JP2004096939A - Car and controller for car - Google Patents

Car and controller for car Download PDF

Info

Publication number
JP2004096939A
JP2004096939A JP2002257468A JP2002257468A JP2004096939A JP 2004096939 A JP2004096939 A JP 2004096939A JP 2002257468 A JP2002257468 A JP 2002257468A JP 2002257468 A JP2002257468 A JP 2002257468A JP 2004096939 A JP2004096939 A JP 2004096939A
Authority
JP
Japan
Prior art keywords
control
acceleration
vehicle
driving force
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002257468A
Other languages
Japanese (ja)
Inventor
Akira Motomi
本美 明
Kiyotaka Hamashima
浜島 清高
Mitsuhiro Nada
灘 光博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002257468A priority Critical patent/JP2004096939A/en
Priority to AU2003246164A priority patent/AU2003246164A1/en
Priority to PCT/JP2003/008298 priority patent/WO2004022379A1/en
Publication of JP2004096939A publication Critical patent/JP2004096939A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/262Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/52Clutch motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid the interference between the control concerned with the opening of an accelerator and the acceleration of a vehicle and the control of suppressing a slip, and improve the sensation of drive of a driver. <P>SOLUTION: This controller computes the rotational angle acceleration α of a drive shaft, from the number Nm of revolutions of a motor attached to the drive shaft (S100 and S102), and decides whether a vehicle is in a slippage state by the idling of a driving wheel, based on the rotational angle acceleration α(S104). When it is not in the slippage state, this executes acceleration management processing of setting a motor request torque Tm* so that the vehicle acceleration becomes the objective acceleration being set by an opening Acc of an accel and car velocity V (S108); and when it is in slip state, this executes the slippage control processing of limiting the motor request torque Tm*, which is set based on the opening Acc of the accel so as to suppress the slip, based on the rotational angle acceleration α, in place of the acceleration management processing(S110). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車および自動車の制御装置に関し、詳しくはアクセル開度に基づく駆動力の少なくとも一部を原動機から駆動輪に接続された駆動軸に出力可能な自動車およびこの自動車の制御装置に関する。
【0002】
【従来の技術】
従来、この種の自動車としては、アクセルの操作量に対して一定の加速度や減速度となるよう駆動軸に取り付けられたモータを駆動制御する電気自動車が提案されている(例えば、特許文献1参照)。この電気自動車では、モータの回転速度とアクセルからのトルク指令値とに基づいて負荷慣性推定値と負荷トルク推定値とを算出し、負荷慣性推定値と負荷トルク推定値とトルク指令値とに基づいてモータを駆動制御することにより、車両加速度をアクセルの操作量に対応した加速度にしている。
【0003】
一方、出願人は、駆動輪の空転によるスリップを抑制するために、駆動輪の回転角加速度が所定の閾値を超えたときにモータから出力するトルクを制限する技術を開示している(特許文献2参照)。
【0004】
【特許文献1】
特開平9−37416号公報(第2〜3頁、図1)
【特許文献2】
特開2001−295676号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述したアクセル操作量に対応する加速度となるようにする制御とスリップを抑制する制御とを併用すると、相互に干渉する場合が生じる。こうした制御の干渉は、運転者の運転フィーリングを損なうものとなる。
【0006】
本発明の自動車および自動車の制御装置は、アクセル開度と車両加速度とに関する制御とスリップを抑制する制御との干渉を回避することを目的の一つとする。また、本発明の自動車および自動車の制御装置は、運転者の運転フィーリングをより良好なものとすることを目的の一つとする。
【0007】
【課題を解決するための手段およびその作用・効果】
本発明の自動車および自動車の制御装置は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0008】
本発明の自動車の制御装置は、
アクセル開度に基づく駆動力の少なくとも一部を原動機から駆動輪に接続された駆動軸に出力可能な自動車の制御装置であって、
アクセル操作状態に対応する車両の加速または減速の状態となるよう前記原動機を駆動制御する加速度管理制御とアクセル開度に基づく駆動力に制限を加えた駆動力が前記駆動軸に出力されるよう前記原動機を駆動制御する駆動力制限制御とを、所定条件に基づいて一方の制御を他方の制御に優先して実行することを要旨とする。
【0009】
この本発明の自動車の制御装置では、アクセル開度に基づく駆動力の少なくとも一部を駆動輪に接続された駆動軸に出力可能な原動機を、アクセル操作状態に対応する車両加速状態となるよう原動機を駆動制御する加速度管理制御とアクセル開度に基づく駆動力に制限を加えた駆動力が前記駆動軸に出力されるよう原動機を駆動制御する駆動力制限制御とによって制御すると共に所定条件に基づいて両制御のうちの一方の制御を他方の制御に優先して実行する。したがって、加速度管理制御と駆動力制限制御との干渉を防止することができる。この結果、運転者の運転フィーリングをより良好なものにすることができる。ここで、「原動機」としては電動機が好適である。
【0010】
こうした本発明の自動車の制御装置において、前記駆動力制限制御は前記駆動輪の空転によるスリップを抑制する制御であり、前記所定条件は前記駆動輪の空転によるスリップの発生であり、前記一方の制御として前記駆動力制限制御を実行すると共に前記他方の制御として前記加速度管理制御を実行するものとすることもできる。こうすれば、駆動力制限制御としてスリップを抑制する制御に適用することができる。
【0011】
この駆動力制限制御としてスリップを抑制する制御を実行する態様の本発明の自動車の制御装置において、前記駆動力制限制御は、前記駆動軸の回転角加速度に基づいて前記駆動力を制限する制御であるものとすることもできる。こうすれば、駆動軸の回転角速度に応じて駆動力を制限することができる。この態様の本発明の自動車の制御装置において、前記駆動力制限制御は、前記駆動軸の回転角加速度が大きいほど小さい傾向の駆動力上限値をもって駆動力を制限する制御であるものとすることもできる。こうすれば、駆動輪の空転によるスリップを迅速に収束させることができる。
【0012】
本発明の自動車の制御装置において、前記加速度管理制御は、車両加速度がアクセル開度に対応した目標加速度となるよう前記アクセル開度に基づく駆動力を増減補正する制御であるものとすることもできるし、アクセルの操作量と操作速度に基づく駆動力を前記駆動軸に出力する制御であるものとすることもできる。
【0013】
本発明の自動車は、
アクセル開度に基づく駆動力の少なくとも一部を駆動輪に接続された駆動軸に出力可能な電動機と、
前記電動機を前記原動機として駆動制御する上述のいずれかの態様の本発明の自動車の制御装置と、
を備えることを要旨とする。
【0014】
この本発明の自動車では、上述のいずれかの態様の本発明の自動車の制御装置を備えるから、本発明の自動車の制御装置が奏する効果、例えば、加速度管理制御と駆動力制限制御との干渉を防止することができる効果やこの結果としての運転者の運転フィーリングをより良好なものにすることができる効果と同様な効果を奏することができる。
【0015】
こうした本発明の自動車において、内燃機関と、前記内燃機関からの動力の少なくとも一部を電力変換して前記電動機に電力供給可能な電力変換供給手段と、を備えるものとすることもできる。この場合、前記内燃機関は、前記駆動軸に動力を出力可能に接続されてなるものとすることもできる。
【0016】
こうした内燃機関を備える態様の本発明の自動車において、前記加速度管理制御は、前記内燃機関の運転制御と前記電動機の駆動制御とを協調して行なう制御であるものとすることもできる。こうすれば、内燃機関からの動力と電動機からの動力により車両をアクセル操作状態に対応した加速状態とすることができる。
【0017】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である電気自動車10の構成の概略を示す構成図である。実施例の電気自動車10は、図示するように、バッテリ16からインバータ回路14を介して供給された電力を用いて駆動輪18a,18bに接続された駆動軸に動力の出力が可能なモータ12と、車両全体をコントロールする電子制御ユニット40とを備える。
【0018】
モータ12は、例えば、電動機として機能すると共に発電機としても機能する周知の同期発電電動機として構成され、インバータ回路14は、バッテリ16からの電力をモータ12の駆動に適した電力に変換する複数のスイッチング素子により構成されている。
【0019】
電子制御ユニット40は、CPU42を中心としたマイクロプロセッサとして構成されており、CPU42の他に処理プログラムを記憶したROM44と、一時的にデータを記憶するRAM46と、入出力ポート(図示せず)とを備える。この電子制御ユニット40には、駆動軸に取り付けられた回転角センサ22により検出されたモータ12の回転軸の回転角θや、車速センサ24により検出される電気自動車10の車速V、車輪速センサ26a,26b,28a,28bにより検出される駆動輪18a,18bの車輪速Vf1,Vf2および従動輪19a,19bの車輪速Vr1,Vr2、シフトレバー31のポジションを検出するシフトポジションセンサ32からのシフトポジション、アクセルペダル33の踏み込み量に応じたアクセル開度Accを検出するアクセルペダルポジションセンサ34からのアクセル開度Acc、ブレーキペダル35の踏み込み量を検出するブレーキペダルポジションセンサ36からのブレーキ踏込量などが入力ポートを介して入力されている。また、電子制御ユニット40からは、モータ12を駆動制御するインバータ回路14のスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。
【0020】
次に、こうして構成された実施例の電気自動車10の動作、特にアクセルペダル33の操作状態に基づいて行なわれる車両の加速度管理制御と駆動輪18a,18bの空転によるスリップを抑制するスリップ抑制制御とを併用するモータ12の駆動制御の際の動作について説明する。図2は、実施例の電子制御ユニット40により実行されるモータ駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、8msec毎)に繰り返し実行される。
【0021】
モータ駆動制御ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、アクセルペダルポジションセンサ34からのアクセル開度Accや車速センサ24からの車速V、回転角センサ22の回転角θに基づいて算出されるモータ回転数Nmなどを入力する処理を実行する(ステップS100)。ここで、車速Vについては、実施例では、車速センサ24により検出されたものを用いたが、車輪速センサ26a,26b,28a,28bにより検出される車輪速Vf1,Vf2,Vr1,Vr2から算出するものとしても構わない。
【0022】
続いて、入力したモータ回転数Nmに基づいて回転角加速度αを計算する(ステップS102)。ここで、回転角加速度αの計算は、実施例では、今回の処理で入力した現回転数Nmから前回の処理で入力した前回回転数Nmを減じる(現回転数Nm−前回回転数Nm)ことにより行なうものとした。なお、回転角加速度αの単位は、回転数Nmの単位を1分間あたりの回転数[rpm]で示すと、実施例では、本処理の実行時間間隔は8msecであるから、[rpm/8msec]となる。勿論、回転速度の時間変化率として示すことができれば、如何なる単位を採用するものとしても構わない。また、回転角加速度αおよび車輪速差ΔVは、誤差を小さくするために、それぞれ今回のルーチンから過去数回(例えば、3回)に亘って計算された回転角加速度の平均および車輪速差の平均を用いるものとしても構わない。
【0023】
こうして回転角加速度αを計算すると、計算した回転角加速度αに基づいて駆動輪18a,18bのスリップ状態を判定する(ステップS104)。このスリップ状態の判定は、図3のスリップ状態判定処理ルーチンに基づいて行なわれる。このスリップ状態判定処理ルーチンでは、計算された回転角加速度αが、空転によるスリップが発生したとみなすことのできる閾値αslipを超えているか否かを判定し(ステップS120)、回転角加速度αが閾値αslipを超えているときには、駆動輪18a,18bにスリップが発生したと判断して、スリップの発生を示すスリップ発生フラグF1を値1にセットして(ステップS130)、本ルーチンを終了する。一方、回転角加速度αが閾値αslipを超えていないときには、スリップ発生フラグF1の値を調べ(ステップS124)、スリップ発生フラグF1が値1のときには、回転角加速度αが負の値であり且つそれが所定時間継続しているか否かを判定し(ステップS126)、回転角加速度αが負の値であり且つそれが所定時間継続したと判定されたときには駆動輪18a,18bに発生したスリップは収束したと判断してスリップ収束フラグF2に値1をセットして(ステップS128)、本ルーチンを終了する。スリップ発生フラグF1が値1であって、回転角加速度αが負の値でないと判定されたり、回転角加速度αが負の値であってもそれが所定時間継続していないと判定されたときには、発生したスリップは未だ収束していないと判断してそのまま本ルーチンを終了する。
【0024】
こうしたスリップ状態判定処理によりスリップ発生フラグF1やスリップ収束フラグF2がセットされると、このスリップ発生フラグF1の値に基づいて(ステップS106)、加速度管理処理かスリップ抑制処理のいずれかが実行され(ステップS108,S110)、加速度管理処理やスリップ抑制処理で設定されたモータ要求トルクTm*を用いてモータ12を駆動制御して(ステップS112)、このモータ駆動制御ルーチンを終了する。なお、ステップS106の判定は、スリップ発生フラグF1が値0のときには駆動輪18a,18bの空転によるスリップは発生していないグリップ走行時を判定するものであり、スリップ発生フラグF1が値1のときには駆動輪18a,18bの空転によるスリップが発生したスリップ走行時を判定するものである。このように、駆動輪18a,18bの空転によるスリップの発生がなければ加速度管理処理が実行され、スリップが発生すると、加速度管理処理に代えて、言い換えれば加速度管理処理に優先してスリップ抑制処理を行なうのである。以下に、加速度管理処理とスリップ抑制処理について説明する。
【0025】
加速度管理処理は、実施例では、図4に例示する加速度管理制御ルーチンにより行なわれる。このルーチンでは、まず、アクセル開度Accと車速Vとに基づいて目標加速度Vα*を設定する(ステップS200)。目標加速度Vα*は、実施例では、アクセル開度Accと車速Vと目標加速度Vα*との関係を予め定めて目標加速度設定マップとしてROM44に記憶しておき、アクセル開度Accと車速Vとが与えられるとマップから対応する目標加速度Vα*を導出することにより設定するものとした。実施例の目標加速度設定マップでは、アクセル開度Accが大きくなるほど目標加速度Vα*が大きな値となる傾向に、車速Vが大きくなるほど目標加速度Vα*が小さくなる傾向に調整されている。
【0026】
続いて、図2のルーチンが実行される毎に入力される車速Vの前回値と今回値との偏差に基づいて車両加速度Vαを計算し(ステップS202)、設定した目標加速度Vα*と計算した車両加速度Vαとの偏差に基づいて次式(1)によりオフセット開度Aostを設定する(ステップS204)。オフセット開度Aostは、設定された目標加速度Vα*と車両加速度Vαとの偏差を打ち消すためにアクセル開度Accを補正する開度として設定されるものである。なお、式(1)中のk1は、比例定数であり、オフセット開度Aostは初期値として値0が設定されている。
【0027】
【数1】
Aost←Aost+k1・(Vα*−Vα)  (1)
【0028】
そして、設定したオフセット開度Aostをアクセル開度Accに加算して加速度管理用開度Adrvを計算し(ステップS206)、加速度管理用開度Adrvに基づいてモータ要求トルクTm*を設定して(ステップS208)、本ルーチンを終了する。モータ要求トルクTm*の設定は、実施例では、加速度管理用開度Adrvまたはアクセル開度Accと車速Vとモータ要求トルクTm*との関係を予め求めて要求トルク設定マップとしてROM44に記憶しておき、加速度管理用開度Adrvまたはアクセル開度Accと車速Vとが与えられると、マップから対応するモータ要求トルクTm*を導出するものとした。この要求トルク設定マップの一例を図5に示す。
【0029】
こうして設定されたモータ要求トルクTm*は、図2のモータ駆動制御ルーチンのステップS112でモータ12の駆動制御に用いられる。加速度管理処理では、アクセル開度Accに基づいて設定される目標加速度Vα*と車両加速度Vαとの偏差が打ち消されるようモータ要求トルクTm*を設定してモータ12を駆動制御することになるから、運転者のアクセルペダル33の踏み込み量(アクセル開度Acc)が同じであれば、電気自動車10の搭乗人数や積載量,路面の勾配などに拘わらず、同じ加速度で電気自動車10を加速させることができる。
【0030】
スリップ抑制処理は、実施例では、図6に例示するスリップ抑制制御ルーチンにより行なわれる。このルーチンでは、まず、アクセル開度Accに基づいてモータ要求トルクTm*の設定処理が行なわれる(ステップS300)。モータ要求トルクTm*の設定は、上述した図5に例示する要求トルク設定マップを用いて行なわれる。続いて、スリップ収束フラグF2の値を調べ、スリップ収束フラグF2が値0のときには、スリップ発生時の処理としてステップS304〜S308の処理によりトルク上限値Tmaxを設定し、スリップ収束フラグF2が値1のときには、スリップ収束時の処理としてステップS310〜S322の処理によりトルク上限値Tmaxを設定し、モータ要求トルクTm*が設定したトルク上限値Tmax以下となるようにトルク制限して(ステップS324,S326)、このルーチンを終了する。
【0031】
スリップ発生時の処理によるトルク上限値Tmaxの設定は、回転角加速度αがピーク値αpeakを超えているかを判定し(ステップS304)、回転角加速度αがピーク値αpeakを超えているときにはピーク値αpeakに回転角加速度αを代入してピーク値αpeakを更新し(ステップS306)、更新あるいは非更新のピーク値αpeakに基づいてトルク上限値Tmaxを設定する(ステップS308)。ここで、ピーク値αpeakは、基本的には、スリップにより回転角加速度αが上昇してピークを示すときの回転角加速度の値であり、初期値として値0が設定されている。したがって、回転角加速度αが上昇してピークに達するまでの間はピーク値αpeakを回転角加速度αの値に順次更新していき、回転角加速度αがピークに達した時点でその回転角加速度αがピーク値αpeakとして固定されることになる。また、トルク上限値Tmaxの設定は、図7に例示したトルク上限値設定マップを用いて行なわれる。このマップでは、図示するように、回転角加速度のピーク値αpeekが大きくなるほどトルク上限値Tmaxは小さくなる特性を有している。したがって、回転角加速度αが上昇してピーク値αpeakが大きくなるほど、即ちスリップの程度が大きいほど小さな値がトルク上限値Tmaxに設定される。こうして設定されたトルク上限値Tmaxは、モータ要求トルクTm*の制限に用いられるから、モータ12から出力されるトルクが制限されることになる。このように回転角加速度αのピーク値αpeakに基づいてトルク上限値Tmaxを設定することにより、発生したスリップを迅速に抑制することができる。
【0032】
スリップ収束時の処理によるトルク上限値Tmaxの設定は、まず、トルク制限量δ1(単位は、回転角加速度と同じ単位の[rpm/8msec])を入力する処理から行なわれる(ステップS310)。ここで、トルク制限量δ1は、スリップ発生時の処理において回転角加速度のピーク値αpeakに対応して設定されたトルク上限値Tmaxを引き上げてトルク制限から復帰させる際の復帰の度合いを設定するために用いるパラメータであり、図8のトルク制限量設定処理ルーチンに基づいて設定される。このトルク制御量設定処理ルーチンは、図3に例示したスリップ状態判定処理ルーチンのステップS130でスリップ発生フラグF1に値1がセットされたとき(即ち、回転角加速度αが閾値αslipを超えたとき)に実行される。このルーチンでは、回転角センサ22により検出された回転角θに基づいて算出されたモータ回転数Nmを入力し、入力したモータ回転数Nmに基づいて回転角加速度αを計算し、回転角加速度αが閾値αslipを超えた時点からの回転角加速度αの時間積分値αintを計算する処理を回転角加速度αが閾値αslip未満になるまで繰り返す(ステップS330〜S336)。回転角加速度αの時間積分値αintの計算は、実施例では、次式(2)を用いて行なうものとした。ここで、Δtは本ルーチンのステップS330〜S336の繰り返しの実行時間間隔であり、実施例では8msecである。
【0033】
【数2】
αint←αint+(α−αslip)・Δt  (2)
【0034】
そして、回転角加速度αが閾値αslip未満となると、計算した時間積分値αintに所定の係数k2を乗じてトルク制限量δ1を設定して(ステップS338)、本ルーチンを終了する。なお、このルーチンでは、トルク制限量δ1は、所定の係数k2を用いて計算により求めたが、トルク上限値Tmaxと時間積分値αintとの関係を示すマップを用意しておき、計算された時間積分値αintからマップを適用して導出するものとしても構わない。
【0035】
こうして設定されたトルク制限量δ1を入力すると、トルク制限量δ1を解除する解除要求を入力し(ステップS312)、解除要求があったか否かを判定する(ステップS314)。この処理は、トルク制限からの復帰の度合いを設定する際に用いるパラメータであるトルク制限量δ1を解除(復帰の度合いを徐々に大きく)するための要求の入力があったか否かを判定する処理であり、実施例では、本ルーチンが最初に実行されてから所定の待機期間が経過する度にゼロから一定の増加量だけ増加していくように設定される解除量Δδ1による解除の要求が入力されるものとした。なお、この待機期間や解除量Δδ1の増加量は、運転者自らによる解除の要求、例えば、運転者が欲するトルクの出力要求を表わすアクセル開度の大きさに応じて変更するものとしても構わない。解除要求が判定されると、ステップS310で入力したトルク制限量δ1から解除量Δδ1を減じてトルク制限量δ1を解除する(ステップS316)。解除要求が無いと判定されたとき、即ち本ルーチンの実行が開始されてから前述の所定の待機期間が経過するまでは、トルク制限量δ1の解除は行なわれない。
【0036】
続いて、トルク制限量δ1に基づいてモータ12が出力できるトルクの上限であるトルク上限値Tmaxを前述した図7のトルク上限値設定マップを用いて設定する(ステップS318)。こうして設定されたトルク上限値Tmaxは、モータ要求トルクTm*の制限に用いられるから、回転角加速度αの時間積分値に応じて設定されたトルク制限量δ1に基づいてトルク上限値Tmaxを設定することにより、発生したスリップが収束したときに、発生したスリップの状況に応じて適切な量のトルクを復帰させることができる。即ち、回転角加速度αの時間積分値が大きく、再スリップが発生しやすい状況では、スリップが収束したときに復帰させるトルクを低くし、回転角加速度αの時間積分値が小さく、再スリップが発生しにくい状況では、スリップが収束したときに復帰させるトルクを高くすることにより、過剰なトルクの制限を伴うことなくより確実に再スリップの発生を防止することができるのである。なお、スリップ収束時の処理では、トルク上限値Tmaxを設定した後に、トルク制限量δ1の値0以下に解除されたか否かを判定し(ステップS320)、値0以下に解除されたときにはスリップ発生フラグF1とスリップ収束フラグF2とを値0にリセットして(ステップS322)、スリップ抑制処理を終了させる。
【0037】
いま、運転者がアクセルペダル33を踏み込んで電気自動車10を発進させるときを考える。駆動輪18a,18bの空転によるスリップが生じないときには、図2に例示したモータ駆動制御ルーチンにおけるステップS108の加速度管理処理が実行されるから、発進時は車速Vが値0であることから運転者のアクセルペダル33の踏み込み量に対応したアクセル開度Accによって設定される目標加速度Vα*で電気自動車10が加速するようモータ12が制御される。発進時あるいはこうした加速度管理処理により加速途中に駆動輪18a,18bの空転によるスリップが生じると、加速度管理処理に優先してスリップ抑制処理が実行されるから、アクセル開度Accに基づいて設定されたモータ要求トルクTm*が回転角加速度αやトルク制限量δ1に基づいて設定されるトルク上限値Tmaxによって制限され、スリップを迅速に収束させると共に再スリップを抑制する。こうしたスリップ抑制処理が終了すると、スリップ発生フラグF1およびスリップ収束フラグF2に値0が設定されるから、再び加速度管理処理によってモータ12が駆動制御される。
【0038】
以上説明した実施例の電気自動車10によれば、搭乗人数や積載量,路面の勾配などに拘わらずアクセル開度Accと車速Vとに基づいて設定された目標加速度Vα*で電気自動車10を加速させる加速度管理処理と、駆動輪18a,18bの空転によるスリップを迅速に収束させると共に再スリップを抑制するスリップ抑制処理とを併用しても、スリップが生じたときにはスリップ抑制処理を加速度管理処理に優先させて実行するから、両処理が干渉することを防止することができる。この結果、両処理が干渉することによって生じ得る運転者の運転フィーリングの悪化を抑止し、運転者の運転フィーリングを良好に保つことができる。
【0039】
実施例の電気自動車10では、加速度管理処理として車両加速度Vαがアクセル開度Accに対応した目標加速度Vα*となるようオフセット開度Aostを設定してアクセル開度Accに加えて加速度管理用開度Adrvを計算し、この加速度管理用開度Adrvに基づいて設定されるモータ要求トルクTm*によりモータ12を駆動制御するものとしたが、アクセルペダル33の踏み込み量に対応したアクセル開度Accにアクセルペダル33の操作速度を反映した補正開度Aacmを加えて加速度管理用開度Adrvを計算し、この加速度管理用開度Adrvに基づいて設定されるモータ要求トルクTm*によりモータ12を駆動制御するものとしてもよい。この場合、補正開度Aacmは、アクセルペダル33の操作速度が大きいほど大きな値が設定されることが好ましい。
【0040】
実施例の電気自動車10では、スリップ抑制制御の際にトルク制限量δ1を回転角加速度αの時間積分値として設定したが、回転角加速度αのピーク値αpeakにより設定するものとしてもよい。また、トルク制限量δ1を回転角加速度αが閾値αslipを上回ってから値0を下回るまでを積分区間として積分演算したものを用いるものとしたり、回転角加速度αが閾値αslipを上回ってから所定期間経過時までを積分区間として積分演算したものを用いるものとしても構わない。
【0041】
実施例の電気自動車10では、加速度管理処理とスリップ抑制処理とを併用するものとしたが、アクセル開度に基づく駆動力に制限を加えた駆動力が駆動軸に出力されるよう電動機を駆動制御するものであれば、スリップ抑制処理に代えて用いることができる。
【0042】
実施例では、駆動輪18a,18bに接続された駆動軸に直接的に動力の出力が可能に機械的に接続されたモータ12を備える電気自動車10について説明したが、駆動軸や車軸に直接的に動力の出力が可能な電動機を備える車両であれば、如何なる構成の車両に適用するものとしても構わない。例えば、エンジンと、エンジンの出力軸に接続されたジェネレータと、ジェネレータからの発電電力を充電するバッテリと、駆動輪に接続された駆動軸に機械的に接続されバッテリからの電力の供給を受けて駆動するモータとを備えるいわゆるシリーズ型のハイブリッド自動車に適用するものとしてもよい。この場合、モータは駆動軸に取り付けられる必要はなく、車軸に取り付けるものとしてもよいし、いわゆるホイールインモータのように駆動輪に直接取り付けるものとしてもよい。また、図19に示すように、エンジン111と、エンジン111に接続されたプラネタリギヤ117と、プラネタリギヤ117に接続された発電可能なモータ113と、同じくプラネタリギヤ117に接続されると共に駆動輪に接続された駆動軸に直接動力が出力可能に駆動軸に機械的に接続されたモータ112とを備えるいわゆる機械分配型のハイブリッド自動車110に適用することもできるし、図10に示すように、エンジンの211の出力軸に接続されたインナーロータ213aと駆動輪218a,218bに接続された駆動軸に取り付けられたアウターロータ213bとを有しインナーロータ213aとアウターロータ213bとの電磁的な作用により相対的に回転するモータ213と、駆動軸に直接動力が出力可能に駆動軸に機械的に接続されたモータ212と備えるいわゆる電気分配型のハイブリッド自動車210に適用することもできる。図11に示すように、駆動輪318a,318bに接続された駆動軸に変速機314(無段変速機や有段の自動変速機など)を介して接続されたエンジン311と、エンジン311の後段であって駆動軸に変速機314を介して接続されたモータ312(または駆動軸に直接接続されたモータ)とを備えるハイブリッド自動車310に適用することもできる。このとき、駆動輪にスリップが発生したときの制御としては、トルクの出力応答性などから主に駆動軸に機械的に接続されたモータを制御することにより駆動軸に出力されるトルクを制限するが、このモータの制御と協調して他のモータを制御したりエンジンを制御したりするものとしてもよい。また、加速度管理処理についてはモータの駆動制御とエンジンの運転制御とを協調して行なうものとしてもよい。
【0043】
実施例では、加速度管理処理とスリップ抑制処理を併用する電気自動車10として説明したが、こうした電気自動車10の制御装置とした態様としてもよいし、電気自動車10の制御方法とした態様としてもよい。
【0044】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の一実施例である電気自動車10の構成の概略を示す構成図である。
【図2】実施例の電子制御ユニット40により実行されるモータ駆動制御ルーチンの一例を示すフローチャートである。
【図3】スリップ状態判定処理ルーチンの一例を示すフローチャートである。
【図4】加速度管理制御ルーチンの一例を示すフローチャートである。
【図5】要求トルク設定マップの一例を示す説明図である。
【図6】スリップ抑制制御ルーチンの一例を示すフローチャートである。
【図7】トルク上限値設定マップの一例を示すフローチャートである。
【図8】トルク制限量設定処理ルーチンの一例を示すフローチャートである。
【図9】ハイブリッド型の自動車110の構成の概略を示す構成図である。
【図10】ハイブリッド型の自動車210の構成の概略を示す構成図である。
【図11】ハイブリッド型の自動車310の構成の概略を示す構成図である。
【符号の説明】
10,110,210,310 電気自動車、12,112,212,312モータ、14,114 インバータ回路、16 バッテリ、18a,18b,118a,118b,218a,218b,318a,318b 駆動輪、19a,19b,119a,119b,219a,219b,319a,319b 従動輪、22 回転角センサ、24 車速センサ、26a,26b,28a,28b 車輪速センサ、31 シフトレバー、32 シフトポジションセンサ、33 アクセルペダル、34 アクセルポジションセンサ、35 ブレーキペダル、36 ブレーキペダルポジションセンサ、40 電子制御ユニット、42 CPU、44 ROM、46 RAM、111,211,311 エンジン、113 モータ、117 プラネタリギア,213a インナーロータ、213b アウターロータ、213 モータ、314 変速機。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle and a control device for the vehicle, and more particularly to a vehicle capable of outputting at least a part of a driving force based on an accelerator opening from a motor to a drive shaft connected to drive wheels, and a control device for the vehicle.
[0002]
[Prior art]
Conventionally, as this type of vehicle, an electric vehicle that drives and controls a motor attached to a drive shaft so as to have a constant acceleration or deceleration with respect to an operation amount of an accelerator has been proposed (for example, see Patent Document 1). ). In this electric vehicle, a load inertia estimated value and a load torque estimated value are calculated based on a motor rotation speed and a torque command value from an accelerator, and based on the load inertia estimated value, the load torque estimated value, and the torque command value. By driving and controlling the motor, the vehicle acceleration is set to an acceleration corresponding to the operation amount of the accelerator.
[0003]
On the other hand, the applicant discloses a technique for limiting the torque output from a motor when the rotational angular acceleration of a driving wheel exceeds a predetermined threshold value in order to suppress slippage due to idling of the driving wheel (Patent Document 1). 2).
[0004]
[Patent Document 1]
JP-A-9-37416 (pages 2-3, FIG. 1)
[Patent Document 2]
JP 2001-295676 A
[0005]
[Problems to be solved by the invention]
However, when the control for achieving the acceleration corresponding to the accelerator operation amount and the control for suppressing the slip are used together, mutual interference may occur. Such control interference impairs the driver's driving feeling.
[0006]
An object of the present invention is to avoid interference between control relating to the accelerator opening and vehicle acceleration and control for suppressing slippage. Another object of the present invention is to improve the driving feeling of a driver and a vehicle of the present invention.
[0007]
[Means for Solving the Problems and Their Functions and Effects]
The vehicle and the vehicle control device according to the present invention employ the following means in order to achieve at least a part of the above-described object.
[0008]
The control device for an automobile according to the present invention includes:
A control device for a vehicle capable of outputting at least a part of a driving force based on an accelerator opening to a driving shaft connected to driving wheels from a prime mover,
An acceleration management control that drives and controls the prime mover so as to be in a state of acceleration or deceleration of the vehicle corresponding to an accelerator operation state, and a driving force in which a driving force based on an accelerator opening is limited is output to the driving shaft. The gist is that the driving force limiting control for controlling the driving of the prime mover is executed with priority given to one control over the other control based on a predetermined condition.
[0009]
In the vehicle control device according to the present invention, the prime mover capable of outputting at least a part of the driving force based on the accelerator opening to the drive shaft connected to the drive wheels is set to the vehicle acceleration state corresponding to the accelerator operation state. Based on a predetermined condition, while controlling by an acceleration management control for controlling the driving and a driving force limiting control for controlling the driving of the prime mover such that a driving force obtained by adding a restriction to the driving force based on the accelerator opening is output to the driving shaft. One of the two controls is executed prior to the other control. Therefore, interference between the acceleration management control and the driving force restriction control can be prevented. As a result, the driving feeling of the driver can be improved. Here, an electric motor is suitable as the “motor”.
[0010]
In the control device for an automobile according to the present invention, the driving force limiting control is a control for suppressing a slip caused by idling of the driving wheel, the predetermined condition is occurrence of a slip due to idling of the driving wheel, and the one control And the acceleration management control may be executed as the other control. In this case, the driving force limiting control can be applied to the control for suppressing the slip.
[0011]
In the vehicle control device according to the aspect of the present invention, in which the slip control is performed as the driving force limiting control, the driving force limiting control is a control that limits the driving force based on a rotational angular acceleration of the drive shaft. It can be. In this case, the driving force can be limited according to the rotational angular velocity of the driving shaft. In the vehicle control device according to the aspect of the present invention, the driving force restriction control may be a control that restricts the driving force with a driving force upper limit value that tends to decrease as the rotation angular acceleration of the driving shaft increases. it can. In this way, slip due to idling of the drive wheels can be quickly converged.
[0012]
In the vehicle control device of the present invention, the acceleration management control may be control for increasing or decreasing the driving force based on the accelerator opening so that the vehicle acceleration becomes a target acceleration corresponding to the accelerator opening. Alternatively, the control may be such that the driving force based on the operation amount and the operation speed of the accelerator is output to the drive shaft.
[0013]
The automobile of the present invention
A motor capable of outputting at least a part of the driving force based on the accelerator opening to a drive shaft connected to the drive wheels,
The vehicle control device of the present invention according to any one of the above-described embodiments, in which the electric motor is drive-controlled as the prime mover,
The gist is to provide
[0014]
Since the vehicle of the present invention includes the vehicle control device of the present invention according to any one of the above-described embodiments, the effects of the vehicle control device of the present invention, such as interference between acceleration management control and driving force limiting control, can be reduced. The same effect as the effect that can be prevented and the effect that can improve the driving feeling of the driver as a result can be obtained.
[0015]
Such an automobile according to the present invention may be provided with an internal combustion engine and power conversion supply means capable of converting at least a part of the power from the internal combustion engine into electric power and supplying electric power to the electric motor. In this case, the internal combustion engine may be connected to the drive shaft so as to output power.
[0016]
In the vehicle of the present invention having such an internal combustion engine, the acceleration management control may be a control for performing a cooperative operation between the operation control of the internal combustion engine and the drive control of the electric motor. In this case, the vehicle can be brought into an acceleration state corresponding to the accelerator operation state by the power from the internal combustion engine and the power from the electric motor.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram schematically showing the configuration of an electric vehicle 10 according to one embodiment of the present invention. As shown, the electric vehicle 10 according to the embodiment includes a motor 12 capable of outputting power to a drive shaft connected to drive wheels 18a and 18b using electric power supplied from a battery 16 via an inverter circuit 14. And an electronic control unit 40 for controlling the entire vehicle.
[0018]
The motor 12 is configured, for example, as a well-known synchronous generator motor that functions as a motor and also functions as a generator, and the inverter circuit 14 converts a plurality of power from the battery 16 into power suitable for driving the motor 12. It is composed of switching elements.
[0019]
The electronic control unit 40 is configured as a microprocessor having a CPU 42 as a center. In addition to the CPU 42, a ROM 44 storing a processing program, a RAM 46 temporarily storing data, an input / output port (not shown), Is provided. The electronic control unit 40 includes a rotation angle θ of the rotation shaft of the motor 12 detected by the rotation angle sensor 22 attached to the drive shaft, a vehicle speed V of the electric vehicle 10 detected by the vehicle speed sensor 24, and a wheel speed sensor. The shift from a shift position sensor 32 for detecting the wheel speeds Vf1 and Vf2 of the drive wheels 18a and 18b, the wheel speeds Vr1 and Vr2 of the driven wheels 19a and 19b, and the position of the shift lever 31 detected by 26a, 26b, 28a and 28b. Accelerator opening Acc from an accelerator pedal position sensor 34 that detects the accelerator pedal position Acc in accordance with the position and the amount of depression of an accelerator pedal 33, the amount of brake depression from a brake pedal position sensor 36 that detects the amount of depression of a brake pedal 35, etc. Is input via the input port The electronic control unit 40 outputs a switching control signal to a switching element of the inverter circuit 14 for controlling the driving of the motor 12 through an output port.
[0020]
Next, the operation of the electric vehicle 10 of the embodiment thus configured, in particular, the vehicle acceleration management control performed based on the operation state of the accelerator pedal 33 and the slip suppression control for suppressing the slip due to the idling of the drive wheels 18a and 18b. The operation at the time of drive control of the motor 12 using the combination of the above will be described. FIG. 2 is a flowchart illustrating an example of a motor drive control routine executed by the electronic control unit 40 according to the embodiment. This routine is repeatedly executed every predetermined time (for example, every 8 msec).
[0021]
When the motor drive control routine is executed, the CPU 42 of the electronic control unit 40 first determines the accelerator opening degree Acc from the accelerator pedal position sensor 34, the vehicle speed V from the vehicle speed sensor 24, and the rotation angle θ of the rotation angle sensor 22. A process for inputting the motor rotation speed Nm calculated as described above is executed (step S100). Here, in the embodiment, the vehicle speed V used is the one detected by the vehicle speed sensor 24, but is calculated from the wheel speeds Vf1, Vf2, Vr1, Vr2 detected by the wheel speed sensors 26a, 26b, 28a, 28b. It does not matter.
[0022]
Subsequently, the rotational angular acceleration α is calculated based on the input motor rotational speed Nm (step S102). Here, in the embodiment, the calculation of the rotational angular acceleration α is to subtract the previous rotational speed Nm input in the previous process from the current rotational speed Nm input in the present process (current rotational speed Nm−previous rotational speed Nm). It was performed by the following. When the unit of the rotational angular acceleration α is the unit of the rotational speed Nm in terms of the rotational speed per minute [rpm], in the embodiment, the execution time interval of this processing is 8 msec, so that [rpm / 8 msec] It becomes. Of course, any unit may be adopted as long as it can be expressed as the rate of change of the rotational speed with time. In order to reduce the error, the rotational angular acceleration α and the wheel speed difference ΔV are respectively the average of the rotational angular acceleration and the wheel speed difference calculated over the past several times (for example, three times) from the current routine. The average may be used.
[0023]
When the rotational angular acceleration α is calculated in this way, the slip state of the drive wheels 18a and 18b is determined based on the calculated rotational angular acceleration α (step S104). The determination of the slip state is performed based on the slip state determination processing routine of FIG. In this slip state determination processing routine, it is determined whether or not the calculated rotational angular acceleration α exceeds a threshold value αslip that can be regarded as causing slip due to idling (step S120). If it exceeds αslip, it is determined that a slip has occurred in the drive wheels 18a and 18b, a slip occurrence flag F1 indicating the occurrence of the slip is set to a value of 1 (step S130), and this routine ends. On the other hand, when the rotation angular acceleration α does not exceed the threshold αslip, the value of the slip occurrence flag F1 is checked (step S124). When the slip occurrence flag F1 has a value of 1, the rotation angular acceleration α is a negative value and Is determined to have continued for a predetermined time (step S126). If it is determined that the rotational angular acceleration α is a negative value and has continued for a predetermined time, the slip generated on the drive wheels 18a and 18b converges. Then, the value 1 is set to the slip convergence flag F2 (step S128), and the routine ends. When it is determined that the slip occurrence flag F1 has the value 1 and the rotational angular acceleration α is not a negative value, or when it is determined that the rotational angular acceleration α has a negative value but does not continue for a predetermined time. Then, it is determined that the slip that has occurred has not yet converged, and the routine ends as it is.
[0024]
When the slip occurrence flag F1 or the slip convergence flag F2 is set by the slip state determination processing, one of the acceleration management processing and the slip suppression processing is executed based on the value of the slip occurrence flag F1 (step S106) ( (Steps S108 and S110), the drive of the motor 12 is controlled using the required motor torque Tm * set in the acceleration management process and the slip suppression process (step S112), and the motor drive control routine ends. It should be noted that the determination in step S106 is to determine the grip traveling in which slippage due to idling of the drive wheels 18a and 18b has not occurred when the slip occurrence flag F1 has the value 0, and when the slip occurrence flag F1 has the value 1 This is to determine the slip running when the slip caused by the idling of the drive wheels 18a and 18b occurs. As described above, if no slip occurs due to idling of the drive wheels 18a and 18b, the acceleration management processing is executed. If a slip occurs, the slip suppression processing is performed in place of the acceleration management processing, in other words, in preference to the acceleration management processing. Do it. Hereinafter, the acceleration management processing and the slip suppression processing will be described.
[0025]
In the embodiment, the acceleration management process is performed by an acceleration management control routine illustrated in FIG. In this routine, first, a target acceleration Vα * is set based on the accelerator opening Acc and the vehicle speed V (step S200). In the embodiment, the target acceleration Vα * is determined in advance in a relationship between the accelerator opening Acc, the vehicle speed V, and the target acceleration Vα * and stored in the ROM 44 as a target acceleration setting map, and the accelerator opening Acc and the vehicle speed V are determined. When given, it is set by deriving the corresponding target acceleration Vα * from the map. In the target acceleration setting map of the embodiment, the target acceleration Vα * is adjusted to increase as the accelerator opening Acc increases, and the target acceleration Vα * decreases as the vehicle speed V increases.
[0026]
Subsequently, the vehicle acceleration Vα is calculated based on the deviation between the previous value and the current value of the vehicle speed V input each time the routine of FIG. 2 is executed (step S202), and the set target acceleration Vα * is calculated. The offset opening Aost is set by the following equation (1) based on the deviation from the vehicle acceleration Vα (step S204). The offset opening Aost is set as an opening for correcting the accelerator opening Acc in order to cancel the deviation between the set target acceleration Vα * and the vehicle acceleration Vα. Note that k1 in the equation (1) is a proportionality constant, and the offset opening Aost is set to a value 0 as an initial value.
[0027]
(Equation 1)
Aost ← Aost + k1 · (Vα * −Vα) (1)
[0028]
Then, the set offset opening Aost is added to the accelerator opening Acc to calculate an acceleration management opening Adrv (step S206), and a motor required torque Tm * is set based on the acceleration management opening Adrv ( Step S208), this routine ends. In the embodiment, the setting of the required motor torque Tm * is determined in advance in the ROM 44 as a required torque setting map by previously obtaining the relationship between the acceleration management opening Adrv or the accelerator opening Acc, the vehicle speed V, and the required motor torque Tm *. When the acceleration management opening Adrv or the accelerator opening Acc and the vehicle speed V are given, the corresponding motor required torque Tm * is derived from the map. FIG. 5 shows an example of the required torque setting map.
[0029]
The motor required torque Tm * thus set is used for drive control of the motor 12 in step S112 of the motor drive control routine of FIG. In the acceleration management process, the motor 12 is controlled to drive by setting the required motor torque Tm * such that the deviation between the target acceleration Vα * set based on the accelerator opening Acc and the vehicle acceleration Vα is canceled out. If the driver's depression amount of the accelerator pedal 33 (accelerator opening Acc) is the same, the electric vehicle 10 can be accelerated at the same acceleration regardless of the number of passengers, the load amount, the road surface gradient, etc. of the electric vehicle 10. it can.
[0030]
In the embodiment, the slip suppression process is performed by a slip suppression control routine illustrated in FIG. In this routine, first, a setting process of the required motor torque Tm * is performed based on the accelerator opening Acc (step S300). The setting of the motor required torque Tm * is performed using the required torque setting map exemplified in FIG. 5 described above. Subsequently, the value of the slip convergence flag F2 is checked. If the value of the slip convergence flag F2 is 0, the torque upper limit value Tmax is set by the processing of steps S304 to S308 as the processing when the slip occurs, and the value of the slip convergence flag F2 is set to 1 In the case of, the torque upper limit value Tmax is set by the processes of steps S310 to S322 as the process at the time of slip convergence, and the torque is limited so that the motor required torque Tm * becomes equal to or less than the set torque upper limit value Tmax (steps S324 and S326). ), And terminate this routine.
[0031]
The setting of the torque upper limit value Tmax by the processing at the time of occurrence of slip determines whether the rotational angular acceleration α exceeds the peak value αpeak (step S304), and when the rotational angular acceleration α exceeds the peak value αpeak, the peak value αpeak is set. Is updated to the peak value αpeak (step S306), and the torque upper limit value Tmax is set based on the updated or non-updated peak value αpeak (step S308). Here, the peak value αpeak is basically the value of the rotational angular acceleration when the rotational angular acceleration α increases due to slip and shows a peak, and the value 0 is set as an initial value. Therefore, the peak value αpeak is sequentially updated to the value of the rotation angular acceleration α until the rotation angular acceleration α reaches the peak, and when the rotation angular acceleration α reaches the peak, the rotation angular acceleration α Is fixed as the peak value αpeak. The setting of the torque upper limit value Tmax is performed using the torque upper limit value setting map illustrated in FIG. As shown in the map, the map has a characteristic that the torque upper limit value Tmax decreases as the peak value αpeak of the rotational angular acceleration increases. Therefore, as the rotational angular acceleration α increases and the peak value αpeak increases, that is, as the degree of slip increases, a smaller value is set as the torque upper limit value Tmax. Since the torque upper limit value Tmax set in this way is used to limit the motor required torque Tm *, the torque output from the motor 12 is limited. By setting the torque upper limit value Tmax based on the peak value αpeak of the rotational angular acceleration α in this manner, the generated slip can be quickly suppressed.
[0032]
The setting of the torque upper limit value Tmax by the process at the time of slip convergence is first performed from the process of inputting the torque limit amount δ1 (the unit is [rpm / 8 msec] of the same unit as the rotational angular acceleration) (step S310). Here, the torque limit amount δ1 is used to set the degree of return when returning from the torque limit by raising the torque upper limit value Tmax set corresponding to the peak value αpeak of the rotational angular acceleration in the process when a slip occurs. Are set based on the torque limit amount setting processing routine of FIG. This torque control amount setting processing routine is performed when the value 1 is set to the slip occurrence flag F1 in step S130 of the slip state determination processing routine illustrated in FIG. 3 (that is, when the rotational angular acceleration α exceeds the threshold αslip). Is executed. In this routine, the motor rotation speed Nm calculated based on the rotation angle θ detected by the rotation angle sensor 22 is input, the rotation angular acceleration α is calculated based on the input motor rotation speed Nm, and the rotation angular acceleration α Is repeated until the rotation angular acceleration α becomes less than the threshold αslip (steps S330 to S336). In the embodiment, the calculation of the time integral value αint of the rotational angular acceleration α is performed using the following equation (2). Here, Δt is an execution time interval of repetition of steps S330 to S336 of this routine, and is 8 msec in the embodiment.
[0033]
(Equation 2)
αint ← αint + (α−αslip) · Δt (2)
[0034]
When the rotational angular acceleration α becomes smaller than the threshold value αslip, the calculated time integral value αint is multiplied by a predetermined coefficient k2 to set a torque limit amount δ1 (step S338), and this routine ends. In this routine, the torque limit amount δ1 is obtained by calculation using a predetermined coefficient k2. However, a map indicating the relationship between the torque upper limit value Tmax and the time integration value αint is prepared, and the calculated time limit amount δ1 is calculated. It may be derived from the integral value αint by applying a map.
[0035]
When the thus set torque limit δ1 is input, a release request for releasing the torque limit δ1 is input (step S312), and it is determined whether a release request has been made (step S314). This process is a process of determining whether or not a request for canceling the torque limit amount δ1, which is a parameter used when setting the degree of return from torque limitation (gradually increasing the degree of return), has been input. In the present embodiment, a release request is input by a release amount Δδ1, which is set so as to increase from zero by a certain increment every time a predetermined standby period elapses after this routine is first executed. It was assumed. The standby period and the increase amount of the release amount Δδ1 may be changed according to the driver's own release request, for example, the magnitude of the accelerator opening indicating the torque output request desired by the driver. . When the release request is determined, the release amount Δδ1 is subtracted from the torque limit amount δ1 input in step S310 to release the torque limit amount δ1 (step S316). When it is determined that there is no cancellation request, that is, until the above-described predetermined standby period elapses after the execution of this routine is started, the torque limit amount δ1 is not canceled.
[0036]
Subsequently, the torque upper limit Tmax, which is the upper limit of the torque that the motor 12 can output based on the torque limit δ1, is set using the above-described torque upper limit setting map in FIG. 7 (step S318). Since the torque upper limit value Tmax set in this way is used for limiting the motor required torque Tm *, the torque upper limit value Tmax is set based on the torque limit amount δ1 set according to the time integral value of the rotational angular acceleration α. Thus, when the generated slip converges, an appropriate amount of torque can be restored according to the state of the generated slip. That is, in a situation where the time integral value of the rotational angular acceleration α is large and re-slip is likely to occur, the torque to be returned when the slip converges is reduced, and the time integral value of the rotational angular acceleration α is small and re-slip occurs. In a difficult situation, by increasing the torque to be returned when the slip has converged, it is possible to more reliably prevent the occurrence of re-slip without excessive torque limitation. In the process at the time of slip convergence, after setting the torque upper limit value Tmax, it is determined whether or not the torque limit value δ1 has been released to a value of 0 or less (step S320). The flag F1 and the slip convergence flag F2 are reset to 0 (step S322), and the slip suppression processing ends.
[0037]
Now, consider a case where the driver depresses the accelerator pedal 33 to start the electric vehicle 10. When the slip due to idling of the drive wheels 18a and 18b does not occur, the acceleration management process of step S108 in the motor drive control routine illustrated in FIG. 2 is executed. The motor 12 is controlled so that the electric vehicle 10 accelerates at the target acceleration Vα * set by the accelerator opening Acc corresponding to the depression amount of the accelerator pedal 33 of the vehicle. If a slip occurs due to idling of the drive wheels 18a and 18b during acceleration or during acceleration due to such acceleration management processing, the slip suppression processing is executed prior to the acceleration management processing, so that the setting is made based on the accelerator opening Acc. The motor required torque Tm * is limited by a torque upper limit value Tmax set based on the rotational angular acceleration α and the torque limit amount δ1, so that the slip is quickly converged and the re-slip is suppressed. When the slip suppression process is completed, the value of 0 is set in the slip occurrence flag F1 and the slip convergence flag F2, so that the drive of the motor 12 is controlled again by the acceleration management process.
[0038]
According to the electric vehicle 10 of the embodiment described above, the electric vehicle 10 is accelerated at the target acceleration Vα * set based on the accelerator opening Acc and the vehicle speed V irrespective of the number of passengers, the load capacity, the road surface gradient, and the like. Even when the acceleration management process to be performed and the slip suppression process for quickly converging the slip caused by the idling of the drive wheels 18a and 18b and suppressing the re-slip are used together, when the slip occurs, the slip suppression process has priority over the acceleration management process. Since the processes are executed, it is possible to prevent interference between the two processes. As a result, the driver's driving feeling, which may be caused by the interference between the two processes, can be suppressed, and the driver's driving feeling can be kept good.
[0039]
In the electric vehicle 10 according to the embodiment, as the acceleration management process, the offset opening Aost is set so that the vehicle acceleration Vα becomes the target acceleration Vα * corresponding to the accelerator opening Acc, and the acceleration management opening is added to the accelerator opening Acc. Adrv is calculated, and the drive of the motor 12 is controlled by the required motor torque Tm * set based on the acceleration control opening Adrv. However, the accelerator opening Acc corresponding to the depression amount of the accelerator pedal 33 is set to the accelerator opening Acc. The acceleration control opening Adrv is calculated by adding the correction opening Aacm reflecting the operation speed of the pedal 33, and the motor 12 is driven and controlled by the required motor torque Tm * set based on the acceleration management opening Adrv. It may be something. In this case, it is preferable that the correction opening Aacm is set to a larger value as the operation speed of the accelerator pedal 33 is higher.
[0040]
In the electric vehicle 10 of the embodiment, the torque limit amount δ1 is set as the time integral value of the rotational angular acceleration α during the slip suppression control, but may be set based on the peak value αpeak of the rotational angular acceleration α. Further, the torque limit amount δ1 may be a value obtained by performing an integration operation from the time when the rotational angular acceleration α exceeds the threshold αslip to the time when the rotational angular acceleration α falls below the value 0, or a predetermined period after the rotational angular acceleration α exceeds the threshold αslip. It is also possible to use a value obtained by performing an integration operation with an integration interval up to the lapse of time.
[0041]
In the electric vehicle 10 according to the embodiment, the acceleration management processing and the slip suppression processing are used together. However, the electric motor is drive-controlled so that a driving force obtained by restricting the driving force based on the accelerator opening is output to the driving shaft. If it does, it can be used instead of the slip suppression processing.
[0042]
In the embodiment, the electric vehicle 10 including the motor 12 mechanically connected to the drive shafts connected to the drive wheels 18a and 18b so that the power can be directly output is described. The present invention may be applied to a vehicle having any configuration as long as the vehicle includes an electric motor capable of outputting power. For example, an engine, a generator connected to an output shaft of the engine, a battery for charging the generated power from the generator, and a supply of power from the battery mechanically connected to a drive shaft connected to drive wheels. The present invention may be applied to a so-called series-type hybrid vehicle including a driving motor. In this case, the motor does not need to be mounted on the drive shaft, but may be mounted on the axle, or may be mounted directly on the drive wheels like a so-called wheel-in motor. As shown in FIG. 19, the engine 111, a planetary gear 117 connected to the engine 111, a motor 113 capable of generating power connected to the planetary gear 117, and also connected to the planetary gear 117 and to driving wheels. The present invention can be applied to a so-called mechanical distribution type hybrid vehicle 110 including a motor 112 mechanically connected to the drive shaft so that power can be directly output to the drive shaft. As shown in FIG. It has an inner rotor 213a connected to the output shaft and an outer rotor 213b attached to the drive shaft connected to the drive wheels 218a and 218b, and relatively rotates by the electromagnetic action of the inner rotor 213a and the outer rotor 213b. Motor 213 and a drive shaft capable of directly outputting power to the drive shaft. Can also be applied to a hybrid vehicle 210 of a so-called electric distribution type comprising a coupled to motor 212. As shown in FIG. 11, an engine 311 connected to a drive shaft connected to drive wheels 318a and 318b via a transmission 314 (such as a continuously variable transmission or a stepped automatic transmission), and a rear stage of the engine 311 However, the present invention can also be applied to a hybrid vehicle 310 including a motor 312 (or a motor directly connected to the drive shaft) connected to the drive shaft via a transmission 314. At this time, when slippage occurs in the drive wheels, the torque output to the drive shaft is limited by mainly controlling the motor mechanically connected to the drive shaft from the output response of the torque and the like. However, other motors or engines may be controlled in cooperation with the control of the motor. In the acceleration management process, the drive control of the motor and the operation control of the engine may be performed in cooperation.
[0043]
In the embodiment, the electric vehicle 10 using both the acceleration management process and the slip suppression process is described. However, the embodiment may be a control device of the electric vehicle 10 or a control method of the electric vehicle 10.
[0044]
As described above, the embodiments of the present invention have been described using the examples. However, the present invention is not limited to these examples, and may be implemented in various forms without departing from the gist of the present invention. Obviously you can get it.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing the configuration of an electric vehicle 10 according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating an example of a motor drive control routine executed by an electronic control unit 40 according to the embodiment.
FIG. 3 is a flowchart illustrating an example of a slip state determination processing routine.
FIG. 4 is a flowchart illustrating an example of an acceleration management control routine.
FIG. 5 is an explanatory diagram showing an example of a required torque setting map.
FIG. 6 is a flowchart illustrating an example of a slip suppression control routine.
FIG. 7 is a flowchart illustrating an example of a torque upper limit value setting map.
FIG. 8 is a flowchart illustrating an example of a torque limit setting process routine;
FIG. 9 is a configuration diagram showing an outline of the configuration of a hybrid type automobile 110.
FIG. 10 is a configuration diagram schematically showing a configuration of a hybrid type automobile 210.
FIG. 11 is a configuration diagram schematically showing a configuration of a hybrid type automobile 310.
[Explanation of symbols]
10, 110, 210, 310 electric vehicles, 12, 112, 212, 312 motors, 14, 114 inverter circuits, 16 batteries, 18a, 18b, 118a, 118b, 218a, 218b, 318a, 318b, driving wheels, 19a, 19b, 119a, 119b, 219a, 219b, 319a, 319b Followed wheel, 22 rotation angle sensor, 24 vehicle speed sensor, 26a, 26b, 28a, 28b Wheel speed sensor, 31 shift lever, 32 shift position sensor, 33 accelerator pedal, 34 accelerator position Sensor, 35 brake pedal, 36 brake pedal position sensor, 40 electronic control unit, 42 CPU, 44 ROM, 46 RAM, 111, 211, 311 engine, 113 motor, 117 planetary gear, 213a inner -Rotor, 213b outer rotor, 213 motor, 314 transmission.

Claims (11)

アクセル開度に基づく駆動力の少なくとも一部を原動機から駆動輪に接続された駆動軸に出力可能な自動車の制御装置であって、
アクセル操作状態に対応する車両の加速または減速の状態となるよう前記原動機を駆動制御する加速度管理制御とアクセル開度に基づく駆動力に制限を加えた駆動力が前記駆動軸に出力されるよう前記原動機を駆動制御する駆動力制限制御とを、所定条件に基づいて一方の制御を他方の制御に優先して実行する自動車の制御装置。
A control device for a vehicle capable of outputting at least a part of a driving force based on an accelerator opening to a driving shaft connected to driving wheels from a prime mover,
An acceleration management control that drives and controls the prime mover so as to be in a state of acceleration or deceleration of the vehicle corresponding to an accelerator operation state, and a driving force in which a driving force based on an accelerator opening is limited is output to the driving shaft. A control device for a vehicle, wherein a driving force limiting control for driving and controlling a prime mover is executed based on a predetermined condition, prioritizing one control over another control.
請求項1記載の自動車の制御装置であって、
前記駆動力制限制御は、前記駆動輪の空転によるスリップを抑制する制御であり、
前記所定条件は、前記駆動輪の空転によるスリップの発生であり、
前記一方の制御として前記駆動力制限制御を実行すると共に前記他方の制御として前記加速度管理制御を実行する
自動車の制御装置。
The vehicle control device according to claim 1,
The driving force limiting control is control for suppressing slip due to idling of the driving wheels,
The predetermined condition is occurrence of slip due to idling of the drive wheel,
A control device for a vehicle that executes the driving force limiting control as the one control and executes the acceleration management control as the other control.
前記駆動力制限制御は、前記駆動軸の回転角加速度に基づいて前記駆動力を制限する制御である請求項2記載の自動車の制御装置。The control device for an automobile according to claim 2, wherein the driving force restriction control is a control for restricting the driving force based on a rotational angular acceleration of the driving shaft. 前記駆動力制限制御は、前記駆動軸の回転角加速度が大きいほど小さい傾向の駆動力上限値をもって駆動力を制限する制御である請求項3記載の自動車の制御装置。4. The control device according to claim 3, wherein the driving force restriction control is a control for restricting the driving force with a driving force upper limit value that tends to be smaller as the rotation angular acceleration of the driving shaft is larger. 前記加速度管理制御は、車両加速度がアクセル開度に対応した目標加速度となるよう前記アクセル開度に基づく駆動力を増減補正する制御である請求項1ないし4いずれか記載の自動車の制御装置。5. The control device for an automobile according to claim 1, wherein the acceleration management control is a control for increasing or decreasing a driving force based on the accelerator opening so that the vehicle acceleration becomes a target acceleration corresponding to the accelerator opening. 前記加速度管理制御は、アクセルの操作量と操作速度に基づく駆動力を前記駆動軸に出力する制御である請求項1ないし4いずれか記載の自動車の制御装置。The vehicle control device according to any one of claims 1 to 4, wherein the acceleration management control is a control that outputs a driving force based on an operation amount and an operation speed of an accelerator to the drive shaft. 電動機を前記原動機として駆動制御する請求項1ないし6いずれか記載の自動車の制御装置。The control device for a motor vehicle according to any one of claims 1 to 6, wherein a drive control of an electric motor is performed as the prime mover. アクセル開度に基づく駆動力の少なくとも一部を駆動輪に接続された駆動軸に出力可能な電動機と、
前記電動機を前記原動機として駆動制御する請求項1ないし6いずれか記載の自動車の制御装置と、
を備える自動車。
A motor capable of outputting at least a part of the driving force based on the accelerator opening to a drive shaft connected to the drive wheels,
The control device for an automobile according to any one of claims 1 to 6, wherein the motor is drive-controlled as the motor.
An automobile equipped with.
請求項8記載の自動車であって、
内燃機関と、
前記内燃機関からの動力の少なくとも一部を電力変換して前記電動機に電力供給可能な電力変換供給手段と、
を備える自動車。
9. The vehicle according to claim 8, wherein
An internal combustion engine,
Power conversion supply means capable of converting at least a part of the power from the internal combustion engine into power and supplying power to the electric motor;
An automobile equipped with.
前記内燃機関は、前記駆動軸に動力を出力可能に接続されてなる請求項9記載の自動車。The vehicle according to claim 9, wherein the internal combustion engine is connected to the drive shaft so as to output power. 前記加速度管理制御は、前記内燃機関の運転制御と前記電動機の駆動制御とを協調して行なう制御である請求項9または10記載の自動車。The vehicle according to claim 9, wherein the acceleration management control is a control that performs operation control of the internal combustion engine and drive control of the electric motor in a coordinated manner.
JP2002257468A 2002-09-03 2002-09-03 Car and controller for car Pending JP2004096939A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002257468A JP2004096939A (en) 2002-09-03 2002-09-03 Car and controller for car
AU2003246164A AU2003246164A1 (en) 2002-09-03 2003-06-30 Vehicle and method of controlling the vehicle
PCT/JP2003/008298 WO2004022379A1 (en) 2002-09-03 2003-06-30 Vehicle and method of controlling the vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257468A JP2004096939A (en) 2002-09-03 2002-09-03 Car and controller for car

Publications (1)

Publication Number Publication Date
JP2004096939A true JP2004096939A (en) 2004-03-25

Family

ID=31972993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257468A Pending JP2004096939A (en) 2002-09-03 2002-09-03 Car and controller for car

Country Status (3)

Country Link
JP (1) JP2004096939A (en)
AU (1) AU2003246164A1 (en)
WO (1) WO2004022379A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142902A (en) * 2004-11-17 2006-06-08 Nissan Motor Co Ltd Hill hold braking force control device of vehicle
KR101393039B1 (en) 2012-05-29 2014-05-27 인하대학교 산학협력단 In-wheel motor by using planetary gear
JP2014525866A (en) * 2011-07-11 2014-10-02 ジャガー ランド ローバー リミテッド Control system, vehicle, and vehicle control method
CN113752853A (en) * 2021-09-14 2021-12-07 湖南三一华源机械有限公司 Vehicle driving antiskid control method and system and vehicle
WO2024048068A1 (en) * 2022-09-01 2024-03-07 本田技研工業株式会社 Vehicle control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400332C (en) * 2004-11-17 2008-07-09 丰田自动车株式会社 Vehicle and its control
CN100400331C (en) * 2004-11-17 2008-07-09 丰田自动车株式会社 Vehicle and its control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2843340B2 (en) * 1988-11-09 1999-01-06 アイシン・エィ・ダブリュ株式会社 Electric vehicle
JPH04150702A (en) * 1990-10-12 1992-05-25 Hitachi Ltd Controller for electric motor vehicle
JPH08182119A (en) * 1994-12-22 1996-07-12 Toyota Motor Corp Control method of traveling motor for electric vehicle
JP3520666B2 (en) * 1996-05-24 2004-04-19 トヨタ自動車株式会社 Hybrid vehicle control device
JP3780568B2 (en) * 1996-07-05 2006-05-31 トヨタ自動車株式会社 Control device for hybrid vehicle
JPH1094110A (en) * 1996-09-17 1998-04-10 Toyota Motor Corp Hybrid vehicle control device
JPH10304514A (en) * 1997-04-24 1998-11-13 Toyota Motor Corp Drive force controlling device for hybrid vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142902A (en) * 2004-11-17 2006-06-08 Nissan Motor Co Ltd Hill hold braking force control device of vehicle
JP4556633B2 (en) * 2004-11-17 2010-10-06 日産自動車株式会社 Vehicle hill hold braking force control device
JP2014525866A (en) * 2011-07-11 2014-10-02 ジャガー ランド ローバー リミテッド Control system, vehicle, and vehicle control method
US9266528B2 (en) 2011-07-11 2016-02-23 Jaguar Land Rover Limited Control system, vehicle and method of controlling a vehicle
KR101393039B1 (en) 2012-05-29 2014-05-27 인하대학교 산학협력단 In-wheel motor by using planetary gear
CN113752853A (en) * 2021-09-14 2021-12-07 湖南三一华源机械有限公司 Vehicle driving antiskid control method and system and vehicle
WO2024048068A1 (en) * 2022-09-01 2024-03-07 本田技研工業株式会社 Vehicle control device

Also Published As

Publication number Publication date
WO2004022379A1 (en) 2004-03-18
AU2003246164A1 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
JP3772809B2 (en) Motor control device and motor control method
KR100614945B1 (en) Vehicle control device, car having the device, and method of controlling the car
JP4696918B2 (en) Vehicle control device
JP4239725B2 (en) Vehicle and vehicle control method
JP3167935B2 (en) Control device for hybrid vehicle
JP4265564B2 (en) Vehicle and control method thereof
JP4120504B2 (en) Vehicle and vehicle control method
JP2004096822A (en) Motor controller, and control method for the motor
JP4377898B2 (en) Control device for hybrid vehicle
JP6075355B2 (en) Automobile
JP3855886B2 (en) Road surface state change estimation device and automobile equipped with the same
US7230393B2 (en) Motor control apparatus and motor control method
JP4089608B2 (en) Car
JP4103505B2 (en) Electric vehicle and control method of electric motor mounted on the same
JP2004096939A (en) Car and controller for car
JP4165439B2 (en) Car
JP5880404B2 (en) Hybrid car
JP6227465B2 (en) Engine control device and hybrid vehicle
JP2004034844A (en) Device and method for controlling torque for vehicle
JP4175207B2 (en) Vehicle and vehicle control method
JP4062197B2 (en) Vehicle and vehicle control method
JP2011093457A (en) Vehicle and control method thereof
JP6740763B2 (en) Automobile
JP2017088029A (en) Hybrid automobile
JP3894049B2 (en) Hybrid vehicle and its control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040721