JP2004037181A - Vibration sensor - Google Patents

Vibration sensor Download PDF

Info

Publication number
JP2004037181A
JP2004037181A JP2002193119A JP2002193119A JP2004037181A JP 2004037181 A JP2004037181 A JP 2004037181A JP 2002193119 A JP2002193119 A JP 2002193119A JP 2002193119 A JP2002193119 A JP 2002193119A JP 2004037181 A JP2004037181 A JP 2004037181A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric element
vibration sensor
connection member
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002193119A
Other languages
Japanese (ja)
Inventor
Masahiko Fujita
藤田 柾彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002193119A priority Critical patent/JP2004037181A/en
Publication of JP2004037181A publication Critical patent/JP2004037181A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration sensor capable of reducing a manufacturing cost and having stable quality. <P>SOLUTION: This vibration sensor 10 has a piezoelectric element 11. Electrodes are formed on both surfaces 11A and 11B of the piezoelectric element 11, of which the one end is a free end, and the other end is a fixed end. A support member 12 for supporting the piezoelectric element 11 is mounted on the surface 11B in the vicinity of the fixed end of the piezoelectric element 11. Electronic components and the support member 12 are fixed to an element board 15. The electrode on the surface 11A of the piezoelectric element 11 is electrically connected to the electrode on the element board 15 or the electrodes of the electronic components through a connection member 13. In particular, the connection member 13, the electrode on the surface 11A, the support member 12 and the electrode on the surface 11B are fixed by an adhesive. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、振動を検出する振動センサーに関するものであり、より詳しくは、電子機器や精密機械システム等に使われる機能電子部品である振動センサーの構成に関するものである。
【0002】
【従来の技術】
図1は、従来の振動センサーの基本構造を示す。従来の振動センサー9は、図1に示すように、圧電素子1と、支持部材2と、線材3と、電界効果型トランジスタ4と、素子基板5と、シールドケース6A、6Bを備えている。
【0003】
このうち、圧電素子1は、PZTなどの圧電セラミックス材料から構成され、その両面である、1A面および1B面に電極が形成されている。また、圧電素子1の一端は、外部からの力により自由に動く自由端であり、他の一端は支持部材2を介して素子基板5に固定された固定端である。支持部材2は、圧電素子1を支持する部材である。線材3は、圧電素子1の一方の電極1Aと、電界効果型トランジスタ4のゲートを電気的に接続する。電界効果型トランジスタ4は、インピーダンス変換や増幅等を行う。素子基板5は、これらの部品などを固定するものであり、その表面には回路パターンが構成されている。シールドケース6A、6Bは、素子基板5の全体を電磁気的に覆うものである。
【0004】
ここで、支持部材2は、銅またはその他の導電性材料から構成されている。そのため、圧電素子1の電極1Bと電界効果型トランジスタ4のソースは、素子基板の回路パターンを介して電気的に接続される。このような構成により、回路構成の簡素化を図ることができる。
【0005】
【発明が解決しようとする課題】
図1に示す従来の振動センサー9の構造において、電極1Aと線材3の固着、および、電極1Bと支持部材2の固着は、ハンダが用いられていた。ハンダによる固定方法は、機械的固定と電気接続を両立でき、構造上極めて合理的である。しかし、圧電素子1の物理特性確保のため電極1Aと線材3の固着、および、電極1Bと支持部材2の固着には、低温ハンダが用いられていた。
【0006】
この低温ハンダを用いた固着方法は、厳格な温度管理を必要し、ときとして歩留まりが課題になる等の生産上の大きな課題を持っていた。
【0007】
本発明は、このような問題点を解決するためになされたもので、製造コストを低減することができると共に、安定な品質を有する振動センサーを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明にかかる振動センサーは、第1の面と第2の面に電極が形成されると共に、一端が自由端であり、他端が固定端である圧電素子と、前記圧電素子の固定端近傍の第2の面において当該圧電素子を支持する支持部材と、電極が形成され、電子部品及び前記支持部材を固定する素子基板と、前記第1の面上の電極と、前記素子基板上の電極又は電子部品の電極とを電気的に接続する接続部材を備え、前記接続部材と前記第1の面上の電極とを接着剤により固定したものである。このような構成により、製造コストを低減することができ、かつ安定な品質を確保できる。
【0009】
また、本発明にかかる他の振動センサーは、第1の面と第2の面に電極が形成されると共に、一端が自由端であり、他端が固定端である圧電素子と、前記圧電素子の固定端近傍の第2の面において当該圧電素子を支持し、導電性を有する支持部材と、電極が形成され、電子部品及び前記支持部材を固定する素子基板と、前記第1の面上の電極と、前記素子基板上の電極又は電子部品の電極とを電気的に接続する接続部材を備え、前記接続部材と前記支持部材を接着剤により固定したものである。このような構成によっても、製造コストを低減することができ、かつ安定な品質を確保できる。
【0010】
前記圧電素子は、焼成した圧電素子の表面を平坦化せずに電極材が構成されていることが望ましい。これにより、接続部分に生じる空間に接着剤が浸透するため、機械的に強固に、かつ確実に固着すると同時に電気的な接続が安定に保たれる。
【0011】
また、前記接着剤は、導電性接着剤であるが好ましい。これにより、特に電気的な接続を確実にすることができる。
【0012】
本発明にかかる他の振動センサーは、第1の面と第2の面に電極が形成されると共に、一端が自由端であり、他端が固定端である圧電素子と、前記圧電素子の固定端近傍の第2の面において当該圧電素子を支持する支持部材と、電極が形成され、電子部品及び前記支持部材を固定する素子基板と、前記第1の面上の電極と、前記素子基板上の電極又は電子部品の電極とを電気的に接続する接続部材を備え、前記接続部材は、前記第1の面上の電極を押圧するように付勢することによって、当該電極と接続するものである。このような構成により、製造コストを低減することができ、かつ安定な品質を確保できる。
【0013】
ここで、前記接続部材を前記素子基板に固定する固定補助部材をさらに備えるようにするとよい。このような構成により、接続部材を素子基板に強固に固定することができ、接続部材と圧電素子との電気的接触を確実にすることができる。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態について、まずその構造を図面を使い詳細に説明する。
【0015】
図2は、本発明の振動センサー10を示す断面図である。本発明の振動センサー10は、図2に示すように圧電素子11と、支持部材12と、接続部材13と、電界効果型トランジスタ14と、素子基板15と、シールドケース16A、16Bを備えている。
【0016】
このうち、圧電素子11は、PZTなどの圧電セラミックス材料から構成され、その両面11A面および11B面の面全体に電極が形成されている。圧電素子11の一端は、外部からの力により自由に動く自由端であり、他の一端は、支持部材12を介し素子基板15に固定された固定端である。支持部材12は、圧電素子11を支持する部材である。
【0017】
接続部材13は、圧電素子11の一方の電極11Aと電界効果型トランジスタ14のゲートを電気的に接続する部材である。この接続部材13は、例えば、黄銅の薄板状の金属板より構成されている。また、接続部材は、2箇所において屈曲しており、3つの平板部により構成される。第1の平板部は、圧電素子11の面11Aと当接する。この第1の平板部が圧電素子11の面11Aと当接する幅(図2における左右方向の幅)は、ほぼ支持部材2の幅と同じである。第2の平板部は、第1の平板部とほぼ垂直である。第3の平板部は、第1の平板部と第2の平板部の屈曲方向と反対側に屈曲されている。第2の平板部と第3の平板部とはほぼ垂直である。第3の平板部は、素子基板15の主平面と平行であり、その主平面と接触している。接続部材13は、固定補助部材13Aによって、その一端が素子基板15に固定されている。ここで、固定補助部材13Aは、例えば、リベットである。より具体的には、上述の第3の平板部及び素子基板15に設けられた貫通孔を固定補助部材13Aが通っている。そして、固定補助部材13Aは、その両端の直径が、貫通孔よりも長くなるよう構成される。これにより、接続部材13が素子基板15に確実に固定される。
【0018】
尚、この例では、固定補助部材13Aによって接続部材13を素子基板15に固定したが、これに限らず、接着剤のみによって接続部材13を素子基板15に固定するようにしてもよい。
【0019】
電界効果型トランジスタ14は、インピーダンス変換や増幅等を行う。素子基板15は、支持部材12や電界効果型トランジスター14等の電子部品を固定するものであり、その表面には回路パターンが構成されている。シールドケース16A、16Bは、素子基板5の全体を電磁気的に覆うものである。
【0020】
支持部材12は、銅またはその他の導電性材料を使って構成されている。そのため、圧電素子11の電極11Bと電界効果型トランジスタ14のソースは、素子基板15の回路パターン(電極)を介し電気的に接続される。このような構成により、圧電素子11の回路構成の簡素化を図ることができる。尚、支持部材12は、全体が導電性を有する必要はなく、電極11Bと素子基板15の回路パターンとの導電性が確保できるのであれば、一部のみ導電性を有する場合であってもよい。
【0021】
次に圧電素子11の構成について詳細に説明する。本発明にかかる圧電素子11の電極11A、11Bは、焼成したままの圧電素子材111の表面に、直接電極材112を塗布し、構成し、それぞれ、接続部材13、支持部材12と固着し、電気的に接続している。
【0022】
図3は、圧電素子材111の表面付近における断面を示す。この図に示すように焼成のままの圧電素子材111の表面は、粗い状態であり、多数のピーク(山)が形成されている。従来は、電極のコーティング性を確保するために、圧電素子材111の表面を研磨等により平坦化していたが、本発明の実施の形態1では、平坦化させずに、圧電素子材111の表面が粗い状態で、この表面に、直接、電極材112を塗布する。この電極材112は、例えば、銀パウダーである。電極材112を塗布した後における電極11Aの表面は、焼成に起因する表面の粗さを継承する。即ち、電極11Aの表面は粗い状態にある。
【0023】
次に、この電極11A面に対して、接続部材13を所定の力を持って当接する。図4に示すように、電極11の粗さのピーク(山)が、接続部材13の平坦部と強く接触する。このとき、電極11A面のピークと接続部材13の対向面全体を通して両者の接触が生じ、両者は電気的に強く安定した接触となる。なお、製造の治工具や生産設備のみで、この所定の当接力を安定に確保できない場合、図2に示す固定補助部材13Aを併用するのが合理的である。
【0024】
図4に示す接触を確保した状態のまま、接着剤により両者を固着することにより、電気的な接触と機械的な固着が確実に確保できる。接着剤には、例えばエポキシ樹脂が用いられる。図5に示すように、電極面11Aの粗さの谷部と接続部材13の囲む空間に、接着剤113が、浸透し、硬化させるとよい。これにより、電極面11Aと接続部材13は、機械的に強固に、かつ、確実に固着すると同時に、電気的な接続が安定に保たれる。
【0025】
以上、電極11Aと接続部材13の固着と電気的な接続について説明したが、電極11Bと支持部材12においても、同様に確実な固着と電気的接続が得られる。また、接続部材13と、電界効果型トランジスタ14のゲートとの接続も接着剤により両者を固着するようにしてもよい。また、接続部材13と電界効果型トランジスタ14のゲートとの接続が、素子基板5上の電極を介して行われる場合には、接続部材13と素子基板5上の電極を接着剤により固着するようにしてもよい。
【0026】
また、電極面と、接続部材等の接触面積が小さい場合、両者の平坦度が良く大きい当接力を使わないと電気的な接触が得られない場合、当接による両者の電気的な接触が十分得られない場合には、電気的な接続を安定化するために上記接着剤の代わりに導電性接着剤を使い、機械的な固定と電気的な接続を確実なものにすることができる。この場合、図6に示すように、導電性接着剤114内の導電性粒子114Aが、電極11Aと接続部材13の間に充填され、これらの導電性粒子114Aが電極11Aと接続部材13の電気的な架け橋となり、安定した電気的な接続を確保できる。ここで、導電性接着剤には、例えば、エポキシ樹脂等に金や銀の粉末を混ぜた接着剤が用いられる。なお、上記の導電性接着剤の使用例を電極11Aと接続部材13の接着の場合について説明したが、電極11Bと支持部材12に適用しても全く同様な作用をするので、説明は省く。また、接続部材13と、電界効果型トランジスタ14のゲートとの接続も導電性接着剤により両者を固着するようにしてもよい。また、接続部材13と電界効果型トランジスタ14のゲートとの接続が、素子基板5上の電極を介して行われる場合には、接続部材13と素子基板5上の電極を導電性接着剤により固着するようにしてもよい。
【0027】
次に、図2を使い本発明の振動センサー10の動作を詳細に説明する。
【0028】
本発明の振動センサー10を搭載した機器が落下や衝撃を受けると、その衝撃に伴うパルス状の力が振動センサー10に伝わる。この衝撃に伴う力は、まず、図2に示すケース16A、16Bに伝わり、ケース16A、16B内を伝搬する。例えば、矢印Bに示す位置に外部から垂直方向の力を受けた場合、その力はケース16Aを伝搬すると同時に、密着する素子基板15に伝わり、さらに、素子基板15上に固着されている支持部材12を介し、圧電素子11の固定端11Cに伝わる。このとき、圧電素子11の他の端部11Dは、外部から直接、力が及ばない自由端であり、重力に従っている。この状態で、圧電素子11の固定端11Cが矢印Bに示すパルス状の外力を受けた場合、圧電素子11は、図7に示すように、外力を受ける前の状態(破線で示す)から実線で示す状態に移行する。すなわち、圧電素子11は、固定端11Cが持ち上げられ、自由端は慣性の法則に示すようにその位置を維持する。したがって、圧電素子11は、上に凸の状態に歪み、電極11A、電極11Bに、この歪みに対応した電位が現れる。そして、この歪みに伴う曲げのエネルギーと圧電素子11の復元エネルギーである内部剛性とが、バランスし、時間と共に圧電素子11の歪みが解放され、元に戻る。
【0029】
次に、外力が無くなると、振動センサー10は、外力により規制されていた位置から解放され、元の状態または、規制されない状態に戻る。このとき圧電素子11は、上述した動きと反対の動きをする。
【0030】
パルス状の外力から解放され、圧電素子11は、図8に示すように、外力を受け歪みが解放された状態(破線で示す)から、外力が解放された実線で示す状態に移行する。つまり、圧電素子11は、外力の解放と共に固定端11Cが元に戻り(図面上では下に下がる)、自由端は慣性の法則に示すようにその位置を維持する。したがって、圧電素子11は、上に凹の状態に歪み、電極11A、電極11Bに、この歪みに対応した電位が現れる。
【0031】
そして、この歪みに伴う曲げのエネルギーと圧電素子11の復元エネルギーである内部剛性のバランスにより時間と共に圧電素子11の歪みが解放され、元の状態に戻る。
【0032】
なお、外力が振動として加わる場合、その振動周波数と圧電素子11の復元エネルギーのバランスによりその挙動が決まる。
【0033】
さて、上記の電極11A、電極11Bに出現する電位は、電極11Aに接続する接続部材13および電極11Bに接続する支持部材12を介し、電界効果型トランジスター14のゲートおよびソースに伝えられる。
【0034】
また、上記の電極11Aに生じた電位は、接続した接続部材53を介し電界効果型トランジスタ54のゲートに伝わり、また、電極11Bに生じた電位は、支持部材12、素子基板15のパターンを介し、電界効果型トランジスタ14のソースに伝わる。
【0035】
電界効果型トランジスタ14は、伝えられた信号に対しインピーダンス変換および増幅等を行い、その出力端子に出力する。この出力は、接続するケーブル17の信号線を介し、振動センサー10の出力信号として外部に伝えれられる。
【0036】
このとき、振動センサー10は、圧電素子11、支持部材12、接続部材13、各種部品を搭載した素子基板15の全体をシールドケース16A、16Bにより覆い、電気磁気的にシールドされている。したがって振動センサー10は、周囲の電気ノイズ等の影響が入り難く、品質の高い検出信号が得られる。
【0037】
以上、説明したように本発明の実施の形態にかかる振動センサーは、電極と接続する部材を所定の力を持って当接し、この当接状態のまま相互位置を確保した状態で、接着剤または導電性接着剤を使い固定保持し、機械的な固定と電気的な接続を得るものである。
【0038】
この固定・接続方法を採用することにより、振動センサーは、焼成の表面状態で加工可能になり製造工程が簡略化されること、また、従来のハンダによる固着方法に比較し製造工程における厳密な温度管理が不要になり、製造のバラツキが低減できることなどの製造上のメリットが得られ、結果的にユーザに低価格で安定な品質の製品を供給できる副次的な効果が得られる。
【0039】
尚、上述の例では、電極11Aと接続部材13の接続を接着剤により行う例につき説明したが、これに限らず、接続部材13の有する付勢力によって、両者を接続するようにしてもよい。この場合における接続部材13は、金属平板等により構成され、一定の弾性力を有する。そして、接続部材13は、この弾性力によって、電極11Aを押圧するように付勢する。
【0040】
【発明の効果】
本発明によれば、製造コストを低減することができると共に、安定な品質を有する振動センサーを提供することができる。
【図面の簡単な説明】
【図1】従来の振動センサーを示す断面図である。
【図2】本発明の振動センサーを示す断面図である。
【図3】本発明の振動センサーにおける圧電素子の電極の表面状態を示す断面図である。
【図4】本発明の圧電素子電極11Aと接続部材13の接触状況を示す断面図である。
【図5】本発明の圧電素子電極11Aと接続部材13の接触状況と接着剤の状況を示す断面図である。
【図6】本発明の圧電素子電極11Aと接続部材13を導電性接着剤114を使って固着する接着状況を示す断面図である。
【図7】外力により圧電素子が歪みを生じた状況を示す断面図である。
【図8】外力が解放された瞬間の圧電素子の状況を示す断面図である。
【符号の説明】
1 :圧電素子
1A、1B:電極
2 :支持部材
3 :線材
4 :電界効果型トランジスター
5 :素子基板
6A、6B :シールドケース
7 :ケーブル
10 :本発明の振動センサー
11 :圧電素子
11A :圧電素子の電極
11B :圧電素子の電極
11C :圧電素子の固定端
11D :圧電素子の自由端
12 :支持部材
13 :接続部材
13A :固定補助部材
14 :電界効果型トランジスター
15 :素子基板
16A,16B :シールドケース
17 :ケーブル
111 :圧電素子材
112 :電極材
113 :接着剤
114 :導電性接着剤
114A :導電性粒子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vibration sensor that detects vibration, and more particularly, to a configuration of a vibration sensor that is a functional electronic component used in an electronic device, a precision machine system, or the like.
[0002]
[Prior art]
FIG. 1 shows a basic structure of a conventional vibration sensor. As shown in FIG. 1, a conventional vibration sensor 9 includes a piezoelectric element 1, a support member 2, a wire 3, a field effect transistor 4, an element substrate 5, and shield cases 6A and 6B.
[0003]
Among them, the piezoelectric element 1 is made of a piezoelectric ceramic material such as PZT, and electrodes are formed on both surfaces, 1A surface and 1B surface. One end of the piezoelectric element 1 is a free end that freely moves by an external force, and the other end is a fixed end fixed to the element substrate 5 via the support member 2. The support member 2 is a member that supports the piezoelectric element 1. The wire 3 electrically connects one electrode 1 </ b> A of the piezoelectric element 1 to the gate of the field effect transistor 4. The field effect transistor 4 performs impedance conversion, amplification, and the like. The element substrate 5 fixes these components and the like, and a circuit pattern is formed on the surface thereof. The shield cases 6A and 6B electromagnetically cover the entire element substrate 5.
[0004]
Here, the support member 2 is made of copper or another conductive material. Therefore, the electrode 1B of the piezoelectric element 1 and the source of the field effect transistor 4 are electrically connected via the circuit pattern of the element substrate. With such a configuration, the circuit configuration can be simplified.
[0005]
[Problems to be solved by the invention]
In the structure of the conventional vibration sensor 9 shown in FIG. 1, solder is used for fixing the electrode 1A to the wire 3 and fixing the electrode 1B to the support member 2. The fixing method using solder can achieve both mechanical fixing and electrical connection, and is extremely reasonable in structure. However, low-temperature solder has been used for fixing the electrode 1A and the wire 3 and for fixing the electrode 1B and the support member 2 to secure the physical characteristics of the piezoelectric element 1.
[0006]
The fixing method using the low-temperature solder requires strict temperature control, and has a large problem in production such as an occasional problem in yield.
[0007]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a vibration sensor that can reduce manufacturing cost and has stable quality.
[0008]
[Means for Solving the Problems]
A vibration sensor according to the present invention includes a piezoelectric element having electrodes formed on a first surface and a second surface, one end of which is a free end, and the other end of which is a fixed end, and a vicinity of a fixed end of the piezoelectric element. A support member for supporting the piezoelectric element on the second surface, an electrode formed with electrodes, and an element substrate for fixing the electronic component and the support member; an electrode on the first surface; and an electrode on the element substrate Alternatively, a connection member for electrically connecting an electrode of the electronic component is provided, and the connection member and the electrode on the first surface are fixed by an adhesive. With such a configuration, manufacturing cost can be reduced and stable quality can be ensured.
[0009]
Further, another vibration sensor according to the present invention includes a piezoelectric element having electrodes formed on a first surface and a second surface, one end of which is a free end, and the other end of which is a fixed end; A support member having conductivity and supporting the piezoelectric element on a second surface near a fixed end of the device, an element substrate on which electrodes are formed, and an electronic component and the support member are fixed; A connection member is provided for electrically connecting the electrode to an electrode on the element substrate or an electrode of an electronic component, and the connection member and the support member are fixed by an adhesive. Even with such a configuration, the manufacturing cost can be reduced and stable quality can be ensured.
[0010]
It is preferable that the piezoelectric element is configured with an electrode material without flattening the surface of the fired piezoelectric element. As a result, the adhesive penetrates into the space created in the connection portion, so that it is mechanically and firmly fixed, and at the same time, the electrical connection is kept stable.
[0011]
The adhesive is preferably a conductive adhesive. As a result, it is possible to particularly secure the electrical connection.
[0012]
Another vibration sensor according to the present invention includes a piezoelectric element having electrodes formed on a first surface and a second surface, one end of which is a free end, and the other end of which is a fixed end; A supporting member for supporting the piezoelectric element on a second surface near an end, an electrode formed with electrodes, and an element substrate for fixing an electronic component and the supporting member; an electrode on the first surface; A connection member for electrically connecting the electrode or the electrode of the electronic component, and the connection member is connected to the electrode by urging the electrode on the first surface so as to press the electrode. is there. With such a configuration, manufacturing cost can be reduced and stable quality can be ensured.
[0013]
Here, it is preferable to further include a fixing auxiliary member for fixing the connection member to the element substrate. With such a configuration, the connection member can be firmly fixed to the element substrate, and electrical connection between the connection member and the piezoelectric element can be ensured.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0015]
FIG. 2 is a sectional view showing the vibration sensor 10 of the present invention. As shown in FIG. 2, the vibration sensor 10 of the present invention includes a piezoelectric element 11, a support member 12, a connection member 13, a field-effect transistor 14, an element substrate 15, and shield cases 16A and 16B. .
[0016]
Among them, the piezoelectric element 11 is made of a piezoelectric ceramic material such as PZT, and electrodes are formed on the entire surface of both surfaces 11A and 11B. One end of the piezoelectric element 11 is a free end that freely moves by an external force, and the other end is a fixed end fixed to the element substrate 15 via the support member 12. The support member 12 is a member that supports the piezoelectric element 11.
[0017]
The connection member 13 is a member for electrically connecting one electrode 11A of the piezoelectric element 11 and the gate of the field-effect transistor 14. The connection member 13 is made of, for example, a brass thin metal plate. Further, the connection member is bent at two places and is constituted by three flat plate portions. The first flat plate portion contacts the surface 11 </ b> A of the piezoelectric element 11. The width (width in the left-right direction in FIG. 2) of the first flat plate portion in contact with the surface 11A of the piezoelectric element 11 is substantially the same as the width of the support member 2. The second flat portion is substantially perpendicular to the first flat portion. The third flat plate portion is bent in a direction opposite to the bending direction of the first flat plate portion and the second flat plate portion. The second flat plate portion and the third flat plate portion are substantially perpendicular. The third flat portion is parallel to the main plane of the element substrate 15 and is in contact with the main plane. One end of the connection member 13 is fixed to the element substrate 15 by a fixing auxiliary member 13A. Here, the fixing auxiliary member 13A is, for example, a rivet. More specifically, the fixing auxiliary member 13A passes through the through hole provided in the third flat plate portion and the element substrate 15 described above. The auxiliary fixing member 13A is configured such that the diameters at both ends thereof are longer than the diameter of the through hole. Thereby, the connection member 13 is securely fixed to the element substrate 15.
[0018]
In this example, the connecting member 13 is fixed to the element substrate 15 by the fixing auxiliary member 13A. However, the present invention is not limited to this, and the connecting member 13 may be fixed to the element substrate 15 only by an adhesive.
[0019]
The field effect transistor 14 performs impedance conversion, amplification, and the like. The element substrate 15 is for fixing electronic components such as the support member 12 and the field effect transistor 14, and has a circuit pattern formed on the surface thereof. The shield cases 16A and 16B electromagnetically cover the entire element substrate 5.
[0020]
The support member 12 is formed using copper or another conductive material. Therefore, the electrode 11B of the piezoelectric element 11 and the source of the field effect transistor 14 are electrically connected via the circuit pattern (electrode) of the element substrate 15. With such a configuration, the circuit configuration of the piezoelectric element 11 can be simplified. Note that the support member 12 does not need to have conductivity as a whole, and may have only a portion of conductivity as long as the conductivity between the electrode 11B and the circuit pattern of the element substrate 15 can be ensured. .
[0021]
Next, the configuration of the piezoelectric element 11 will be described in detail. The electrodes 11A and 11B of the piezoelectric element 11 according to the present invention are formed by directly applying the electrode material 112 to the surface of the as-fired piezoelectric element material 111, and are fixed to the connection member 13 and the support member 12, respectively. Electrically connected.
[0022]
FIG. 3 shows a cross section near the surface of the piezoelectric element material 111. As shown in this figure, the surface of the as-fired piezoelectric element material 111 is in a rough state, and has many peaks (peaks). Conventionally, the surface of the piezoelectric element material 111 was flattened by polishing or the like in order to ensure coating properties of the electrodes. However, in the first embodiment of the present invention, the surface of the piezoelectric element material 111 is not flattened. The electrode material 112 is directly applied to this surface in a rough state. The electrode material 112 is, for example, silver powder. The surface of the electrode 11A after the application of the electrode material 112 inherits the surface roughness caused by firing. That is, the surface of the electrode 11A is in a rough state.
[0023]
Next, the connecting member 13 is brought into contact with the surface of the electrode 11A with a predetermined force. As shown in FIG. 4, the peak (peak) of the roughness of the electrode 11 makes strong contact with the flat portion of the connection member 13. At this time, the contact between the two occurs through the peak of the surface of the electrode 11A and the entire opposing surface of the connection member 13, and both are electrically and strongly stable. In addition, when the predetermined contact force cannot be stably ensured only by manufacturing jigs and tools, it is reasonable to use the fixing auxiliary member 13A shown in FIG. 2 together.
[0024]
By fixing both with an adhesive in a state where the contact shown in FIG. 4 is secured, electrical contact and mechanical fixation can be surely secured. As the adhesive, for example, an epoxy resin is used. As shown in FIG. 5, it is preferable that the adhesive 113 penetrates into the space between the valley of the roughness of the electrode surface 11 </ b> A and the connection member 13 and is cured. Thereby, the electrode surface 11A and the connection member 13 are mechanically firmly and securely fixed, and the electrical connection is maintained stably.
[0025]
As described above, the fixation and the electrical connection between the electrode 11A and the connection member 13 have been described. However, the secure fixation and the electrical connection can be similarly obtained between the electrode 11B and the support member 12. Also, the connection between the connection member 13 and the gate of the field effect transistor 14 may be fixed by an adhesive. When the connection between the connection member 13 and the gate of the field-effect transistor 14 is performed via an electrode on the element substrate 5, the connection member 13 and the electrode on the element substrate 5 are fixed with an adhesive. It may be.
[0026]
In addition, when the contact area between the electrode surface and the connecting member is small, the flatness of the two is good and the electrical contact cannot be obtained unless a large contact force is used. If not, a conductive adhesive may be used in place of the adhesive to stabilize the electrical connection, ensuring mechanical fixation and electrical connection. In this case, as shown in FIG. 6, the conductive particles 114A in the conductive adhesive 114 are filled between the electrode 11A and the connection member 13, and the conductive particles 114A are electrically connected between the electrode 11A and the connection member 13. Bridge and secure stable electrical connection. Here, as the conductive adhesive, for example, an adhesive obtained by mixing gold or silver powder with an epoxy resin or the like is used. Although the above-described example of the use of the conductive adhesive in the case of bonding the electrode 11A and the connection member 13 has been described, the same operation is performed even when the electrode 11B and the support member 12 are applied, and the description is omitted. Also, the connection between the connection member 13 and the gate of the field effect transistor 14 may be fixed by a conductive adhesive. When the connection between the connection member 13 and the gate of the field effect transistor 14 is performed via an electrode on the element substrate 5, the connection member 13 and the electrode on the element substrate 5 are fixed with a conductive adhesive. You may make it.
[0027]
Next, the operation of the vibration sensor 10 of the present invention will be described in detail with reference to FIG.
[0028]
When a device equipped with the vibration sensor 10 of the present invention receives a drop or a shock, a pulse-like force accompanying the shock is transmitted to the vibration sensor 10. The force accompanying this impact is first transmitted to the cases 16A and 16B shown in FIG. 2, and propagates through the cases 16A and 16B. For example, when a vertical force is applied from the outside to the position indicated by the arrow B, the force propagates through the case 16A, and at the same time, is transmitted to the element substrate 15 which is in close contact with the case 16A. The light is transmitted to the fixed end 11 </ b> C of the piezoelectric element 11 via the reference numeral 12. At this time, the other end 11D of the piezoelectric element 11 is a free end to which no force is directly applied from the outside, and follows the gravity. In this state, when the fixed end 11C of the piezoelectric element 11 receives a pulse-like external force shown by an arrow B, the piezoelectric element 11 changes from a state before receiving the external force (shown by a broken line) to a solid line as shown in FIG. Transition to the state indicated by. That is, the fixed end 11C of the piezoelectric element 11 is lifted, and the free end maintains its position as indicated by the law of inertia. Therefore, the piezoelectric element 11 is distorted in an upwardly convex state, and a potential corresponding to the distortion appears on the electrodes 11A and 11B. Then, the bending energy caused by the distortion and the internal rigidity which is the restoration energy of the piezoelectric element 11 are balanced, and the distortion of the piezoelectric element 11 is released over time, and returns to the original state.
[0029]
Next, when the external force disappears, the vibration sensor 10 is released from the position regulated by the external force, and returns to the original state or the unregulated state. At this time, the piezoelectric element 11 performs a movement opposite to the above-described movement.
[0030]
As shown in FIG. 8, the piezoelectric element 11 is released from the pulse-like external force, and shifts from a state in which the distortion is released by the external force (shown by a broken line) to a state shown by a solid line in which the external force is released. That is, with the release of the external force, the fixed end 11C of the piezoelectric element 11 returns to its original position (downward in the drawing), and the free end maintains its position as shown by the law of inertia. Therefore, the piezoelectric element 11 is distorted in an upwardly concave state, and a potential corresponding to the distortion appears on the electrodes 11A and 11B.
[0031]
Then, the distortion of the piezoelectric element 11 is released over time due to the balance between the bending energy due to the distortion and the internal rigidity, which is the restoration energy of the piezoelectric element 11, and the piezoelectric element 11 returns to the original state.
[0032]
When an external force is applied as vibration, the behavior is determined by the balance between the vibration frequency and the restoration energy of the piezoelectric element 11.
[0033]
The potential appearing at the electrodes 11A and 11B is transmitted to the gate and the source of the field-effect transistor 14 via the connection member 13 connected to the electrode 11A and the support member 12 connected to the electrode 11B.
[0034]
The potential generated at the electrode 11A is transmitted to the gate of the field-effect transistor 54 through the connected connecting member 53, and the potential generated at the electrode 11B is transmitted through the pattern of the supporting member 12 and the element substrate 15. , To the source of the field effect transistor 14.
[0035]
The field effect transistor 14 performs impedance conversion, amplification, and the like on the transmitted signal, and outputs the signal to its output terminal. This output is transmitted to the outside as an output signal of the vibration sensor 10 via a signal line of the cable 17 to be connected.
[0036]
At this time, the vibration sensor 10 covers the entire element substrate 15 on which the piezoelectric element 11, the support member 12, the connection member 13, and the various components are mounted by the shield cases 16A and 16B, and is electromagnetically shielded. Therefore, the vibration sensor 10 is hardly affected by surrounding electric noise and the like, and a high-quality detection signal can be obtained.
[0037]
As described above, in the vibration sensor according to the embodiment of the present invention, the member connected to the electrode is brought into contact with a predetermined force, and in a state where the mutual position is secured in this contact state, the adhesive or the adhesive is used. A conductive adhesive is used to fix and hold to obtain mechanical fixing and electrical connection.
[0038]
By adopting this fixing and connecting method, the vibration sensor can be processed in the surface state of firing and the manufacturing process is simplified, and the strict temperature in the manufacturing process is compared with the conventional soldering method. There is no need for management, and there are advantages in manufacturing, such as reduction in manufacturing variations. As a result, a secondary effect is obtained in which low-priced, stable quality products can be supplied to users.
[0039]
In the above-described example, the example in which the connection between the electrode 11A and the connection member 13 is performed using an adhesive has been described. However, the present invention is not limited to this, and the connection member 13 may be connected by the urging force of the connection member 13. The connection member 13 in this case is made of a metal flat plate or the like, and has a certain elastic force. Then, the connection member 13 is urged by the elastic force so as to press the electrode 11A.
[0040]
【The invention's effect】
According to the present invention, it is possible to reduce the manufacturing cost and to provide a vibration sensor having stable quality.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a conventional vibration sensor.
FIG. 2 is a sectional view showing a vibration sensor according to the present invention.
FIG. 3 is a sectional view showing a surface state of an electrode of a piezoelectric element in the vibration sensor according to the present invention.
FIG. 4 is a cross-sectional view showing a contact state between a piezoelectric element electrode 11A and a connection member 13 according to the present invention.
FIG. 5 is a cross-sectional view showing a state of contact between a piezoelectric element electrode 11A and a connection member 13 and a state of an adhesive according to the present invention.
FIG. 6 is a cross-sectional view showing a bonding state in which the piezoelectric element electrode 11A and the connection member 13 of the present invention are fixed using a conductive adhesive 114.
FIG. 7 is a cross-sectional view illustrating a state in which the piezoelectric element is distorted by an external force.
FIG. 8 is a sectional view showing a state of the piezoelectric element at the moment when the external force is released.
[Explanation of symbols]
1: piezoelectric element 1A, 1B: electrode 2: support member 3: wire 4: field effect transistor 5: element substrate 6A, 6B: shield case 7: cable 10: vibration sensor 11 of the present invention: piezoelectric element 11A: piezoelectric element Electrode 11B: Electrode of piezoelectric element 11C: Fixed end 11D of piezoelectric element: Free end 12 of piezoelectric element: Support member 13: Connection member 13A: Fixing auxiliary member 14: Field effect transistor 15: Element substrates 16A, 16B: Shield Case 17: Cable 111: Piezoelectric element material 112: Electrode material 113: Adhesive 114: Conductive adhesive 114A: Conductive particles

Claims (6)

第1の面と第2の面に電極が形成されると共に、一端が自由端であり、他端が固定端である圧電素子と、
前記圧電素子の固定端近傍の第2の面において当該圧電素子を支持する支持部材と、
電極が形成され、電子部品及び前記支持部材を固定する素子基板と、
前記第1の面上の電極と、前記素子基板上の電極又は電子部品の電極とを電気的に接続する接続部材を備え、
前記接続部材と前記第1の面上の電極とを接着剤により固定した振動センサー。
A piezoelectric element having electrodes formed on the first surface and the second surface, one end being a free end, and the other end being a fixed end;
A support member for supporting the piezoelectric element on a second surface near the fixed end of the piezoelectric element;
Electrodes are formed, an element substrate for fixing the electronic component and the support member,
A connection member that electrically connects the electrode on the first surface and an electrode on the element substrate or an electrode of an electronic component;
A vibration sensor in which the connection member and the electrode on the first surface are fixed with an adhesive.
第1の面と第2の面に電極が形成されると共に、一端が自由端であり、他端が固定端である圧電素子と、
前記圧電素子の固定端近傍の第2の面において当該圧電素子を支持し、導電性を有する支持部材と、
電極が形成され、電子部品及び前記支持部材を固定する素子基板と、
前記第1の面上の電極と、前記素子基板上の電極又は電子部品の電極とを電気的に接続する接続部材を備え、
前記接続部材と前記支持部材を接着剤により固定した振動センサー。
A piezoelectric element having electrodes formed on the first surface and the second surface, one end being a free end, and the other end being a fixed end;
A supporting member having conductivity, supporting the piezoelectric element on a second surface near the fixed end of the piezoelectric element,
Electrodes are formed, an element substrate for fixing the electronic component and the support member,
A connection member that electrically connects the electrode on the first surface and an electrode on the element substrate or an electrode of an electronic component;
A vibration sensor in which the connection member and the support member are fixed with an adhesive.
前記圧電素子は、焼成した圧電素子の表面を平坦化せずに電極材が構成されていることを特徴とする請求項1又は2記載の振動センサー。The vibration sensor according to claim 1, wherein the piezoelectric element includes an electrode material without flattening a surface of the fired piezoelectric element. 前記接着剤は、導電性接着剤であることを特徴とする請求項1、2又は3記載の振動センサー。The vibration sensor according to claim 1, 2 or 3, wherein the adhesive is a conductive adhesive. 第1の面と第2の面に電極が形成されると共に、一端が自由端であり、他端が固定端である圧電素子と、
前記圧電素子の固定端近傍の第2の面において当該圧電素子を支持する支持部材と、
電極が形成され、電子部品及び前記支持部材を固定する素子基板と、
前記第1の面上の電極と、前記素子基板上の電極又は電子部品の電極とを電気的に接続する接続部材を備え、
前記接続部材は、前記第1の面上の電極を押圧するように付勢することによって、当該電極と接続する振動センサー。
A piezoelectric element having electrodes formed on the first surface and the second surface, one end being a free end, and the other end being a fixed end;
A support member for supporting the piezoelectric element on a second surface near the fixed end of the piezoelectric element;
Electrodes are formed, an element substrate for fixing the electronic component and the support member,
A connection member that electrically connects the electrode on the first surface and an electrode on the element substrate or an electrode of an electronic component;
A vibration sensor in which the connection member is connected to the electrode on the first surface by urging the electrode to press the electrode on the first surface.
前記接続部材を前記素子基板に固定する固定補助部材をさらに備えたことを特徴とする請求項5記載の振動センサー。The vibration sensor according to claim 5, further comprising a fixing auxiliary member for fixing the connection member to the element substrate.
JP2002193119A 2002-07-02 2002-07-02 Vibration sensor Pending JP2004037181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002193119A JP2004037181A (en) 2002-07-02 2002-07-02 Vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002193119A JP2004037181A (en) 2002-07-02 2002-07-02 Vibration sensor

Publications (1)

Publication Number Publication Date
JP2004037181A true JP2004037181A (en) 2004-02-05

Family

ID=31702149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002193119A Pending JP2004037181A (en) 2002-07-02 2002-07-02 Vibration sensor

Country Status (1)

Country Link
JP (1) JP2004037181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008632A1 (en) * 2011-07-11 2013-01-17 日本電気株式会社 Piezoelectric vibration sensor

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108131U (en) * 1980-12-24 1982-07-03
JPS5892631U (en) * 1981-12-16 1983-06-23 松下電器産業株式会社 vibration detector
JPS58158524A (en) * 1982-03-16 1983-09-20 Matsushita Electric Ind Co Ltd Manufacture of vibration detector
JPS58145523U (en) * 1982-03-26 1983-09-30 松下電器産業株式会社 vibration detector
JPS6117029A (en) * 1985-06-13 1986-01-25 Matsushita Electric Ind Co Ltd Vibration detector
JPS6148649B2 (en) * 1979-06-11 1986-10-25 Nippon Jidosha Buhin Sogo Kenkyusho Kk
JPS6244526U (en) * 1985-09-05 1987-03-18
JPH0266021U (en) * 1988-11-07 1990-05-18
JPH04117014A (en) * 1990-09-03 1992-04-17 Toyo Commun Equip Co Ltd Packing structure for ultra thin piezoelectric resonator
JPH05164776A (en) * 1991-12-10 1993-06-29 Mitsubishi Electric Corp Semiconductor acceleration sensor and its assembling method
JPH066167A (en) * 1992-06-23 1994-01-14 Matsushita Electric Ind Co Ltd Quartz oscillator and manufacture thereof
JPH06112753A (en) * 1992-09-30 1994-04-22 Nec Corp Piezoelectric vibrator
JPH06249706A (en) * 1993-02-26 1994-09-09 Fujikura Ltd Piezoelectric oscillation sensor
JPH07176971A (en) * 1992-07-03 1995-07-14 Toyo Commun Equip Co Ltd Structure for piezoelectric resonator
JPH07298394A (en) * 1994-04-22 1995-11-10 Res Dev Corp Of Japan Vibration detector and its manufacture
JPH08506453A (en) * 1993-11-24 1996-07-09 モトローラ・インコーポレイテッド Method of mounting piezoelectric element on substrate
JPH11103230A (en) * 1997-09-26 1999-04-13 Citizen Electronics Co Ltd Piezoelectric oscillator and its production
JPH11266135A (en) * 1998-03-17 1999-09-28 Daishinku:Kk Piezoelectric oscillator and its manufacture
WO2001067600A1 (en) * 2000-03-03 2001-09-13 Daishinku Corporation Crystal vibration device
JP2001292048A (en) * 2000-04-05 2001-10-19 Seiko Epson Corp Mount structure for piezoelectric vibrator chip, mount method and piezoelectric device
JP2001332952A (en) * 2000-03-15 2001-11-30 Seiko Epson Corp Package structure for piezoelectric vibrator
JP2001349900A (en) * 1999-12-28 2001-12-21 Fujitsu Ltd Acceleration sensor and acceleration sensor apparatus
JP4666547B2 (en) * 2000-12-22 2011-04-06 ニュートリー株式会社 Fluid food containers

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148649B2 (en) * 1979-06-11 1986-10-25 Nippon Jidosha Buhin Sogo Kenkyusho Kk
JPS57108131U (en) * 1980-12-24 1982-07-03
JPS5892631U (en) * 1981-12-16 1983-06-23 松下電器産業株式会社 vibration detector
JPS58158524A (en) * 1982-03-16 1983-09-20 Matsushita Electric Ind Co Ltd Manufacture of vibration detector
JPS58145523U (en) * 1982-03-26 1983-09-30 松下電器産業株式会社 vibration detector
JPS6117029A (en) * 1985-06-13 1986-01-25 Matsushita Electric Ind Co Ltd Vibration detector
JPS6244526U (en) * 1985-09-05 1987-03-18
JPH0266021U (en) * 1988-11-07 1990-05-18
JPH04117014A (en) * 1990-09-03 1992-04-17 Toyo Commun Equip Co Ltd Packing structure for ultra thin piezoelectric resonator
JPH05164776A (en) * 1991-12-10 1993-06-29 Mitsubishi Electric Corp Semiconductor acceleration sensor and its assembling method
JPH066167A (en) * 1992-06-23 1994-01-14 Matsushita Electric Ind Co Ltd Quartz oscillator and manufacture thereof
JPH07176971A (en) * 1992-07-03 1995-07-14 Toyo Commun Equip Co Ltd Structure for piezoelectric resonator
JPH06112753A (en) * 1992-09-30 1994-04-22 Nec Corp Piezoelectric vibrator
JPH06249706A (en) * 1993-02-26 1994-09-09 Fujikura Ltd Piezoelectric oscillation sensor
JPH08506453A (en) * 1993-11-24 1996-07-09 モトローラ・インコーポレイテッド Method of mounting piezoelectric element on substrate
JPH07298394A (en) * 1994-04-22 1995-11-10 Res Dev Corp Of Japan Vibration detector and its manufacture
JPH11103230A (en) * 1997-09-26 1999-04-13 Citizen Electronics Co Ltd Piezoelectric oscillator and its production
JPH11266135A (en) * 1998-03-17 1999-09-28 Daishinku:Kk Piezoelectric oscillator and its manufacture
JP2001349900A (en) * 1999-12-28 2001-12-21 Fujitsu Ltd Acceleration sensor and acceleration sensor apparatus
WO2001067600A1 (en) * 2000-03-03 2001-09-13 Daishinku Corporation Crystal vibration device
JP2001332952A (en) * 2000-03-15 2001-11-30 Seiko Epson Corp Package structure for piezoelectric vibrator
JP2001292048A (en) * 2000-04-05 2001-10-19 Seiko Epson Corp Mount structure for piezoelectric vibrator chip, mount method and piezoelectric device
JP4666547B2 (en) * 2000-12-22 2011-04-06 ニュートリー株式会社 Fluid food containers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008632A1 (en) * 2011-07-11 2013-01-17 日本電気株式会社 Piezoelectric vibration sensor

Similar Documents

Publication Publication Date Title
SG179333A1 (en) Connector assembly and method of manufacture
JP4741385B2 (en) Structure
JP5065974B2 (en) Microphone unit and manufacturing method thereof
JP2017530520A (en) Method to make conductive press-fit pin to solder press-free electrical press-contact to printed circuit board
JP3099382B2 (en) Small oscillator
US7270549B2 (en) Electrical connector
JP2000208893A (en) Fitting structure for electronic apparatus
JP2004037181A (en) Vibration sensor
JP2000156588A (en) Shield structure of chip part
US20170045405A1 (en) Surface mount force sensing module
JP2013137330A (en) Piezoelectric acceleration sensor
JP3235467B2 (en) Electronic components
CN221804748U (en) Fingerprint identification device and electronic equipment
JP2007315898A (en) Piezoelectric acceleration sensor
US20150333729A1 (en) Piezoelectric package
JP2005055305A (en) Vibration sensor
JP5270622B2 (en) Piezoelectric acceleration sensor
JP2007081844A (en) Condenser microphone, mounting method of condenser microphone and portable terminal using the same
JPH09199242A (en) Printed wiring board integral type connector and manufacture thereof
JPH0590982U (en) Component mounting structure on circuit board
KR20140115915A (en) Piezoelectric vibration device
JP2011228215A (en) Connection terminal, connector, socket and semiconductor package
JP2006270944A (en) Piezo-electric component
JPH07111433A (en) Mounting structure of piezoelectric component
JP2002009414A (en) Electrical mechanical connection device between power source module and printed circuit board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814