JP2004122043A - Apparatus for manufacturing ozone water - Google Patents

Apparatus for manufacturing ozone water Download PDF

Info

Publication number
JP2004122043A
JP2004122043A JP2002292046A JP2002292046A JP2004122043A JP 2004122043 A JP2004122043 A JP 2004122043A JP 2002292046 A JP2002292046 A JP 2002292046A JP 2002292046 A JP2002292046 A JP 2002292046A JP 2004122043 A JP2004122043 A JP 2004122043A
Authority
JP
Japan
Prior art keywords
water
ozone
ozone gas
ejector
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292046A
Other languages
Japanese (ja)
Inventor
Taizo Nagahiro
長廣 泰藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKUMINE KK
Original Assignee
OKUMINE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKUMINE KK filed Critical OKUMINE KK
Priority to JP2002292046A priority Critical patent/JP2004122043A/en
Publication of JP2004122043A publication Critical patent/JP2004122043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for manufacturing ozone water capable of sufficiently bringing the ozone gas into contact with raw water by sucking a large amount of ozone gas even in the case where an ejector using a certain amount of suction raw water is used. <P>SOLUTION: The ejector 20 has a first throttled flow passage 20b to which city water is fed as a raw water W at approximately city water pressure and injecting the raw water W at a high speed; an ozone gas feed chamber 20c provided adjacent to the first throttle flow passage so as to surround the periphery of the injected water F from the first throttled flow passage 20b; a second throttle flow passage 20d having a larger diameter than that of the first throttled flow passage 20b, provided on the opposite side of the first throttled flow passage 20b against the ozone gas feed chamber 20c so as to be concentric to the first throttle flow passage 20b and mixing the ozone gas G in the ozone gas feed chamber 20c into the injected water F; and a diffuser part 20e provided adjacent to the second throttle flow passage 20d in which the flow passage diameter is gradually enlarged from the second throttle flow passage 20d. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、オゾンガスを水に溶解させて、オゾン水を作るオゾン水製造装置に関するものである。
【0002】
【従来の技術】
オゾンには、強い酸化作用があり、菌、臭い、色等を除去する作用があるので、水にオゾンガスを溶解させたオゾン水を用いて、種々の物の殺菌、消毒、脱臭、脱色等が広く行われている。
【0003】
このようなオゾン水は、例えば、オゾン耐食性材料から作られた渦流ポンプやエジェクタを使用して、水(原水)にオゾンガスを溶解させることにより比較的簡単に作られる。渦流ポンプの場合には、ポンプ翼の撹拌作用にて水とオゾンガスとを混合することにより、オゾンガスを水と接触させて、オゾン水が作られ、エジェクタの場合には、オゾンガスを高速水流によって吸引し、水と混合することにより、オゾンガスを水に接触させてオゾン水が作られる。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の渦流ポンプやエジェクタでは、多量なオゾンガスを水と混合させることができず、かつ、水とオゾンガスとを充分に接触させることができないという問題があった。このため、このような渦流ポンプやエジェクタを用いたオゾン水製造装置では、オゾン濃度が1ppm程度の、オゾン濃度の低いオゾン水しか製造できないという問題があった。
【0005】
例えば、図9は、入口流路101と出口流路105との間に絞り流路102とディフューザ部104とが設けられ、原水の高速水流によって低圧になった絞り流路102の位置にて、オゾンガス導入路103からオゾンガスを吸引し、後のディフューザ部104でオゾンガスと原水とを混合するようにした従来型のオゾン水製造用エジェクタ100を示している。図10及び図11は、このエジェクタ100を、図5で示される実験装置(詳細は実施形態中で説明する)中にセットし、入り口流路101側に、水供給圧力Pを市中の水道圧の範囲(0.1〜0.4MPaG)で変動させるように、水を供給するとともに、オゾンガス導入路103側から空気を自然吸引させるようにした場合の、エジェクタ効率η(=吸引空気量Q/水流量R(%))等を示している。
【0006】
図10は絞り流路102の径D2が2.5mmの場合の結果を示し、図11は絞り流路102の径D2が3.5mmの場合の結果を示すが、何れの場合でも、エジェクタ効率ηが30%以下であり、このエジェクタ100では、水流量Rに対して、空気(ガス)を充分に吸引できないことがわかる。また、実験観察によると、このエジェクタ100では、吸引した空気泡のサイズが比較的大きいため、水とガスとの接触が充分になされない(水流中にガスを溶解させにくい)ということもわかった。
【0007】
なお、エジェクタ100の図9で示される各部のサイズは、例えば、D1=15、D2=2.5(3.5)、D3=15、D4=2、A1=15.1(13.9)、A2=5、A3=71.4(65.7)(以上単位はmm)、α=45度、β=10度である。
【0008】
この発明は、以上の点に鑑み、一定量の吸引用原水が用いられるエジェクタを使用した場合でも、多量のオゾンガスを容易に吸引できるとともに、吸引したオゾンガスと原水と充分に接触させることができるオゾン水製造装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明の請求項1記載の発明は、エジェクタの使用により、原水にオゾンガスを溶解させてオゾン水を製造するオゾン水製造装置において、エジェクタを、原水として水道水がほぼ水道圧で供給され、この原水を高速で噴射する第1絞り流路と、第1絞り流路から噴射される噴射水周りを囲むように、この第1絞り流路に隣接して設けられるオゾンガス供給室と、第1の絞り流路径より大径で、かつ、オゾンガス供給室に対して第1絞り流路の反対側に、この第1絞り流路と同芯状になるように設けられ、オゾンガス供給室中のオゾンガスを噴射水中に混入させる第2絞り流路と、第2絞り流路に隣接して設けられ、この第2絞り流路より流路径が漸次拡大するディフューザ部とを有するように形成していることである。
【0010】
この発明では、原水がエジェクタの第1絞り流路によって高速噴射されると、この噴射水はオゾンガス供給室を通って第2絞り流路に入るが、高速の噴射水によってオゾンガス供給室内の静圧が下がるため、オゾンガス供給室中のオゾンガスは第2絞り流路内に引き込まれる。このことにより、第2絞り流路中及びしだいに流速が落とされるディフューザ部において、噴射水(原水)中に充分な(多量な)オゾンガスが小気泡となって混入した混入水が形成される。そして、原水とオゾンガスとの接触がなされることにより、原水中にオゾンガスが溶解したオゾン水が作られる。
【0011】
この発明の請求項2記載の発明は、請求項1記載の発明の場合において、エジェクタの出口部に直結され、原水中にオゾンガスが混入した混入水を、流れに沿った軸心を含む面で複数に分割して、この軸心周りに旋回させつつ撹拌する固定羽根が、この混入水の流れ方向に複数段設けられたスタチックミキサを有しているとともに、このスタチックミキサのケーシングを、混入水の流れの状態が分かるように透明材にて形成していることである。
【0012】
この発明では、エジェクタを出た混入水は、直ちにスタチックミキサ中に入って撹拌されるが、このスタチックミキサのケーシングが透明であるため、スタチックミキサ中の混入水の流れを外部から見ることができる。なお、スタチックミキサでは、固定羽根によって、混入水がその軸心周りを旋回するように、この混入水を流れ方向に移動させつつ撹拌するが、この混入水がつぎの固定羽根に入る場合に、羽根の位置を周方向にずらしたり、旋回方向を逆にすることにより、混入水の更なる撹拌をすることができる。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図面を参照しつつ説明する。
図7はこの発明の一実施の形態に係るオゾン水製造装置を備えたオゾン水製造システムの外観を、一部分解して示すものであり、図8はこのオゾン水製造システムにおいてオゾン水が製造される手順を示すものである。
【0014】
オゾン水製造システムSは、図7及び図8で示されるように、オゾン製造装置1と、貯水槽23を除いたオゾン水製造装置2とを、所定のボックス3に納めたものを、貯水槽23とともに、キャスター4a付きの収納台車4上に収納したものであり、メンテナンス等を考慮して、ボックス3と貯水槽23とが収納台車4から容易に取り外しできるようになっている。ボックス3の斜状の上板3aには、2つの装置1,2の操作パネル5が設置されているとともに、上部に内部を見通せる細長い透明板3bがはめ込まれている。なお、図7中符号4bは収納台車4の側板であり、符号4cは収納台車4の上板である。
【0015】
オゾン製造装置1は、図8で示されるように、エアフィルタ10、エアコンプレッサ11、切替電磁弁ブロック12、第1及び第2吸着筒13A,13B、消音器14、特殊逆止弁15、バッファ容器16及び圧力調整器17等を有するPSA酸素濃縮装置と、オゾン発生器18及び高周波高電圧電源19等を有するオゾナイザーとから構成される。
【0016】
PSA酸素濃縮装置では、エアフィルタ10を介して吸引された吸気(空気)を、エアコンプレッサ11で所定圧まで加圧して、切替電磁弁ブロック12を介して、第1又は第2吸着筒13A,13Bに送り、この第1又は第2吸着筒13A,13Bにおいて、空気からチッソを吸着して、例えば酸素濃度を95%まで高めた酸素高濃度ガスを形成後、この酸素高濃度ガスを、バッファ容器16に一時的に貯め、このバッファ容器16からのガスを圧力調整器17により所定圧(例えば、0.05〜0.08MPaG)まで減圧してオゾナイザーまで送るものである。
【0017】
切替電磁弁ブロック12は、第1及び第2吸着筒13A,13Bの一方に、加圧空気を送ってチッソガスの吸着を行わせるとともに、チッソガスの吸着を行わず、内部吸着剤(ゼオライト系窒素ガス吸着剤)の脱チッソ再生を行う第1及び第2吸着筒13A,13Bの他方を、消音器14に接続して、再生ガスの排出を行わせる働きを有している。特殊逆止弁15は、ガスの流れの逆流を防止するとともに、第1及び第2吸着筒13A,13Bの一方で作られた酸素高濃度ガスを、オリフィスを介して、脱チッソ再生中の第1及び第2吸着筒13A,13Bの他方に送り、この第1及び第2吸着筒13A,13Bの他方に脱チッソ再生を行わせる働きを有している。
【0018】
オゾナイザーでは、オゾン発生器18の平らな面上に設けられた表面電極に沿って酸素高濃度ガスを流すとともに、誘電体を挟んで対向する一対の内部電極と表面電極間に、高周波高電圧電源19からの高周波高圧電圧(例えば、10KHzで16KV)を印加することにより、オゾン発生器18の表面電極周りに沿面放電を生じさせ、この沿面放電によって酸素高濃度ガスの一部をオゾンガスに変えることにより、オゾンを発生させている。なお、以降、酸素高濃度ガスの一部がオゾンガスに変えられたもの(例えば、ガス240〜300NL(ノルマルリッター)中に7〜8gのオゾンを含むもの)をオゾンガスGとして扱う。
【0019】
オゾン水製造装置2は、図8で示されるように、原水W(蛇口Jを介して、公共の水道水がほぼ水道圧で供給されるもの)を高速噴射することにより、オゾナイザーから供給されるオゾンガスGを吸引して、これを原水W中に混入させる塩化ビニル製のエジェクタ20と、原水WにオゾンガスGが混入した混入水W1を撹拌して、オゾンガスGと原水Wとを充分に接触させるスタチックミキサ21と、スタチックミキサ21からの混入水W1をオゾンガスGとオゾン水W2とに分けるための気液分離器22と、気液分離器22からのガス部分が上部に導入され、液部分が下部に導入されて貯められる貯水槽23と、貯水槽23上部のオゾンガスGを粒状の活性炭によって無臭・無害なガス(酸素)に変えて外気に放出するオゾンキラー24とを有している。なお、各機器や配管等はオゾンガスにより腐蝕されない材料にて形成されているものとする。
【0020】
エジェクタ20には、図1で示されるように、水道の蛇口Jから原水Wが供給されるとともに、流路の一端側が漸次狭められる入口流路20aと、入口流路20aの一端側に設けられ、原水Wを高速で噴射する第1絞り流路20bと、第1絞り流路20bからの原水Wの噴射水F(図4参照)周りを囲むように、第1絞り流路20bに隣接して形成されるオゾンガス供給室20cと、第1絞り流路20bの径より大径で、かつ、オゾンガス供給室20cに対して第1絞り流路20bの反対側に、この第1絞り流路20bと同芯状に設けられ、オゾンガス供給室20cのオゾンガスGを噴射水F中に混入させる第2絞り流路20dと、流路径が漸次大きくなるように、第2絞り流路20d横に設けられ、混入水W1の流速を落とすディフューザ部20eと、ディフューザ部20eの横に形成される出口流路20fと、オゾンガス供給室20cにオゾンガスGを導く小孔20gと、小孔20gに隣接して設けられるオゾンガス導入路20hとが形成されている。
【0021】
オゾンガス供給室20cの径d3は、第1及び第2絞り流路20b、20dの径d2,d4より充分に大きく形成されているとともに、オゾンガスG用の小孔20gの径d6もオゾンガス供給室20cの径d3より充分に小さく形成されている。また、第2絞り流路20dの径d4は、第1絞り流路20bの径d2より大きく形成されている。なお、エジェクタ20は、第1絞り流路20bやオゾンガス供給室20c等を有する上流部20Aと、第2絞り流路20dやディフューザ部20e等とを有する下流部20Bとに分けられ、これらがネジ部で接合されることにより形成されているとともに、入口流路20a、出口流路20f及びオゾンガス導入路20hには内ネジが形成されていて、これらと配管とが容易に接続できるようになっている。
【0022】
なお、エジェクタ20の図1で示される各部のサイズは、例えば、d1=15,d2=2.5,d3=10,d4=4.2,d5=15,d6=2,L1=15.1,L2=5,L3=10,L4=3,L5=69.7(以上単位はmm)、α=45度、β=10度である。なお、小孔20gの長さは、2.5mmである。
【0023】
スタチックミキサ21は、図2の(a)で示されるように、ケーシングである透明な塩化ビニル製のパイプ部21a内に、図3の(a)、(b)で示される、互いに旋回方向の逆な3枚羽根スクリューの一部P1,P2を、固定羽根21bとして交互に10個並べたものであり、固定羽根21b間には、図2の(a)、(b)で示されるように、固定羽根21bを位置決めするリング21cが配置されている。そして、隣接する固定羽根21bどうしは、図2(b)中実線と2点鎖線とで示されるように、60度ずつ羽根位置をずらして配置されている。なお、リング21cや固定羽根21bはオゾンガスGによって腐蝕しないステンレス材により形成されている。
【0024】
このスタチックミキサ21では、内部に流れ込んだ混入水W1が、固定羽根21bによって3分割された状態で、固定羽根21bの軸心N周りを旋回しつつ流れ、次の固定羽根21bに入ると、各羽根間の混入水W1が、1/2ずつ別々に次の固定羽根21bの羽根間に導かれてミキシングされつつ、軸心N周りを向きを変えて旋回しつつ流れる。このため、このスタチックミキサ21では、混入水W1が軸心N周りを旋回することにより撹拌されるとともに、各固定羽根21b間で混入水W1の旋回流れが乱されることにより撹拌される。
【0025】
また、このスタチックミキサ21では、これがエジェクタ20の出口部(出口流路20f)に直結されているので、エジェクタ20からの混入水W1を配管によるエネルギロス無く効率的に撹拌できるとともに、透明なパイプ部21aを介して、混入水W1の流れの状態を外部から見ることができるので、混入水W1の撹拌状態をチェックしたり、装置の運転状態をチェックできる。なお、エジェクタ20とともに、このスタチックミキサ21は、ボックス3内の上部に配置されているため、スタチックミキサ21内の混入水W1の流れは、ボックス3の透明板3bを介して外部から容易に見ることができる。
【0026】
気液分離器22は、円筒状に形成され、混入水W1の導入ノズルが円筒部の内面に沿うように(接線方向に)設けられているので、内部の混入水W1に渦のような流れが生じ、ここにおいても、混入水W1の撹拌が充分になされるようになっている。なお、貯水槽23は、200リッターのポリエチレン製のドラム形タンクである。
【0027】
つぎに、このオゾン水製造装置2の作用効果を図4等を参照しつつ説明する。
所定の水道圧(例えば、0.2〜0.5MPaG)でエジェクタ20に供給された、例えば、流量5L/分の原水Wは、第1絞り流路20bを通過することにより、流速が約17m/s(d2=2.5mmの場合)の噴射水Fとなって、オゾンガス供給室20cを通過し、第2絞り流路20d側に流れ込む。この場合、噴射水Fによりオゾンガス供給室20c中の静圧が低下するため、オゾンガス供給室20c内に導入された所定圧で所定流量(例えば4〜5NL/分)のオゾンガスGは、噴射水Fと第2絞り流路20d間の隙間から、噴射水F中に吸引され、第2絞り流路20dやディフューザ部20e中において小さな気泡となって噴射水F中に混入する。そして、この第2絞り流路20dやディフューザ部20e中で、気泡と原水Wとが混ぜ合わさった混入水W1が形成され、この混入水W1は、ディフューザ部20eで漸次速度を落としつつ撹拌される。
【0028】
つぎに、この混入水W1は、スタチックミキサ21に入って、固定羽根21bで充分に撹拌され、オゾンガスGと原水Wとが充分に接触する。このため、この混入水W1中で、原水W中にオゾンガスGが溶け込んだオゾン水W2がしだいに作られていく(もちろん、エジェクタ20中でもオゾン水W2は作られる)。つづいて、この混入水W1は、気液分離器22に送られて、オゾン水W2(この段階では、一部オゾンガスGの小気泡を有している)とオゾンガスG(この段階では、一部原水Wの小液滴を有している)とに分けられ、オゾン水W2は貯水槽23の下部に導入されるとともに、オゾンガスGは貯水槽23の上部に導入されて、この貯水槽23で完全にオゾン水W2(例えば、溶解オゾン濃度が4〜5ppm)とオゾンガスGとに分けられる。そして、貯水槽23上部のオゾンガスGは、オゾンキラー24により分解されて大気に放出されるとともに、貯水槽23下部のオゾン水W2は、殺菌、消毒、脱色、脱臭等の用途に使用される。
【0029】
このオゾン水製造装置2では、エジェクタ20に、第1絞り流路20bと、この第1絞り流路20bより流路径の大きい第2絞り流路20dとを同芯状に形成するとともに、第2絞り流路20dに隣接して流路径が漸次大きくなるディフューザ部20eを形成し、かつ、第1絞り流路20bと第2絞り流路20dとの間に、これらより充分に径の大きいオゾンガス供給室20cを形成しているため、原水Wに市中で利用できる所定圧の水道水を使用した場合でも、この原水W中にオゾンガスGを多量に吸引して混入させることができるとともに、微細な(小気泡の)オゾンガスGを多数原水W中に拡散させて、オゾンガスGと原水Wとを充分に接触させることができるので、その分オゾン水W2中のオゾン濃度を従来の装置に比べて上げることができる。
【0030】
また、このオゾン水製造装置2では、エジェクタ20にスタチックミキサ21を直結しているため、エジェクタ20から出た混入水W1を直ちに撹拌でき、撹拌効率の向上等を図ることができるとともに、スタチックミキサ21のパイプ部21aを透明にして混入水W1の流れを外部から見ることができるようにしているので、混入水W1の流れ状況(撹拌状況)や装置の運転状況を容易に認識することができる。
【0031】
つぎに、このエジェクタ20の性能に関する実験結果について説明する。図5はエジェクタ20の性能を調べる実験装置を示している。この実験装置は、エジェクタ20の入り口流路20aと水道蛇口との間の配管中に、圧力調整弁J1と、水流量計J2(愛知時計電機社製NF10−PTN流量計、MAX20L/分)と、圧力計J3(MAX0.5MPaG)とを有し、エジェクタ20の出口流路20f側に、スタチックミキサ21を介して、上部が大気解放された大きな水溜容器J6を有している。また、この実験装置は、エジェクタ20のオゾンガス導入路20h側の配管中に、逆流防止用の水トラップJ4と、ガス吸引部が大気解放されたガス流量計J5(エステック社製 SEF−51質量流量計 MAX20NL/分)とを有している。
【0032】
この実験装置では、エジェクタ20に、一定圧の水道水を供給した場合に、流れる水流量Rの値に対して、オゾンガス導入路20h側から吸引される吸引空気流量Qの値を調べること、すなわち、エジェクタ効率η=Q/R(%)の値を調べることと、スタチックミキサ21内の水流中に拡散する空気泡のサイズを調べることにより、このエジェクタ20の性能を明らかにすることができる。
【0033】
このエジェクタ20では、図6で示されるように、水供給圧力P(圧力計J3の位置)を市中の水道圧の範囲(0.1〜0.4MPaG)で変動させた場合に、吸引空気流量Q(標準状態)を水流量Rより多く吸引でき、エジェクタ効率ηを114〜119%まで高めることができる。このため、このエジェクタ20では、同様な水道圧の範囲で、エジェクタ効率ηが図10や図11で示される、従来のエジェクタ100に比べて、吸引ガス流量を大幅に増加させることができる。したがって、このエジェクタ20を用いるオゾン水製造装置2では、従来のエジェクタ100を用いたオゾン水製造装置に比べて、原水Wの流量に対して多量のオゾンガスGを吸引でき、その分、原水WとオゾンガスGとを充分に接触させることができるので、濃度の高いオゾン水を作ることができる。
【0034】
また、このエジェクタ20では、スタチックミキサ21中を観察した結果、従来のエジェクタ100に比べて、水流中に拡散した空気泡のサイズが充分に小さいことが確認された。したがって、このエジェクタ20を用いるオゾン水製造装置2では、従来のエジェクタ100を用いるオゾン水製造装置に比べて、原水WとオゾンガスGとを充分に接触させることができ、濃度の高いオゾン水を作ることができる。
【0035】
【発明の効果】
この発明の請求項1記載の発明によれば、エジェクタにより、一定量の原水を用いて多量のオゾンガスを吸引できるとともに、この多量のオゾンガスを原水と充分に接触させることができ、高濃度のオゾン水を製造できる。
【0036】
この発明の請求項2記載の発明によれば、原水にオゾンガスが混入した混入水を効率的に撹拌できるとともに、混入水の撹拌状況や装置の運転状況を容易に認識できる。
【図面の簡単な説明】
【図1】この発明の一実施の形態に係るオゾン水製造装置のエジェクタの断面図である。
【図2】オゾン水製造装置のスタチックミキサを示す図であり、(a)は側断面図であり、(b)は(a)中のA−A矢視断端面の拡大図である。
【図3】スタチックミキサの固定羽根の状態を説明する図であり(a)は羽根が左旋回のものを示し、(b)は羽根が右旋回のものを示す。
【図4】エジェクタの作用説明図である。
【図5】エジェクタの実験装置の説明図である。
【図6】水供給圧の変化に伴って、エジェクタに流される水流量と吸引される空気流量等の変化を数値で示す図である。
【図7】オゾン水製造装置を含むオゾン水製造システムの外観を、側板と上板とを分解した状態で示す斜視図である。
【図8】オゾン水の製造手順を示す図である。
【図9】従来のエジェクタの説明図である。
【図10】従来の第1のエジェクタの性能を数値で示す図である。
【図11】従来の第2のエジェクタの性能を数値で示す図である。
【符号の説明】
20  エジェクタ
20b 第1絞り流路
20c オゾンガス供給室
20d 第2絞り流路
20e ディフューザ部
21  スタチックミキサ
21a パイプ部(ケーシング)
21b 固定羽根
F  噴射水
N  軸心
W  原水
W1 混入水
W2 オゾン水
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone water producing apparatus for producing ozone water by dissolving ozone gas in water.
[0002]
[Prior art]
Ozone has a strong oxidizing effect and has the effect of removing bacteria, odors, colors, etc., so ozone water obtained by dissolving ozone gas in water can be used to sterilize, disinfect, deodorize, decolor, etc. various things. Widely used.
[0003]
Such ozone water is relatively easily produced by dissolving ozone gas in water (raw water) using, for example, a vortex pump or ejector made of an ozone corrosion-resistant material. In the case of a vortex pump, ozone gas is brought into contact with water by mixing water and ozone gas by the agitating action of pump blades, and ozone water is produced. In the case of an ejector, ozone gas is sucked by a high-speed water flow. Then, by mixing with water, the ozone gas is brought into contact with water to produce ozone water.
[0004]
[Problems to be solved by the invention]
However, conventional vortex pumps and ejectors have a problem that a large amount of ozone gas cannot be mixed with water and that water and ozone gas cannot be sufficiently contacted. Therefore, the ozone water producing apparatus using such a vortex pump or ejector has a problem that only ozone water having a low ozone concentration of about 1 ppm can be produced.
[0005]
For example, FIG. 9 shows that the throttle channel 102 and the diffuser unit 104 are provided between the inlet channel 101 and the outlet channel 105, and at the position of the throttle channel 102 where the pressure is reduced by the high-speed water flow of the raw water, 1 shows a conventional ejector 100 for producing ozone water, in which ozone gas is sucked from an ozone gas introduction passage 103 and the ozone gas and raw water are mixed in a diffuser unit 104 to be provided later. FIGS. 10 and 11 show that the ejector 100 is set in the experimental apparatus shown in FIG. 5 (details will be described in the embodiment), and the water supply pressure P is set on the entrance flow path 101 side. Ejector efficiency η (= intake air amount Q) when water is supplied so as to fluctuate in the pressure range (0.1 to 0.4 MPaG) and air is naturally sucked from the ozone gas introduction passage 103 side. / Water flow rate R (%)).
[0006]
FIG. 10 shows the results when the diameter D2 of the throttle channel 102 is 2.5 mm, and FIG. 11 shows the results when the diameter D2 of the throttle channel 102 is 3.5 mm. η is 30% or less, which indicates that the ejector 100 cannot sufficiently suck air (gas) with respect to the water flow rate R. Further, according to the experimental observation, it was found that in the ejector 100, the size of the sucked air bubbles was relatively large, so that sufficient contact between water and gas was not made (the gas was hardly dissolved in the water flow). .
[0007]
The size of each part of the ejector 100 shown in FIG. 9 is, for example, D1 = 15, D2 = 2.5 (3.5), D3 = 15, D4 = 2, and A1 = 15.1 (13.9). , A2 = 5, A3 = 71.4 (65.7) (the unit is mm), α = 45 degrees, and β = 10 degrees.
[0008]
In view of the above, the present invention provides an ozone that can easily suck a large amount of ozone gas and can sufficiently contact the sucked ozone gas with the raw water even when an ejector using a certain amount of raw water for suction is used. It is an object to provide a water production device.
[0009]
[Means for Solving the Problems]
According to the invention of claim 1 of the present invention, in an ozone water producing apparatus for producing ozone water by dissolving ozone gas in raw water by using an ejector, tap water is supplied at almost tap pressure as raw water to the ejector. A first throttle channel for injecting raw water at a high speed, an ozone gas supply chamber provided adjacent to the first throttle channel so as to surround a jet of water injected from the first throttle channel, The ozone gas in the ozone gas supply chamber is provided on the opposite side of the first throttle flow path with respect to the ozone gas supply chamber so as to be concentric with the first throttle flow path. By being formed so as to have a second throttle flow path mixed into the injection water and a diffuser portion provided adjacent to the second throttle flow path and having a flow path diameter gradually expanding from the second throttle flow path. is there.
[0010]
According to the present invention, when the raw water is injected at a high speed by the first throttle channel of the ejector, the injected water enters the second throttle channel through the ozone gas supply chamber. Therefore, the ozone gas in the ozone gas supply chamber is drawn into the second throttle channel. As a result, in the second throttle channel and in the diffuser portion where the flow velocity gradually decreases, mixed water in which sufficient (a large amount) of ozone gas is mixed as small bubbles in the injection water (raw water) is formed. Then, by contact between the raw water and the ozone gas, ozone water in which the ozone gas is dissolved in the raw water is produced.
[0011]
According to a second aspect of the present invention, in the case of the first aspect, the mixed water directly connected to the outlet of the ejector and having the ozone gas mixed in the raw water is mixed with the surface including the axial center along the flow. The fixed blade that is divided into a plurality of parts and agitates while rotating around the axis has a static mixer provided in a plurality of stages in the flow direction of the mixed water, and a casing of the static mixer, It is formed of a transparent material so that the state of the flow of the mixed water can be understood.
[0012]
In the present invention, the mixed water that has exited the ejector immediately enters the static mixer and is stirred, but since the casing of the static mixer is transparent, the flow of the mixed water in the static mixer is viewed from the outside. be able to. Incidentally, in the static mixer, the mixed water is stirred while moving the mixed water in the flow direction so that the mixed water turns around the axis of the fixed blade, but when the mixed water enters the next fixed blade. By further shifting the positions of the blades in the circumferential direction or reversing the turning direction, it is possible to further mix the mixed water.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 7 is a partially exploded view of an ozone water production system provided with an ozone water production apparatus according to an embodiment of the present invention. FIG. 8 shows an ozone water production system in which ozone water is produced. This shows the procedure to be performed.
[0014]
As shown in FIG. 7 and FIG. 8, the ozone water production system S stores the ozone production device 1 and the ozone water production device 2 excluding the water storage tank 23 in a predetermined box 3 in a water storage tank. The box 3 and the water storage tank 23 can be easily removed from the storage trolley 4 in consideration of maintenance and the like, together with the storage trolley 4. The operation panel 5 of the two devices 1 and 2 is installed on the oblique upper plate 3a of the box 3, and an elongated transparent plate 3b that allows the inside to be seen is fitted in the upper part. In FIG. 7, reference numeral 4b denotes a side plate of the storage trolley 4, and reference numeral 4c denotes an upper plate of the storage trolley 4.
[0015]
As shown in FIG. 8, the ozone producing apparatus 1 includes an air filter 10, an air compressor 11, a switching electromagnetic valve block 12, first and second adsorption cylinders 13A and 13B, a silencer 14, a special check valve 15, a buffer, It is composed of a PSA oxygen concentrator having a container 16 and a pressure regulator 17, and an ozonizer having an ozone generator 18, a high-frequency high-voltage power supply 19 and the like.
[0016]
In the PSA oxygen concentrator, the intake air (air) sucked through the air filter 10 is pressurized to a predetermined pressure by the air compressor 11, and the first or second adsorption cylinder 13 A, 13 A, 13B, the first or second adsorption column 13A, 13B adsorbs nitrogen from air to form, for example, a high oxygen concentration gas having an oxygen concentration increased to 95%, and then transfers the high oxygen concentration gas to a buffer. The gas from the buffer container 16 is temporarily stored in the container 16, and the gas from the buffer container 16 is reduced to a predetermined pressure (for example, 0.05 to 0.08 MPaG) by the pressure regulator 17 and sent to the ozonizer.
[0017]
The switching solenoid valve block 12 sends pressurized air to one of the first and second adsorption cylinders 13A and 13B to adsorb nitrogen gas, and does not adsorb nitrogen gas, but uses an internal adsorbent (zeolite-based nitrogen gas). The other of the first and second adsorption cylinders 13A and 13B for performing the denitrification regeneration of the adsorbent) is connected to the silencer 14 and has a function of discharging the regeneration gas. The special check valve 15 prevents a reverse flow of the gas flow and, through the orifice, removes the oxygen-rich gas produced on one of the first and second adsorption cylinders 13A and 13B through the orifice. It has a function of sending to the other of the first and second adsorption cylinders 13A, 13B, and causing the other of the first and second adsorption cylinders 13A, 13B to perform denitrification regeneration.
[0018]
In the ozonizer, a high-oxygen-concentration gas flows along a surface electrode provided on a flat surface of the ozone generator 18, and a high-frequency high-voltage power supply is provided between a pair of internal electrodes and a surface electrode opposed to each other with a dielectric interposed therebetween. A creeping discharge is generated around the surface electrode of the ozone generator 18 by applying a high-frequency high-voltage (for example, 16 KV at 10 KHz) from 19, and a part of the oxygen-rich gas is converted into ozone gas by the creeping discharge. This generates ozone. Hereinafter, a gas in which part of the oxygen-rich gas has been changed to ozone gas (for example, a gas containing 7 to 8 g of ozone in 240 to 300 NL (normal liter)) is treated as ozone gas G.
[0019]
As shown in FIG. 8, the ozone water producing apparatus 2 is supplied from an ozonizer by injecting raw water W (in which public tap water is supplied at almost tap pressure through a faucet J) at a high speed. The ozone gas G is sucked, and the ejector 20 made of vinyl chloride, which mixes the ozone gas G into the raw water W, and the mixed water W1, in which the ozone gas G is mixed into the raw water W, are stirred to bring the ozone gas G and the raw water W into sufficient contact. The static mixer 21, the gas-liquid separator 22 for separating the mixed water W1 from the static mixer 21 into the ozone gas G and the ozone water W2, and the gas portion from the gas-liquid separator 22 are introduced into the upper part. A water storage tank 23 in which a part is introduced and stored in a lower part, and an ozone killer 24 that converts ozone gas G in the upper part of the water storage tank 23 into odorless and harmless gas (oxygen) by granular activated carbon and discharges it to the outside air. It has. In addition, each device, piping, and the like are formed of a material that is not corroded by ozone gas.
[0020]
As shown in FIG. 1, raw water W is supplied from a tap faucet J to the ejector 20, and the ejector 20 is provided at one end of the inlet flow passage 20 a with one end of the flow passage gradually narrowed. A first throttle flow path 20b for injecting the raw water W at a high speed, and a first throttle flow path 20b adjacent to the first throttle flow path 20b so as to surround the jet water F (see FIG. 4) of the raw water W from the first throttle flow path 20b. An ozone gas supply chamber 20c formed by the first throttle flow path 20b and having a diameter larger than the diameter of the first throttle flow path 20b and opposite to the first throttle flow path 20b with respect to the ozone gas supply chamber 20c. And a second throttle flow path 20d for mixing the ozone gas G in the ozone gas supply chamber 20c into the jet water F, and a second throttle flow path 20d provided so that the flow path diameter gradually increases. Diffuser that reduces the flow rate of mixed water W1 20e, an outlet flow path 20f formed beside the diffuser section 20e, a small hole 20g for guiding the ozone gas G to the ozone gas supply chamber 20c, and an ozone gas introduction passage 20h provided adjacent to the small hole 20g are formed. I have.
[0021]
The diameter d3 of the ozone gas supply chamber 20c is formed sufficiently larger than the diameters d2 and d4 of the first and second throttle channels 20b and 20d, and the diameter d6 of the small hole 20g for the ozone gas G is also changed to the ozone gas supply chamber 20c. Is formed sufficiently smaller than the diameter d3. The diameter d4 of the second throttle channel 20d is formed larger than the diameter d2 of the first throttle channel 20b. The ejector 20 is divided into an upstream section 20A having a first throttle channel 20b and an ozone gas supply chamber 20c, and a downstream section 20B having a second throttle channel 20d and a diffuser section 20e. In addition, the inner passage is formed by being joined by a part, and an inner thread is formed in the inlet passage 20a, the outlet passage 20f, and the ozone gas introduction passage 20h, so that these can be easily connected to the pipe. I have.
[0022]
The size of each part of the ejector 20 shown in FIG. 1 is, for example, d1 = 15, d2 = 2.5, d3 = 10, d4 = 4.2, d5 = 15, d6 = 2, L1 = 15.1. , L2 = 5, L3 = 10, L4 = 3, L5 = 69.7 (the unit is mm), α = 45 degrees, and β = 10 degrees. The length of the small hole 20g is 2.5 mm.
[0023]
As shown in FIG. 2 (a), the static mixer 21 is provided in a transparent vinyl chloride pipe portion 21a, which is a casing, and turns in the directions shown in FIGS. 3 (a) and 3 (b). 10 are alternately arranged as fixed blades 21b, with portions P1 and P2 of the three blade screws opposite to each other, between the fixed blades 21b as shown in FIGS. 2 (a) and 2 (b). , A ring 21c for positioning the fixed blade 21b is disposed. The adjacent fixed blades 21b are arranged so that the blade positions are shifted by 60 degrees as shown by a solid line and a two-dot chain line in FIG. 2B. The ring 21c and the fixed blade 21b are formed of a stainless steel material that does not corrode by the ozone gas G.
[0024]
In the static mixer 21, the mixed water W1 flowing into the static mixer 21 flows while rotating around the axis N of the fixed blade 21b while being divided into three by the fixed blade 21b, and enters the next fixed blade 21b. The mixed water W1 between the blades flows while turning around the axis N while being guided and mixed separately between the blades of the next fixed blade 21b by 1 /. Therefore, in the static mixer 21, the mixed water W1 is stirred by rotating around the axis N, and is also stirred by the disturbance of the swirling flow of the mixed water W1 between the fixed blades 21b.
[0025]
Further, in the static mixer 21, since the static mixer 21 is directly connected to the outlet of the ejector 20 (the outlet flow path 20 f), the mixed water W1 from the ejector 20 can be efficiently agitated without energy loss due to piping, and the transparent mixer 21 is transparent. Since the state of the flow of the mixed water W1 can be seen from the outside via the pipe portion 21a, it is possible to check the stirring state of the mixed water W1 and the operation state of the apparatus. In addition, since the static mixer 21 is arranged at the upper part in the box 3 together with the ejector 20, the flow of the mixed water W1 in the static mixer 21 can be easily performed from the outside via the transparent plate 3b of the box 3. Can be seen in
[0026]
The gas-liquid separator 22 is formed in a cylindrical shape, and the introduction nozzle for the mixed water W1 is provided (tangentially) along the inner surface of the cylindrical portion. This also causes the mixed water W1 to be sufficiently stirred. The water storage tank 23 is a 200-liter polyethylene drum-shaped tank.
[0027]
Next, the operation and effect of the ozone water producing apparatus 2 will be described with reference to FIG.
The raw water W supplied to the ejector 20 at a predetermined water pressure (for example, 0.2 to 0.5 MPaG), for example, at a flow rate of 5 L / min, flows through the first throttle flow path 20b to have a flow velocity of about 17 m. / S (in the case of d2 = 2.5 mm), becomes the injection water F, passes through the ozone gas supply chamber 20c, and flows into the second throttle channel 20d. In this case, since the static pressure in the ozone gas supply chamber 20c is reduced by the injection water F, the ozone gas G of a predetermined flow rate (for example, 4 to 5 NL / min) introduced into the ozone gas supply chamber 20c is reduced by the injection water F The water is sucked into the injection water F from the gap between the second throttle flow path 20d and the injection water F, and becomes small bubbles in the second throttle flow path 20d and the diffuser portion 20e to be mixed into the injection water F. Then, mixed water W1 in which bubbles and raw water W are mixed is formed in the second throttle channel 20d and the diffuser portion 20e, and the mixed water W1 is agitated while gradually decreasing the speed in the diffuser portion 20e. .
[0028]
Next, the mixed water W1 enters the static mixer 21, is sufficiently stirred by the fixed blade 21b, and the ozone gas G and the raw water W are sufficiently contacted. Therefore, in the mixed water W1, the ozone water W2 in which the ozone gas G is dissolved in the raw water W is gradually produced (of course, the ozone water W2 is also produced in the ejector 20). Subsequently, the mixed water W1 is sent to the gas-liquid separator 22, and the ozone water W2 (which has some small bubbles of the ozone gas G at this stage) and the ozone gas G (at this stage, some Ozone water W2 is introduced into the lower part of the water storage tank 23, and the ozone gas G is introduced into the upper part of the water storage tank 23, where the ozone water W2 is introduced. It is completely divided into ozone water W2 (for example, the dissolved ozone concentration is 4 to 5 ppm) and ozone gas G. The ozone gas G in the upper part of the water tank 23 is decomposed by the ozone killer 24 and released to the atmosphere, and the ozone water W2 in the lower part of the water tank 23 is used for applications such as sterilization, disinfection, decolorization, and deodorization.
[0029]
In the ozone water producing apparatus 2, the ejector 20 has the first throttle channel 20b and the second throttle channel 20d having a larger diameter than the first throttle channel 20b concentrically. A diffuser portion 20e having a gradually increasing flow path diameter is formed adjacent to the throttle flow path 20d, and an ozone gas supply having a sufficiently larger diameter is provided between the first throttle flow path 20b and the second throttle flow path 20d. Since the chamber 20c is formed, even when tap water having a predetermined pressure available in the city is used as the raw water W, a large amount of ozone gas G can be sucked into the raw water W and mixed therewith, The ozone gas G (of small bubbles) is diffused into the raw water W in large numbers, and the ozone gas G and the raw water W can be sufficiently brought into contact with each other, so that the ozone concentration in the ozone water W2 is increased as compared with the conventional apparatus. This Can.
[0030]
Further, in the ozone water producing apparatus 2, since the static mixer 21 is directly connected to the ejector 20, the mixed water W1 coming out of the ejector 20 can be immediately stirred, so that the stirring efficiency can be improved, etc. Since the pipe portion 21a of the tick mixer 21 is made transparent so that the flow of the mixed water W1 can be seen from the outside, it is easy to recognize the flow state (mixing state) of the mixed water W1 and the operation state of the device. Can be.
[0031]
Next, experimental results regarding the performance of the ejector 20 will be described. FIG. 5 shows an experimental device for examining the performance of the ejector 20. This experimental apparatus includes a pressure regulating valve J1 and a water flow meter J2 (NF10-PTN flow meter, MAX20L / min, manufactured by Aichi Watch Electric Co., Ltd.) in a pipe between the inlet flow path 20a of the ejector 20 and the water tap. , A pressure gauge J3 (MAX 0.5 MPaG), and a large water reservoir J6 whose upper part is open to the atmosphere via a static mixer 21 on the outlet flow path 20f side of the ejector 20. In addition, in this experimental apparatus, a water trap J4 for backflow prevention and a gas flow meter J5 (SEF-51 SEF-51 mass flow rate) with a gas suction part opened to the atmosphere are provided in a pipe on the ozone gas introduction path 20h side of the ejector 20. (Max. 20 NL / min).
[0032]
In this experimental apparatus, when tap water at a constant pressure is supplied to the ejector 20, the value of the suction air flow rate Q sucked from the ozone gas introduction passage 20h side is checked against the value of the flowing water flow rate R, The performance of the ejector 20 can be clarified by examining the value of the ejector efficiency η = Q / R (%) and the size of the air bubbles diffused in the water flow in the static mixer 21. .
[0033]
In this ejector 20, as shown in FIG. 6, when the water supply pressure P (the position of the pressure gauge J3) is changed within the range of city water pressure (0.1 to 0.4 MPaG), the suction air The flow rate Q (standard state) can be suctioned more than the water flow rate R, and the ejector efficiency η can be increased to 114 to 119%. For this reason, in this ejector 20, in the same range of tap water, the ejector efficiency η can greatly increase the suction gas flow rate as compared with the conventional ejector 100 shown in FIGS. 10 and 11. Therefore, in the ozone water producing apparatus 2 using the ejector 20, compared to the ozone water producing apparatus using the conventional ejector 100, a large amount of ozone gas G can be sucked with respect to the flow rate of the raw water W, and the raw water W Since the ozone gas G can be sufficiently contacted, ozone water having a high concentration can be produced.
[0034]
Further, as a result of observing the inside of the static mixer 21 with this ejector 20, it was confirmed that the size of the air bubbles diffused in the water stream was sufficiently smaller than that of the conventional ejector 100. Therefore, in the ozone water production apparatus 2 using the ejector 20, compared with the ozone water production apparatus using the conventional ejector 100, the raw water W and the ozone gas G can be brought into sufficient contact, and ozone water having a high concentration can be produced. be able to.
[0035]
【The invention's effect】
According to the invention described in claim 1 of the present invention, a large amount of ozone gas can be sucked using a fixed amount of raw water by the ejector, and the large amount of ozone gas can be sufficiently brought into contact with the raw water, and a high concentration of ozone gas can be obtained. Can produce water.
[0036]
According to the second aspect of the present invention, the mixed water in which the ozone gas is mixed into the raw water can be efficiently stirred, and the stirring state of the mixed water and the operation state of the apparatus can be easily recognized.
[Brief description of the drawings]
FIG. 1 is a sectional view of an ejector of an ozone water producing apparatus according to one embodiment of the present invention.
FIGS. 2A and 2B are diagrams showing a static mixer of the ozone water producing apparatus, wherein FIG. 2A is a side sectional view, and FIG. 2B is an enlarged view of an end view taken along the line AA in FIG. .
FIGS. 3A and 3B are diagrams illustrating the state of fixed blades of a static mixer. FIG. 3A illustrates a state where the blades turn left, and FIG. 3B illustrates a state where the blades turn right.
FIG. 4 is a diagram illustrating the operation of an ejector.
FIG. 5 is an explanatory diagram of an experimental device of an ejector.
FIG. 6 is a diagram showing numerical values of changes in a flow rate of water flowing into an ejector, a flow rate of sucked air, and the like in accordance with a change in water supply pressure.
FIG. 7 is a perspective view showing an appearance of an ozone water production system including an ozone water production device in a state where a side plate and an upper plate are disassembled.
FIG. 8 is a diagram showing a procedure for producing ozone water.
FIG. 9 is an explanatory view of a conventional ejector.
FIG. 10 is a diagram showing numerical values of the performance of a conventional first ejector.
FIG. 11 is a diagram showing numerical values of the performance of a conventional second ejector.
[Explanation of symbols]
Reference Signs List 20 Ejector 20b First throttle channel 20c Ozone gas supply chamber 20d Second throttle channel 20e Diffuser section 21 Static mixer 21a Pipe section (casing)
21b Fixed blade F Spray water N Shaft center W Raw water W1 Mixed water W2 Ozone water

Claims (2)

エジェクタの使用により、原水にオゾンガスを溶解させてオゾン水を製造するオゾン水製造装置において、
前記エジェクタを、前記原水として水道水がほぼ水道圧で供給され、この原水を高速で噴射する第1絞り流路と、前記第1絞り流路から噴射される噴射水周りを囲むように、この第1絞り流路に隣接して設けられるオゾンガス供給室と、前記第1の絞り流路径より大径で、かつ、前記オゾンガス供給室に対して前記第1絞り流路の反対側に、この第1絞り流路と同芯状になるように設けられ、前記オゾンガス供給室中のオゾンガスを前記噴射水中に混入させる第2絞り流路と、前記第2絞り流路に隣接して設けられ、この第2絞り流路より流路径が漸次拡大するディフューザ部とを有するように形成していることを特徴とするオゾン水製造装置。
By using an ejector, an ozone water production apparatus that produces ozone water by dissolving ozone gas in raw water,
Tap water is supplied to the ejector as the raw water at substantially tap water pressure, and a first throttle flow path for injecting the raw water at a high speed and a jet water injected from the first throttle flow path are surrounded by the ejector. An ozone gas supply chamber provided adjacent to the first throttle flow path; and an ozone gas supply chamber having a diameter larger than the diameter of the first throttle flow path and opposite to the ozone gas supply chamber opposite to the first throttle flow path. A second throttle channel provided to be concentric with the one throttle channel, for mixing ozone gas in the ozone gas supply chamber into the jet water, and a second throttle channel provided adjacent to the second throttle channel. An ozone water producing apparatus, characterized in that the ozone water producing apparatus is formed so as to have a diffuser part whose flow path diameter gradually increases from the second throttle flow path.
前記エジェクタの出口部に直結され、前記原水中に前記オゾンガスが混入した混入水を、流れに沿った軸心を含む面で複数に分割して、この軸心周りに旋回させつつ撹拌する固定羽根が、この混入水の流れ方向に複数段設けられたスタチックミキサを有しているとともに、このスタチックミキサのケーシングを、前記混入水の流れの状態が分かるように透明材にて形成していることを特徴とする請求項1記載のオゾン水製造装置。A fixed blade that is directly connected to the outlet of the ejector and divides the mixed water in which the ozone gas is mixed into the raw water into a plurality of portions along a plane including an axis along the flow, and agitates while rotating around the axis. Has a static mixer provided in a plurality of stages in the flow direction of the mixed water, and the casing of the static mixer is formed of a transparent material so that the flow state of the mixed water can be understood. The ozone water producing apparatus according to claim 1, wherein
JP2002292046A 2002-10-04 2002-10-04 Apparatus for manufacturing ozone water Pending JP2004122043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292046A JP2004122043A (en) 2002-10-04 2002-10-04 Apparatus for manufacturing ozone water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292046A JP2004122043A (en) 2002-10-04 2002-10-04 Apparatus for manufacturing ozone water

Publications (1)

Publication Number Publication Date
JP2004122043A true JP2004122043A (en) 2004-04-22

Family

ID=32283423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292046A Pending JP2004122043A (en) 2002-10-04 2002-10-04 Apparatus for manufacturing ozone water

Country Status (1)

Country Link
JP (1) JP2004122043A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023515A (en) * 2006-06-20 2008-02-07 Sharp Corp Microbubble generator
WO2008029525A1 (en) * 2006-09-05 2008-03-13 Ohta, Shigeo Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP2008119623A (en) * 2006-11-14 2008-05-29 Ok Engineering:Kk Loop flow type bubble generating nozzle
EP1984103A2 (en) * 2006-02-15 2008-10-29 Exica, Inc. Improved venturi apparatus
JP2008307513A (en) * 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd Apparatus for generating microbubble
JP2009189984A (en) * 2008-02-15 2009-08-27 Ok Engineering:Kk Loop current type bubble generation nozzle
WO2010114343A2 (en) * 2009-04-03 2010-10-07 (주)피앤아이비 Water purification recovery and activation apparatus and nozzle assembly for use in water purification recovery and activation apparatus
AU2011203112B2 (en) * 2006-02-15 2012-10-04 Vinturi, Inc. Improved venturi apparatus
AU2013100256B4 (en) * 2006-02-15 2013-07-25 Vinturi, Inc Method of Aerating Wine
JP2014024008A (en) * 2012-07-26 2014-02-06 Mitsubishi Electric Corp Gas-liquid mixer and bath hot water supply device
JP2014033999A (en) * 2012-08-08 2014-02-24 Ok Engineering:Kk Bubble generating nozzle, and loop flow type bubble generating nozzle
US8727324B2 (en) 2011-12-02 2014-05-20 Prime Wine Products Llc Wine aerator
JP2014168778A (en) * 2014-03-31 2014-09-18 Mitsubishi Electric Corp Gas-liquid mixing device and bath hot water supply device
JP2015077570A (en) * 2013-10-18 2015-04-23 商研株式会社 Structure of nozzle to be used in gas dissolution liquid manufacturing system
JP2016002533A (en) * 2014-06-19 2016-01-12 オーニット株式会社 Production apparatus and method of ozone water using dissolved oxygen contained in raw water as raw material
CN109157299A (en) * 2018-11-05 2019-01-08 南京新隆医疗器械有限公司 The preparation method of wet ozone and its application in dental treatment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192867A (en) * 1996-12-27 1998-07-28 Ngk Spark Plug Co Ltd Ozone water maker
JPH10507963A (en) * 1994-10-19 1998-08-04 ワーナー・ランバート・カンパニー Apparatus for dissolving gas into liquid
JP2000061489A (en) * 1998-08-24 2000-02-29 Takashi Yamamoto Aeration device
JP2001096298A (en) * 1999-09-29 2001-04-10 Kawai Musical Instr Mfg Co Ltd Equipment for wafer cleaning treatment
JP2001520573A (en) * 1997-04-11 2001-10-30 エイチトゥーオー テクノロジーズ リミテッド Housing and method providing a long residence time for dissolving generated oxygen in water
WO2002011870A2 (en) * 2000-08-04 2002-02-14 Therox, Inc. Apparatus and method for oxygenating wastewater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507963A (en) * 1994-10-19 1998-08-04 ワーナー・ランバート・カンパニー Apparatus for dissolving gas into liquid
JPH10192867A (en) * 1996-12-27 1998-07-28 Ngk Spark Plug Co Ltd Ozone water maker
JP2001520573A (en) * 1997-04-11 2001-10-30 エイチトゥーオー テクノロジーズ リミテッド Housing and method providing a long residence time for dissolving generated oxygen in water
JP2000061489A (en) * 1998-08-24 2000-02-29 Takashi Yamamoto Aeration device
JP2001096298A (en) * 1999-09-29 2001-04-10 Kawai Musical Instr Mfg Co Ltd Equipment for wafer cleaning treatment
WO2002011870A2 (en) * 2000-08-04 2002-02-14 Therox, Inc. Apparatus and method for oxygenating wastewater

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013100256B4 (en) * 2006-02-15 2013-07-25 Vinturi, Inc Method of Aerating Wine
AU2012204096B2 (en) * 2006-02-15 2014-04-03 Greenfield World Trade, Inc. Improvements relating to aeration of wine
AU2007218017B2 (en) * 2006-02-15 2011-08-04 Vinturi, Inc. Improved venturi apparatus
EP1984103A2 (en) * 2006-02-15 2008-10-29 Exica, Inc. Improved venturi apparatus
AU2011203112B2 (en) * 2006-02-15 2012-10-04 Vinturi, Inc. Improved venturi apparatus
EP1984103A4 (en) * 2006-02-15 2009-04-29 Exica Inc Improved venturi apparatus
AU2013205489B2 (en) * 2006-02-15 2014-05-08 Greenfield World Trade, Inc. Venturi apparatuses for aerating wine and use of same
US7614614B2 (en) 2006-02-15 2009-11-10 Exica, Inc. Venturi apparatus
AU2013205488B2 (en) * 2006-02-15 2014-05-08 Vinturi, Inc. Improvements relating to aeration of wine
US7841584B2 (en) 2006-02-15 2010-11-30 Area 55, Inc. Venturi apparatus
EP2277618A1 (en) * 2006-02-15 2011-01-26 Area 55, Inc. Venturi apparatus
US8505883B2 (en) * 2006-02-15 2013-08-13 Vinturi, Inc. Venturi apparatus
AU2013100257B4 (en) * 2006-02-15 2013-07-25 Vinturi, Inc Venturi apparatuses for aerating wine
JP2008023515A (en) * 2006-06-20 2008-02-07 Sharp Corp Microbubble generator
WO2008029525A1 (en) * 2006-09-05 2008-03-13 Ohta, Shigeo Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP2008119623A (en) * 2006-11-14 2008-05-29 Ok Engineering:Kk Loop flow type bubble generating nozzle
JP2008307513A (en) * 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd Apparatus for generating microbubble
JP2009189984A (en) * 2008-02-15 2009-08-27 Ok Engineering:Kk Loop current type bubble generation nozzle
WO2010114343A2 (en) * 2009-04-03 2010-10-07 (주)피앤아이비 Water purification recovery and activation apparatus and nozzle assembly for use in water purification recovery and activation apparatus
WO2010114343A3 (en) * 2009-04-03 2011-03-03 (주)피앤아이비 Water purification recovery and activation apparatus and nozzle assembly for use in water purification recovery and activation apparatus
US8727324B2 (en) 2011-12-02 2014-05-20 Prime Wine Products Llc Wine aerator
US9463423B2 (en) 2011-12-02 2016-10-11 Prime Wine Products Llc Wine aerator
JP2014024008A (en) * 2012-07-26 2014-02-06 Mitsubishi Electric Corp Gas-liquid mixer and bath hot water supply device
JP2014033999A (en) * 2012-08-08 2014-02-24 Ok Engineering:Kk Bubble generating nozzle, and loop flow type bubble generating nozzle
JP2015077570A (en) * 2013-10-18 2015-04-23 商研株式会社 Structure of nozzle to be used in gas dissolution liquid manufacturing system
JP2014168778A (en) * 2014-03-31 2014-09-18 Mitsubishi Electric Corp Gas-liquid mixing device and bath hot water supply device
JP2016002533A (en) * 2014-06-19 2016-01-12 オーニット株式会社 Production apparatus and method of ozone water using dissolved oxygen contained in raw water as raw material
CN109157299A (en) * 2018-11-05 2019-01-08 南京新隆医疗器械有限公司 The preparation method of wet ozone and its application in dental treatment

Similar Documents

Publication Publication Date Title
JP2004122043A (en) Apparatus for manufacturing ozone water
JP4066468B2 (en) Air ozone mixer and ozone fog generator
US5939030A (en) System and method for generating ozonated water
US20210001287A1 (en) Gas-dissolved water generating apparatus
JPH07265676A (en) Gas dissolution
KR100799663B1 (en) Apparatus for preparing sterilized water by using ozone
JP4293829B2 (en) Ozone water supply device and fluid mixing device
JP2004267940A (en) Method and apparatus for mixing/reacting gas with liquid
JP2001187326A (en) Device for mixing gas and water
WO2011136295A1 (en) Micro-bubble generator and micro-bubble generation device using same
CN100567175C (en) Increase the device and the processing method of oxygen in water
CN205151978U (en) Ozone water purification unit
JP2003112024A (en) Apparatus for producing ozone water
JP2006015312A (en) Fine bubble generation device and method therefor
RU2807783C1 (en) Method of water purification and disinfection
KR102009778B1 (en) Line mixer for ozone water and manufacturing apparatus for ozone water using the same
KR200260109Y1 (en) Separator and destructor of ozone gas on service pipe
CN214880437U (en) A high-efficient degassing unit for running water tank
KR20190055929A (en) High capacity waste purifying apparatus for using plasma
JP2004188239A (en) Water treatment apparatus
US11124440B2 (en) Method for liquid purification by hydrodynamic cavitation and device for carrying out said method
KR20010068196A (en) Device For Manufacturing The Ozone Water
WO1999047458A1 (en) Method and apparatus for treating waste water
JP2010069385A (en) Water treating device
JPH08229582A (en) Ozonized water producing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711