成している全ての線の長さが測定される。
次に、H型構造物100bを構成している各線の両端の直線距離DLを測定する(ステップ52)。従って、図12(b)に示すように端点P21間の直線距離DLが測定される。このようにH型構造物100bを構成している全ての線の両端の直線距離が測定される。
【0036】
続いて、長さCLを直線距離DLで割った値CL/DLと、関数曲線とによって線の分割数を決める(ステップ53)。従って、弧L21の長さCLを直線距離DLで割った値CL/DLと、図12(c)に示す関数曲線f(CL、DL)とによって線の分割数が決定される。このようにH型構造物100bを構成している全ての線の分割数が決定される。
ここで、関数曲線f(CL、DL)は、右上に上昇する曲線であるので、値CL/DLが大きい程、線の分割数が多くなるようになっている。
図12(d)の線L22及び線L23は、分割された線を例示するものである。線L22及び線L23の直線距離DLは等しく、また、線L22は線L23よりも長さCLが大きく設定されている。従って、線L22は線L23よりも値CL/DLが大きくなり、関数曲線f(CL、DL)に基づいて線L22の分割数は線L23よりも多く設定される。
従って、直線の分割数よりも曲線の分割数が多くなるので、応力集中が生じやすい曲線を有した面においては、高精度に構造解析が行われる。
【0037】
続いて、再び図3に戻り、演算装置1はメッシュ分割を行う(ステップ6)。このメッシュ分割においては、フリーメッシュが用いられる。従って、図13(a)に示すようにステップ5において分割数が決定されたH型構造物100bに対して、フリーメッシュを用いた演算処理が行われ、図13(b)に示すようにメッシュ分割が行われ、H型構造物(構造解析モデル)100cが作成される。
【0038】
このように本実施形態では、図3のステップ1からステップ5に基づいて演算処理することにより、第1にCADデータのH型構造物100a、第2に構造解析形状データのH型構造物100bが順次作成されることによって、最終的にメッシュ分割された構造解析モデルのH型構造物100cが作成される。
また、演算装置1による演算結果は、適宜、図2の表示装置4に表示され、印刷装置5によって印刷される。
【0039】
上述したように、この構造解析モデル生成装置及び方法においては、ブーリアン演算を用いることによって、離間している複数の線を当接状態にすることができると共に、重合線を端点で接続することができる。従って、構造解析用の形状データの修繕を自動的に行うことができる。また、複数の線によって包囲された面を自動的にメッシュ分割することによって構造解析モデルを形成することができる。また、応力集中が生じやすい曲線で包囲された面においては、メッシュ分割数が自動的に増えるので、構造解析を高精度に行うことができる。
【0040】
なお、本実施形態のステップ38においては、端点P15及びP16を両端とする新規線L17を作成したが、端点P15を削除し、かつ、線L15を端点P16まで短縮することで、新規線L17を作成することなく重合部Wを編成してもよい。
【0041】
【発明の効果】
以上説明したように、本発明によれば、ブーリアン演算を用いることによって、離間している複数の線を当接状態にすることができる効果が得られると共に、重合線を端点で接続することができる効果が得られる。従って、構造解析用の形状データの修繕を自動的に行うことができる効果が得られる。また、複数の線によって包囲された面を自動的にメッシュ分割することによって構造解析モデルを形成することができる効果が得られる。また、応力集中が生じやすい曲線で包囲された面においては、メッシュ分割数が自動的に増えるので、構造解析を高精度に行うことができる効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る構造解析対象物のH型構造物の平面図である。
【図2】本発明の一実施の形態に係る構造解析モデル生成装置の機能構成を示すブロック図である。
【図3】本発明の一実施の形態に係る構造解析モデル生成方法のフローチャートの構成図である。
【図4】本発明の一実施の形態に係る構造解析モデル生成方法において構造解析形状データに変換されたH型構造物の平面図である。
【図5】本発明の一実施の形態に係る構造解析モデル生成方法のフローチャートの構成図である。
【図6】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図7】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図8】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図9】本発明の一実施の形態に係る構造解析モデル生成方法のフローチャートの構成図である。
【図10】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図11】本本発明の一実施の形態に係る構造解析モデル生成方法のフローチャートの構成図である。
【図12】本発明の一実施の形態に係る構造解析モデル生成方法によって演算される構造解析形状データの演算過程を示す図である。
【図13】本発明の一実施の形態に係る構造解析モデル生成方法によって演算された構造解析モデルを示す図である。
【符号の説明】
100a H型構造物(構造解析対象物)
100b H型構造物(構造解析用の形状データ)
100c H型構造物(構造解析モデル)
L11、L13 線(他の線)
L12、L14 独立線
P12、P14 独立端点
Px1 交点
W 重合部分
P15、P16 相互に共有する端点
L17 新規線
A1 内包面
A2、A3、A4 面
Claims (24)
- 複数の線の組み合わせによって形状規定される構造解析対象物のCAD(computer aided design)データに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置であって、
前記形状データから複数の線が共有していない独立端点を検出し、
該独立端点を有する独立線を延在方向に伸縮して他の線に当接状態にすることを特徴とする構造解析モデル生成装置。 - 前記独立線と前記他の線との交点を検出し、
該交点で前記独立線を分割すると共に前記交点を端点として設定し、
該端点と前記独立端点とを両端とする分割線の長さが所定の長さより短い場合に該分割線を削除し、
前記独立線と前記他の線とを当接状態にすることを特徴とする請求項1に記載の構造解析モデル生成装置。 - 前記独立線と前記他の線とが交差するように前記独立線に前記所定の長さを付加することによって、前記独立線の長さを延長することを特徴とする請求項2に記載の構造解析モデル生成装置。
- 前記所定の長さは、前記CADデータに設定された線の精度に基づいて決定されていることを特徴とする請求項2又は請求項3に記載の構造解析モデル生成装置。
- ブーリアン演算によって、前記独立線の延長及び前記分割線の削除を行うことを特徴とする請求項1から請求項4のうちいずれかに記載の構造解析モデル生成装置。
- 複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置であって、
前記複数の線が相互に重合している重合部分を検出し、
該重合部分を構成する複数の重合線のうち少なくともいずれかを短縮し、
該複数の重合線が相互に共有する端点で前記複数の重合線を接続することを特徴とする構造解析モデル生成装置。 - 前記複数の重合線の全てを短縮すると共に新規線を作成し、
前記複数の重合線と前記新規線とが相互に共有する端点で前記重合線と前記新規線とを接続することを特徴とする請求項6に記載の構造解析モデル生成装置。 - ブーリアン演算によって、前記重合線の短縮を行うことを特徴とする請求項6又は請求項7に記載の構造解析モデル生成装置。
- 複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する装置であって、
前記形状データを構成する前記複数の線によって包囲された面を設定し、全ての該面を所定の分割数でメッシュ分割することにより前記構造解析モデルを自動生成することを特徴とする構造解析モデル生成装置。 - 前記形状データを内包する内包面を作成した後に前記面を設定し、
全ての前記面を設定した後に前記内包面を削除することを特徴とする請求項9に記載の構造解析モデル生成装置。 - 前記所定の分割数は、前記面を包囲する線の曲率に基づいて決定されていることを特徴とする請求項9又は請求項10に記載の構造解析モデル生成装置。
- ブーリアン演算によって、前記面の設定及び前記内包面の削除を行うことを特徴とする請求項9から請求項11のうちいずれかに記載の構造解析モデル生成装置。
- 複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する方法であって、
前記形状データから複数の線が共有していない独立端点を検出し、
該独立端点を有する独立線を延在方向に伸縮して他の線に当接状態にすることを特徴とする構造解析モデル生成方法。 - 前記独立線と前記他の線との交点を検出し、
該交点で前記独立線を分割すると共に前記交点を端点として設定し、
該端点と前記独立端点とを両端とする分割線の長さが所定の長さより短い場合に該分割線を削除し、
前記独立線と前記他の線とを当接状態にすることを特徴とする請求項13に記載の構造解析モデル生成方法。 - 前記独立線と前記他の線とが交差するように前記独立線に前記所定の長さを付加することによって、前記独立線の長さを延長することを特徴とする請求項14に記載の構造解析モデル生成方法。
- 前記所定の長さは、前記CADデータに設定された線の精度に基づいて決定されていることを特徴とする請求項14又は請求項15に記載の構造解析モデル生成方法。
- ブーリアン演算によって、前記独立線の延長及び前記分割線の削除を行うことを特徴とする請求項13から請求項16のうちいずれかに記載の構造解析モデル生成方法。
- 複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する方法であって、
前記複数の線が相互に重合している重合部分を検出し、
該重合部分を構成する複数の重合線のうち少なくともいずれかを短縮し、
該複数の重合線が相互に共有する端点で前記複数の重合線を接続することを特徴とする構造解析モデル生成方法。 - 前記複数の重合線の全てを短縮すると共に新規線を作成し、
前記複数の重合線と前記新規線とが相互に共有する端点で前記重合線と前記新規線とを接続することを特徴とする請求項18に記載の構造解析モデル生成方法。 - ブーリアン演算によって、前記重合線の短縮を行うことを特徴とする請求項18又は請求項19に記載の構造解析モデル生成方法。
- 複数の線の組み合わせによって形状規定される構造解析対象物のCADデータに対して、前記各線に各々対応する複数の線データの集合体となる構造解析用の形状データを生成し、プログラムに基づいて前記形状データを演算処理することによって複数の要素にメッシュ分割された構造解析モデルを自動生成する方法であって、
前記形状データを構成する前記複数の線によって包囲された面を設定し、全ての該面を所定の分割数でメッシュ分割することにより前記構造解析モデルを自動生成することを特徴とする構造解析モデル生成方法。 - 前記形状データを内包する内包面を作成した後に前記面を設定し、
全ての前記面を設定した後に前記内包面を削除することを特徴とする請求項21に記載の構造解析モデル生成方法。 - 前記所定の分割数は、前記面を包囲する線の曲率に基づいて決定されていることを特徴とする請求項21又は請求項22に記載の構造解析モデル生成方法。
- ブーリアン演算によって、前記面の設定及び前記内包面の削除を行うことを特徴とする請求項21から請求項23のうちいずれかに記載の構造解析モデル生成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002311216A JP2004145718A (ja) | 2002-10-25 | 2002-10-25 | 構造解析モデル生成装置及び方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002311216A JP2004145718A (ja) | 2002-10-25 | 2002-10-25 | 構造解析モデル生成装置及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004145718A true JP2004145718A (ja) | 2004-05-20 |
Family
ID=32456508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002311216A Pending JP2004145718A (ja) | 2002-10-25 | 2002-10-25 | 構造解析モデル生成装置及び方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004145718A (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1630220A2 (en) | 2004-08-27 | 2006-03-01 | Dowa Mining Co., Ltd. | Phosphor mixture and light emitting device using the same |
JP2006202093A (ja) * | 2005-01-21 | 2006-08-03 | Mazda Motor Corp | 車両用ボディーパネルの構造解析モデル作成システム |
US7138756B2 (en) | 2004-08-02 | 2006-11-21 | Dowa Mining Co., Ltd. | Phosphor for electron beam excitation and color display device using the same |
US7252788B2 (en) | 2004-02-27 | 2007-08-07 | Dowa Mining Co., Ltd. | Phosphor, light source and LED |
US7273568B2 (en) | 2004-06-25 | 2007-09-25 | Dowa Mining Co., Ltd. | Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED |
US7319195B2 (en) | 2003-11-28 | 2008-01-15 | Dowa Electronics Materials Co., Ltd. | Composite conductor, superconductive apparatus system, and composite conductor manufacturing method |
US7432647B2 (en) | 2004-07-09 | 2008-10-07 | Dowa Electronics Materials Co., Ltd. | Light source having phosphor including divalent trivalent and tetravalent elements |
US7434981B2 (en) | 2004-05-28 | 2008-10-14 | Dowa Electronics Materials Co., Ltd. | Manufacturing method of metal paste |
US7443094B2 (en) | 2005-03-31 | 2008-10-28 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method of the same, and light emitting device using the phosphor |
US7445730B2 (en) | 2005-03-31 | 2008-11-04 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method of the same, and light emitting device using the phosphor |
US7476335B2 (en) | 2004-08-20 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method therefore, and light source using the phosphor |
US7476337B2 (en) | 2004-07-28 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light source |
US7476336B2 (en) | 2005-04-28 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light emitting device using the phosphor |
US7477009B2 (en) | 2005-03-01 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor mixture and light emitting device |
US7476338B2 (en) | 2004-08-27 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light source |
US7514860B2 (en) | 2004-10-28 | 2009-04-07 | Dowa Electronics Materials Co., Ltd. | Phosphor mixture and light emitting device |
US7524437B2 (en) | 2005-03-04 | 2009-04-28 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method of the same, and light emitting device using the phosphor |
US7527748B2 (en) | 2004-08-02 | 2009-05-05 | Dowa Electronics Materials Co., Ltd. | Phosphor and phosphor film for electron beam excitation and color display apparatus using the same |
-
2002
- 2002-10-25 JP JP2002311216A patent/JP2004145718A/ja active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7319195B2 (en) | 2003-11-28 | 2008-01-15 | Dowa Electronics Materials Co., Ltd. | Composite conductor, superconductive apparatus system, and composite conductor manufacturing method |
US7252788B2 (en) | 2004-02-27 | 2007-08-07 | Dowa Mining Co., Ltd. | Phosphor, light source and LED |
US7434981B2 (en) | 2004-05-28 | 2008-10-14 | Dowa Electronics Materials Co., Ltd. | Manufacturing method of metal paste |
USRE44996E1 (en) * | 2004-06-25 | 2014-07-08 | Nichia Corporation | Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED |
US7273568B2 (en) | 2004-06-25 | 2007-09-25 | Dowa Mining Co., Ltd. | Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED |
US7884539B2 (en) | 2004-07-09 | 2011-02-08 | Dowa Electronics Materials Co., Ltd. | Light source having phosphor including divalent, trivalent and tetravalent elements |
US8441180B2 (en) | 2004-07-09 | 2013-05-14 | Dowa Electronics Materials Co., Ltd. | Light source having phosphor including divalent, trivalent and tetravalent elements |
US7432647B2 (en) | 2004-07-09 | 2008-10-07 | Dowa Electronics Materials Co., Ltd. | Light source having phosphor including divalent trivalent and tetravalent elements |
US8066910B2 (en) | 2004-07-28 | 2011-11-29 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light source |
US7476337B2 (en) | 2004-07-28 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light source |
USRE45640E1 (en) | 2004-08-02 | 2015-08-04 | Dowa Electronics Materials Co., Ltd. | Phosphor for electron beam excitation and color display device using the same |
USRE44162E1 (en) * | 2004-08-02 | 2013-04-23 | Dowa Electronics Materials Co., Ltd. | Phosphor and phosphor film for electron beam excitation and color display apparatus using the same |
US7527748B2 (en) | 2004-08-02 | 2009-05-05 | Dowa Electronics Materials Co., Ltd. | Phosphor and phosphor film for electron beam excitation and color display apparatus using the same |
US7138756B2 (en) | 2004-08-02 | 2006-11-21 | Dowa Mining Co., Ltd. | Phosphor for electron beam excitation and color display device using the same |
US7476335B2 (en) | 2004-08-20 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method therefore, and light source using the phosphor |
USRE45502E1 (en) | 2004-08-20 | 2015-05-05 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method therefore, and light source using the phosphor |
US7345418B2 (en) | 2004-08-27 | 2008-03-18 | Dowa Mining Co., Ltd. | Phosphor mixture and light emitting device using the same |
US7476338B2 (en) | 2004-08-27 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light source |
US8308981B2 (en) | 2004-08-27 | 2012-11-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light source |
US7803286B2 (en) | 2004-08-27 | 2010-09-28 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light source |
EP1630220A2 (en) | 2004-08-27 | 2006-03-01 | Dowa Mining Co., Ltd. | Phosphor mixture and light emitting device using the same |
US7514860B2 (en) | 2004-10-28 | 2009-04-07 | Dowa Electronics Materials Co., Ltd. | Phosphor mixture and light emitting device |
JP4655640B2 (ja) * | 2005-01-21 | 2011-03-23 | マツダ株式会社 | 車両用ボディーパネルの構造解析モデル作成システム |
JP2006202093A (ja) * | 2005-01-21 | 2006-08-03 | Mazda Motor Corp | 車両用ボディーパネルの構造解析モデル作成システム |
US7477009B2 (en) | 2005-03-01 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor mixture and light emitting device |
US7524437B2 (en) | 2005-03-04 | 2009-04-28 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method of the same, and light emitting device using the phosphor |
US7445730B2 (en) | 2005-03-31 | 2008-11-04 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method of the same, and light emitting device using the phosphor |
US7443094B2 (en) | 2005-03-31 | 2008-10-28 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method of the same, and light emitting device using the phosphor |
US7476336B2 (en) | 2005-04-28 | 2009-01-13 | Dowa Electronics Materials Co., Ltd. | Phosphor and manufacturing method for the same, and light emitting device using the phosphor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004145718A (ja) | 構造解析モデル生成装置及び方法 | |
Zhang | Research into the engineering application of reverse engineering technology | |
Jamieson et al. | Direct slicing of CAD models for rapid prototyping | |
White et al. | Automated hexahedral mesh generation by virtual decomposition | |
US5315537A (en) | Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system | |
CN107194885B (zh) | 一种cad图智能修正系统及方法 | |
JP2006120164A (ja) | 板金部品フィーチャ・オペレーションによって生成される3d板金部品モデルの生成装置 | |
Chong et al. | Automatic mesh-healing technique for model repair and finite element model generation | |
CN114372392A (zh) | 一种有限元建模方法及计算机存储介质 | |
JP2003242186A (ja) | Cadデータ処理装置 | |
JP2005044146A (ja) | 有限要素解析方法、有限要素解析プログラムおよび有限要素解析装置 | |
JP4475293B2 (ja) | 解析メッシュ作成方法および解析メッシュ作成装置 | |
Ren et al. | Material side tracing and curve refinement for pencil-cut machining of complex polyhedral models | |
McLaurin et al. | Repairing unstructured triangular mesh intersections | |
Park et al. | Tool path generation for a surface model with defects | |
JP2800708B2 (ja) | Fem解析モデルのメッシュ修正方法 | |
US7840929B2 (en) | Method for automatically modifying frame of circuit diagram | |
Ng et al. | Incremental tessellation of trimmed parametric surfaces | |
JP2000029915A (ja) | 板金用cad/camシステムにおける板取方法およびその装置 | |
Zheng et al. | Topology abstraction of surface models for three-dimensional grid generation | |
JP4812477B2 (ja) | 画像計測装置用パートプログラム生成装置、画像計測装置用パートプログラム生成方法、及び画像計測装置用パートプログラム生成用プログラム | |
CN113449363B (zh) | 一种面向数值模拟的大规模城市模型可计算处理方法 | |
Ramnath et al. | Generalization of Manufacturability Algorithms for Fabricated Assemblies Based on Topology Optimization | |
Verim et al. | Creation and comparison of three-dimensional models of a mechanical part in agriculture field by forward and reverse engineering | |
JP2010176447A (ja) | Ncデータの修正方法及び装置 |