JP2004088576A - Digital signal transmitting device - Google Patents

Digital signal transmitting device Download PDF

Info

Publication number
JP2004088576A
JP2004088576A JP2002248688A JP2002248688A JP2004088576A JP 2004088576 A JP2004088576 A JP 2004088576A JP 2002248688 A JP2002248688 A JP 2002248688A JP 2002248688 A JP2002248688 A JP 2002248688A JP 2004088576 A JP2004088576 A JP 2004088576A
Authority
JP
Japan
Prior art keywords
circuit
transmission
digital signal
differential
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002248688A
Other languages
Japanese (ja)
Inventor
Toshihiko Otsuka
大塚 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002248688A priority Critical patent/JP2004088576A/en
Publication of JP2004088576A publication Critical patent/JP2004088576A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a digital signal transmitting device to make normal transmission by reducing the strains of receiving waveforms caused by the increase of the connected number of digital signal transmitting devices. <P>SOLUTION: The digital signal transmitting device is provided with a threshold setting circuit which can set a threshold by means of a voltage dividing circuit in which a resistor and a speed-up capacitor are connected in parallel with each other to the input of a difference input type receiver circuit for controlling an input threshold, by switching with a binary value by reducing the number of difference input type receivers circuits from two to one; a differential driver circuit which supplies a DC voltage or outputs transmitting data to the power supply terminal of the threshold setting circuit; and a driver output control circuit which controls the output of the differential driver circuit with the outputs of a carrier detecting circuit, when a transmission requesting signal is outputted for the transmitting data. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、ディジタルベースバンド伝送に適用するディジタル信号伝送装置の送受信回路方式に関するものである。
【0002】
【従来の技術】
従来、DPLLを内蔵したディジタル信号伝送装置の相互間でディジタル信号の授受において例えば、図3に示すように半二重伝送システムに接続されている。
このシステムは2線式の伝送回線11にデータを伝送するディジタル信号伝送装置(以下、ステーションと呼ぶ)12、13〜15を接続した構成である。この構成ではステーションは4台接続した例を示しているが、実際にはそれ以上接続される。この半二重伝送システムは伝送回線11を占有して1つのステーションが送信する権利を持つ仕組みによって、ステーション間でデータの授受が行われる。
この例では、ステーション12が送信権を得てデータを送信し、伝送回線11を通して他のステーション13〜15で受信する。受信動作終了から送信動作開始までの期間は伝送休止期間に相当し、伝送ラインは無信号状態となる。伝送休止状態では受信回路の受信検出レベル以上のノイズが侵入した場合、誤データを受信することになり、正常な受信ができなくなる。一般的に、電気伝送システムでは伝送ケーブルが外来ノイズの影響を受けやすいため受信回路上の工夫が必要である。
図4は従来のディジタル信号伝送装置の機能ブロック図を示す。図4において、51は後記、差動型スケルチレシーバ52の入力しきい値を設定するしきい値設定回路である。52は前記、しきい値設定回路の電圧レベル以上の受信データを識別し、ディジタル信号に変換して出力する差動型スケルチレシーバである。53は伝送回線からの受信データを0V付近で識別し、ディジタル信号に変換して出力する差動型ゼロクロスレシーバである。54は受信データの先頭のプリアンブルビットが正規のパルス幅であることを検出した後、受信データの変化点を検出して、その期間中状態信号をONにして出力し、受信変化点がなくなってからNビット後もしくは受信データのパルス幅違反時には状態信号をOFFにして出力する受信キャリア検出回路である。55は前記、キャリア検出回路の出力がONの条件で差動型ゼロクロスレシーバ53で受信したデータを出力するANDゲートである。56は受信データから受信クロックの抽出をするDPLL回路である。57は送受信データの制御をする通信LSIである。58はデータ送信の出力の制御入力機能付きの差動型ドライバーである。
次に図4の受信動作について説明する。ここでは、伝送信号符号はマンチェスタ符号とし、伝送フレームはHDLCフォーマットとして以下に説明する。
HDLCフォーマットではフレームの先頭にプリアンブルビットが付加されており、受信部のDPLLの同期の引き込みに使用されている。プリアンブルビットは“1”と“0”の繰り返しパターンとして1ビット長のパルス幅になるようにしている。これ以降のデータはランダムパターンになるため“1”または“0”の繰り返しが続くこともあり、パルス幅は1/2ビット長になるため、繰り返し周波数はプリアンブルビットの2倍に大きくなる。信号周波数が高くなるほど、ケーブルの信号損失が増加して、伝送波形歪みが増大することは明白である。伝送休止状態の時に受信回路の受信検出レベル以上のノイズが侵入して誤データを受信しないように前記差動型スケルチレシーバ52の受信検出レベルを前記しきい値設定回路51により大きくしている。伝送ケーブルの延長およびステーションの接続台数の増加によって信号損失が大きくなると伝送信号波形の歪みも増大することは明白である。差動型ゼロクロスレシーバ53からの受信したデータに比べて差動型スケルチレシーバ52から受信したデータはパルス幅歪みが大きくなるため、受信データの先頭プリアンブルビットの検出のみ差動型スケルチレシーバ52で受信し、それ以降の受信データを差動型ゼロクロスレシーバ53で受信して波形歪みを改善している。差動型スケルチレシーバ52から受信したデータをキャリア検出回路54に入力して受信データの有無を判定している。キャリア検出回路の出力がONの期間中、差動型ゼロクロスレシーバ53の受信データが有効となりDPLL56へ入力されて受信クロックが抽出される。
図5は図4の送受信回路部の具体的な回路図例を示す。図5の回路について説明する。
差動型スケルチレシーバ52、差動型ゼロクロスレシーバ53は差動入力型のレシーバである。差動入力型レシーバのしきい値は0V付近でスイッチングする。伝送ラインの短絡事故または無通信状態での外来ノイズによる誤データの受信防止のため、差動入力のしきい値を大きく設定する回路として、しきい値設定回路51を付加している。しきい値設定回路51は抵抗分圧によりしきい値を設定している。差動型スケルチレシーバ52のしきい値が大きいため、伝送波形の立ち上がり/立ち下がりが大きいと、受信パルス幅歪みも大きくなり正常な受信ができなくるので受信データの先頭プリアンブルビットのみを受信する。それ以降の受信データはしきい値の小さい差動型ゼロクロスレシーバ53から受信するようにしている。
【0003】
【発明が解決しようとする課題】
伝送ラインの波形歪みの要因の一つとしてレシーバ回路がある。従来のディジタル信号伝送装置では、図5のレシーバ回路図に示すように差動型スケルチレシバ52と差動型ゼロクロスレシーバ53の2回路のレシーバが必要となる。レシーバの等価入力抵抗をZiとすると、伝送ラインから見たレシーバ回路の等価入力抵抗はZiの1/2になる。ステーションの接続台数が増加すると伝送ライン上の特性インピーダンスが大きく変動して伝送波形の歪みが増大し、正常な伝送ができなくなる欠点があった。
本発明は、上記課題を解決するためになされたものであり、ディジタル信号伝送装置の接続台数の増加による受信波形歪みを小さくして正常な伝送ができるようにしたディジタル信号伝送装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明は2回路の差動入力型レシーバ回路を1回路に減らして入力のしきい値を2値で切り替え制御するために差動入力型レシーバ回路の入力に抵抗とスピードアップコンデンサが並列接続された分圧回路でしきい値の設定が可能なしきい値設定回路と、前記しきい値設定回路の電源端子へDC電圧の供給または送信データの出力する差動型ドライバ回路と、キャリア検出回路の出力と送信データの送信要求信号の出力で前記差動型ドライバ回路の出力制御するドライバ出力制御回路を備えたことを特徴とするディジタル信号伝送装置である。
このような機能を備えた本発明のディジタル信号伝送装置はディジタル信号伝送システムに接続する台数の増加による受信波形歪みを小さくして正常な伝送ができるよに改善されたものである。
【0005】
【発明の実施の形態】
以下、本発明の実施例に基づいて説明する。
図1に本発明のディジタル信号伝送装置の機能ブロック図を示す。
図2は図1の送受信回路部の具体的な回路例について示す。なお、本発明が従来技術と同じ構成要素については同一符号を付して説明を省略し、異なる点のみ説明する。
本発明が従来と異なる点は以下のとおりである。
図1ではしきい値設定回路51のDC電源電圧の供給とデータの送信は同一の差動型ドライバ58とし、キャリア検出回路54の出力信号と通信LSI57のRTS出力信号を入力したORゲート59の出力で前記差動型ドライバ58の出力制御をする。図2に示すしきい値設定回路51にはR1とR2に並列にスピードアップコンデンサC3,C4が付加されている。前記スピードアップコンデンサC3,C4はデータ送信信号が分圧抵抗R1,R2によって信号減衰しないようにするためである。前記しきい値設定回路51のDC電源電圧を差動型ドライバ58から電源供給する回路方式を用いたことにより差動型ドライバ58の出力がOFFの期間は伝送ラインから侵入するコモンモードノイズがしきい値設定回路51から差動型ドライバ58の出力端子、前記差動型ドライバ58の内部出力回路を経由して電源回路VC、GNDへの流出を遮断して受信回路の平衡度の低下を防止している。
図2を用いて、しきい値の2値制御の動作を説明する。
データ受信動作時、キャリア検出回路54の出力信号で差動型ドライバ58の出力を制御する。キャリア検出回路54の出力信号がOFF(“1”)の時は、差動型ドライバ58の出力にDC電圧が出力され、しきい値設定回路51の分圧抵抗R1〜R4に電流が流れて、しきい値電圧が発生する。すなわち、スケルチ受信が可能になる。キャリア検出回路54の出力信号がON(“0”)の時は、差動型ドライバ58の出力は無電圧となり、分圧抵抗R1〜R4に流れていた電流が遮断されるためしきい値電圧も無電圧となり、ゼロクロス受信が可能になる。
図2を用いてデータ送信の動作について説明する。通信LSI57のRTS出力信号で差動型ドライバ58の出力を制御する。RTS出力信号がON(“1”)の時は、差動型ドライバ58の出力から送信データのパルス電圧が出力され、しきい値設定回路51のスピードアップコンデンサC3,C4とC1,C2を通って伝送ラインへ出力される。
次に図1を用いて受信動作の説明する。
差動型スケルチレシーバ52から受信したデータはキャリア検出回路54に入力されて受信データの有無を判定している。無通信状態ではキャリア検出回路54の出力はOFF(“ ”)するため、差動型ドライバ58の出力にDC電圧が出力され、しきい値設定回路51に電流が流れてしきい値電圧が発生すると差動型スケルチレシーバ52のしきい値は0Vより大きく設定される。差動型スケルチレシーバ52のしきい値を超えて受信データが入力されるとキャリア検出回路54の出力はON(“0”)すると、差動型ドライバ58の出力は無電圧となり、しきい値設定回路51の電流が遮断されるため、差動型スケルチレシーバ52のしきい値は0V付近に低く設定される。差動型スケルチレシーバ52は0V付近でスイッチングした受信データが出力され、キャリア検出回路54の出力がON(“0”)の期間中、DPLL56へ入力されて受信クロックが抽出されることになり、従来のディジタル信号伝送装置の受信動作と同等である。
【0006】
【発明の効果】
以上述べたように、本発明によれば1つの差動入力型レシーバで入力のしきい値を2値で設定可能なしきい値設定回路とキャリア検出回路の出力信号を用いて差動型ドライバの出力を制御するドライバ出力制御回路により2値のしきい値に切り換える受信部を備えたディジタル信号伝送装置としたことで、従来の2回路の差動入力型レシーバを1回路に部品削減でき、伝送ラインからみた差動入力型レシーバ回路の等価入力抵抗は2倍に改善され、ステーションの接続台数の増加による伝送波形の歪みの増大を防止する効果がある。また、差動入力型レシーバ回路のしきい値設定回路の電源に差動型ドライバから電源供給する回路方式を用いたことにより差動型ドライバ58の出力がOFFの期間は伝送ラインから侵入するコモンモードノイズの侵入を抑制して受信回路の平衡度の低下を防止する効果がある。
【図面の簡単な説明】
【図1】本発明のディジタル信号伝送装置の機能ブロック図を示す。
【図2】本発明の送受信回路の具体的な回路例を示す。
【図3】ディジタル信号伝送装置が接続された半二重伝送システムの構成を示す。
【図4】従来のディジタル信号伝送装置の機能ブロック図を示す。
【図5】従来の送受信回路の具体的な回路例を示す。
【符号の説明】
11 伝送回線
12〜15 ステーション
51 しきい値設定回路
52 差動型スケルチレシーバ
53 差動型ゼロクロスレシーバ
54 キャリア検出回路
55 ANDゲート
56 DPLL
57 通信LSI
58 差動型ドライバ
59 ORゲート
R1〜R4 分圧抵抗
C1〜C4 スピードアップコンデンサ
VC 回路用電源電圧+側
GND 回路用電源電圧−側(0V)
RT 伝送ケーブルの終端抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transmission / reception circuit system of a digital signal transmission device applied to digital baseband transmission.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when digital signals are transmitted and received between digital signal transmission apparatuses having a built-in DPLL, they are connected to, for example, a half-duplex transmission system as shown in FIG.
This system has a configuration in which digital signal transmission devices (hereinafter, referred to as stations) 12, 13 to 15 for transmitting data are connected to a two-wire transmission line 11. This configuration shows an example in which four stations are connected, but more stations are actually connected. In this half-duplex transmission system, data is exchanged between stations by a mechanism occupying the transmission line 11 and having the right to transmit by one station.
In this example, the station 12 obtains the transmission right and transmits the data, and the other stations 13 to 15 receive the data through the transmission line 11. A period from the end of the reception operation to the start of the transmission operation corresponds to a transmission suspension period, and the transmission line is in a no-signal state. In the transmission pause state, if noise equal to or higher than the reception detection level of the receiving circuit enters, erroneous data will be received, and normal reception will not be possible. In general, in an electric transmission system, a transmission cable is easily affected by external noise, so that it is necessary to devise a receiving circuit.
FIG. 4 shows a functional block diagram of a conventional digital signal transmission device. In FIG. 4, reference numeral 51 denotes a threshold value setting circuit for setting an input threshold value of the differential squelch receiver 52, which will be described later. Reference numeral 52 denotes a differential squelch receiver that identifies received data at or above the voltage level of the threshold setting circuit, converts the data into a digital signal, and outputs the digital signal. Reference numeral 53 denotes a differential zero-cross receiver that identifies data received from a transmission line near 0 V, converts the data into a digital signal, and outputs the digital signal. 54 detects that the leading preamble bit of the received data has a regular pulse width, detects a change point of the received data, turns on the state signal during that period, and outputs the signal. This is a reception carrier detection circuit that turns off the state signal and outputs the signal N bits after N bits or when the pulse width of the reception data is violated. An AND gate 55 outputs data received by the differential zero-cross receiver 53 under the condition that the output of the carrier detection circuit is ON. Reference numeral 56 denotes a DPLL circuit for extracting a reception clock from reception data. Reference numeral 57 denotes a communication LSI for controlling transmission / reception data. Reference numeral 58 denotes a differential driver having a control input function for outputting data transmission.
Next, the reception operation of FIG. 4 will be described. Here, the transmission signal code is a Manchester code, and the transmission frame is described below as an HDLC format.
In the HDLC format, a preamble bit is added to the beginning of a frame, and is used for pulling in the synchronization of the DPLL of the receiving unit. The preamble bit has a 1-bit pulse width as a repeating pattern of "1" and "0". Since the data thereafter becomes a random pattern, repetition of "1" or "0" may be continued. Since the pulse width becomes 1/2 bit length, the repetition frequency becomes twice as large as the preamble bit. Obviously, as the signal frequency increases, the signal loss of the cable increases and the transmission waveform distortion increases. The threshold setting circuit 51 increases the reception detection level of the differential squelch receiver 52 so that noise higher than the reception detection level of the reception circuit may not enter the transmission circuit in the transmission pause state and receive erroneous data. Obviously, when the signal loss increases due to the extension of the transmission cable and the number of connected stations, the distortion of the transmission signal waveform also increases. Since the data received from the differential squelch receiver 52 has a greater pulse width distortion than the data received from the differential zero cross receiver 53, the differential squelch receiver 52 only detects the leading preamble bit of the received data. Then, the subsequent received data is received by the differential zero-cross receiver 53 to improve the waveform distortion. The data received from the differential squelch receiver 52 is input to a carrier detection circuit 54 to determine whether or not there is received data. While the output of the carrier detection circuit is ON, the received data of the differential zero-cross receiver 53 becomes valid and is input to the DPLL 56 to extract the received clock.
FIG. 5 shows a specific example of a circuit diagram of the transmission / reception circuit unit of FIG. The circuit of FIG. 5 will be described.
The differential squelch receiver 52 and the differential zero cross receiver 53 are differential input type receivers. The threshold of the differential input type receiver switches near 0V. A threshold setting circuit 51 is added as a circuit for setting a large differential input threshold in order to prevent reception of erroneous data due to a transmission line short circuit accident or external noise in a non-communication state. The threshold value setting circuit 51 sets a threshold value by the voltage division of the resistance. Since the threshold value of the differential squelch receiver 52 is large, if the rising / falling edge of the transmission waveform is large, the received pulse width distortion becomes large and normal reception cannot be performed, so that only the first preamble bit of the received data is received. . Subsequent received data is received from the differential zero-cross receiver 53 having a small threshold value.
[0003]
[Problems to be solved by the invention]
One of the causes of waveform distortion of a transmission line is a receiver circuit. In the conventional digital signal transmission device, two receivers, a differential squelch receiver 52 and a differential zero cross receiver 53, are required as shown in the receiver circuit diagram of FIG. Assuming that the equivalent input resistance of the receiver is Zi, the equivalent input resistance of the receiver circuit viewed from the transmission line is の of Zi. When the number of connected stations increases, the characteristic impedance on the transmission line greatly fluctuates, and the distortion of the transmission waveform increases, so that normal transmission cannot be performed.
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a digital signal transmission device capable of performing normal transmission by reducing received waveform distortion due to an increase in the number of connected digital signal transmission devices. With the goal.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention reduces the number of differential input type receiver circuits of two to one and controls the input threshold value by switching the threshold value between two levels. And a voltage setting circuit in which a speed-up capacitor is connected in parallel to set a threshold, and a differential type for supplying a DC voltage to a power terminal of the threshold setting circuit or outputting transmission data. A digital signal transmission device comprising: a driver circuit; and a driver output control circuit that controls the output of the differential driver circuit based on the output of a carrier detection circuit and the output of a transmission request signal for transmission data.
The digital signal transmission apparatus of the present invention having such a function is improved so that the reception waveform distortion due to an increase in the number of connected digital signal transmission systems can be reduced and normal transmission can be performed.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a description will be given based on examples of the present invention.
FIG. 1 shows a functional block diagram of the digital signal transmission device of the present invention.
FIG. 2 shows a specific circuit example of the transmission / reception circuit unit in FIG. The same components as those of the prior art are denoted by the same reference numerals and the description thereof will be omitted, and only different points will be described.
The differences between the present invention and the prior art are as follows.
In FIG. 1, the supply of the DC power supply voltage and the transmission of data of the threshold value setting circuit 51 are performed by the same differential driver 58, and the output signal of the carrier detection circuit 54 and the OR gate 59 to which the RTS output signal of the communication LSI 57 is input. The output controls the output of the differential driver 58. In the threshold setting circuit 51 shown in FIG. 2, speed-up capacitors C3 and C4 are added in parallel with R1 and R2. The speed-up capacitors C3 and C4 prevent the data transmission signal from being attenuated by the voltage dividing resistors R1 and R2. By using a circuit system in which the DC power supply voltage of the threshold value setting circuit 51 is supplied from the differential driver 58, common mode noise invading from the transmission line occurs while the output of the differential driver 58 is OFF. The flow out of the threshold value setting circuit 51 to the power supply circuits VC and GND via the output terminal of the differential driver 58 and the internal output circuit of the differential driver 58 is prevented to prevent the balance of the receiving circuit from lowering. are doing.
The operation of the binary control of the threshold value will be described with reference to FIG.
During the data receiving operation, the output of the differential driver 58 is controlled by the output signal of the carrier detection circuit 54. When the output signal of the carrier detection circuit 54 is OFF ("1"), a DC voltage is output to the output of the differential driver 58, and a current flows through the voltage dividing resistors R1 to R4 of the threshold value setting circuit 51. , A threshold voltage is generated. That is, squelch reception becomes possible. When the output signal of the carrier detection circuit 54 is ON (“0”), the output of the differential driver 58 becomes no voltage and the current flowing through the voltage dividing resistors R1 to R4 is cut off, so that the threshold voltage Also has no voltage, and zero-cross reception is possible.
The operation of data transmission will be described with reference to FIG. The output of the differential driver 58 is controlled by the RTS output signal of the communication LSI 57. When the RTS output signal is ON (“1”), a pulse voltage of transmission data is output from the output of the differential driver 58 and passes through the speed-up capacitors C3, C4 and C1, C2 of the threshold value setting circuit 51. Output to the transmission line.
Next, the receiving operation will be described with reference to FIG.
The data received from the differential squelch receiver 52 is input to a carrier detection circuit 54 to determine whether or not there is received data. In the non-communication state, the output of the carrier detection circuit 54 is turned off (“”), so that a DC voltage is output to the output of the differential driver 58 and a current flows through the threshold setting circuit 51 to generate a threshold voltage. Then, the threshold value of the differential squelch receiver 52 is set to be larger than 0V. When the received data exceeds the threshold value of the differential squelch receiver 52 and the output of the carrier detection circuit 54 is turned on (“0”), the output of the differential driver 58 becomes no voltage, Since the current of the setting circuit 51 is cut off, the threshold value of the differential squelch receiver 52 is set low near 0V. The differential squelch receiver 52 outputs the received data switched around 0 V, and is input to the DPLL 56 during the period when the output of the carrier detection circuit 54 is ON (“0”), and the reception clock is extracted. This is equivalent to the receiving operation of the conventional digital signal transmission device.
[0006]
【The invention's effect】
As described above, according to the present invention, the differential driver can be configured by using the output signal of the carrier detection circuit and the threshold setting circuit which can set the input threshold value to two values with one differential input type receiver. By using a digital signal transmission device including a receiving unit that switches to a binary threshold value by a driver output control circuit that controls the output, the conventional two-circuit differential input type receiver can be reduced to one circuit, and the transmission can be reduced. The equivalent input resistance of the differential input type receiver circuit viewed from the line is improved by a factor of two, and the effect of preventing an increase in the distortion of the transmission waveform due to an increase in the number of connected stations is obtained. Further, by using a circuit system for supplying power from the differential driver to the power supply of the threshold setting circuit of the differential input type receiver circuit, during the period in which the output of the differential driver 58 is OFF, the common voltage that invades from the transmission line. This has the effect of suppressing intrusion of mode noise and preventing the balance of the receiving circuit from lowering.
[Brief description of the drawings]
FIG. 1 shows a functional block diagram of a digital signal transmission device of the present invention.
FIG. 2 shows a specific example of a transmission / reception circuit of the present invention.
FIG. 3 shows a configuration of a half-duplex transmission system to which a digital signal transmission device is connected.
FIG. 4 shows a functional block diagram of a conventional digital signal transmission device.
FIG. 5 shows a specific circuit example of a conventional transmitting / receiving circuit.
[Explanation of symbols]
11 Transmission Line 12-15 Station 51 Threshold Setting Circuit 52 Differential Squelch Receiver 53 Differential Zero Cross Receiver 54 Carrier Detection Circuit 55 AND Gate 56 DPLL
57 Communication LSI
58 Differential driver 59 OR gates R1 to R4 Voltage dividing resistors C1 to C4 Speed-up capacitor VC Power supply voltage for circuit + side GND Power supply voltage for circuit-side (0 V)
RT Termination resistance of transmission cable

Claims (1)

ディジタルベースバンド伝送において
伝送路を介して伝送データ信号をディジタル信号にレベル変換して出力する差動入力型レシーバ回路と、
前記差動入力型レシーバ回路の入力に抵抗とスピードアップコンデンサが並列接続された分圧回路でしきい値の設定が可能なしきい値設定回路と、
前記しきい値設定回路の電源端子へDC電圧の供給または送信データを出力する差動型ドライバ回路と、
キャリア検出回路の出力または送信データの送信要求信号の出力で前記差動型ドライバ回路の出力を制御するドライバ出力制御回路を備えた
ことを特徴とするディジタル信号伝送装置。
A differential input type receiver circuit for level-converting a transmission data signal to a digital signal via a transmission line in a digital baseband transmission and outputting the digital signal;
A threshold setting circuit capable of setting a threshold by a voltage dividing circuit in which a resistor and a speed-up capacitor are connected in parallel to the input of the differential input type receiver circuit;
A differential driver circuit for supplying a DC voltage to a power supply terminal of the threshold value setting circuit or outputting transmission data,
A digital signal transmission device comprising: a driver output control circuit that controls an output of the differential driver circuit by an output of a carrier detection circuit or an output of a transmission request signal for transmission data.
JP2002248688A 2002-08-28 2002-08-28 Digital signal transmitting device Pending JP2004088576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248688A JP2004088576A (en) 2002-08-28 2002-08-28 Digital signal transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248688A JP2004088576A (en) 2002-08-28 2002-08-28 Digital signal transmitting device

Publications (1)

Publication Number Publication Date
JP2004088576A true JP2004088576A (en) 2004-03-18

Family

ID=32056005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248688A Pending JP2004088576A (en) 2002-08-28 2002-08-28 Digital signal transmitting device

Country Status (1)

Country Link
JP (1) JP2004088576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227570A (en) * 2007-03-08 2008-09-25 Mitsubishi Heavy Ind Ltd Differential transmitter
JP2017085578A (en) * 2016-11-10 2017-05-18 ルネサスエレクトロニクス株式会社 Differential output circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227570A (en) * 2007-03-08 2008-09-25 Mitsubishi Heavy Ind Ltd Differential transmitter
JP2017085578A (en) * 2016-11-10 2017-05-18 ルネサスエレクトロニクス株式会社 Differential output circuit

Similar Documents

Publication Publication Date Title
US11038508B2 (en) Controller area network (CAN), CAN device and method therefor
JP6788670B2 (en) Devices and methods for selectively concealing bus vibrations in data reception via the bus system
CN111149326B (en) Transmitting/receiving device for a bus system and method for reducing the tendency of oscillations during transitions between different bit states
US8035424B2 (en) AC-coupled interface circuit
CN113169918B (en) Device for a subscriber station of a serial bus system and method for communication in a serial bus system
US20160036604A1 (en) Signal transmission circuit
CN111181817B (en) Slave device for enhancing data rate of DSI3 bus
CN110892682B (en) Damping unit for a bus system and method for reducing the tendency of oscillations during transitions between different bit states
US20070014340A1 (en) Circuits and methods for a multi-differential embedded-clock channel
WO2005062815A2 (en) Device with improved serial communication
CN111149328B (en) Transmitting/receiving device for a bus system and method for reducing the tendency of oscillations during transitions between different bit states
KR20190103202A (en) Subscriber station for bus system, and data transmission method in bus system
US6731688B1 (en) Speed signaling for data communications
CN111149327B (en) Transmitting/receiving device for a bus system and method for reducing the tendency of oscillations during transitions between different bit states
US4454383A (en) Asynchronous data transmission method and circuitry
CN111164937B (en) Transmitting/receiving device for a bus system and method for reducing the tendency of oscillations during transitions between different bit states
CN111713077B (en) Subscriber station for a serial bus system and method for transmitting messages in a serial bus system
JP2004088576A (en) Digital signal transmitting device
US11848797B2 (en) Communication control device for a user station for a serial bus system, and method for communicating in a serial bus system
JP2023507418A (en) Transmit/Receive Mechanism for Bus System and Method for Reducing Bus Differential Voltage Oscillation When Interference is Coupled
CN111713078B (en) Subscriber station for a serial bus system and method for transmitting messages in a serial bus system
JP2002208970A (en) Digital signal transmitter
JP4637820B2 (en) Arrangement for ground offset compensation in data bus systems
EP2530864A1 (en) Apparatus and Method for Power Saving
CN115280726B (en) Transmitting/receiving device, communication control device, and communication method