JP2004048367A - Composite antenna - Google Patents

Composite antenna Download PDF

Info

Publication number
JP2004048367A
JP2004048367A JP2002202838A JP2002202838A JP2004048367A JP 2004048367 A JP2004048367 A JP 2004048367A JP 2002202838 A JP2002202838 A JP 2002202838A JP 2002202838 A JP2002202838 A JP 2002202838A JP 2004048367 A JP2004048367 A JP 2004048367A
Authority
JP
Japan
Prior art keywords
antenna
patch
power supply
flat plate
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002202838A
Other languages
Japanese (ja)
Inventor
Akira Shigihara
鴫原 亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002202838A priority Critical patent/JP2004048367A/en
Priority to US10/610,146 priority patent/US20040021606A1/en
Priority to EP03254206A priority patent/EP1381111A1/en
Publication of JP2004048367A publication Critical patent/JP2004048367A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable composite antenna which is constituted by combining a circular polarization wave antenna with a vertical polarization antenna and is suitably miniaturized and made thin. <P>SOLUTION: A flat antenna 11 being a vertical polarization antenna for a ground wave is fixed on a printed board 10, and a patch antenna 12 being a circular polarization wave antenna for a satellite wave is placed and fixed on a metallic plate 14 of the flat antenna 11. A power feeding pin 23 of the patch antenna 12 is connected to the power feeding line of a coaxial cable 31 by using an opening 13 of the flat antenna 11. Also, the relative positional relation of the metallic plate 14 to the patch electrode 21 is set so as to be almost uniform along the peripheral direction. Thus, it is possible to reduce the heightwise dimension or planar size of the whole composite antenna, and to prevent the collapse of non-directional properties within an azimuth face due to the electromagnetic coupling of the flat antenna 11 to the patch antenna 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の移動体に装備されて衛星波と地上波とが受信可能な複合アンテナに関する。
【0002】
【従来の技術】
自動車等の移動体において衛星放送を受信するシステムでは主に円偏波が使用されるが、最近、ビル陰等の不感地帯での受信確率を高めるために、静止衛星からの直接放送波と同様な内容を地上において再送信する衛星放送システムが考えられている。かかる衛星放送システムに適用可能なアンテナとして、従来、図6に示すような複合アンテナが提案されている。
【0003】
図6に示す従来の複合アンテナは、プリント基板1上に、円偏波を受信する4線巻きヘリカルアンテナ2と、地上波である垂直偏波を受信するモノポールアンテナ3とを立設して概略構成される。プリント基板1の上面にはほぼ全面に銅箔等からなる接地導体が設けられており、プリント基板1の下面にはマイクロストリップラインが設けられている。ヘリカルアンテナ2は、誘電体からなる円柱状ブロック4の外周面に螺旋状に延びる4本のヘリックス導体5を設け、マイクロストリップラインに接続される各ヘリックス導体5を90度の位相差で給電するというものである。このヘリカルアンテナ2を励振すると上方へ円偏波電波が放射されるので、衛星波を受信するアンテナとして機能させることができる。また、モノポールアンテナ3は、使用する電波の波長の約4分の1の長さの直線状導体を起立させ、この導体の下端部をマイクロストリップラインに接続して給電するというものである。このモノポールアンテナ3を励振すると、プリント基板1と平行な面内で無指向性の垂直偏波電波が放射されるので、地上波を受信するアンテナとして機能させることができる。
【0004】
【発明が解決しようとする課題】
上述した従来の複合アンテナにおいて、ヘリカルアンテナ2の高さ寸法は、使用する電波の波長をλとすると約0.55λなので、動作周波数が例えば2.3GHz(λ=130mm)の場合、その高さ寸法は約72mmまで大きくなってしまい、自動車等の移動体に装備するアンテナとして好適な薄型化が図れないという問題があった。また、かかる従来の複合アンテナは、ヘリカルアンテナ2とモノポールアンテナ3を並設した構造なので、平面的にも大きな寸法が必要で小型化が図りにくく、かつ、両アンテナ2,3が電磁結合してモノポールアンテナ3の指向性がヘリカルアンテナ2側で歪みやすく、それゆえ特定の方位角で地上波の受信感度が低下しやすいという問題があった。
【0005】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、円偏波アンテナと垂直偏波アンテナを組み合わせてなる小型薄型化に好適で信頼性の高い複合アンテナを提供することにある。
【0006】
【課題を解決するための手段】
上述した目的を達成するため、本発明の複合アンテナは、外形が円形または正多角形で中央部に開口を有する金属平板を所定の間隔を存して接地導体と対向させ、前記金属平板を接地端子を介して前記接地導体に接続すると共に、前記金属平板を給電端子を介して第1の給電線に接続した平板アンテナと、誘電体基板の上面にパッチ電極を設けて下面にグラウンド電極を設け、この誘電体基板を前記金属平板上に絶縁部材を介して載置固定すると共に、前記パッチ電極に接続されて前記誘電体基板を貫通する給電ピンを前記開口内に挿通して第2の給電線に接続したパッチアンテナとを備え、前記平板アンテナを励振して垂直偏波の電波を放射させると共に、前記パッチアンテナを励振して円偏波の電波を放射させるように構成した。
【0007】
このように構成された複合アンテナにおいて、平板アンテナを共振周波数の最も低いTM01モードで励振すれば、金属平板と平行な面内で無指向性の垂直偏波電波が周囲に放射されるので、この平板アンテナを地上波用の垂直偏波アンテナとして機能させることができる。また、パッチアンテナをTM11モードで励振すれば上方へ円偏波電波が放射されるので、このパッチアンテナを衛星波用の円偏波アンテナとして機能させることができる。そして、地上波用の平板アンテナ上に衛星波用のパッチアンテナを載置固定し、平板アンテナの開口を利用してパッチアンテナの給電ピンを給電線に接続するという積層構造を採用していることから、この複合アンテナは高さ寸法が小さくて平面的な大きさも低減でき、よって薄型化や小型化が図りやすい。しかも、金属平板とパッチ電極の相対位置関係を周方向に沿ってほぼ一様に設定することができるため、この複合アンテナは、平板アンテナとパッチアンテナの電磁結合に起因する方位角面内の無指向性の崩れを回避しやすく、それゆえ方位角による受信感度のばらつきが少ない安定した性能が期待できる。
【0008】
かかる構成の複合アンテナにおいて、上面に前記接地導体を設けて複数箇所に挿入孔を設けたプリント基板を備え、前記各挿入孔に挿入した前記接地端子と前記給電端子と前記給電ピンをそれぞれ前記プリント基板に固定すれば、給電端子や給電ピンを給電線に接続したり接地端子を対応するランドに接続する作業がプリント基板の下面側で簡単に行えると共に、プリント基板に固定した各端子によって金属平板や誘電体基板を安定した姿勢で保持しやすくなるので好ましい。この場合、平板アンテナの接地端子と給電端子がいずれも金属平板からプリント基板側へ延出する折曲片からなる構成にしておけば、一枚板の金属板をプレス抜きして折曲加工するだけで簡単に金属平板と接地端子と給電端子とを形成でき、平板アンテナの機械的強度も大幅に向上するので一層好ましい。
【0009】
【発明の実施の形態】
発明の実施の形態について図面を参照して説明すると、図1は本発明の第1の実施形態例に係る複合アンテナの分解斜視図、図2は該複合アンテナの斜視図、図3は該複合アンテナの上面図、図4は図3のA−A線に沿う断面図である。
【0010】
これらの図に示す複合アンテナは、複数箇所に挿入孔10aを有するプリント基板10と、このプリント基板10上に保持された地上波用の平板アンテナ11と、この平板アンテナ11上に保持された衛星波用のパッチアンテナ12とによって主に構成されている。
【0011】
平板アンテナ11は、中央部に開口13を有する円環状の金属平板14と、この金属平板14の内縁部を基端として下向きに折曲した4本の接地端子15と、金属平板14内を切り起こして下向きに折曲した1本の給電端子16と、プリント基板10の上面のほぼ全面に設けられた銅箔等の接地導体17とによって概略構成されるアンテナであり、給電端子16に所定の高周波信号が給電されるようになっている。
【0012】
各接地端子15と給電端子16は、金属平板14をプレス抜きした後に折曲加工して形成したものであり、端子群15,16と金属平板14は一枚板の金属板からなる。4本の接地端子15は等間隔に配置されており、各接地端子15と給電端子16は同等の長さに形成されている。図4に示すように、プリント基板10の下面には、挿入孔10aを貫通した各接地端子15の下端部が半田付けされるランド18と、別の挿入孔10aを貫通した給電端子16の下端部が半田付けされるランド19とが設けられている。ランド18は上面側の接地導体17と導通されており、ランド19には同軸ケーブル30の給電線(内部導体)が半田付けされている。こうして端子群15,16がプリント基板10に固定されるため、金属平板14は接地導体17との間に一定の間隔を存した安定した姿勢でプリント基板10に確実に支持されている。なお、金属平板14内における給電端子16の形成位置は、インピーダンスがマッチングする適当な位置を選択して決定する。
【0013】
このような構成の平板アンテナ11は、金属平板14の大きさや、金属平板14と接地導体17との間隔を適宜値に設定して、共振周波数の最も低いモードであるTM01モードで励振すると、金属平板14と平行な面内で無指向性の垂直偏波電波を周囲に放射するので、受信感度が方位角によってばらつかない地上波用の垂直偏波アンテナとして機能させることができる。なお、この平板アンテナ11では金属平板14の外形を円形としたが、金属平板14の外形が正多角形であっても平板アンテナ11の無指向性が大きく崩れることはない。
【0014】
パッチアンテナ12は、円板状の誘電体基板20と、この誘電体基板20の上面に設けられた略円形のパッチ電極21と、誘電体基板20の下面のほぼ全面に設けられたグラウンド電極22と、パッチ電極21に半田付けされて誘電体基板20および開口13を貫通する給電ピン23とによって概略構成されるアンテナであり、給電ピン23に所定の高周波信号が給電されるようになっている。
【0015】
誘電体基板20は平板アンテナ11の金属平板14上に同心円状の配置で載置されており、図4に示すように、誘電体基板20の下面側が絶縁性の両面テープ24によって金属平板14に接着されている。パッチ電極21はマイクロストリップ構造の放射素子であり、このパッチ電極21の外周部には点対称な2箇所に縮退分離素子である切欠き21a(突起でもよい)が設けられている。給電ピン23はインピーダンスがマッチングする適当な給電点を選択してパッチ電極21に接続されるが、給電点の位置はパッチ電極21の中心寄りなので平板アンテナ11の開口13の上方となる。それゆえ、給電点から下方へ延びる給電ピン23が金属平板14や端子群15,16と接触する心配はなく、この給電ピン23の下端部は挿入孔10aを貫通してプリント基板10の下面で同軸ケーブル31の給電線(内部導体)に半田付けされている。
【0016】
このような構成のパッチアンテナ12は、パッチ電極21や切欠き21aの大きさを適宜値に設定してTM11モードで励振すると、上方へ円偏波電波を放射するので、衛星波用の円偏波アンテナとして機能させることができる。なお、このパッチアンテナ12は給電点が一つで、切欠き21a等の縮退分離素子を装荷することにより共振長が異なる二つの直交モードに90度の位相差を生じさせるという1点給電方式である。
【0017】
上述したように第1の実施形態例に係る複合アンテナは、平板アンテナ11によって地上波が受信できると共にパッチアンテナ12によって衛星波が受信でき、かつ平板アンテナ11上にパッチアンテナ12を積層した構造なので装置全体の小型薄型化が促進されている。したがって、この複合アンテナは、地上波と衛星波のいずれでも受信可能な車載用の小型アンテナとして好適である。また、この複合アンテナは、金属平板14とパッチ電極21の相対位置関係が周方向に沿ってほぼ一様なので、平板アンテナ11とパッチアンテナ12の電磁結合に起因する方位角面内の無指向性の崩れが少なく、よって方位角による受信感度のばらつきが少ない安定した性能が期待できる。
【0018】
しかも、この複合アンテナで採用している平板アンテナ11は、一枚板の金属板をプレス抜きして折曲加工するだけで簡単に金属平板14と各接地端子15と給電端子16とを形成できるので、部品点数や組立工数が少なくて安価に製造でき、組立精度や機械的強度も確保しやすい。それゆえ、プリント基板10に固定した端子群15,16によって金属平板14や誘電体基板20を安定した姿勢で支持することができ、安価で信頼性の高い複合アンテナが得られる。なお、平板アンテナ11の接地端子15や給電端子16をランド18,19に接続する作業や、パッチアンテナ12の給電ピン23を同軸ケ−ブル31に接続する作業は、プリント基板10の下面側で簡単に行える。
【0019】
図5は本発明の第2の実施形態例に係る複合アンテナの斜視図で、符号25はパッチアンテナを総括的に示し、図2に対応する部分には同一符号を付してある。
【0020】
図5に示す複合アンテナは、パッチアンテナ25が2点給電方式でプリント基板10側に90度位相差回路(図示せず)を設けた点が、前述した第1の実施形態例と異なっている。このパッチアンテナ25は、誘電体基板26の上面に円形のパッチ電極27を設けて、パッチ電極27の2箇所に給電ピン28,29を半田付けしており、各給電ピン28,29の下端部が前記90度位相差回路に接続されている。これにより、位相が90度異なる二つの直交モードを励振することができるので、パッチアンテナ25を前記パッチアンテナ12と同様に衛星波用の円偏波アンテナとして機能させることができる。
【0021】
なお、上述した各実施形態例において、実際に自動車等の移動体に取り付けるときには複合アンテナをレドーム(図示せず)で覆っておくことが好ましい。すなわち、誘電体材料からなるレドームで複合アンテナを覆っておけば、アンテナ特性に悪影響を及ぼさずに塵埃等の付着や飛来物の衝突が防止できるので、複合アンテナの長寿命化が図れる。また、上述した各実施形態例では、平板アンテナ11の金属平板14と各接地端子15と給電端子16とが一枚板の金属板にて形成されているが、接地端子15や給電端子16が金属平板14とは別体の金属ピンであってもよい。
【0022】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0023】
地上波用の垂直偏波アンテナである平板アンテナの金属平板上に、衛星波用の円偏波アンテナであるパッチアンテナを載置固定し、平板アンテナの開口を利用してパッチアンテナの給電ピンを給電線に接続するという積層構造を採用しているため、地上波と円偏波とが受信可能で小型薄型化が図りやす複合アンテナが得られ、特に車載用として好適である。また、平板アンテナの金属平板とパッチアンテナのパッチ電極とを周方向に沿ってほぼ一様な相対位置関係に設定することができるため、この複合アンテナは平板アンテナとパッチアンテナの電磁結合に起因する方位角面内の無指向性の崩れを回避しやすく、それゆえ方位角による受信感度のばらつきが少ない安定した性能が期待できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態例に係る複合アンテナの分解斜視図である。
【図2】該複合アンテナの斜視図である。
【図3】該複合アンテナの上面図である。
【図4】図3のA−A線に沿う断面図である。
【図5】本発明の第2の実施形態例に係る複合アンテナの斜視図である。
【図6】従来例に係る複合アンテナの斜視図である。
【符号の説明】
10 プリント基板
10a 挿入孔
11 平板アンテナ
12,25 パッチアンテナ
13 開口
14 金属平板
15 接地端子
16 給電端子
17 接地導体
20,26 誘電体基板
21,27 パッチ電極
22 グラウンド電極
23,28,29 給電ピン
30,31 同軸ケーブル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite antenna mounted on a mobile body such as an automobile and capable of receiving satellite waves and terrestrial waves.
[0002]
[Prior art]
Circularly polarized waves are mainly used in systems that receive satellite broadcasts in vehicles such as automobiles, but recently, in order to increase the reception probability in blind zones such as behind buildings, similar to direct broadcast waves from geostationary satellites, A satellite broadcasting system that retransmits the contents on the ground has been considered. Conventionally, as an antenna applicable to such a satellite broadcasting system, a composite antenna as shown in FIG. 6 has been proposed.
[0003]
The conventional composite antenna shown in FIG. 6 has a 4-wire wound helical antenna 2 for receiving a circularly polarized wave and a monopole antenna 3 for receiving a vertically polarized terrestrial wave on a printed circuit board 1. Schematically configured. A ground conductor made of copper foil or the like is provided on almost the entire upper surface of the printed circuit board 1, and a microstrip line is provided on the lower surface of the printed circuit board 1. The helical antenna 2 is provided with four helical conductors 5 extending spirally on the outer peripheral surface of a cylindrical block 4 made of a dielectric material, and feeds each helical conductor 5 connected to the microstrip line with a phase difference of 90 degrees. That is. When the helical antenna 2 is excited, a circularly polarized wave is radiated upward, so that it can function as an antenna for receiving satellite waves. In addition, the monopole antenna 3 raises a linear conductor having a length of about a quarter of the wavelength of a radio wave to be used, and connects the lower end of the conductor to a microstrip line to supply power. When the monopole antenna 3 is excited, omnidirectional vertically polarized radio waves are radiated in a plane parallel to the printed circuit board 1, so that the antenna can function as an antenna for receiving ground waves.
[0004]
[Problems to be solved by the invention]
In the above-described conventional composite antenna, the height of the helical antenna 2 is about 0.55λ, where λ is the wavelength of a radio wave to be used. Therefore, when the operating frequency is, for example, 2.3 GHz (λ = 130 mm), the height is The size is increased up to about 72 mm, and there has been a problem that it is not possible to reduce the thickness suitable for an antenna mounted on a moving body such as an automobile. Further, since such a conventional composite antenna has a structure in which the helical antenna 2 and the monopole antenna 3 are arranged side by side, a large size is required in plan view, it is difficult to reduce the size, and the antennas 2 and 3 are electromagnetically coupled. Therefore, the directivity of the monopole antenna 3 tends to be distorted on the side of the helical antenna 2, and therefore, there is a problem that the reception sensitivity of the terrestrial wave at a specific azimuth angle tends to decrease.
[0005]
The present invention has been made in view of such a situation of the related art, and an object thereof is to provide a highly reliable composite antenna suitable for reduction in size and thickness by combining a circularly polarized antenna and a vertically polarized antenna. Is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the composite antenna of the present invention has a metal flat plate having a circular or regular polygonal shape and having an opening at the center portion facing a ground conductor at a predetermined interval, and grounding the metal flat plate. A flat plate antenna connected to the ground conductor via a terminal and the metal flat plate connected to a first feed line via a feed terminal; a patch electrode provided on an upper surface of a dielectric substrate and a ground electrode provided on a lower surface. The dielectric substrate is placed and fixed on the metal flat plate via an insulating member, and a power supply pin connected to the patch electrode and passing through the dielectric substrate is inserted into the opening to form a second power supply. A patch antenna connected to an electric wire is provided to excite the flat plate antenna to emit a vertically polarized radio wave and excite the patch antenna to emit a circularly polarized radio wave.
[0007]
In the composite antenna configured as described above, if the flat antenna is excited in the TM01 mode having the lowest resonance frequency, omnidirectional vertically polarized radio waves are radiated to the surroundings in a plane parallel to the metal flat plate. The flat antenna can function as a vertically polarized antenna for terrestrial waves. When the patch antenna is excited in the TM11 mode, a circularly polarized wave is radiated upward, so that this patch antenna can function as a circularly polarized wave antenna for satellite waves. A laminated structure is adopted in which a patch antenna for satellite waves is placed and fixed on a flat antenna for terrestrial waves, and the feed pin of the patch antenna is connected to the feed line using the opening of the flat antenna. Therefore, this composite antenna has a small height dimension and can be reduced in planar size, and therefore, it is easy to reduce the thickness and size. In addition, since the relative positional relationship between the metal plate and the patch electrode can be set substantially uniformly along the circumferential direction, this composite antenna has no azimuth plane in the azimuthal plane due to electromagnetic coupling between the plate antenna and the patch antenna. It is easy to avoid the loss of directivity, and therefore stable performance with little variation in reception sensitivity depending on the azimuth can be expected.
[0008]
In the composite antenna having such a configuration, a printed circuit board provided with the ground conductor on the upper surface and insertion holes at a plurality of locations is provided on the upper surface, and the ground terminal, the power supply terminal, and the power supply pin inserted into each of the insertion holes are respectively printed by the printed circuit board. By fixing the power supply terminal and power supply pin to the power supply line and connecting the ground terminal to the corresponding land on the lower surface of the printed circuit board, the terminal fixed to the printed circuit board can be used to easily fix the metal plate. Also, it is preferable because the dielectric substrate can be easily held in a stable posture. In this case, if both the ground terminal and the feed terminal of the flat antenna are formed of bent pieces extending from the metal flat plate to the printed circuit board side, a single metal plate is press-cut and bent. The metal plate, the ground terminal, and the power supply terminal can be easily formed only by itself, and the mechanical strength of the flat plate antenna is greatly improved.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an exploded perspective view of a composite antenna according to a first embodiment of the present invention, FIG. 2 is a perspective view of the composite antenna, and FIG. FIG. 4 is a top view of the antenna, and FIG. 4 is a sectional view taken along line AA of FIG.
[0010]
The composite antenna shown in these figures includes a printed circuit board 10 having insertion holes 10a at a plurality of locations, a terrestrial flat plate antenna 11 held on the printed circuit board 10, and a satellite held on the flat plate antenna 11. It mainly comprises a patch antenna 12 for waves.
[0011]
The flat plate antenna 11 has an annular metal flat plate 14 having an opening 13 in the center, four ground terminals 15 bent downward with the inner edge of the flat metal plate 14 as a base end, and a cut inside the flat metal plate 14. This is an antenna generally constituted by one feed terminal 16 raised and bent downward, and a ground conductor 17 such as copper foil provided on substantially the entire upper surface of the printed circuit board 10. A high-frequency signal is supplied.
[0012]
The ground terminals 15 and the power supply terminals 16 are formed by pressing and bending the metal flat plate 14, and the terminal groups 15, 16 and the metal flat plate 14 are formed of a single metal plate. The four ground terminals 15 are arranged at equal intervals, and each ground terminal 15 and the power supply terminal 16 are formed to have the same length. As shown in FIG. 4, on the lower surface of the printed circuit board 10, a land 18 to which the lower end of each ground terminal 15 penetrating the insertion hole 10a is soldered, and a lower end of the power supply terminal 16 penetrating another insertion hole 10a. A land 19 to which the portion is soldered is provided. The lands 18 are electrically connected to the ground conductor 17 on the upper surface, and the power supply lines (inner conductors) of the coaxial cable 30 are soldered to the lands 19. Since the terminal groups 15 and 16 are fixed to the printed circuit board 10 in this manner, the metal flat plate 14 is securely supported on the printed circuit board 10 in a stable posture with a certain interval between the metal plate 14 and the ground conductor 17. The formation position of the power supply terminal 16 in the metal plate 14 is determined by selecting an appropriate position where the impedance is matched.
[0013]
When the size of the metal plate 14 and the distance between the metal plate 14 and the ground conductor 17 are set to appropriate values and the plate antenna 11 having such a configuration is excited in the TM01 mode, which is the mode having the lowest resonance frequency, the metal plate Since non-directional vertically polarized radio waves are radiated to the surroundings in a plane parallel to the flat plate 14, the antenna can function as a terrestrial vertically polarized antenna whose reception sensitivity does not vary depending on the azimuth. In this flat antenna 11, the outer shape of the metal flat plate 14 is circular. However, even if the outer shape of the flat metal plate 14 is a regular polygon, the omnidirectionality of the flat antenna 11 does not significantly deteriorate.
[0014]
The patch antenna 12 includes a disk-shaped dielectric substrate 20, a substantially circular patch electrode 21 provided on the upper surface of the dielectric substrate 20, and a ground electrode 22 provided on substantially the entire lower surface of the dielectric substrate 20. And a feed pin 23 which is soldered to the patch electrode 21 and penetrates the dielectric substrate 20 and the opening 13. A predetermined high-frequency signal is fed to the feed pin 23. .
[0015]
The dielectric substrate 20 is placed in a concentric arrangement on the metal flat plate 14 of the flat plate antenna 11, and the lower surface side of the dielectric substrate 20 is attached to the metal flat plate 14 by an insulating double-sided tape 24 as shown in FIG. Glued. The patch electrode 21 is a radiating element having a microstrip structure, and notches 21 a (which may be protrusions) serving as degenerate separation elements are provided at two points symmetrically on the outer periphery of the patch electrode 21. The feed pin 23 selects an appropriate feed point with matching impedance and is connected to the patch electrode 21. The feed point is located above the opening 13 of the flat plate antenna 11 because the position of the feed point is near the center of the patch electrode 21. Therefore, there is no fear that the power supply pin 23 extending downward from the power supply point comes into contact with the metal plate 14 and the terminal groups 15 and 16, and the lower end of the power supply pin 23 passes through the insertion hole 10 a and is formed on the lower surface of the printed circuit board 10. It is soldered to the power supply line (inner conductor) of the coaxial cable 31.
[0016]
In the patch antenna 12 having such a configuration, when the size of the patch electrode 21 and the notch 21a is set to an appropriate value and excited in the TM11 mode, a circularly polarized radio wave is radiated upward. It can function as a wave antenna. The patch antenna 12 has a single feed point, and is provided with a degenerate separation element such as a notch 21a to generate a 90-degree phase difference between two orthogonal modes having different resonance lengths. is there.
[0017]
As described above, the composite antenna according to the first embodiment has a structure in which the terrestrial wave can be received by the flat antenna 11 and the satellite wave can be received by the patch antenna 12, and the patch antenna 12 is stacked on the flat antenna 11. The size and thickness of the entire device have been reduced. Therefore, this composite antenna is suitable as a small in-vehicle antenna that can receive both terrestrial waves and satellite waves. Further, in this composite antenna, since the relative positional relationship between the metal plate 14 and the patch electrode 21 is substantially uniform along the circumferential direction, the omnidirectionality in the azimuth plane due to the electromagnetic coupling between the plate antenna 11 and the patch antenna 12 is increased. Therefore, stable performance with little variation in reception sensitivity depending on the azimuth can be expected.
[0018]
Moreover, the flat plate antenna 11 employed in the composite antenna can easily form the flat metal plate 14, the ground terminals 15 and the feed terminals 16 simply by pressing and bending a single metal plate. Therefore, the number of parts and the number of assembling steps are small, it can be manufactured at low cost, and it is easy to secure the assembling accuracy and mechanical strength. Therefore, the metal plate 14 and the dielectric substrate 20 can be supported in a stable posture by the terminal groups 15 and 16 fixed to the printed circuit board 10, so that an inexpensive and highly reliable composite antenna can be obtained. The work of connecting the ground terminal 15 and the feed terminal 16 of the flat antenna 11 to the lands 18 and 19 and the work of connecting the feed pin 23 of the patch antenna 12 to the coaxial cable 31 are performed on the lower surface side of the printed circuit board 10. Easy to do.
[0019]
FIG. 5 is a perspective view of a composite antenna according to a second embodiment of the present invention. Reference numeral 25 generally indicates a patch antenna, and portions corresponding to FIG. 2 are denoted by the same reference numerals.
[0020]
The composite antenna shown in FIG. 5 differs from the first embodiment in that the patch antenna 25 is provided with a 90-degree phase difference circuit (not shown) on the printed circuit board 10 side in a two-point feeding system. . In this patch antenna 25, a circular patch electrode 27 is provided on the upper surface of a dielectric substrate 26, and power supply pins 28 and 29 are soldered to two places of the patch electrode 27, and lower end portions of the power supply pins 28 and 29 are provided. Are connected to the 90-degree phase difference circuit. Thus, two orthogonal modes having phases different from each other by 90 degrees can be excited, so that the patch antenna 25 can function as a circularly polarized antenna for satellite waves, similarly to the patch antenna 12.
[0021]
In each of the above-described embodiments, it is preferable that the composite antenna be covered with a radome (not shown) when the antenna is actually mounted on a moving body such as an automobile. In other words, if the composite antenna is covered with a radome made of a dielectric material, adhesion of dust and the like and collision of flying objects can be prevented without adversely affecting the antenna characteristics, and the life of the composite antenna can be extended. In each of the above-described embodiments, the metal flat plate 14, the grounding terminals 15, and the power supply terminals 16 of the flat antenna 11 are formed of a single metal plate. It may be a metal pin separate from the metal flat plate 14.
[0022]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0023]
A patch antenna, which is a circularly polarized antenna for satellite waves, is mounted and fixed on a metal flat plate of a flat antenna, which is a vertically polarized antenna for terrestrial waves. Since a laminated structure in which the antenna is connected to a feeder line is employed, a composite antenna capable of receiving ground waves and circularly polarized waves and being easily reduced in size and thickness is obtained, and is particularly suitable for use in vehicles. Further, since the metal plate of the flat antenna and the patch electrode of the patch antenna can be set in a substantially uniform relative positional relationship along the circumferential direction, this composite antenna is caused by electromagnetic coupling between the flat antenna and the patch antenna. It is easy to avoid omnidirectional collapse in the azimuth plane, and therefore stable performance with little variation in reception sensitivity depending on the azimuth can be expected.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a composite antenna according to a first embodiment of the present invention.
FIG. 2 is a perspective view of the composite antenna.
FIG. 3 is a top view of the composite antenna.
FIG. 4 is a sectional view taken along line AA of FIG.
FIG. 5 is a perspective view of a composite antenna according to a second embodiment of the present invention.
FIG. 6 is a perspective view of a composite antenna according to a conventional example.
[Explanation of symbols]
Reference Signs List 10 Printed circuit board 10a Insertion hole 11 Plate antenna 12, 25 Patch antenna 13 Opening 14 Metal plate 15 Ground terminal 16 Feed terminal 17 Ground conductor 20, 26 Dielectric substrate 21, 27 Patch electrode 22 Ground electrode 23, 28, 29 Feed pin 30 , 31 Coaxial cable

Claims (3)

外形が円形または正多角形で中央部に開口を有する金属平板を所定の間隔を存して接地導体と対向させ、前記金属平板を接地端子を介して前記接地導体に接続すると共に、前記金属平板を給電端子を介して第1の給電線に接続した平板アンテナと、
誘電体基板の上面にパッチ電極を設けて下面にグラウンド電極を設け、この誘電体基板を前記金属平板上に絶縁部材を介して載置固定すると共に、前記パッチ電極に接続されて前記誘電体基板を貫通する給電ピンを前記開口内に挿通して第2の給電線に接続したパッチアンテナとを備え、
前記平板アンテナを励振して垂直偏波の電波を放射させると共に、前記パッチアンテナを励振して円偏波の電波を放射させるように構成したことを特徴とする複合アンテナ。
A metal flat plate having a circular or regular polygonal shape and having an opening at the center is opposed to a ground conductor at a predetermined interval, and the metal flat plate is connected to the ground conductor via a ground terminal, and the metal flat plate is A flat plate antenna, which is connected to a first feed line via a feed terminal,
A patch electrode is provided on the upper surface of the dielectric substrate, and a ground electrode is provided on the lower surface. The dielectric substrate is mounted and fixed on the metal flat plate via an insulating member, and the dielectric substrate is connected to the patch electrode. A patch antenna connected to a second power supply line by passing a power supply pin passing through the opening into the opening,
A composite antenna, wherein the flat antenna is excited to emit vertically polarized radio waves, and the patch antenna is excited to emit circularly polarized radio waves.
請求項1の記載において、上面に前記接地導体を設けて複数箇所に挿入孔を設けたプリント基板を備え、前記各挿入孔に挿入した前記接地端子と前記給電端子と前記給電ピンをそれぞれ前記プリント基板に固定したことを特徴とする複合アンテナ。2. The printed circuit board according to claim 1, further comprising a printed circuit board provided with the grounding conductor on an upper surface and having insertion holes at a plurality of locations, wherein the ground terminal, the power supply terminal, and the power supply pin inserted into each of the insertion holes are respectively printed. A composite antenna fixed to a substrate. 請求項2の記載において、前記接地端子と前記給電端子がいずれも前記金属平板から前記プリント基板側へ延出する折曲片からなることを特徴とする複合アンテナ。3. The composite antenna according to claim 2, wherein each of the ground terminal and the power supply terminal comprises a bent piece extending from the metal plate to the printed circuit board.
JP2002202838A 2002-07-11 2002-07-11 Composite antenna Withdrawn JP2004048367A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002202838A JP2004048367A (en) 2002-07-11 2002-07-11 Composite antenna
US10/610,146 US20040021606A1 (en) 2002-07-11 2003-06-30 Small plane antenna and composite antenna using the same
EP03254206A EP1381111A1 (en) 2002-07-11 2003-07-02 Small plane antenna and composite antenna using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202838A JP2004048367A (en) 2002-07-11 2002-07-11 Composite antenna

Publications (1)

Publication Number Publication Date
JP2004048367A true JP2004048367A (en) 2004-02-12

Family

ID=31708916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202838A Withdrawn JP2004048367A (en) 2002-07-11 2002-07-11 Composite antenna

Country Status (1)

Country Link
JP (1) JP2004048367A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078895A (en) * 2006-09-20 2008-04-03 Mitsumi Electric Co Ltd Antenna device
KR100820140B1 (en) 2006-11-01 2008-04-07 (주)에이스안테나 Dual circularoy polarized antenna using single radiating element for rfid reader
JP2008527876A (en) * 2005-01-17 2008-07-24 アンテノヴァ・リミテッド Pure dielectric antenna and related devices
JP6041966B1 (en) * 2015-11-19 2016-12-14 原田工業株式会社 Composite patch antenna device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527876A (en) * 2005-01-17 2008-07-24 アンテノヴァ・リミテッド Pure dielectric antenna and related devices
JP2008078895A (en) * 2006-09-20 2008-04-03 Mitsumi Electric Co Ltd Antenna device
US8041324B2 (en) 2006-09-20 2011-10-18 Mitsumi Electric Co., Ltd. Antenna apparatus
KR100820140B1 (en) 2006-11-01 2008-04-07 (주)에이스안테나 Dual circularoy polarized antenna using single radiating element for rfid reader
JP6041966B1 (en) * 2015-11-19 2016-12-14 原田工業株式会社 Composite patch antenna device

Similar Documents

Publication Publication Date Title
EP1478051B1 (en) Combined antennas combining a circularly polarized patch antenna and a vertically polarized metal plate antenna
US6292141B1 (en) Dielectric-patch resonator antenna
AU760084B2 (en) Circularly polarized dielectric resonator antenna
US6759990B2 (en) Compact antenna with circular polarization
US20040021606A1 (en) Small plane antenna and composite antenna using the same
US20160013558A1 (en) Multilayer patch antenna
WO2002084800A2 (en) Crossed slot cavity antenna
CN100365866C (en) Patch dipole array antenna including feed line organizer body and related methods
JP6749489B2 (en) Single layer dual aperture dual band antenna
WO2016100291A1 (en) Antenna systems with proximity coupled annular rectangular patches
JP2022176279A (en) On-vehicle antenna device
JPH07303005A (en) Antenna system for vehicle
JP2004048369A (en) Composite antenna
JP2002246837A (en) Circularly polarized wave antenna
JP2003347838A (en) Antenna device
JP2004048367A (en) Composite antenna
JP3764289B2 (en) Microstrip antenna
JP3923329B2 (en) Compound antenna
KR101984973B1 (en) Antenna
US20210104816A1 (en) Combination driven and parasitic element circularly polarized antenna
JP4205571B2 (en) Planar antenna
JP2004312546A (en) Patch antenna apparatus
JP2006014152A (en) Plane antenna
JP2003309428A (en) Circularly polarized wave antenna
KR101992811B1 (en) Antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050829