JP2004092469A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2004092469A
JP2004092469A JP2002253225A JP2002253225A JP2004092469A JP 2004092469 A JP2004092469 A JP 2004092469A JP 2002253225 A JP2002253225 A JP 2002253225A JP 2002253225 A JP2002253225 A JP 2002253225A JP 2004092469 A JP2004092469 A JP 2004092469A
Authority
JP
Japan
Prior art keywords
rotary compression
oil
cylinder
rotary
compression element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002253225A
Other languages
Japanese (ja)
Inventor
Kenzo Matsumoto
松本 兼三
Kazuya Sato
里 和哉
Kentaro Yamaguchi
山口 賢太郎
Kazuaki Fujiwara
藤原 一昭
Masaji Yamanaka
山中 正司
Haruhisa Yamazaki
山崎 晴久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002253225A priority Critical patent/JP2004092469A/en
Priority to TW092121098A priority patent/TWI301188B/en
Priority to ES03019200T priority patent/ES2319513T3/en
Priority to DE60325675T priority patent/DE60325675D1/en
Priority to EP08011095A priority patent/EP1972870A3/en
Priority to DK03019200T priority patent/DK1394479T3/en
Priority to DK08011092.7T priority patent/DK1970646T3/en
Priority to AT08011092T priority patent/ATE534004T1/en
Priority to DE60329725T priority patent/DE60329725D1/en
Priority to EP08011094A priority patent/EP1970645B1/en
Priority to EP03019200A priority patent/EP1394479B1/en
Priority to AT03019200T priority patent/ATE420326T1/en
Priority to AT08011094T priority patent/ATE445814T1/en
Priority to DK08011093.5T priority patent/DK1970644T3/en
Priority to EP08011093A priority patent/EP1970644B1/en
Priority to DE60329795T priority patent/DE60329795D1/en
Priority to EP08011092A priority patent/EP1970646B1/en
Priority to DK08011094.3T priority patent/DK1970645T3/en
Priority to AT08011093T priority patent/ATE446487T1/en
Priority to US10/649,561 priority patent/US6945073B2/en
Priority to CNA2007101541724A priority patent/CN101158516A/en
Priority to CNB031564488A priority patent/CN100498121C/en
Priority to CN 200610056767 priority patent/CN1818390B/en
Priority to KR1020030060069A priority patent/KR101006616B1/en
Publication of JP2004092469A publication Critical patent/JP2004092469A/en
Priority to US11/071,834 priority patent/US7220110B2/en
Priority to US11/071,861 priority patent/US7076968B2/en
Priority to US11/071,835 priority patent/US7013672B2/en
Priority to US11/071,846 priority patent/US7168264B2/en
Priority to US11/071,845 priority patent/US7013664B2/en
Priority to US11/071,548 priority patent/US7051551B2/en
Priority to US11/071,653 priority patent/US7101162B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary compressor capable of minimizing the oil outflow to a refrigeration cycle without reducing the oil quantity supplied to a rotary compression element. <P>SOLUTION: In this rotary compressor 10, an oil sump 100 for separately storing the oil discharged with coolant from a second rotary compression element 34 is formed within a rotary compression mechanism part 18. This oil sump 100 is made to communicate with a sealed container 12 through a return passage 110 having a throttle member 102 (a member having a pore having throttling function). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素と、回転圧縮要素とを備えたロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来この種ロータリコンプレッサ、例えば内部中間圧型の多段圧縮式ロータリコンプレッサでは、第1の回転圧縮要素の吸入ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となり、シリンダの高圧室側の吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸入ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側の吐出ポート、吐出消音室を経て外部の放熱器などに流入する構成とされている(特許第2507047号公報参照)。また、ロータリコンプレッサの密閉容器内の底部はオイル溜めとされ、回転軸の下端に取り付けられたオイルポンプ(給油手段)によりオイル溜めからオイルが吸い上げられ、回転軸や回転圧縮要素内の摺動部に供給されて潤滑とシールを行っていた。
【0003】
【発明が解決しようとする課題】
このようなロータリコンプレッサでは、第2の回転圧縮要素で圧縮された冷媒ガスはそのまま外部に吐出されることになるが、この冷媒ガス中には、第2の回転圧縮要素内の摺動部に供給された前記オイルが混入しており、冷媒ガスと共にこのオイルも外部に吐出されてしまうことになる。そのため、密閉容器内のオイル溜めのオイルが不足してしまい、摺動部の潤滑性能が悪化すると共に、冷凍サイクルの冷媒回路中に当該オイルが多量に流出して冷凍サイクルの性能を悪化させると云う問題も生じていた。また、これを防止するために第2の回転圧縮要素へのオイル供給量を減らしてしまうと、今度は第2の回転圧縮要素の摺動部の循環性に問題が生じる。
【0004】
本発明は、係る技術的課題を解決するために成されたものであり、回転圧縮要素に供給するオイル量を減らさずに、冷凍サイクルへのオイル流出を極力低減することができるロータリコンプレッサを提供することを目的とする。
【0005】
【課題を解決するための手段】
即ち、本発明では、ロータリコンプレッサにおいて、回転圧縮要素内に、当該回転圧縮要素から冷媒と共に吐出されたオイルを分離して貯溜するためのオイル溜めを形成すると共に、このオイル溜めを、絞り機能を有するリターン通路を介して密閉容器内に連通させたので、回転圧縮要素からロータリコンプレッサ外部に吐出されるオイル量を低減することができるようになる。
【0006】
請求項2の発明では、所謂内部中間圧型の多段圧縮式ロータリコンプレッサにおいて、回転圧縮機構部内に、第2の回転圧縮要素から冷媒と共に吐出されたオイルを分離して貯溜するためのオイル溜めを形成すると共に、このオイル溜めを、絞り機能を有するリターン通路を介して密閉容器内に連通させたので、第2の回転圧縮要素からロータリコンプレッサ外部に吐出されるオイル量を低減することができるようになる。
【0007】
請求項3の発明では請求項2の発明に加えて、第2の回転圧縮要素を構成する第2のシリンダと、中間仕切板を介して第2のシリンダ下方に配置され、第1の回転圧縮要素を構成する第1のシリンダと、第1のシリンダの下面を閉塞する第1の支持部材と、第2のシリンダの上面を閉塞する第2の支持部材と、第1の回転圧縮要素の吸込通路とを備え、オイル溜めを、吸込通路以外の部分の第1のシリンダ内に形成したので、スペース効率を向上させることができるようになる。
【0008】
請求項4の発明では請求項3の発明に加えて、第2のシリンダ、中間仕切板及び第1のシリンダを上下に貫通する貫通孔によりオイル溜めを構成したので、オイル溜めを構成するための加工作業性を著しく改善することができるようになる。
【0009】
【発明の実施の形態】
次に、図面に基づき本発明の実施の形態を詳述する。図1は本発明のロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断面図を示している。
【0010】
図1において、実施例のロータリコンプレッサ10は内部中間圧型多段圧縮式ロータリコンプレッサで、このロータリコンプレッサ10は、鋼板からなる円筒状の密閉容器12A、及びこの密閉容器12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで形成されるケースとしての密閉容器12と、この密閉容器12の容器本体12Aの内部空間の上側に配置収納された電動要素14と、この電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34からなる回転圧縮機構部18とにより構成されている。
【0011】
尚、密閉容器12は底部をオイル溜め12Cとする。また、前記容器本体12Aの側面には電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0012】
電動要素14は、密閉容器12の上部空間の内面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の隙間を設けて挿入設置されたロータ24とからなる。そして、このロータ24には鉛直方向に延びる回転軸16が固定されている。
【0013】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、分布巻き方式により巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成されている。
【0014】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ(第2のシリンダ)38、下シリンダ(第1のシリンダ)40と、上下シリンダ38、40内を180度の位相差を有して回転するように回転軸16に設けられた偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する図示しないベーンと、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材(第2の支持部材)54及び下部支持部材(第1の支持部材)56にて構成される。
【0015】
上下シリンダ38、40には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60が設けられている。また、上部支持部材54には、上シリンダ38内で圧縮された冷媒を図示しない吐出ポートから上部支持部材54の凹陥部を壁としてのカバーによって閉塞することにより形成された吐出消音室62が設けられている。即ち、吐出消音室62は当該吐出消音室62を画成する壁としての上部カバー66にて閉塞される。
【0016】
一方、下シリンダ40内で圧縮された冷媒ガスは図示しない吐出ポートから下部支持部材56の電動要素14とは反対側(密閉容器12の底部側)に形成された吐出消音室64に吐出される。この吐出消音室64は、下部支持部材56の電動要素14とは反対側を覆うカップ65にて構成されている。このカップ65は、中心に回転軸16及び回転軸16の軸受けを兼用する下部支持部材56の後述する軸受け56Aが貫通するための孔を有する。
【0017】
この場合、上部支持部材54の中央には軸受け54Aが起立形成されている。又、下部支持部材56の中央には前述する軸受け56Aが貫通形成されており、回転軸16は上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aにて保持されいる。
【0018】
そして、第1の回転圧縮要素32の吐出消音室64と密閉容器12内とは連通路にて連通されており、この連通路は下部支持部材56、上部支持部材54、上部カバー66、上下シリンダ38、40、中間仕切板36を貫通する図示しない孔である。この場合、連通路の上端には中間吐出管121が立設されており、この中間吐出管121から密閉容器12内に中間圧の冷媒が吐出される。
【0019】
また、上部カバー66は第2の回転圧縮要素34の上シリンダ38内部と図示しない吐出ポートにて連通する吐出消音室62を画成し、この上部カバー66の上側には、上部カバー66と所定間隔を存して、電動要素14が設けられている。この上部カバー66は前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されている。
【0020】
尚、密閉容器12内に封入される潤滑油としてのオイルとしては、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等既存のオイルが使用される。
【0021】
また、密閉容器12の容器本体12Aの側面には、上下シリンダ38、40の吸込通路58、60、上シリンダ38の吸込通路58とは反対側、ロータ24の下側(電動要素14の直下)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141の上方に位置する。
【0022】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58と連通する。この冷媒導入管92は密閉容器12の外側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0023】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒導入管96の一端は後述する吐出通路80と連通する。
【0024】
前述した吐出通路80は吐出消音室62と冷媒吐出管96とを連通する通路である。この吐出通路80は後述するオイル溜め100の途中から分岐するかたちで上シリンダ38内に水平方向に形成され、この吐出通路80には前記冷媒吐出管96の一端が挿入接続される。
【0025】
そして、第2の回転圧縮要素34で圧縮されて吐出消音室62内に吐出された冷媒はこの吐出通路80を通って、冷媒吐出管96からロータリコンプレッサ10の外部に吐出される。
【0026】
また、前記オイル溜め100は第2の回転圧縮要素34の吸込通路60と反対側に位置する部分(吸込通路60以外の部分)の下シリンダ40内に形成されている。当該オイル溜め100は、上シリンダ38、中間仕切板36及び下シリンダ40を上下に貫通する孔により構成されている。このオイル溜め100の上端は吐出消音室62に連通し、下端は下部支持部材56により閉塞されている。そして、前記吐出通路80は係るオイル溜め100の上端より少許下がった位置に連通する。
【0027】
また、このオイル溜め100の下端より少許上の位置にはリターン通路110が分岐するかたちで設けられている。このリターン通路110はオイル溜め100から外側(密閉容器12側)に向かって下シリンダ40内に水平方向に形成された孔であり、このリターン通路110内には絞り機能を奏する細孔が形成された絞り部材102が設けられている。これにより、リターン通路110は絞り部材102の細孔を介してオイル溜め100内と密閉容器12内と連通している。そして、オイル溜め100の下部に溜まったオイルは、リターン通路110内の絞り部材102の細孔を通過し、その過程で減圧されて密閉容器12内に流出する。この流出したオイルは密閉容器12内底部のオイル溜め12Cに戻る。
【0028】
このようなオイル溜め100を回転圧縮機構部18内に形成したことにより、第2の回転圧縮要素34で圧縮され、吐出された冷媒ガスとオイルは、吐出消音室62から出た後、オイル溜め100内を流下し、冷媒ガスは吐出通路80に向かい、オイルはそのままオイル溜め100下部に流下することになる。これにより、第2の回転圧縮要素34から冷媒ガスと共に吐出されたオイルは円滑に分離されてオイル溜め100下部に溜まることになるので、ロータリコンプレッサ10の外部に吐出されるオイル量を低減することができるようになり冷凍サイクルの冷媒回路中に当該オイルが多量に流出して冷凍サイクルの性能を悪化させるという不都合を極力防ぐことができるようになる。
【0029】
また、このオイル溜め100に貯留したオイルは絞り部材102を有するリターン通路110にて密閉容器12内底部に形成されたオイル溜め12Cに戻すようにしているので、密閉容器12内のオイルが不足する不都合も回避することができるようになる。
【0030】
総じて、冷媒サイクルの冷媒回路中へのオイル吐出を極力低減することができるようになると共に、密閉容器12内のオイルを円滑に供給することができるようになり、ロータリコンプレッサ10の性能及び信頼性の向上を図ることができるようになる。
【0031】
更に、オイル溜め100を中間仕切板36及び下シリンダ40を上下に貫通する貫通孔にて形成しているので、簡単な構造で、ロータリコンプレッサ10外部へのオイルの流出を極力低減することができるようになる。
【0032】
更にまた、オイル溜め100を下シリンダ40の吸込通路60と反対側に位置する下シリンダ40内に形成したので、スペース効率も向上させることができるようになる。
【0033】
以上の構成で次に動作を説明する。ターミナル20及び図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けられた上下偏心部42、44に嵌合されて上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0034】
これにより、冷媒導入管94及び下シリンダ40に形成された吸込通路60を経由して図示しない吸込ポートから下シリンダ40の低圧室側に吸入された低圧の冷媒は、ローラ48と図示しないベーンの動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない吐出ポート、吐出消音室64、図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0035】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て冷媒導入管92及び上シリンダ38に形成した吸込通路58を経由して図示しない吸込ポートから上シリンダ38の低圧室側に吸入される。吸入された中間圧の冷媒ガスは、ローラ46と図示しないベーンの動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62に吐出される。
【0036】
ここで、第2の回転圧縮要素34で圧縮される冷媒ガス中には第2の回転圧縮要素34に供給されるオイルも混入しており、このオイルも吐出消音室62内に吐出される。そして、吐出消音室62に吐出された冷媒ガスと当該冷媒ガス中に混入したオイルはオイル溜め100に至る。このオイル溜め100に入った後、冷媒ガスは吐出通路80に向かい、オイルは分離して前述の如くオイル溜め100の下部に溜まる。オイル溜め100に溜まったオイルは前述するリターン通路110を経て、絞り部材102内に流入する。この絞り部材102に流入したオイルは、ここで減圧されて、密閉容器12内に流出する。この流出したオイルは密閉容器12の容器本体12Aの壁面や下シリンダ40及び下部支持部材56等の密閉容器12内底部のオイル溜め12Cに戻る。一方、冷媒ガスは吐出通路80から冷媒吐出管96を経てロータリコンプレッサ10の外部に吐出される。
【0037】
このように、回転圧縮機構部18内に、第2の回転圧縮要素34から冷媒ガスと共に吐出されたオイルを分離して貯溜するためのオイル溜め100を形成すると共に、このオイル溜め100を、絞り部材102を有するリターン通路110を介して密閉容器12内に連通させたので、第2の回転圧縮要素34で圧縮された冷媒ガスと共に、ロータリコンプレッサ10の外部に吐出されるオイル量を低減することができるようになる。
【0038】
これにより、冷凍サイクルの冷媒回路中に当該オイルが多量に流出して冷凍サイクルの性能を悪化させるという不都合を極力防ぐことができるようになる。
【0039】
また、オイル溜め100を吸込通路60と反対側に位置する部分の下シリンダ40内に形成したので、スペース効率を向上させることができるようになる。
【0040】
更に、オイル溜め100を中間仕切板36及び上下シリンダ38、40を上下に貫通する貫通孔としたので、簡単な構造で、コンプレッサ外部へのオイルの流出を極力低減することができるようになる。
【0041】
尚、本実施例では第2の回転圧縮要素34の吐出通路80を上シリンダ38内に形成すると共に、この吐出通路80、冷媒吐出管96を経て外部に吐出する構成としたが、これに限らず、第2の回転圧縮要素34の吐出通路80を上部支持部材54内に形成した場合にも本発明は有効である。
【0042】
この場合には、オイル溜め100の上端を吐出消音室62内か、或いは、当該吐出消音室62から出た後の吐出通路80の途中に連通させるとよい。
【0043】
また、本実施例では、リターン通路110を下シリンダ40に設ける構造としたが、これに限らず、下部支持部材56などに形成しても構わない。
【0044】
更に、ロータリコンプレッサを第1及び第2の回転圧縮要素を備えた2段圧縮式ロータリコンプレッサで説明したが、これに限らず、内部低圧型の単段圧縮式ロータリコンプレッサや回転圧縮要素を3段、4段或いはそれ以上の回転圧縮要素を備えた多段圧縮式ロータリコンプレッサに適応しても差し支えない。
【0045】
【発明の効果】
以上詳述した如く本発明によれば、回転圧縮要素内に、当該回転圧縮要素から冷媒と共に吐出されたオイルを分離して貯溜するためのオイル溜めを形成すると共に、このオイル溜めを、絞り機能を有するリターン通路を介して密閉容器内に連通させたので、回転圧縮要素からロータリコンプレッサ外部に吐出されるオイル量を低減することができるようになる。
【0046】
これにより、冷凍サイクルの冷媒回路中に当該オイルが多量に流出して冷凍サイクルの性能を悪化させるという不都合を極力防ぐことができるようになる。
【0047】
また、このオイル溜めに貯留したオイルを絞り機能を有するリターン通路にて密閉容器内に戻すようにしたので、密閉容器内のオイルが不足する不都合も回避することができるようになる。
【0048】
総じて、冷媒サイクルの冷媒回路中へのオイル吐出を極力低減することができるようになると共に、密閉容器内のオイルを円滑に供給することができるようになり、ロータリコンプレッサの性能及び信頼性の向上を図ることができるようになる。
【0049】
請求項2の発明では、所謂内部中間圧型の多段圧縮式ロータリコンプレッサにおいて、回転圧縮機構部内に、第2の回転圧縮要素から冷媒と共に吐出されたオイルを分離して貯溜するためのオイル溜めを形成すると共に、このオイル溜めを、絞り機能を有するリターン通路を介して密閉容器内に連通させたので、ロータリコンプレッサ外部に吐出されるオイル量を低減することができるようになる。
【0050】
これにより、冷凍サイクルの冷媒回路中に当該オイルが多量に流出して冷凍サイクルの性能を悪化させるという不都合を極力防ぐことができるようになる。
【0051】
また、このオイル溜めに貯留したオイルを絞り機能を有するリターン通路にて密閉容器内に戻すようにしたので、密閉容器内のオイルが不足する不都合も回避することができるようになる。
【0052】
総じて、冷媒サイクルの冷媒回路中へのオイル吐出を極力低減することができるようになると共に、密閉容器内のオイルを円滑に供給することができるようになり、ロータリコンプレッサの性能及び信頼性の向上を図ることができるようになる。
【0053】
請求項3の発明では請求項2の発明に加えて、第2の回転圧縮要素を構成する第2のシリンダと、中間仕切板を介して第2のシリンダ下方に配置され、第1の回転圧縮要素を構成する第1のシリンダと、第1のシリンダの下面を閉塞する第1の支持部材と、第2のシリンダの上面を閉塞する第2の支持部材と、第1の回転圧縮要素の吸込通路とを備え、オイル溜めを、吸込通路以外の部分の第1のシリンダ内に形成したので、スペース効率を向上させることができるようになる。
【0054】
請求項4の発明では請求項3の発明に加えて、第2のシリンダ、中間仕切板及び第1のシリンダを上下に貫通する貫通孔によりオイル溜めを構成したので、オイル溜めの加工作業性も改善することができるようになる。
【図面の簡単な説明】
【図1】本発明を適用した実施例の内部中間圧型の多段圧縮式ロータリコンプレッサの縦断面図である。
【符号の説明】
10 ロータリコンプレッサ
12 密閉容器
14 電動要素
16 回転軸
18 回転圧縮機構部
22 ステータ
24 ロータ
26 積層体
28 ステータコイル
30 積層体
32 第1の回転圧縮要素
34 第2の回転圧縮要素
38、40 シリンダ
54 上部支持部材
56 下部支持部材
62、64 吐出消音室
65 カップ
66 上部カバー
80 吐出通路
100 オイル溜め
102 絞り部材
110 リターン通路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotary compressor including an electric element and a rotary compression element in a closed container.
[0002]
[Prior art]
Conventionally, in a rotary compressor of this type, for example, a multi-stage compression type rotary compressor of an internal intermediate pressure type, refrigerant gas is sucked into a low pressure chamber side of a cylinder from a suction port of a first rotary compression element, and is compressed by the operation of a roller and a vane to be compressed. The pressure becomes a pressure, and is discharged into the closed vessel through the discharge port on the high pressure chamber side of the cylinder and the discharge muffling chamber. The intermediate-pressure refrigerant gas in the closed container is drawn into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the operation of the rollers and the vanes, so that the high-temperature and high-pressure refrigerant gas is discharged. It is configured to become gas and flow into an external radiator or the like via a discharge port on the high pressure chamber side and a discharge muffling chamber (see Japanese Patent No. 2507074). The bottom of the rotary compressor in the closed vessel is an oil reservoir, and oil is sucked up from the oil reservoir by an oil pump (oil supply means) attached to a lower end of the rotary shaft, and a sliding portion in the rotary shaft and the rotary compression element is provided. Was supplied to perform lubrication and sealing.
[0003]
[Problems to be solved by the invention]
In such a rotary compressor, the refrigerant gas compressed by the second rotary compression element is discharged to the outside as it is, but in this refrigerant gas, a sliding portion in the second rotary compression element is provided. The supplied oil is mixed, and this oil is discharged to the outside together with the refrigerant gas. Therefore, when the oil in the oil reservoir in the closed container runs short, the lubrication performance of the sliding portion deteriorates, and a large amount of the oil flows out into the refrigerant circuit of the refrigeration cycle to deteriorate the performance of the refrigeration cycle. The problem described above also occurred. Further, if the amount of oil supplied to the second rotary compression element is reduced to prevent this, a problem arises in the circulation of the sliding portion of the second rotary compression element.
[0004]
The present invention has been made in order to solve such technical problems, and provides a rotary compressor capable of reducing oil outflow to a refrigeration cycle as much as possible without reducing the amount of oil supplied to a rotary compression element. The purpose is to do.
[0005]
[Means for Solving the Problems]
That is, in the present invention, in the rotary compressor, an oil reservoir for separating and storing oil discharged together with the refrigerant from the rotary compression element is formed in the rotary compression element, and the oil reservoir is provided with a throttle function. Since it is connected to the inside of the closed vessel via the return passage having the same, the amount of oil discharged from the rotary compression element to the outside of the rotary compressor can be reduced.
[0006]
According to the invention of claim 2, in a so-called internal intermediate pressure type multistage compression type rotary compressor, an oil reservoir for separating and storing oil discharged together with the refrigerant from the second rotary compression element is formed in the rotary compression mechanism. At the same time, since the oil reservoir is communicated with the inside of the closed container via a return passage having a throttle function, the amount of oil discharged from the second rotary compression element to the outside of the rotary compressor can be reduced. Become.
[0007]
According to a third aspect of the present invention, in addition to the second aspect, the second rotary compression element is disposed below the second cylinder via an intermediate partition plate, and the first rotary compression element is disposed below the second cylinder. A first cylinder constituting an element, a first support member for closing a lower surface of the first cylinder, a second support member for closing an upper surface of a second cylinder, and suction of the first rotary compression element Since the oil reservoir is provided in the first cylinder at a portion other than the suction passage, the space efficiency can be improved.
[0008]
According to the fourth aspect of the present invention, in addition to the third aspect of the present invention, the oil reservoir is constituted by the through-hole vertically penetrating the second cylinder, the intermediate partition plate and the first cylinder. Processing workability can be remarkably improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of the rotary compressor of the present invention.
[0010]
In FIG. 1, a rotary compressor 10 of the embodiment is an internal intermediate pressure type multi-stage compression type rotary compressor. The rotary compressor 10 has a cylindrical hermetic container 12A made of a steel plate, and a substantially bowl that closes an upper opening of the hermetic container 12A. A closed container 12 as a case formed by an end cap (lid) 12 </ b> B, an electric element 14 disposed and housed in an upper space of a container body 12 </ b> A of the closed container 12, The rotary compression mechanism 18 includes a first rotary compression element 32 and a second rotary compression element 34 which are arranged on the lower side and driven by the rotary shaft 16 of the electric element 14.
[0011]
The closed container 12 has an oil reservoir 12C at the bottom. A terminal (wiring omitted) 20 for supplying electric power to the electric element 14 is attached to a side surface of the container body 12A.
[0012]
The electric element 14 includes a stator 22 annularly mounted along the inner surface of the upper space of the closed casing 12, and a rotor 24 inserted and installed with a slight gap inside the stator 22. The rotating shaft 16 extending in the vertical direction is fixed to the rotor 24.
[0013]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound by a distributed winding method. The rotor 24 is also formed of a laminated body 30 of electromagnetic steel sheets, like the stator 22.
[0014]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder (second cylinder) 38 disposed above and below the intermediate partition plate 36, and a lower cylinder (second cylinder). And upper and lower rollers 46 that are eccentrically rotated by being fitted to eccentric portions 42 and 44 provided on the rotating shaft 16 so as to rotate the upper and lower cylinders 38 and 40 with a phase difference of 180 degrees. , 48, vanes (not shown) which abut against the upper and lower rollers 46, 48 to partition the inside of the upper and lower cylinders 38, 40 into a low pressure chamber side and a high pressure chamber side, respectively, and an upper opening surface of the upper cylinder 38 and a lower cylinder 40. An upper support member (second support member) 54 and a lower support member (first support member) 56 as a support member that also serves as a bearing for the rotating shaft 16 by closing the lower opening surface.
[0015]
The upper and lower cylinders 38 and 40 are provided with suction passages 58 and 60 that communicate with the insides of the upper and lower cylinders 38 and 40 through suction ports (not shown). The upper support member 54 is provided with a discharge muffling chamber 62 formed by closing the concave portion of the upper support member 54 with a cover as a wall from a discharge port (not shown) of the refrigerant compressed in the upper cylinder 38. Have been. That is, the discharge muffling chamber 62 is closed by the upper cover 66 as a wall defining the discharge muffling chamber 62.
[0016]
On the other hand, the refrigerant gas compressed in the lower cylinder 40 is discharged from a discharge port (not shown) to a discharge muffling chamber 64 formed on the lower support member 56 on the side opposite to the electric element 14 (the bottom side of the sealed container 12). . The discharge muffling chamber 64 is constituted by a cup 65 that covers the lower support member 56 on the side opposite to the electric element 14. The cup 65 has, at the center thereof, a hole through which a bearing 56A, which will be described later, of the lower support member 56, which also serves as the rotating shaft 16 and the bearing of the rotating shaft 16, passes.
[0017]
In this case, a bearing 54 </ b> A is formed upright at the center of the upper support member 54. The bearing 56A described above is formed through the center of the lower support member 56, and the rotating shaft 16 is held by the bearing 54A of the upper support member 54 and the bearing 56A of the lower support member 56.
[0018]
The discharge muffling chamber 64 of the first rotary compression element 32 communicates with the inside of the closed container 12 through a communication passage, which communicates with the lower support member 56, the upper support member 54, the upper cover 66, the upper and lower cylinders. 38, 40, and holes (not shown) penetrating the intermediate partition plate 36. In this case, an intermediate discharge pipe 121 is provided upright at the upper end of the communication path, and an intermediate-pressure refrigerant is discharged from the intermediate discharge pipe 121 into the closed container 12.
[0019]
The upper cover 66 defines a discharge muffling chamber 62 which communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 at a discharge port (not shown). The electric elements 14 are provided at intervals. The upper cover 66 is made of a substantially donut-shaped circular steel plate having a hole through which the bearing 54A of the upper support member 54 penetrates.
[0020]
In addition, as the oil as the lubricating oil enclosed in the closed container 12, for example, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0021]
Further, on the side surface of the container body 12A of the closed container 12, the suction passages 58, 60 of the upper and lower cylinders 38, 40, the side opposite to the suction passage 58 of the upper cylinder 38, and the lower side of the rotor 24 (directly below the electric element 14). The sleeves 141, 142, 143, and 144 are respectively welded and fixed at positions corresponding to. The sleeves 141 and 142 are vertically adjacent to each other, and the sleeve 143 is substantially on a diagonal line of the sleeve 141. The sleeve 144 is located above the sleeve 141.
[0022]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with the suction passage 58 of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the outside of the closed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 and communicates with the inside of the closed container 12.
[0023]
One end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. A refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant introduction pipe 96 communicates with a discharge passage 80 described later.
[0024]
The above-described discharge passage 80 is a passage that connects the discharge muffling chamber 62 and the refrigerant discharge pipe 96. The discharge passage 80 is formed in a horizontal direction in the upper cylinder 38 so as to branch off from the middle of an oil reservoir 100 described later. One end of the refrigerant discharge pipe 96 is inserted and connected to the discharge passage 80.
[0025]
The refrigerant compressed by the second rotary compression element 34 and discharged into the discharge muffling chamber 62 passes through the discharge passage 80 and is discharged from the refrigerant discharge pipe 96 to the outside of the rotary compressor 10.
[0026]
The oil reservoir 100 is formed in the lower cylinder 40 of a portion (a portion other than the suction passage 60) of the second rotary compression element 34 located on the side opposite to the suction passage 60. The oil reservoir 100 is constituted by a hole vertically passing through the upper cylinder 38, the intermediate partition plate 36, and the lower cylinder 40. The upper end of the oil reservoir 100 communicates with the discharge muffling chamber 62, and the lower end is closed by a lower support member 56. The discharge passage 80 communicates with a position slightly lower than the upper end of the oil reservoir 100.
[0027]
At a position slightly above the lower end of the oil reservoir 100, a return passage 110 is provided in a branched shape. The return passage 110 is a hole formed in the lower cylinder 40 in a horizontal direction from the oil reservoir 100 toward the outside (closed container 12 side). In the return passage 110, a fine hole having a throttle function is formed. The aperture member 102 is provided. Thus, the return passage 110 communicates with the inside of the oil reservoir 100 and the inside of the closed container 12 through the fine holes of the throttle member 102. Then, the oil stored in the lower part of the oil reservoir 100 passes through the pores of the throttle member 102 in the return passage 110, and is decompressed in the process and flows out into the closed container 12. The oil that has flowed back to the oil reservoir 12C at the bottom of the closed container 12.
[0028]
By forming such an oil reservoir 100 in the rotary compression mechanism 18, the refrigerant gas and oil compressed by the second rotary compression element 34 and discharged from the discharge silence chamber 62, After flowing down the inside of the oil reservoir 100, the refrigerant gas goes to the discharge passage 80, and the oil flows down the oil reservoir 100 as it is. As a result, the oil discharged together with the refrigerant gas from the second rotary compression element 34 is smoothly separated and stored in the lower portion of the oil reservoir 100, so that the amount of oil discharged to the outside of the rotary compressor 10 can be reduced. Thus, it is possible to prevent as much as possible the disadvantage that a large amount of the oil flows out into the refrigerant circuit of the refrigeration cycle and deteriorates the performance of the refrigeration cycle.
[0029]
Further, the oil stored in the oil reservoir 100 is returned to the oil reservoir 12C formed in the inner bottom of the closed container 12 through the return passage 110 having the throttle member 102, so that the oil in the closed container 12 runs short. Inconvenience can be avoided.
[0030]
In general, the oil discharge into the refrigerant circuit of the refrigerant cycle can be reduced as much as possible, and the oil in the sealed container 12 can be supplied smoothly, so that the performance and reliability of the rotary compressor 10 can be improved. Can be improved.
[0031]
Further, since the oil reservoir 100 is formed by through holes vertically penetrating the intermediate partition plate 36 and the lower cylinder 40, the outflow of oil to the outside of the rotary compressor 10 can be reduced as much as possible with a simple structure. Become like
[0032]
Furthermore, since the oil reservoir 100 is formed in the lower cylinder 40 located on the side opposite to the suction passage 60 of the lower cylinder 40, space efficiency can be improved.
[0033]
Next, the operation of the above configuration will be described. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and the wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 are eccentrically rotated in the upper and lower cylinders 38 and 40 by being fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16.
[0034]
As a result, the low-pressure refrigerant sucked into the low-pressure chamber side of the lower cylinder 40 from the suction port (not shown) via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower cylinder 40 is supplied to the roller 48 and the vane (not shown). The compressed air is compressed to an intermediate pressure by the operation, and is discharged from the high pressure chamber side of the lower cylinder 40 through the discharge port (not shown), the discharge muffling chamber 64, and the communication passage (not shown) from the intermediate discharge pipe 121 into the closed container 12. Thereby, the inside of the sealed container 12 has an intermediate pressure.
[0035]
The intermediate-pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 and passes through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper cylinder 38 to a low-pressure chamber side of the upper cylinder 38 from a suction port (not shown). Inhaled. The sucked intermediate-pressure refrigerant gas is subjected to the second-stage compression by the operation of the roller 46 and a not-shown vane to become a high-temperature and high-pressure refrigerant gas. The liquid is discharged to the formed discharge muffling chamber 62.
[0036]
Here, the oil supplied to the second rotary compression element 34 is mixed in the refrigerant gas compressed by the second rotary compression element 34, and this oil is also discharged into the discharge muffling chamber 62. Then, the refrigerant gas discharged into the discharge muffling chamber 62 and the oil mixed in the refrigerant gas reach the oil reservoir 100. After entering the oil sump 100, the refrigerant gas goes to the discharge passage 80, and the oil separates and accumulates in the lower part of the oil sump 100 as described above. The oil accumulated in the oil reservoir 100 flows into the throttle member 102 via the return passage 110 described above. The oil that has flowed into the throttle member 102 is decompressed here and flows out into the closed container 12. The oil that has flowed back to the oil reservoir 12C at the bottom of the closed container 12 such as the wall surface of the container body 12A of the closed container 12 and the lower cylinder 40 and the lower support member 56. On the other hand, the refrigerant gas is discharged from the discharge passage 80 to the outside of the rotary compressor 10 through the refrigerant discharge pipe 96.
[0037]
As described above, the oil reservoir 100 for separating and storing the oil discharged together with the refrigerant gas from the second rotary compression element 34 is formed in the rotary compression mechanism 18, and the oil reservoir 100 is throttled. Since the fluid is communicated with the closed vessel 12 through the return passage 110 having the member 102, the amount of oil discharged to the outside of the rotary compressor 10 together with the refrigerant gas compressed by the second rotary compression element 34 can be reduced. Will be able to
[0038]
As a result, it is possible to prevent as much as possible the disadvantage that a large amount of the oil flows out into the refrigerant circuit of the refrigeration cycle and deteriorates the performance of the refrigeration cycle.
[0039]
Further, since the oil reservoir 100 is formed in the lower cylinder 40 at a portion located on the side opposite to the suction passage 60, the space efficiency can be improved.
[0040]
Furthermore, since the oil reservoir 100 is formed as a through hole vertically penetrating the intermediate partition plate 36 and the upper and lower cylinders 38 and 40, the outflow of oil to the outside of the compressor can be reduced as much as possible with a simple structure.
[0041]
In this embodiment, the discharge passage 80 of the second rotary compression element 34 is formed in the upper cylinder 38, and the discharge is performed to the outside through the discharge passage 80 and the refrigerant discharge pipe 96. However, the present invention is not limited to this. The present invention is also effective when the discharge passage 80 of the second rotary compression element 34 is formed in the upper support member 54.
[0042]
In this case, the upper end of the oil reservoir 100 may be communicated with the inside of the discharge muffling chamber 62 or the middle of the discharge passage 80 after exiting from the discharge muffling chamber 62.
[0043]
In this embodiment, the return passage 110 is provided in the lower cylinder 40. However, the present invention is not limited to this, and the return passage 110 may be formed in the lower support member 56 or the like.
[0044]
Furthermore, although the rotary compressor has been described as a two-stage compression type rotary compressor having first and second rotary compression elements, the present invention is not limited to this, and an internal low-pressure single-stage compression type rotary compressor or a three-stage rotary compression element may be used. It may be applied to a multi-stage compression type rotary compressor having four or more rotary compression elements.
[0045]
【The invention's effect】
As described above in detail, according to the present invention, an oil reservoir for separating and storing oil discharged together with refrigerant from the rotary compression element is formed in the rotary compression element, and the oil reservoir is provided with a throttle function. Is connected to the inside of the closed vessel via the return passage having the above structure, so that the amount of oil discharged from the rotary compression element to the outside of the rotary compressor can be reduced.
[0046]
As a result, it is possible to prevent as much as possible the disadvantage that a large amount of the oil flows out into the refrigerant circuit of the refrigeration cycle and deteriorates the performance of the refrigeration cycle.
[0047]
In addition, since the oil stored in the oil reservoir is returned to the inside of the sealed container through the return passage having a throttle function, it is possible to avoid a problem that the oil in the sealed container runs short.
[0048]
In general, the oil discharge into the refrigerant circuit of the refrigerant cycle can be reduced as much as possible, and the oil in the closed container can be supplied smoothly, thereby improving the performance and reliability of the rotary compressor. Can be achieved.
[0049]
According to the invention of claim 2, in a so-called internal intermediate pressure type multistage compression type rotary compressor, an oil reservoir for separating and storing oil discharged together with the refrigerant from the second rotary compression element is formed in the rotary compression mechanism. In addition, since the oil reservoir is communicated with the inside of the closed vessel via a return passage having a throttle function, the amount of oil discharged to the outside of the rotary compressor can be reduced.
[0050]
As a result, it is possible to prevent as much as possible the disadvantage that a large amount of the oil flows out into the refrigerant circuit of the refrigeration cycle and deteriorates the performance of the refrigeration cycle.
[0051]
Further, since the oil stored in the oil reservoir is returned to the inside of the sealed container through the return passage having the throttle function, it is possible to avoid the problem of insufficient oil in the sealed container.
[0052]
In general, the oil discharge into the refrigerant circuit of the refrigerant cycle can be reduced as much as possible, and the oil in the closed container can be supplied smoothly, thereby improving the performance and reliability of the rotary compressor. Can be achieved.
[0053]
According to a third aspect of the present invention, in addition to the second aspect, the second rotary compression element is disposed below the second cylinder via an intermediate partition plate, and the first rotary compression element is disposed below the second cylinder. A first cylinder constituting an element, a first support member for closing a lower surface of the first cylinder, a second support member for closing an upper surface of a second cylinder, and suction of the first rotary compression element Since the oil reservoir is provided in the first cylinder at a portion other than the suction passage, the space efficiency can be improved.
[0054]
In the invention of claim 4, in addition to the invention of claim 3, the oil reservoir is constituted by the through-hole vertically penetrating the second cylinder, the intermediate partition plate and the first cylinder. Be able to improve.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multistage compression type rotary compressor according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Rotary compressor 12 Airtight container 14 Electric element 16 Rotary shaft 18 Rotary compression mechanism 22 Stator 24 Rotor 26 Stack 28 Stator coil 30 Stack 32 First rotary compression element 34 Second rotary compression element 38, 40 Cylinder 54 Upper part Support member 56 Lower support members 62 and 64 Discharge muffling chamber 65 Cup 66 Upper cover 80 Discharge passage 100 Oil reservoir 102 Throttle member 110 Return passage

Claims (4)

密閉容器内に電動要素と該電動要素にて駆動される回転圧縮要素とを備え、該回転圧縮要素で圧縮された冷媒を外部に吐出するロータリコンプレッサにおいて、
前記回転圧縮要素内に、当該回転圧縮要素から冷媒と共に吐出されたオイルを分離して貯溜するためのオイル溜めを形成すると共に、該オイル溜めを、絞り機能を有するリターン通路を介して前記密閉容器内に連通させたことを特徴とするロータリコンプレッサ。
A rotary compressor including an electric element and a rotary compression element driven by the electric element in a closed container, and discharging a refrigerant compressed by the rotary compression element to the outside,
In the rotary compression element, an oil reservoir for separating and storing oil discharged together with the refrigerant from the rotary compression element is formed, and the oil reservoir is connected to the closed container via a return passage having a throttle function. A rotary compressor characterized by communicating with the inside.
密閉容器内に電動要素と該電動要素にて駆動される回転圧縮機構部とを備え、該回転圧縮機構部を第1及び第2の回転圧縮要素とから構成し、前記第1の回転圧縮要素で圧縮された冷媒を前記密閉容器内に吐出すると共に、この吐出された中間圧の冷媒を前記第2の回転圧縮要素で圧縮して外部に吐出するロータリコンプレッサにおいて、
前記回転圧縮機構部内に、前記第2の回転圧縮要素から冷媒と共に吐出されたオイルを分離して貯溜するためのオイル溜めを形成すると共に、該オイル溜めを、絞り機能を有するリターン通路を介して前記密閉容器内に連通させたことを特徴とするロータリコンプレッサ。
An electric element and a rotary compression mechanism driven by the electric element are provided in the closed container, and the rotary compression mechanism is composed of first and second rotary compression elements. A rotary compressor that discharges the compressed refrigerant into the closed container and compresses the discharged intermediate-pressure refrigerant with the second rotary compression element and discharges the refrigerant to the outside.
In the rotary compression mechanism, an oil reservoir for separating and storing oil discharged together with the refrigerant from the second rotary compression element is formed, and the oil reservoir is formed via a return passage having a throttle function. A rotary compressor, wherein the rotary compressor is communicated within the closed container.
前記第2の回転圧縮要素を構成する第2のシリンダと、
中間仕切板を介して前記第2のシリンダ下方に配置され、前記第1の回転圧縮要素を構成する第1のシリンダと、
前記第1のシリンダの下面を閉塞する第1の支持部材と、
前記第2のシリンダの上面を閉塞する第2の支持部材と、
前記第1の回転圧縮要素の吸込通路とを備え、
前記オイル溜めを、前記吸込通路以外の部分の前記第1のシリンダ内に形成したことを特徴とする請求項2のロータリコンプレッサ。
A second cylinder constituting the second rotary compression element;
A first cylinder disposed below the second cylinder via an intermediate partition plate and constituting the first rotary compression element;
A first support member for closing a lower surface of the first cylinder,
A second support member for closing an upper surface of the second cylinder;
A suction passage for the first rotary compression element,
The rotary compressor according to claim 2, wherein the oil reservoir is formed in a portion other than the suction passage in the first cylinder.
前記第2のシリンダ、前記中間仕切板及び第1のシリンダを上下に貫通する貫通孔により前記オイル溜めを構成したことを特徴とする請求項3のロータリコンプレッサ。4. The rotary compressor according to claim 3, wherein said oil reservoir is constituted by a through-hole vertically passing through said second cylinder, said intermediate partition plate and said first cylinder.
JP2002253225A 2002-08-30 2002-08-30 Rotary compressor Pending JP2004092469A (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
JP2002253225A JP2004092469A (en) 2002-08-30 2002-08-30 Rotary compressor
TW092121098A TWI301188B (en) 2002-08-30 2003-08-01 Refrigeant cycling device and compressor using the same
DE60329795T DE60329795D1 (en) 2002-08-30 2003-08-25 Compressor with oil accumulator
AT08011093T ATE446487T1 (en) 2002-08-30 2003-08-25 COMPRESSOR WITH OIL ACCUMULATOR
EP08011092A EP1970646B1 (en) 2002-08-30 2003-08-25 Refrigerant cycling device and compressor using the same
DK03019200T DK1394479T3 (en) 2002-08-30 2003-08-25 Refrigerant circuit device and compressor
DK08011092.7T DK1970646T3 (en) 2002-08-30 2003-08-25 Refrigerant circuitry and compressor using the same
AT08011092T ATE534004T1 (en) 2002-08-30 2003-08-25 REFRIGERANT CIRCUIT DEVICE AND COMPRESSOR THEREFOR
DE60329725T DE60329725D1 (en) 2002-08-30 2003-08-25 compressor
EP08011094A EP1970645B1 (en) 2002-08-30 2003-08-25 Compressor
EP03019200A EP1394479B1 (en) 2002-08-30 2003-08-25 Refrigerant cycling device and compressor
AT03019200T ATE420326T1 (en) 2002-08-30 2003-08-25 REFRIGERANT CIRCUIT AND COMPRESSOR
AT08011094T ATE445814T1 (en) 2002-08-30 2003-08-25 COMPRESSOR
DE60325675T DE60325675D1 (en) 2002-08-30 2003-08-25 Refrigerant circuit and compressor
EP08011093A EP1970644B1 (en) 2002-08-30 2003-08-25 Compressor with oil accumulator
ES03019200T ES2319513T3 (en) 2002-08-30 2003-08-25 REFRIGERANT AND COMPRESSOR CYCLING DEVICE.
EP08011095A EP1972870A3 (en) 2002-08-30 2003-08-25 Refrigerant cycling device and compressor using the same
DK08011094.3T DK1970645T3 (en) 2002-08-30 2003-08-25 Compressor
DK08011093.5T DK1970644T3 (en) 2002-08-30 2003-08-25 Compressor with oil collecting chamber
US10/649,561 US6945073B2 (en) 2002-08-30 2003-08-26 Refrigerant cycling device and compressor using the same
CNA2007101541724A CN101158516A (en) 2002-08-30 2003-08-28 Refrigerant cycle device
CNB031564488A CN100498121C (en) 2002-08-30 2003-08-28 Refrigerant cycle device
CN 200610056767 CN1818390B (en) 2002-08-30 2003-08-28 Compressor for use in refrigerant cycle device
KR1020030060069A KR101006616B1 (en) 2002-08-30 2003-08-29 Refrigerant cycling device and compressor using the same
US11/071,834 US7220110B2 (en) 2002-08-30 2005-03-02 Compressor having a throttled-return passage connecting an oil accumulator to a seal container
US11/071,653 US7101162B2 (en) 2002-08-30 2005-03-02 Compressor
US11/071,861 US7076968B2 (en) 2002-08-30 2005-03-02 Refrigerant cycling device
US11/071,835 US7013672B2 (en) 2002-08-30 2005-03-02 Refrigerant cycling device
US11/071,846 US7168264B2 (en) 2002-08-30 2005-03-02 Refrigerant cycling device
US11/071,845 US7013664B2 (en) 2002-08-30 2005-03-02 Refrigerant cycling device
US11/071,548 US7051551B2 (en) 2002-08-30 2005-03-02 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253225A JP2004092469A (en) 2002-08-30 2002-08-30 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2004092469A true JP2004092469A (en) 2004-03-25

Family

ID=32059287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253225A Pending JP2004092469A (en) 2002-08-30 2002-08-30 Rotary compressor

Country Status (2)

Country Link
JP (1) JP2004092469A (en)
CN (1) CN101158516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220110B2 (en) * 2002-08-30 2007-05-22 Sanyo Electric Co., Ltd. Compressor having a throttled-return passage connecting an oil accumulator to a seal container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105649991A (en) * 2015-12-31 2016-06-08 深圳市共济科技有限公司 Variable-frequency air conditioner and compressor oil return system thereof
CN105650921A (en) * 2016-03-28 2016-06-08 天津商业大学 Dual-stage compression refrigeration circulating system for cooling flashing gas bypass in stepped mode
CN107388664B (en) * 2017-08-16 2019-12-03 广东美的暖通设备有限公司 The control method of oil return valve, control device and air-conditioning system in air-conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220110B2 (en) * 2002-08-30 2007-05-22 Sanyo Electric Co., Ltd. Compressor having a throttled-return passage connecting an oil accumulator to a seal container

Also Published As

Publication number Publication date
CN101158516A (en) 2008-04-09

Similar Documents

Publication Publication Date Title
EP1520990B1 (en) Rotary compressor
JP2003269356A (en) Horizontal type rotary compressor
JP3291484B2 (en) 2-stage compression type rotary compressor
JP4307945B2 (en) Horizontal rotary compressor
JP2007100513A (en) Refrigerant compressor and refrigerant cycle device having the same
JP2004027970A (en) Multistage compression type rotary compressor
JP2005105986A (en) Vertical rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP2004092469A (en) Rotary compressor
JP2012052436A (en) Rotary compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
JP4063568B2 (en) Horizontal multistage compression rotary compressor
JP4225793B2 (en) Horizontal type compressor
JP4118109B2 (en) Rotary compressor
JP2004293380A (en) Horizontal rotary compressor
JP3819795B2 (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP2004293332A (en) Rotary compressor
JP2005256709A (en) Lateral rotary compressor and air conditioner for vehicle
JP2004308489A (en) Refrigerant cycle apparatus
JP4263047B2 (en) Horizontal type compressor
JP3896020B2 (en) Rotary compressor
JP2004293330A (en) Rotary compressor
JP4093801B2 (en) Horizontal rotary compressor
JP2001082371A (en) Two-stage compression type rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

A02 Decision of refusal

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A02