JP2004097021A - Wakame protein-containing composition, and wakame protein-containing food - Google Patents
Wakame protein-containing composition, and wakame protein-containing food Download PDFInfo
- Publication number
- JP2004097021A JP2004097021A JP2002259923A JP2002259923A JP2004097021A JP 2004097021 A JP2004097021 A JP 2004097021A JP 2002259923 A JP2002259923 A JP 2002259923A JP 2002259923 A JP2002259923 A JP 2002259923A JP 2004097021 A JP2004097021 A JP 2004097021A
- Authority
- JP
- Japan
- Prior art keywords
- protein
- wakame
- containing composition
- food
- seaweed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Non-Alcoholic Beverages (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明はワカメ属海藻から得られたタンパク質含有組成物およびその用途としての食品に関する。
【0002】
【従来の技術】
ワカメ属海藻は世界的に広範囲に繁殖しており、わが国においても養殖ワカメが食用として大量に消費されている。近年は食生活の変化に伴い、ワカメ属海藻の消費は減少気味であるが、他の用途への開発が進められてきている。
【0003】
従来からワカメ属海藻は、タンパク質、食物繊維、ビタミン類、ミネラル類等の栄養成分を豊富に含み、健康に有益な食品であるといわれている。さらにワカメ属海藻は、血圧降下作用、肝機能改善作用、脂質代謝改善作用、末梢血管拡張作用、血液粘度低下作用等の生理活性を有することが指摘されている。
【0004】
【発明が解決しようとする課題】
ワカメ属海藻が有するこれらの生理活性は、ワカメのタンパク質が胃液中の酵素ペプシンで分解されてペプチドとなり、このペプチドが中心的な役割を担っていることが明らかになった。しかしながらワカメ属海藻は強固な細胞壁を有し、さらに粘質多糖類に覆われていることから、その消化性は必ずしも高くない。また、ワカメのタンパク質がペプシンで分解される割合も低い。そのため、ワカメ属海藻の葉状体あるいは乾燥物を通常の食品形態として摂取した場合、極めて多量の葉状体あるいは乾燥物を食べなければこれらの生理活性を得ることができず、実際には効率が悪い。
【0005】
本発明は上記情況に対処してなされたもので、ワカメ属海藻が潜在的に有する生理活性を効率よく発現させるために、そのタンパク質を調製してワカメ属海藻の有効利用を図ることを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は上記目的を達成するためになされたもので、ワカメ属海藻の葉状体または乾燥細粒化物に水または弱アルカリ水溶液を加えて湿式磨砕しながら可溶性成分を抽出し、この抽出液よりタンパク質を分離処理して得られたワカメタンパク質含有組成物に関する。また本発明は、このワカメタンパク質含有組成物を主成分とする血圧降下作用、肝機能改善作用、脂質代謝改善作用、末梢血管拡張作用および血液粘度低下作用を有する健康食品に関する。
【0007】
前述したように、ワカメ属海藻は健康に有用な種々の生理作用を有しているが、そのものの消化性が悪いことや、含有タンパク質の体内での分解性が悪いことなどにより、実際にはこれらが有効に摂取されていない。本発明ではワカメ属海藻から効率的にタンパク質を取り出し、タンパク質成分の有用な生理活性を効率的に利用できるようにして、健康の保持、増進に役立てるようにしたものである。
【0008】
本発明では、水、塩水溶液または弱アルカリ水溶液を用いて湿式磨砕することにより原料ワカメから高抽出率でタンパク質を抽出し、この抽出液から通常のタンパク質分離法によりワカメタンパク質を分離してワカメタンパク質含有組成物を得る。本発明で用いるタンパク質分離法としては、例えばエタノール、ポリエチレングリコールその他の有機溶剤や硫酸アンモニウムを用いるタンパク質沈殿法、イオン交換体吸着法、等電点沈殿法、膜分離法などがあり、これらを単独または併用して行うことができる。さらにワカメタンパク質の抽出率を高めるために、予めアルギン酸リアーゼ等の酵素による分解や洗浄などにより、粘質多糖類を除去しておくのもよい。
【0009】
ワカメタンパク質含有組成物は血圧降下作用、肝機能改善作用、脂質代謝改善作用、末梢血管拡張作用、血液粘度低下作用等の生理活性を有するので、健康保持のための極めて栄養価の高い食品として有用である。
【0010】
【発明の実施の形態】
本発明のワカメタンパク質含有組成物の製造過程を、図1を参照しながら説明する。
例えば、乾燥したワカメ粉末(10〜50メッシュ)2gに水10mlを加えてかき混ぜ、自動らいかい機を用いて室温で1時間磨砕する。次いで遠心分離機(3000r.p.m.)で20分間遠心分離し、ワカメ葉体抽出残渣と上澄液とを分離する。得られた上澄液にエタノールを添加し、−20℃で12時間放置してタンパク質成分を沈殿させ、さらにこれを遠心分離機(3000r.p.m.)で20分間遠心分離し、水可溶性ワカメタンパク質を沈殿物として得る。
【0011】
一方、ワカメ葉体抽出残渣に塩溶液として塩化カリウムリン酸緩衝液(イオン強度=1,pH7.5)を加えて同様に磨砕抽出し、塩可溶性ワカメタンパク質を得ることができる。さらにこの塩可溶性ワカメタンパク質の抽出残渣から、弱アルカリ性溶液として0.1N水酸化ナトリウムを加えて同様に磨砕抽出することによって、アルカリ可溶性ワカメタンパク質を得ることができる。
【0012】
これらのワカメタンパク質は、水可溶性タンパク質、塩可溶性タンパク質、アルカリ可溶性タンパク質として別々に用いてもよいし、一緒にして用いてもよい。また、ワカメタンパク質の分離精製手段としては、上記したようにエタノールを用いるほかに、通常のタンパク質分離法、例えばポリエチレングリコールその他の有機溶剤や硫酸アンモニウムを用いるタンパク質沈殿法、イオン交換体吸着法、等電点沈殿法、膜分離法などがあり、これらを単独または併用して行うことができる。
【0013】
次に実施例を示す。
(実施例1)
ワカメ葉状体乾燥物からの水可溶性ワカメタンパク質の調製
ワカメ葉状体を乾燥して調製した乾燥ワカメを、高速粉砕器で35メッシュに微粉化した。この微粉末20gを蒸留水400mlに混濁し、これを湿式磨砕機を用いて磨砕し、次いで遠心分離機(3000r.p.m.)で20分間遠心分離し、ワカメタンパク質含有溶液100mlを得た。この溶液にエタノールを800ml添加し、−20℃で12時間放置してタンパク質成分を沈殿させ、さらにこれを遠心分離機(3000r.p.m.)で20分間遠心分離して沈殿物を得た。これを室温にて風乾して、水可溶性ワカメタンパク質2gを得た。
【0014】
(実施例2)
塩蔵ワカメからのワカメタンパク質の調製
塩蔵ワカメを充分に脱塩後、ホモジナイザーで細片化したもの200gを、0.1N水酸化ナトリウム溶液400mlに混濁して湿式磨砕機で磨砕し、これを遠心分離機(10000r.p.m.)で20分間遠心分離し、アルカリ可溶性ワカメタンパク質含有溶液250mlを得た。次に、抽出残渣を400mlの蒸留水とともに磨砕し、遠心分離機(3000r.p.m.)で20分間遠心分離し、水溶性ワカメタンパク質含有溶液25mlを得た。
【0015】
上記アルカリ可溶性ワカメタンパク質含有溶液および水溶性ワカメタンパク質含有溶液を混合し、透析膜を用いて塩類などの低分子物質を除去してタンパク質画分溶液を得、これを凍結乾燥して水およびアルカリ可溶性ワカメタンパク質4gを得た。
【0016】
(試験例1)
消化試験
実施例1および実施例2で得られたワカメタンパク質各0.5gを、0.1%ペプシンを含む1/50Nの塩酸溶液10mlに溶解させ、37℃で3時間放置した。次に10%炭酸ナトリウム溶液でpHを7.7に調整後、パンクレアチンを0.01g添加し、37℃で20時間放置した。次に、分子量3000の限外濾過膜を用いて各試験液から未分解物を除去し、凍結乾燥を行ってワカメタンパク質の消化生成物を得た。
【0017】
比較対照物として、乾燥ワカメの微粉末についてもまったく同様に、ペプシンを含む1/50Nの塩酸溶液およびパンクレアチンによる消化、未分解物の除去および凍結乾燥を行い、この消化生成物を得た。
【0018】
上記の実施例1および実施例2のワカメタンパク質から得られた各消化生成物および上記比較対照物についてそれぞれ窒素含量測定を行い、各消化前の窒素含量と比較してその%を算出した。また各消化生成物についてアンジオテンシンI変換酵素(ACE)阻害活性を測定した。結果を表1に示す。
【0019】
【表1】
【0020】
表1に示すように、実施例1および2のワカメタンパク質の場合は、(消化生成物中の窒素)/(供試試料中の窒素)の割合は96.5%および90.9%であって、供試試料中の窒素の大半は消化生成物に移行しており、タンパク質の大半が消化されていることがわかるが、比較対照である乾燥ワカメ微粉末の場合は、上記窒素の割合は33.4%であって、ほぼ2/3が消化されずに残っていることがわかる。
また、血圧降下作用を示すACE阻害活性も、ワカメタンパク質の消化生成物の方が乾燥ワカメ微粉末の消化生成物よりはるかに強かった。
【0021】
(試験例2)
ラットに対する血圧降下作用
実験動物として15週齢雄性高血圧自然発症ラットを用いた。これらのラットを2週間予備飼育した後、収縮期血圧が190mmHg以上のものを選んで一群6匹とし、試験に供した。
【0022】
実施例1で得られたワカメタンパク質および乾燥ワカメ微粉末(比較対照)のそれぞれ10mg/kgおよび30mg/kgを、ラット群に1回経口投与した。非観血的尾動脈血圧測定装置(室町機械製、MK―1030型)を用いてtail−cuff法により、投与前、投与後1時間、2時間、4時間、6時間、8時間において各5回収縮期血圧を測定し、得られた測定値の最高値と最低値を棄却し、3回の平均値をもって各時間の測定値とした。結果を表2に示す。
【0023】
【表2】
【0024】
表2に示すように、実施例1で得られたワカメタンパク質10mg/kg投与群は、投与後2時間から6時間の間で顕著な血圧の低下が確認された。また、このワカメタンパク質30mg/kg投与群も、投与後1時間から顕著な血圧の低下が観察された。一方、乾燥ワカメ微粉末を投与した群は30mg/kgにて僅かな血圧の低下が観察された。
【0025】
(試験例3)
マウスに対する血漿脂質成分濃度低下作用
実験動物として4週齢の雄性ICR系マウスを用いた。これらのマウスを市販固形飼料で1週間予備飼育した後、7匹1群として各試験に供した。0.5%コレステロールおよび1%コール酸混入MF粉末飼料を基礎飼料として用い、対照群に基礎飼料を投与した。また試験群には、この基礎飼料に実施例2で得られたワカメタンパク質を0.3%添加したもの、同ワカメタンパク質を1.0%添加したもの、および凍結乾燥したワカメ葉体粉末を3.0%添加したもの、をそれぞれ投与した。投与は28日間行い、試験終了後エーテル麻酔下に腹部大動脈より採血し、血漿脂質成分(総コレステロール、HDLコレステロール、トリグリセライド)の定量を行った。LDLコレステロールは総コレステロール値からHDLコレステロール値を減じて求めた。結果を表3に示す。
【0026】
【表3】
【0027】
表3に示すように、対照群に比較してワカメタンパク質混合飼料を投与した試験群では、総コレステロール、LDLコレステロールおよびトリグリセライドの低下が認められた。一方、凍結乾燥ワカメ葉体粉末混合飼料を投与した試験群では、対照群と比較して僅かに総コレステロール等の低下が観察された。
【0028】
(試験例4)
ラットに対するエタノール誘発肝障害保護作用
実験動物として7週齢の雄性Wistarラットを用いた。ラットを1週間予備飼育した後、健常なラットを実験に供した。実験開始日に体重測定を行い、各群の体重の平均値がほぼ等しくなるように分散させて1群6匹とした。
【0029】
MF粉末飼料にコレステロールおよびコール酸をそれぞれ1.0%添加したものを基礎飼料とし、30%エタノール水を飲料水とした。試験群には、基礎飼料に実施例2で得られたワカメタンパク質を0.3%添加したもの、同ワカメタンパク質を1.0%添加したもの、および凍結乾燥したワカメ葉体粉末を3.0%添加したもの、をそれぞれ投与した。28日間の飼育後、血清中のGOTおよびGPTを測定した。結果を表4に示す。
【0030】
【表4】
【0031】
表4に示すように、ワカメタンパク質を配合した飼料を投与した試験群は、いずれも対照群に比較してGOT値およびGPT値に顕著な低下が認められた。一方、凍結乾燥したワカメ葉体粉末を配合した飼料を投与した試験群は対照群と比較してGOT値の低下が多少認められたが、GPT値には変化が認められなかった。
【0032】
(試験例5)
ウサギに対する末梢血管拡張作用
実施例1で得られたワカメタンパク質を1g/kg、3g/kgおよび10g/kg相当量、10mlの蒸留水に溶解し、カニューレを用いて固体別に13週齢のウサギ(ニュージーランドホワイト種)に経口投与した。経口投与はウサギの耳を剃毛して血管を観察しやすくしてから行った。投与前、投与後10分、30分、1時間および2時間のそれぞれについて観察して写真撮影を行い、イメージングスキャナーにて血管の拡張率を計算した。比較サンプルとして乾燥ワカメ微粉末を用いて同様に行った。結果を表5に示す。
【0033】
【表5】
【0034】
表5に示すように、ワカメタンパク質を投与した個体は、投与前と比較して血管の拡張が観察された。一方、乾燥ワカメ微粉末を投与した個体でも血管の拡張が観察されたが、ワカメタンパク質よりも作用が弱かった。
【0035】
(試験例6)
血液粘度低下作用
実施例2で得られたワカメタンパク質を摂取した場合の血液粘度に及ぼす影響を、ヒトについて調べた。試験前夜、A、B、Cの3人のボランティアに肉を沢山食べてもらい、翌朝水を100ml飲んで1時間後、予めヘパリン0.5mlを加えておいた注射筒に9.5mlの採血を行い、これを攪拌した後、直ちに細胞レオロジー測定装置MC−FANKH−3(日立原町電子工業(株)製)を用いて全血100μlの通過時間を測定した。測定後、100mlの水と共に、実施例2で得られたワカメタンパク質2gを経口摂取し、2時間後に同様に採血を行い、100μlの通過時間を測定した。結果を表6に示す。
【0036】
【表6】
【0037】
表6に示すように、A、B、Cの3人とも肉を食べたことにより100μlの血液の通過時間は長くなったが、ワカメタンパク質を摂取した2時間後には、前日肉を食べる前の測定レベルまで回復した。
【0038】
(実施例3)
清涼飲料水
下記の成分
実施例1で調製したワカメタンパク質 0.5重量%
砂糖 15.5重量%
濃縮レモン果汁 1重量%
増粘多糖類 0.2重量%
ヨーグルトフレーバー 0.1重量%
水 82.7重量%
を混合し、ボトリングした後、殺菌して、ワカメタンパク質含有清涼飲料水を製造した。
【0039】
(実施例4)
健康補助食品
下記の成分
実施例2で調製したワカメタンパク質 70重量%
乳糖 29.5重量%
ショ糖脂肪酸エステル 0.5重量%
を混合し、乾式造粒した後、打錠機で打錠して錠剤とし、健康補助食品を作成した。
【0040】
【発明の効果】
以上説明したように、本発明では、ワカメ属海藻が潜在的に有する各種の生理活性を効率よく発現させることができ、健康の保持および増進に寄与することができる。
【図面の簡単な説明】
【図1】本発明のワカメタンパク質含有組成物の製造工程の一例を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a protein-containing composition obtained from seaweed genus Wakame and a food as its use.
[0002]
[Prior art]
Seaweed genus Seaweed is widely propagated worldwide, and even in Japan, cultured seaweed is consumed in large quantities for food use. In recent years, consumption of seaweed genus Seaweed has been decreasing due to changes in eating habits, but development for other uses has been promoted.
[0003]
Conventionally, seaweed genus Seaweed is rich in nutrients such as proteins, dietary fiber, vitamins, and minerals, and is said to be a food useful for health. Further, it has been pointed out that seaweed genus Seaweed has physiological activities such as a blood pressure lowering effect, a liver function improving effect, a lipid metabolism improving effect, a peripheral vasodilatory effect, and a blood viscosity lowering effect.
[0004]
[Problems to be solved by the invention]
These physiological activities of the seaweed genus Wakame revealed that wakame proteins were degraded by the enzyme pepsin in gastric juice to form peptides, and this peptide played a central role. However, seaweed genus Seaweed has a strong cell wall, and is further covered with a mucous polysaccharide, so that its digestibility is not always high. Also, the rate of degradation of wakame protein by pepsin is low. Therefore, when the leafy or dried matter of the seaweed genus Seaweed is ingested as a normal food form, these physiological activities cannot be obtained unless extremely large amounts of the leafy or dried matter are eaten, and the efficiency is actually poor. .
[0005]
The present invention has been made in view of the above circumstances, in order to efficiently express the physiological activity potentially possessed by seaweed genus, the purpose of the present invention is to prepare a protein thereof and to effectively utilize seaweed genus. Is what you do.
[0006]
[Means for Solving the Problems]
The present invention has been made in order to achieve the above-mentioned object, and water or a weakly alkaline aqueous solution is added to the fronds or dried fine granules of seaweed genus Seaweed to extract a soluble component while wet-milling, and from this extract, The present invention relates to a wakame protein-containing composition obtained by separating a protein. The present invention also relates to a health food having a blood pressure lowering effect, a liver function improving effect, a lipid metabolism improving effect, a peripheral vasodilatory effect, and a blood viscosity lowering effect, comprising the wakame protein-containing composition as a main component.
[0007]
As described above, seaweed genus Seaweed has various physiological actions useful for health.However, due to poor digestibility of itself and poor decomposability of contained proteins in the body, it is actually These are not being taken effectively. In the present invention, proteins are efficiently extracted from seaweed genus Wakame, and useful physiological activities of the protein components can be efficiently used to help maintain and promote health.
[0008]
In the present invention, protein is extracted from raw wakame at a high extraction rate by wet grinding using water, salt aqueous solution or weak alkaline aqueous solution, and wakame protein is separated from this extract by a normal protein separation method. A protein-containing composition is obtained. Examples of the protein separation method used in the present invention include a protein precipitation method using ethanol, polyethylene glycol and other organic solvents and ammonium sulfate, an ion exchanger adsorption method, an isoelectric point precipitation method, a membrane separation method, and the like. It can be performed in combination. Further, in order to increase the extraction rate of wakame protein, the mucous polysaccharide may be removed in advance by decomposition or washing with an enzyme such as alginate lyase.
[0009]
Wakame protein-containing composition has physiological activities such as blood pressure lowering action, liver function improving action, lipid metabolism improving action, peripheral vasodilatory action, blood viscosity lowering action, etc., and is useful as an extremely nutritious food for maintaining health It is.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The production process of the wakame protein-containing composition of the present invention will be described with reference to FIG.
For example, 10 ml of water is added to 2 g of dried wakame powder (10 to 50 mesh), and the mixture is ground, and ground at room temperature for 1 hour using an automatic grinder. Then, the mixture is centrifuged for 20 minutes with a centrifuge (3000 rpm) to separate the seaweed leaf body extraction residue from the supernatant. Ethanol was added to the obtained supernatant, and the mixture was allowed to stand at −20 ° C. for 12 hours to precipitate a protein component. The precipitate was further centrifuged with a centrifuge (3000 rpm) for 20 minutes to obtain a water-soluble substance. The wakame protein is obtained as a precipitate.
[0011]
On the other hand, a salt-soluble wakame protein can be obtained by adding a potassium chloride phosphate buffer solution (ionic strength = 1, pH 7.5) as a salt solution to the seaweed leaf extract residue and similarly grinding and extracting. Further, from the extraction residue of the salt-soluble wakame protein, alkali-soluble wakame protein can be obtained by adding 0.1N sodium hydroxide as a weakly alkaline solution and grinding and extracting similarly.
[0012]
These wakame proteins may be used separately as a water-soluble protein, a salt-soluble protein, or an alkali-soluble protein, or may be used together. As a means for separating and purifying wakame protein, in addition to using ethanol as described above, a normal protein separation method, for example, a protein precipitation method using polyethylene glycol or another organic solvent or ammonium sulfate, an ion exchanger adsorption method, an isoelectric There are a point precipitation method, a membrane separation method and the like, and these can be used alone or in combination.
[0013]
Next, examples will be described.
(Example 1)
Preparation of water-soluble wakame protein from dried wakame fronds Dried wakame prepared by drying wakame fronds was pulverized to 35 mesh using a high-speed pulverizer. 20 g of this fine powder was turbid in 400 ml of distilled water, and this was ground using a wet grinder, and then centrifuged for 20 minutes using a centrifuge (3000 rpm) to obtain 100 ml of a wakame protein-containing solution. Was. 800 ml of ethanol was added to this solution, and the mixture was allowed to stand at −20 ° C. for 12 hours to precipitate a protein component, which was further centrifuged with a centrifuge (3000 rpm) for 20 minutes to obtain a precipitate. . This was air-dried at room temperature to obtain 2 g of water-soluble wakame protein.
[0014]
(Example 2)
Preparation of seaweed protein from salted seaweed After salted seaweed was sufficiently desalted, 200 g of a fragmented product with a homogenizer was turbidized in 400 ml of a 0.1N sodium hydroxide solution, and ground with a wet grinder. This was centrifuged for 20 minutes with a centrifuge (10000 rpm) to obtain 250 ml of an alkali-soluble wakame protein-containing solution. Next, the extraction residue was ground with 400 ml of distilled water and centrifuged for 20 minutes with a centrifuge (3000 rpm) to obtain 25 ml of a water-soluble wakame protein-containing solution.
[0015]
The above-mentioned alkali-soluble wakame protein-containing solution and water-soluble wakame protein-containing solution are mixed, and a low-molecular substance such as salts is removed using a dialysis membrane to obtain a protein fraction solution, which is lyophilized to obtain water and alkali-soluble 4 g of wakame protein was obtained.
[0016]
(Test Example 1)
Digestion test 0.5 g of the wakame protein obtained in each of Examples 1 and 2 was dissolved in 10 ml of a 1 / 50N hydrochloric acid solution containing 0.1% pepsin, and left at 37 ° C for 3 hours. . Next, the pH was adjusted to 7.7 with a 10% sodium carbonate solution, 0.01 g of pancreatin was added, and the mixture was allowed to stand at 37 ° C. for 20 hours. Next, an undegraded product was removed from each test solution using an ultrafiltration membrane having a molecular weight of 3000, and lyophilized to obtain a digested product of wakame protein.
[0017]
As a control, a fine powder of dried seaweed was digested with a 1 / 50N hydrochloric acid solution containing pepsin and pancreatin, undegraded products were removed, and lyophilized to obtain a digested product.
[0018]
The nitrogen content of each digestion product obtained from the wakame protein of Example 1 and Example 2 and the comparative control was measured, and the percent nitrogen content was calculated by comparing the nitrogen content before each digestion. The angiotensin I converting enzyme (ACE) inhibitory activity of each digestion product was measured. Table 1 shows the results.
[0019]
[Table 1]
[0020]
As shown in Table 1, in the case of the wakame proteins of Examples 1 and 2, the ratio of (nitrogen in digestion product) / (nitrogen in test sample) was 96.5% and 90.9%. Thus, it can be seen that most of the nitrogen in the test sample has been transferred to the digestion product, and that most of the protein has been digested. 33.4%, indicating that almost 2/3 remained undigested.
Also, the ACE inhibitory activity showing a blood pressure lowering effect was much stronger in the digestion product of wakame protein than in the digestion product of dry wakame fine powder.
[0021]
(Test Example 2)
Blood pressure lowering effect on rats 15-week-old male spontaneously hypertensive rats were used as experimental animals. After pre-breeding these rats for 2 weeks, those with a systolic blood pressure of 190 mmHg or more were selected to form a group of 6 rats and subjected to the test.
[0022]
Rat groups were orally administered once 10 mg / kg and 30 mg / kg of the wakame protein and the dried wakame fine powder (comparative control) obtained in Example 1, respectively. Using a non-invasive tail arterial blood pressure measurement device (Muromachi Kikai, Model MK-1030) by the tail-cuff method, 5 minutes before administration, 1 hour after administration, 2 hours, 4 hours, 6 hours and 8 hours The systolic blood pressure was measured, and the highest and lowest measured values were discarded, and the average of the three measurements was used as the measured value at each time. Table 2 shows the results.
[0023]
[Table 2]
[0024]
As shown in Table 2, in the wakame protein 10 mg / kg administration group obtained in Example 1, a remarkable decrease in blood pressure was confirmed between 2 hours and 6 hours after administration. Also, in the wakame protein 30 mg / kg administration group, a remarkable decrease in blood pressure was observed from 1 hour after administration. On the other hand, in the group to which the dried wakame fine powder was administered, a slight decrease in blood pressure was observed at 30 mg / kg.
[0025]
(Test Example 3)
4. Effect of lowering plasma lipid component concentration on mice Four-week-old male ICR mice were used as experimental animals. After pre-breeding these mice for 1 week on a commercial solid feed, they were subjected to each test as a group of 7 mice. A MF powder feed mixed with 0.5% cholesterol and 1% cholic acid was used as a basal feed, and a control group was administered the basal feed. In the test group, 0.3% of the wakame protein obtained in Example 2, 0.3% of the wakame protein obtained in Example 2, and freeze-dried wakame leaf powder were added to the basic feed. , Respectively, were administered. The administration was performed for 28 days, and after the test was completed, blood was collected from the abdominal aorta under ether anesthesia to quantify the plasma lipid components (total cholesterol, HDL cholesterol, triglyceride). LDL cholesterol was determined by subtracting HDL cholesterol from total cholesterol. Table 3 shows the results.
[0026]
[Table 3]
[0027]
As shown in Table 3, in the test group to which the wakame protein mixed feed was administered as compared to the control group, a decrease in total cholesterol, LDL cholesterol and triglyceride was observed. On the other hand, in the test group to which the freeze-dried wakame leaf body powder mixed feed was administered, a slight decrease in total cholesterol and the like was observed as compared with the control group.
[0028]
(Test Example 4)
Using ethanol-induced hepatopathy protective action <br/> 7 weeks old as an experimental animal male Wistar rats for rats. After pre-breeding the rats for one week, healthy rats were subjected to the experiment. The body weight was measured on the day of the experiment, and dispersed so that the average value of the body weight of each group was almost equal to 6 animals per group.
[0029]
A MF powder feed supplemented with 1.0% each of cholesterol and cholic acid was used as a basic feed, and 30% ethanol water was used as drinking water. The test group was prepared by adding 0.3% of the wakame protein obtained in Example 2 to the basal feed, 1.0% of the wakame protein obtained in Example 2, and 3.0% of freeze-dried wakame leaf powder. % Added, respectively. After breeding for 28 days, GOT and GPT in the serum were measured. Table 4 shows the results.
[0030]
[Table 4]
[0031]
As shown in Table 4, in the test group to which the feed containing wakame protein was administered, the GOT value and the GPT value were remarkably reduced as compared to the control group. On the other hand, the test group to which the feed containing the freeze-dried wakame leaf powder was administered showed a slight decrease in the GOT value as compared with the control group, but no change in the GPT value.
[0032]
(Test Example 5)
Peripheral vasodilator effect on rabbits The wakame protein obtained in Example 1 was dissolved in 1 g / kg, 3 g / kg and 10 g / kg equivalents in 10 ml of distilled water, and separately for 13 weeks using a cannula for each solid. Aged rabbits (New Zealand White) were orally administered. Oral administration was carried out after shaving the rabbit's ear to facilitate observation of blood vessels. Observation was performed at 10 minutes, 30 minutes, 1 hour, and 2 hours after administration before and after administration, and photographs were taken. The dilation rate of blood vessels was calculated by an imaging scanner. The same procedure was performed using dried wakame fine powder as a comparative sample. Table 5 shows the results.
[0033]
[Table 5]
[0034]
As shown in Table 5, in the individual to which the wakame protein was administered, vasodilation was observed as compared to before the administration. On the other hand, vasodilation was also observed in the individual to which the dried wakame fine powder was administered, but the effect was weaker than that of the wakame protein.
[0035]
(Test Example 6)
Blood viscosity lowering effect The effect of ingesting the wakame protein obtained in Example 2 on blood viscosity was examined for humans. The night before the test, three volunteers A, B, and C ate a lot of meat, and after drinking 100 ml of water the next morning, one hour later, 9.5 ml of blood was collected in a syringe to which 0.5 ml of heparin had been added in advance. Immediately after stirring, the passage time of 100 μl of whole blood was measured using a cell rheology measuring device MC-FANKH-3 (manufactured by Hitachi Haramachi Electronics Co., Ltd.). After the measurement, 2 g of the wakame protein obtained in Example 2 was orally taken together with 100 ml of water, and after 2 hours, blood was similarly collected, and the transit time of 100 μl was measured. Table 6 shows the results.
[0036]
[Table 6]
[0037]
As shown in Table 6, the eating time of 100 μl of blood was prolonged by eating meat of all three of A, B, and C. Recovery to measurement level.
[0038]
(Example 3)
Soft drink 0.5% by weight of wakame protein prepared in Example 1 below
Sugar 15.5% by weight
Concentrated lemon juice 1% by weight
Thickening polysaccharide 0.2% by weight
Yogurt flavor 0.1% by weight
82.7% by weight of water
After mixing, bottling and sterilization, a soft drink containing wakame protein was produced.
[0039]
(Example 4)
Dietary supplement 70% by weight of wakame protein prepared in Example 2 below
Lactose 29.5% by weight
0.5% by weight of sucrose fatty acid ester
Was mixed and dry-granulated, and then tableted with a tableting machine into tablets to prepare health supplements.
[0040]
【The invention's effect】
As described above, in the present invention, various physiological activities potentially possessed by seaweed genus Seaweed can be efficiently expressed, and can contribute to maintenance and promotion of health.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a production process of a wakame protein-containing composition of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002259923A JP2004097021A (en) | 2002-09-05 | 2002-09-05 | Wakame protein-containing composition, and wakame protein-containing food |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002259923A JP2004097021A (en) | 2002-09-05 | 2002-09-05 | Wakame protein-containing composition, and wakame protein-containing food |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004097021A true JP2004097021A (en) | 2004-04-02 |
Family
ID=32260783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002259923A Pending JP2004097021A (en) | 2002-09-05 | 2002-09-05 | Wakame protein-containing composition, and wakame protein-containing food |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004097021A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009051791A (en) * | 2007-08-29 | 2009-03-12 | Hokkaido Univ | Material for seaweed-derived product containing concentrated physiologically active substance, method for producing the same and seaweed-derived product |
JP2013521808A (en) * | 2010-03-17 | 2013-06-13 | パー エルエルシー | Methods and systems for processing aqueous species |
JP2016204273A (en) * | 2015-04-16 | 2016-12-08 | 理研ビタミン株式会社 | Sirtuin gene activator |
JP2018188404A (en) * | 2017-05-11 | 2018-11-29 | 理研ビタミン株式会社 | Ampk activity-promoting composition |
CN110547415A (en) * | 2019-09-30 | 2019-12-10 | 刘丽媛 | Undaria pinnatifida buccal tablets and preparation method and application thereof |
US10568343B2 (en) | 2015-06-10 | 2020-02-25 | Parabel Ltd. | Methods and systems for extracting protein and carbohydrate rich products from a microcrop and compositions thereof |
US10596048B2 (en) | 2015-06-10 | 2020-03-24 | Parabel Ltd. | Methods and systems for forming moisture absorbing products from a microcrop |
US10856478B2 (en) | 2015-06-10 | 2020-12-08 | Parabel Nutrition, Inc. | Apparatuses, methods, and systems for cultivating a microcrop involving a floating coupling device |
US10961326B2 (en) | 2015-07-06 | 2021-03-30 | Parabel Nutrition, Inc. | Methods and systems for extracting a polysaccharide product from a microcrop and compositions thereof |
US11325941B2 (en) | 2015-08-10 | 2022-05-10 | Parabel Nutrition, Inc. | Methods and systems for extracting reduced oxalic acid protein from aquatic species and compositions thereof |
US11452305B2 (en) | 2015-09-10 | 2022-09-27 | Lemnature AquaFars Corporation | Methods and systems for processing a high-concentration protein product from a microcrop and compositions thereof |
-
2002
- 2002-09-05 JP JP2002259923A patent/JP2004097021A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009051791A (en) * | 2007-08-29 | 2009-03-12 | Hokkaido Univ | Material for seaweed-derived product containing concentrated physiologically active substance, method for producing the same and seaweed-derived product |
JP2013521808A (en) * | 2010-03-17 | 2013-06-13 | パー エルエルシー | Methods and systems for processing aqueous species |
JP2015109859A (en) * | 2010-03-17 | 2015-06-18 | パラベル リミテッド | Method and system for processing aquatic species |
US9765112B2 (en) | 2010-03-17 | 2017-09-19 | Parabel Ltd. | Method and system for processing of aquatic species |
JP2016204273A (en) * | 2015-04-16 | 2016-12-08 | 理研ビタミン株式会社 | Sirtuin gene activator |
US10856478B2 (en) | 2015-06-10 | 2020-12-08 | Parabel Nutrition, Inc. | Apparatuses, methods, and systems for cultivating a microcrop involving a floating coupling device |
US10568343B2 (en) | 2015-06-10 | 2020-02-25 | Parabel Ltd. | Methods and systems for extracting protein and carbohydrate rich products from a microcrop and compositions thereof |
US10596048B2 (en) | 2015-06-10 | 2020-03-24 | Parabel Ltd. | Methods and systems for forming moisture absorbing products from a microcrop |
US11166476B2 (en) | 2015-06-10 | 2021-11-09 | Parabel Nutrition, Inc. | Methods and systems for extracting protein and carbohydrate rich products from a microcrop and compositions thereof |
US10961326B2 (en) | 2015-07-06 | 2021-03-30 | Parabel Nutrition, Inc. | Methods and systems for extracting a polysaccharide product from a microcrop and compositions thereof |
US11325941B2 (en) | 2015-08-10 | 2022-05-10 | Parabel Nutrition, Inc. | Methods and systems for extracting reduced oxalic acid protein from aquatic species and compositions thereof |
US11452305B2 (en) | 2015-09-10 | 2022-09-27 | Lemnature AquaFars Corporation | Methods and systems for processing a high-concentration protein product from a microcrop and compositions thereof |
US11457654B2 (en) | 2015-09-10 | 2022-10-04 | Lemnature Aquafarms Corporation | Methods for continuously blanching a microcrop and high-concentration protein products derived therefrom |
JP2018188404A (en) * | 2017-05-11 | 2018-11-29 | 理研ビタミン株式会社 | Ampk activity-promoting composition |
CN110547415A (en) * | 2019-09-30 | 2019-12-10 | 刘丽媛 | Undaria pinnatifida buccal tablets and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103052717A (en) | Industrial production method for producing antihypertensive bioactive peptide | |
US20020137688A1 (en) | Kolla2-desiccated avian sternal cartilage powder | |
CN104939054A (en) | Health food capable of enhancing bone mineral density and immunity and preparation method of health food | |
JP2004097021A (en) | Wakame protein-containing composition, and wakame protein-containing food | |
KR101449763B1 (en) | Phaseolus vulgaris extracts, their use, and formulations containing them | |
JP2947484B2 (en) | Bone-fortified food, feed or osteoarthritis prophylactic or therapeutic drug | |
CN107549817B (en) | Moringa oleifera natural organic calcium and preparation method thereof | |
JP2020535835A (en) | Pea protein composition with improved nutritional value | |
JP3092874B2 (en) | Whey-derived osteoblast-proliferating and bone-enhancing fraction and bone-enhanced food, feed, and pharmaceuticals containing the fraction | |
JP4368569B2 (en) | Preventive and ameliorating agents for renal function decline | |
JP5281895B2 (en) | Calcium absorption promoter | |
JP3429726B2 (en) | Manufacturing method of oyster meat extract | |
JP6016610B2 (en) | Supplements for muscle gain | |
JP2004099461A (en) | Porphyra species protein-containing composition and food | |
CN106173853B (en) | Nutritional composition for reducing blood fat and application thereof | |
KR100514403B1 (en) | Herbal extracts contained collagen food method for manufacturing it | |
JP2008184459A (en) | Calcium absorption accelerating composition | |
KR101322282B1 (en) | Composition for bone growth promotion comprising Gelatin hydrolysates | |
CN113413328A (en) | Preparation method of anti-aging collagen peptide sodium hyaluronate oral drink | |
US20230355685A1 (en) | Raw material production from stichopus variegatus | |
JPWO2009057282A1 (en) | Food material for suppressing bone resorption | |
JP4027559B2 (en) | Mineral absorption promoter | |
JP7357189B1 (en) | Collagen-containing composition derived from fish cartilage | |
JP2579593B2 (en) | Health food containing calcium-containing composition excellent in absorbability, drug containing the composition | |
JPH08157385A (en) | Bowl movement improver, agent for enhancing prolifration of gut mucosa and perpectal nutrition promoting agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051227 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060322 |