JP2003335552A - Substrate coated with ito film and its manufacturing method, and organic el element having it - Google Patents

Substrate coated with ito film and its manufacturing method, and organic el element having it

Info

Publication number
JP2003335552A
JP2003335552A JP2002146328A JP2002146328A JP2003335552A JP 2003335552 A JP2003335552 A JP 2003335552A JP 2002146328 A JP2002146328 A JP 2002146328A JP 2002146328 A JP2002146328 A JP 2002146328A JP 2003335552 A JP2003335552 A JP 2003335552A
Authority
JP
Japan
Prior art keywords
film
substrate
ito film
tin
indium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002146328A
Other languages
Japanese (ja)
Other versions
JP4114398B2 (en
Inventor
Akira Mitsui
彰 光井
Kunio Masushige
邦雄 増茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002146328A priority Critical patent/JP4114398B2/en
Publication of JP2003335552A publication Critical patent/JP2003335552A/en
Application granted granted Critical
Publication of JP4114398B2 publication Critical patent/JP4114398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Surface Treatment Of Glass (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate coated with an ITO film that has less rugged and flat surface and is free from complicated manufacturing steps such as a heat treatment after coating or polishing a surface of the transparent ITO film, and its manufacturing method, as well as an organic EL element of an unlikely possibility of generating dark spots that a current is low to drive. <P>SOLUTION: A substrate coated with tin-doped indium oxide comprising a base film of which the main component is zirconium oxide and the tin-doped indium oxide film formed next to said base film, and characterized by having said base film of 1 to 15 nm film thickness and said ITO film of 1.2 nm or less mean surface roughness R<SB>a</SB>, and the organic EL element having said substrate coated with tin-doped indium oxide, are provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ITO膜付き基体
と前記ITO膜付き基体を有する有機EL素子に関す
る。
TECHNICAL FIELD The present invention relates to a substrate with an ITO film and an organic EL device having the substrate with an ITO film.

【0002】[0002]

【従来の技術】近年、有機EL(エレクトロルミネッセ
ンス)素子に関する研究が盛んに行われている。この有
機EL素子は、通常、ガラスなどの基板上に透明導電膜
を形成した陽極と、正孔輸送層と、発光層と、陰極とか
ら構成されており、10V前後の電圧で数100〜数1
0000cd/mと極めて高い輝度が得られるという
理由により、次世代のディスプレィ素子として注目され
ている。
2. Description of the Related Art In recent years, research on organic EL (electroluminescence) elements has been actively conducted. This organic EL element is usually composed of an anode having a transparent conductive film formed on a substrate such as glass, a hole transporting layer, a light emitting layer, and a cathode. 1
Because of the extremely high brightness of 0000 cd / m 2 , it is drawing attention as a next-generation display element.

【0003】前記陽極は、ガラスなどの基板に導電膜を
形成することにより作成され、前記導電膜として、IT
O(錫ドープ酸化インジウム)膜、IZO(亜鉛ドープ
酸化インジウム)膜などが知られている。特にITO膜
は、導電性に優れ、可視光透過率が高く、耐薬品性が優
れる一方で、ある種の酸には溶けるので、パターニング
しやすいという優れた特徴がある。
The anode is formed by forming a conductive film on a substrate such as glass. As the conductive film, IT is used.
O (tin-doped indium oxide) film, IZO (zinc-doped indium oxide) film, and the like are known. In particular, the ITO film has excellent conductivity, high visible light transmittance, and excellent chemical resistance, but has an excellent feature that it can be easily patterned because it is soluble in a certain acid.

【0004】導電性および耐薬品性の観点から、ITO
膜は結晶質であることが好ましい。しかし、結晶質の膜
は表面に凹凸が生じやすい。ITO膜を有機EL素子の
導電膜などに用いる場合、ITO膜表面の凹凸が大きい
と、リーク電流やダークスポットなどの不具合の原因と
なる。
From the viewpoint of conductivity and chemical resistance, ITO
The membrane is preferably crystalline. However, the crystalline film tends to have irregularities on the surface. When the ITO film is used as a conductive film of an organic EL device, if the unevenness of the ITO film surface is large, problems such as leak current and dark spots may occur.

【0005】特開平11−87068号公報には、10
〜150℃の比較的低温でITO膜を成膜した後、10
0〜450℃で加熱処理して、ITO膜の結晶配向を
(111)配向とし、有機EL素子のリーク電流やダー
クスポットを抑制する発明が開示されている。しかし、
成膜後に熱処理することは製造工程が複雑になり、生産
性の点で好ましくない。また、ITO膜表面の研磨、酸
処理などによりITO膜の表面の凹凸を減らす試みも行
われているが、いずれも製造工程が複雑になり、やはり
生産性に劣る。
In Japanese Patent Laid-Open No. 11-87068, 10
After forming the ITO film at a relatively low temperature of ~ 150 ° C, 10
An invention is disclosed in which the crystal orientation of the ITO film is changed to the (111) orientation by heat treatment at 0 to 450 ° C. to suppress the leak current and the dark spot of the organic EL element. But,
The heat treatment after film formation complicates the manufacturing process and is not preferable in terms of productivity. Attempts have also been made to reduce the irregularities on the surface of the ITO film by polishing the surface of the ITO film, acid treatment, etc., but all of these methods complicate the manufacturing process and also result in poor productivity.

【0006】特開平11−126689号公報には、基
板にあらかじめ逆スパッタ処理を行った後、基板上にI
TO膜を形成する有機EL素子の製造方法の発明が開示
されている。この逆スパッタ処理では、ITO膜の成膜
時にITO膜の結晶の異常成長が発生し、発生した生成
物がITO膜上に凹凸を生じるため、ダークスポットな
どの不具合が発生しやすくなる。加えて、ITO膜への
飛来物がITO膜上に凹凸を生じるため、ダークスポッ
トなどの不具合が発生しやすくなる。
In Japanese Laid-Open Patent Publication No. 11-126689, reverse sputtering is performed on a substrate in advance, and then I is deposited on the substrate.
An invention of a method for manufacturing an organic EL element for forming a TO film is disclosed. In this reverse sputtering process, abnormal growth of the crystal of the ITO film occurs during the formation of the ITO film, and the generated product causes unevenness on the ITO film, so that defects such as dark spots easily occur. In addition, since flying objects to the ITO film cause unevenness on the ITO film, defects such as dark spots are likely to occur.

【0007】特開平10−10557号公報には、水素
ガスを主成分とする雰囲気中で透明導電膜に逆スパッタ
処理を行うことが開示されている。この方法では、爆発
性のある水素を使用しているため、安全性の観点から好
ましくない。
Japanese Unexamined Patent Publication No. 10-10557 discloses that a transparent conductive film is subjected to reverse sputtering in an atmosphere containing hydrogen gas as a main component. Since this method uses explosive hydrogen, it is not preferable from the viewpoint of safety.

【0008】また、有機EL素子の駆動電圧は、寿命や
ドライバの負荷低減の観点から低い方が好ましく、駆動
電圧の低い有機EL素子が望まれていた。
Further, the driving voltage of the organic EL element is preferably low from the viewpoint of life and reduction of driver load, and an organic EL element having a low driving voltage has been desired.

【0009】[0009]

【発明が解決しようとする課題】本発明は、膜表面の凹
凸が小さく平坦性に優れ、成膜後の加熱処理や透明導電
膜の表面の研磨といった複雑な製造工程が不要なITO
膜を有する導電膜付き基体とその製造方法、および駆動
電流が低く、ダークスポットが発生しにくい有機EL素
子の提供を目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention According to the present invention, ITO having small unevenness on the film surface and excellent in flatness, and which does not require a complicated manufacturing process such as heat treatment after film formation and polishing of the surface of the transparent conductive film
It is an object of the present invention to provide a substrate with a conductive film having a film, a method for manufacturing the same, and an organic EL element in which a driving current is low and a dark spot hardly occurs.

【0010】[0010]

【課題を解決するための手段】本発明は、基体上に酸化
ジルコニウムを主成分とする厚さが1〜15nmである
下地膜を形成し、次いで前記下地膜に接して錫ドープ酸
化インジウム膜を形成し、次いで酸素ガスを含むスパッ
タガスの雰囲気中において前記錫ドープ酸化インジウム
膜を逆スパッタ処理することを特徴とする錫ドープ酸化
インジウム膜付き基体の製造方法を提供する。
According to the present invention, an undercoating film containing zirconium oxide as a main component and having a thickness of 1 to 15 nm is formed on a substrate, and then a tin-doped indium oxide film is contacted with the undercoating film. There is provided a method for producing a substrate with a tin-doped indium oxide film, which comprises forming the tin-doped indium oxide film and subjecting the tin-doped indium oxide film to reverse sputtering in an atmosphere of a sputtering gas containing oxygen gas.

【0011】また、本発明は、基体上に酸化ジルコニウ
ムを主成分とする下地膜と、前記下地膜に接して形成さ
れた錫ドープ酸化インジウム膜とを有する錫ドープ酸化
インジウム膜付き基体であって、前記下地膜の膜厚が1
〜15nmであり、前記錫ドープ酸化インジウム膜表面
の平均表面粗さRが1.2nm以下であることを特徴
とする錫ドープ酸化インジウム膜付き基体を提供する。
Further, the present invention is a substrate with a tin-doped indium oxide film, comprising a base film containing zirconium oxide as a main component on the base and a tin-doped indium oxide film formed in contact with the base film. , The thickness of the base film is 1
The tin-doped indium oxide film-provided substrate has a mean surface roughness Ra of 1.2 nm or less.

【0012】さらに、本発明は、陽極、正孔輸送層、発
光層および陰極を有する有機EL素子であって、前記錫
ドープ酸化インジウム膜付き基体を前記陽極として用い
る有機EL素子を提供する。
Further, the present invention provides an organic EL element having an anode, a hole transport layer, a light emitting layer and a cathode, wherein the tin-doped indium oxide film-coated substrate is used as the anode.

【0013】本発明において、ITO膜表面の平均表面
粗さとは、ITO膜付き基体の表面(ITO膜表面)の
平均表面粗さの意味である。
In the present invention, the average surface roughness of the ITO film surface means the average surface roughness of the surface of the ITO film-attached substrate (ITO film surface).

【0014】[0014]

【発明の実施の形態】本発明における基体としては、透
明基体が挙げられ、例えば、ガラス基板などの無機質の
基体や、プラスチック基板などの有機質の基体が挙げら
れる。ガラス基板としては、ソーダライムシリケートガ
ラス基板などのアルカリ含有ガラス基板や、ホウケイ酸
ガラス基板などの無アルカリガラス基板などが挙げられ
る。無アルカリガラス基板の平均表面粗さRは0.1
〜5nm程度である。アルカリ含有ガラス基板の平均表
面粗さRは0.1〜10nm程度である。なお、本発
明において、平均表面粗さRは、JIS B0601
(1994年度)によって測定され、カットオフ値は
0.8μm、評価長さは2.4μmとする。
BEST MODE FOR CARRYING OUT THE INVENTION The substrate in the present invention includes a transparent substrate, and examples thereof include an inorganic substrate such as a glass substrate and an organic substrate such as a plastic substrate. Examples of the glass substrate include alkali-containing glass substrates such as soda lime silicate glass substrates and non-alkali glass substrates such as borosilicate glass substrates. The average surface roughness R a of the alkali-free glass substrate is 0.1
It is about 5 nm. The average surface roughness R a of the alkali-containing glass substrate is about 0.1 to 10 nm. In the present invention, the average surface roughness Ra is JIS B0601.
The cutoff value is 0.8 μm and the evaluation length is 2.4 μm.

【0015】前記基体としてアルカリ含有ガラス基板を
用いる場合には、ガラス基板に含まれるアルカリイオン
がITO膜へ拡散してITO膜の抵抗値に影響を及ぼす
ことを防ぐため、アルカリバリア層として酸化ケイ素
(SiO)膜などを前記基体上に形成することが好ま
しい。
When an alkali-containing glass substrate is used as the substrate, in order to prevent the alkali ions contained in the glass substrate from diffusing into the ITO film and affecting the resistance value of the ITO film, silicon oxide is used as the alkali barrier layer. It is preferable to form a (SiO 2 ) film or the like on the substrate.

【0016】前記アルカリバリア層が形成されたアルカ
リ含有ガラス基板の平均表面粗さR は0.1〜10n
m程度であることが好ましい。また、前記アルカリバリ
ア層の膜厚は、10〜500nm(幾何学的膜厚を意味
する。以下、同じ。)であることが好ましい。膜厚が1
0nm未満ではアルカリバリア性能が不十分であり、5
00nm超では表面粗さやコストの面で不利となる。膜
厚が10〜50nmであることが特に好ましい。
The alkali with the alkali barrier layer formed
Re-containing glass substrate average surface roughness R aIs 0.1-10n
It is preferably about m. In addition, the alkaline burr
The layer thickness is 10 to 500 nm (meaning geometrical thickness)
To do. same as below. ) Is preferable. Film thickness is 1
If it is less than 0 nm, the alkali barrier performance is insufficient, and 5
If it exceeds 00 nm, it is disadvantageous in terms of surface roughness and cost. film
It is particularly preferable that the thickness is 10 to 50 nm.

【0017】アルカリバリア層のガラス基板への形成方
法は、特に限定されず、熱分解法(原料溶液を塗布後加
熱して膜を形成する方法)、CVD法、スパッタリング
法、蒸着法、イオンプレーティング法などが挙げられ
る。たとえば、SiO膜の場合、SiOターゲット
を用いたRF(高周波)スパッタリング法、または、S
iターゲットを用いたRFもしくはDC(直流)スパッ
タリング法などの成膜法が挙げられる。Siターゲット
を用いる場合、スパッタガスとしてAr−O混合ガス
を用い、SiO膜が吸収のない透明な膜になるように
ArとOのガス比を定めることが好ましい。
The method for forming the alkali barrier layer on the glass substrate is not particularly limited, and includes a thermal decomposition method (a method of applying a raw material solution and then heating to form a film), a CVD method, a sputtering method, an evaporation method, an ion plating method. Ting method and the like. For example, in the case of a SiO 2 film, an RF (radio frequency) sputtering method using a SiO 2 target or S
A film forming method such as an RF or DC (direct current) sputtering method using an i target can be used. When using a Si target, it is preferable to use an Ar—O 2 mixed gas as a sputtering gas and determine the gas ratio of Ar and O 2 so that the SiO 2 film becomes a transparent film without absorption.

【0018】本発明により形成されるITO膜付き基体
は、ITO膜の下に接して酸化ジルコニウムを主成分と
する下地膜を有する。前記下地膜は、ITO膜の結晶成
長に影響を及ぼし、その結果ITO膜の結晶配向性を変
えることができ、ITO膜表面の平均表面粗さの改善に
寄与する。前記下地膜には、主成分となる酸化ジルコニ
ウムにHf、Fe、Cr、Y、Ca、Siなどの不純物
が含まれていてもよいが、不純物はその合量が、Zrと
不純物元素との総量に対して10原子%以下、特に、1
原子%以下であることが好ましい。
The substrate with an ITO film formed according to the present invention has a base film having zirconium oxide as a main component, which is in contact with the bottom of the ITO film. The base film affects the crystal growth of the ITO film, and as a result, the crystal orientation of the ITO film can be changed, and contributes to the improvement of the average surface roughness of the ITO film surface. The base film may contain impurities such as Hf, Fe, Cr, Y, Ca and Si in zirconium oxide as a main component, but the total amount of the impurities is the total amount of Zr and the impurity element. 10 atomic% or less, especially 1
It is preferably at most atomic%.

【0019】前記下地膜の膜厚は1〜15nmである。
前記下地膜の膜厚を前記範囲とし、後述するようなIT
O膜に逆スパッタ処理を行うことにより、ITO膜付き
基体の表面の平均表面粗さRを1.2nm以下に容易
に制御できる。下地膜の膜厚が1nm未満では、ITO
膜表面の平均表面粗さを小さくするという下地膜として
の効果が得られない。また、下地膜の膜厚が15nm超
では、下地膜としての効果が下がり、ITO膜表面の平
均表面粗さRを1.2nm以下とすることが難しくな
る。なお、以上に述べた下地膜の膜厚は平均膜厚のこと
であり、連続膜になっていない場合も同様とする。
The thickness of the base film is 1 to 15 nm.
The thickness of the base film is within the above range, and the IT
By performing the reverse sputtering treatment in O film, the average surface roughness R a of the surface of the ITO film-coated substrate can be easily controlled below 1.2 nm. If the thickness of the base film is less than 1 nm, ITO
The effect as a base film of reducing the average surface roughness of the film surface cannot be obtained. Further, the film thickness of the underlying film in the 15nm exceeds lowers the effect as a base film, the average surface roughness R a of the ITO film surface be less 1.2nm difficult. The film thickness of the base film described above is the average film thickness, and the same applies when the film is not a continuous film.

【0020】前記下地膜の形成方法は、特に限定され
ず、熱分解法、CVD法、スパッタリング法、蒸着法、
イオンプレーティング法などが挙げられ、たとえば、金
属Zrターゲットを用いたRFもしくはDCスパッタリ
ング法、または安定化ジルコニアターゲットを用いたR
Fスパッタリング法、などが挙げられる。前記安定化ジ
ルコニアターゲットは、YやCaなどの不純物が多いの
で、前記金属Zrターゲットを用いる方がより好まし
い。また、スパッタリング法としては、成膜速度の観点
からDCスパッタリング法であることが好ましい。スパ
ッタガスとしてAr−O混合ガスを用い、下地膜が吸
収のない透明な膜になるようにArとOとのガス比を
定めることが好ましい。
The method of forming the base film is not particularly limited, and includes a thermal decomposition method, a CVD method, a sputtering method, a vapor deposition method,
Ion plating method and the like can be mentioned, for example, RF or DC sputtering method using a metal Zr target, or R using a stabilized zirconia target.
The F sputtering method and the like can be mentioned. Since the stabilized zirconia target has many impurities such as Y and Ca, it is more preferable to use the metal Zr target. Further, the sputtering method is preferably the DC sputtering method from the viewpoint of the film formation rate. It is preferable to use an Ar—O 2 mixed gas as the sputtering gas and determine the gas ratio of Ar and O 2 so that the base film becomes a transparent film without absorption.

【0021】本発明におけるITO膜は、In
SnOとからなる膜であり、その組成としては、(I
+SnO)の総量に対してSnOが1〜2
0質量%含まれていることが好ましい。ITO膜の膜厚
は、抵抗値、透過率などの観点から50〜350nmで
あることが好ましく、特に好ましくは100〜200n
mである。膜の導電性の観点から、比抵抗値は4×10
−4Ω・cm以下であることが好ましく、シート抵抗値
としては20Ω/□以下であることが好ましい。
The ITO film in the present invention is a film composed of In 2 O 3 and SnO 2, and its composition is (I
1 to 2 of SnO 2 with respect to the total amount of n 2 O 3 + SnO 2 ).
It is preferably contained in an amount of 0 mass%. The film thickness of the ITO film is preferably 50 to 350 nm, and particularly preferably 100 to 200 n, from the viewpoint of resistance, transmittance, and the like.
m. From the viewpoint of the conductivity of the film, the specific resistance value is 4 × 10.
It is preferably −4 Ω · cm or less, and the sheet resistance value is preferably 20 Ω / □ or less.

【0022】前記ITO膜の形成方法は、特に限定され
ず、熱分解法、CVD法、スパッタリング法、蒸着法、
イオンプレーティング法などが挙げられ、例えば、IT
Oターゲットを用いたRFまたはDCスパッタリング法
などが挙げられる。スパッタガスとしてAr−O混合
ガスを用い、ITO膜の比抵抗が最小になるようにAr
とOのガス比を定めるのが好ましい。
The method of forming the ITO film is not particularly limited, and includes a thermal decomposition method, a CVD method, a sputtering method, a vapor deposition method,
Ion plating method and the like can be mentioned, for example, IT
An RF or DC sputtering method using an O target may be used. Ar-O 2 mixed gas is used as the sputtering gas, and Ar is used to minimize the specific resistance of the ITO film.
It is preferable to determine the gas ratio of O 2 and O 2 .

【0023】スパッタリング法を用いて成膜する場合、
スパッタリング時の基体温度は100〜500℃である
ことが好ましい。100℃より低いと、ITO膜が非晶
質になりやすく膜の耐薬品性が低下する。500℃より
高いと、結晶性が促進され膜表面の凹凸が大きくなる。
When a film is formed by using the sputtering method,
The substrate temperature during sputtering is preferably 100 to 500 ° C. If the temperature is lower than 100 ° C, the ITO film is likely to be amorphous and the chemical resistance of the film is lowered. When it is higher than 500 ° C., the crystallinity is promoted and the unevenness of the film surface becomes large.

【0024】本発明における逆スパッタ処理とは、通常
のスパッタ処理とは異なり、基板側に電界を引加するこ
とによりプラズマを発生させ、ITO膜表面をイオンに
よりスパッタエッチングを行う処理をいう。スパッタガ
ス中に酸素ガスを含ませる理由は以下のとおりである。
プラズマ中に形成された酸素負イオンは反応性が高く、
膜中の原子をはじき出す(スパッタリング)能力は小さ
いため、酸素負イオン粒子のエネルギーは主として熱に
変わると考えられる。ITO膜表面にはIn−Oまたは
Sn−O結合が凹凸となって存在しており、凸部分のI
n−OまたはSn−O結合強度は凹部分のIn−Oまた
はSn−O結合強度と比較して弱いと考えられる。よっ
て、酸素負イオンによりITO膜表面が加熱された場
合、凸部のIn−OまたはSn−O結合を選択的に蒸発
させることができ、結果的にITO膜表面の表面粗さを
改善できる。
The reverse sputtering process in the present invention is a process different from the ordinary sputtering process in which plasma is generated by applying an electric field to the substrate side and the ITO film surface is subjected to sputter etching with ions. The reason for including oxygen gas in the sputtering gas is as follows.
Oxygen negative ions formed in plasma are highly reactive,
Since the ability to repel atoms in the film (sputtering) is small, it is considered that the energy of oxygen negative ion particles is mainly converted to heat. In—O or Sn—O bonds are present as irregularities on the surface of the ITO film, and the I
It is considered that the n—O or Sn—O bond strength is weaker than the In—O or Sn—O bond strength of the concave portion. Therefore, when the surface of the ITO film is heated by the oxygen negative ions, In—O or Sn—O bond of the convex portion can be selectively evaporated, and as a result, the surface roughness of the ITO film surface can be improved.

【0025】さらに、本発明においては、前記下地膜の
膜厚を1〜15nmとし、酸素ガスを含むスパッタガス
の雰囲気中において前記ITO膜を逆スパッタ処理する
ことにより、ITO膜表面の平均表面粗さを1.2nm
以下に容易に制御できる。この理由は、ITO膜の主配
向面が(400)となり、(400)面の回折強度と
(222)面の回折強度との比、(400)/(22
2)回折強度比が1.0以上となるため、逆スパッタ処
理により発生する酸素負イオンが、ITO膜の表面の凸
部に選択的にエッチングしやすくなるためであると考え
られる。
Further, in the present invention, the film thickness of the underlayer film is set to 1 to 15 nm, and the ITO film is subjected to reverse sputtering in an atmosphere of a sputtering gas containing oxygen gas to obtain an average surface roughness of the ITO film surface. 1.2 nm
The following can be easily controlled. The reason is that the main orientation plane of the ITO film is (400) and the ratio of the diffraction intensity of the (400) plane to the diffraction intensity of the (222) plane is (400) / (22).
2) It is considered that since the diffraction intensity ratio is 1.0 or more, oxygen negative ions generated by the reverse sputtering process are likely to be selectively etched on the convex portions on the surface of the ITO film.

【0026】また、逆スパッタ処理後のITO膜の膜厚
は、50〜350nmであることが好ましく、逆スパッ
タ処理前のITO膜の膜厚と同等である。
The film thickness of the ITO film after the reverse sputtering process is preferably 50 to 350 nm, which is equivalent to the film thickness of the ITO film before the reverse sputtering process.

【0027】平均表面粗さRを小さくできる点で、逆
スパッタ処理におけるスパッタガス中の酸素ガスの濃度
は、10〜100体積%であることが好ましく、さらに
好ましくは50〜100体積%であり、特に好ましくは
80〜100体積%である。
[0027] in that it can reduce the average surface roughness R a, the concentration of oxygen gas in the sputtering gas in the reverse sputtering treatment is preferably 10 to 100 vol%, more preferably from 50 to 100% by volume And particularly preferably 80 to 100% by volume.

【0028】本発明のITO膜付き基体は、透明性、導
電性の点から、有機EL素子、LCD、無機EL素子な
どの表示デバイスの電極や、太陽電池の電極として好適
に用いられる。
The substrate with an ITO film of the present invention is suitably used as an electrode of a display device such as an organic EL element, an LCD or an inorganic EL element, or an electrode of a solar cell in view of transparency and conductivity.

【0029】前記有機EL素子は、陽極、正孔輸送層、
発光層および陰極を有し、必要により、発光層と陰極と
の間に電子輸送層、電子注入層を設けることもできる。
本発明のITO膜付き基体は、特に前記有機EL素子の
陽極として好適に用いられる。また、本発明のITO膜
付き基体は、前記有機EL素子の陰極としても好適に用
いられる。
The organic EL device comprises an anode, a hole transport layer,
It has a light emitting layer and a cathode, and if necessary, an electron transporting layer and an electron injecting layer can be provided between the light emitting layer and the cathode.
The ITO film-coated substrate of the present invention is particularly preferably used as an anode of the organic EL device. Further, the ITO film-coated substrate of the present invention is also suitably used as a cathode of the organic EL element.

【0030】前記ITO膜付き基体を前記有機EL素子
の陽極に用いることにより、発生するダークスポットの
数を減少させ、歩留まりを向上させることができる。ダ
ークスポットとは、有機EL素子の一部に電流が流れな
くなることにより電極表面に発生する黒い斑点を意味
し、製品の歩留まりを下げる大きな原因となる。ダーク
スポット発生の主たる原因は、陽極の表面に存在する凸
部により陰極にピンホールが形成され、前記ピンホール
から外気中に含まれる水分が浸入し、陰極界面や発光層
がピンホールを中心に劣化するためと考えられる。本発
明においては、逆スパッタ処理により前記ITO膜の凸
部を消失させることができるため、発生するダークスポ
ットの数を減少させることができる。なお、通常、水分
の浸入を抑えるために、有機EL素子の周囲を保護用ガ
ラス基板で覆い、封止接着材などで封止することが行わ
れている。しかし、本発明においては、効果の有無を明
確に判断するために、封止をしない条件、つまり水分が
外部から浸入しやすく、ダークスポットが発生しやすい
条件でダークスポット数を測定した。
By using the substrate with the ITO film as the anode of the organic EL element, the number of dark spots generated can be reduced and the yield can be improved. The dark spot means a black spot generated on the surface of the electrode when the current stops flowing through a part of the organic EL element, which is a major cause of lowering the yield of products. The main cause of dark spots is that pinholes are formed on the cathode by the protrusions present on the surface of the anode, moisture contained in the outside air penetrates through the pinholes, and the cathode interface and the light emitting layer are centered around the pinholes. It is thought to be due to deterioration. In the present invention, since the convex portion of the ITO film can be eliminated by the reverse sputtering treatment, the number of dark spots generated can be reduced. Incidentally, in order to suppress the infiltration of water, it is usually practiced to cover the periphery of the organic EL element with a protective glass substrate and seal it with a sealing adhesive or the like. However, in the present invention, in order to clearly determine the presence or absence of the effect, the number of dark spots was measured under the condition that sealing is not performed, that is, the condition that water easily enters from the outside and dark spots easily occur.

【0031】また、本発明のITO膜付き基体を有機E
L素子の陽極に用いることにより、駆動電圧を下げ、歩
留まりを向上させることができる。前記駆動電圧とは、
有機EL素子からの発光が一定の明るさとなる時の電圧
を意味し、逆方向への電流(リーク電流)が生じると、
発光効率が低下し駆動電圧が上昇するため、歩留まりを
向上させるためには、駆動電圧をできるだけ下げること
が重要となる。このリーク電流の発生はITO膜の凹凸
と密接に関連しており、この凹凸を消失させることによ
り駆動電圧を下げ歩留まりを向上させることができる。
Further, the substrate with the ITO film of the present invention is prepared by using organic E
By using it as the anode of the L element, the driving voltage can be lowered and the yield can be improved. The drive voltage is
It means the voltage when the light emitted from the organic EL element has a constant brightness, and when a current (leakage current) in the opposite direction is generated,
Since the luminous efficiency is lowered and the driving voltage is increased, it is important to lower the driving voltage as much as possible in order to improve the yield. The generation of the leak current is closely related to the unevenness of the ITO film, and by eliminating the unevenness, the driving voltage can be lowered and the yield can be improved.

【0032】前記正孔輸送層の材料としては、正孔の注
入または電子の障壁性を有する材料であれば特に限定さ
れず、例えば、N,N’−ジフェニル−(3−メチルフ
ェニル)−1,1’−ビフェニル−4,4’ジアミン、
4,4’−ビス(N−(1−ナフチル)−N−フェニル
アミノ)ビフェニル(α−NPD)、トリフェニルジア
ミンなどからなる群から選ばれる1種以上が挙げられ
る。前記正孔輸送層の形成方法として、真空蒸着法、ス
ピンコート法など公知の方法が使用でき、前記正孔輸送
層の膜厚は5〜200nmであることが素子の電気的光
学的特性の点より好ましく、さらに20〜100nmで
あることが好ましい。
The material of the hole transport layer is not particularly limited as long as it has a property of injecting holes or blocking electrons, and is, for example, N, N′-diphenyl- (3-methylphenyl) -1. , 1'-biphenyl-4,4 'diamine,
One or more selected from the group consisting of 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl (α-NPD), triphenyldiamine and the like can be mentioned. As a method of forming the hole transport layer, a known method such as a vacuum deposition method or a spin coating method can be used, and the hole transport layer has a thickness of 5 to 200 nm in terms of electro-optical characteristics of the device. It is more preferably 20 to 100 nm.

【0033】前記発光層の材料としては、発光能を示す
材料であれば特に限定されず。例えば、トリス(8−キ
リノール)アルミニウム(Alq)などが挙げられる。
前記発光層の形成方法は、真空蒸着法、スピンコート法
など公知の方法が使用でき、前記発光層の膜厚が5〜2
00nmであることが素子の電気的光学的特性の点より
好ましく、さらに20〜100nmであることが特に好
ましい。
The material of the light emitting layer is not particularly limited as long as it has a light emitting ability. For example, tris (8-quinolinol) aluminum (Alq) and the like can be mentioned.
As a method for forming the light emitting layer, a known method such as a vacuum deposition method or a spin coating method can be used, and the thickness of the light emitting layer is 5 to 2
From the viewpoint of the electrical and optical characteristics of the device, the thickness is preferably 00 nm, and particularly preferably 20 to 100 nm.

【0034】前記陰極の材料としては、仕事関数の小さ
い金属や合金が好ましく用いられ、Al、LiF、Li
O、NaOなどが例示され、真空蒸着法などで成膜
される。
As the material of the cathode, metals and alloys having a small work function are preferably used, and Al, LiF, Li
2 O, Na 2 O, etc. are exemplified, and a film is formed by a vacuum deposition method or the like.

【0035】また、リーク電流の防止、正孔注入障壁の
低減、密着性向上を目的として、前記陽極と正孔輸送層
との間に界面層を設けてもよい。前記界面層の材料とし
て、4,4’,4’’−トリス(N−(3−メチルフェ
ニル)−N−フェニルアミノ)トリフェニルアミン、
4,4’,4’’−トリス(N,N−ジフェニルアミ
ノ)トリフェニルアミンや銅フタロシアニンなどが使用
できる。前記界面層の形成方法は、真空蒸着法、スピン
コート法など公知の方法が使用でき、前記界面層の膜厚
が5〜100nmであることが素子の電気的光学的特性
の点より好ましい。
An interface layer may be provided between the anode and the hole transport layer for the purpose of preventing leak current, reducing the hole injection barrier, and improving adhesion. As the material of the interface layer, 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine,
4,4 ′, 4 ″ -tris (N, N-diphenylamino) triphenylamine and copper phthalocyanine can be used. As a method for forming the interface layer, a known method such as a vacuum vapor deposition method or a spin coating method can be used, and it is preferable that the thickness of the interface layer is 5 to 100 nm from the viewpoint of electro-optical characteristics of the device.

【0036】[0036]

【実施例】以下に本発明の実施例を挙げてさらに説明す
るが、本発明はこれらに限定されない。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited thereto.

【0037】[ITO膜付き基体] (例1)洗浄したソーダライムシリケートガラス基板
(平均表面粗さRは0.5nm)をスパッタリング装
置にセットし、基板を250℃に加熱し、スパッタリン
グ成膜の際も基板温度を250℃に保持した。この基板
の上にアルカリバリア層として、SiO膜をRFスパ
ッタリング法で成膜した。このとき、ターゲットには、
直径150mmの円盤状のSiOターゲットを用い
た。スパッタガスには、Ar−O2混合ガスを用いた。
ArとOのガス比は、Ar:O=90:10(体積
比)とし、全圧を0.6Paとした。0.5kWで放電
し、成膜を行った。膜厚は20nmとした。形成された
SiO膜付き基板のSiO膜表面の平均表面粗さR
は0.5nmであった。
[Substrate with ITO film] (Example 1) A cleaned soda lime silicate glass substrate (average surface roughness Ra is 0.5 nm) is set in a sputtering apparatus, and the substrate is heated to 250 ° C. to form a film by sputtering. Also in this case, the substrate temperature was kept at 250 ° C. A SiO 2 film was formed as an alkali barrier layer on this substrate by RF sputtering. At this time, the target is
A disk-shaped SiO 2 target having a diameter of 150 mm was used. The sputtering gas was used Ar-O 2 mixed gas.
The gas ratio of Ar to O 2 was Ar: O 2 = 90: 10 (volume ratio), and the total pressure was 0.6 Pa. A film was formed by discharging at 0.5 kW. The film thickness was 20 nm. The average surface roughness R of the formed SiO 2 film-coated substrate of the SiO 2 film surface
a was 0.5 nm.

【0038】次に、SiO膜上に、下地膜としてZr
膜をRFスパッタリング法で成膜した。このときタ
ーゲットとして、直径150mmの円盤状の金属Zrタ
ーゲットを用いた。スパッタガスには、Ar−O混合
ガスを用いた。ArとOのガス比は、Ar:O=9
0:10(体積比)とし、全圧を0.6Paとした。
0.3kWで放電し、成膜を行った。膜厚は8nmとし
た。
Next, on the SiO 2 film, Zr as a base film is formed.
The O 2 film was formed by the RF sputtering method. At this time, a disk-shaped metal Zr target having a diameter of 150 mm was used as the target. The sputtering gas was used Ar-O 2 mixed gas. The gas ratio of Ar to O 2 is Ar: O 2 = 9.
It was 0:10 (volume ratio) and the total pressure was 0.6 Pa.
A film was formed by discharging at 0.3 kW. The film thickness was 8 nm.

【0039】ついで、下地膜の上にITO膜をRFスパ
ッタリング法で成膜した。ターゲットは、直径150m
mの円盤状のITOターゲットを用いた。ITOターゲ
ットの組成は、(In+SnO)の総量に対し
てSnOが10質量%のものを用いた。スパッタガス
には、Ar−O混合ガスを用いた。ArとOのガス
比は、Ar:O=99.5:0.5(体積比)とし、
全圧を0.6Paとした。0.3kWで放電し、成膜を
行った。膜厚は150nmとした。得られたITO膜の
組成はターゲットの組成と同じであった。
Then, an ITO film was formed on the base film by the RF sputtering method. The target is 150m in diameter
A m-shaped ITO target was used. The composition of the ITO target was such that SnO 2 was 10 mass% with respect to the total amount of (In 2 O 3 + SnO 2 ). The sputtering gas was used Ar-O 2 mixed gas. The gas ratio of Ar to O 2 is Ar: O 2 = 99.5: 0.5 (volume ratio),
The total pressure was 0.6 Pa. A film was formed by discharging at 0.3 kW. The film thickness was 150 nm. The composition of the obtained ITO film was the same as the composition of the target.

【0040】ついで、RF電源を用いて、フローティン
グバイアスにおいて、成膜したITO膜に逆スパッタ処
理を施し、ITO膜付き基体を得た。このとき、酸素ガ
スをスパッタガスとして用い、酸素ガスの全圧を2Pa
とし、単位面積あたりの電力密度を0.4W/cm
した。
Then, using an RF power source, the ITO film thus formed was subjected to reverse sputtering treatment in a floating bias to obtain a substrate with an ITO film. At this time, oxygen gas was used as the sputtering gas, and the total pressure of the oxygen gas was 2 Pa.
And the power density per unit area was 0.4 W / cm 2 .

【0041】(例2)(比較例)逆スパッタ処理を行わ
ない以外は、例1と同様に処理し、ITO膜付き基体を
得た。
Example 2 (Comparative Example) A substrate with an ITO film was obtained in the same manner as in Example 1 except that the reverse sputtering treatment was not performed.

【0042】(例3)(比較例)ZrO膜を形成しな
かった以外は、例1と同様に処理し、ITO膜付き基体
を得た。
Example 3 (Comparative Example) An ITO film-coated substrate was obtained in the same manner as in Example 1 except that the ZrO 2 film was not formed.

【0043】[ITO膜付き基体の特性評価]得られた
ITO膜付き基体を以下の方法で評価した。 1)平均表面粗さR:JIS B0601(1994
年度)によって、表面の凹凸状態をAFM(原子間力顕
微鏡)により測定した。なお、カットオフ値は0.8μ
m、評価長さは2.4μmとした。 2)比抵抗値:四端針法により測定した。 3)シート抵抗値:膜厚を触針式膜厚計で測定し、比抵
抗値を膜厚で割ることにより求めた。 4)結晶配向:表面の結晶状態をθ/2θ法によるX線
回折測定を用いて測定した。測定条件は、Cuターゲッ
トの線源を用い、管電圧40kV、管電流20mA、サ
ンプリング幅0.02度、走査速度4度/分、発散スリ
ット1.0度、散乱スリット1.0度、受光スリット
0.15mmとした。バックグラウンドを差し引いた後
のピーク高さより求めた回折強度において、得られた
(400)面の回折強度と(222)面との回折強度の
比である(400)/(222)回折強度比を計算によ
り求めた。
[Characteristic Evaluation of Substrate with ITO Film] The obtained substrate with an ITO film was evaluated by the following method. 1) Average surface roughness Ra : JIS B0601 (1994)
(FY), the unevenness of the surface was measured with an AFM (atomic force microscope). The cutoff value is 0.8μ
m, and the evaluation length was 2.4 μm. 2) Specific resistance value: Measured by the four-ended needle method. 3) Sheet resistance value: It was determined by measuring the film thickness with a stylus type film thickness meter and dividing the specific resistance value by the film thickness. 4) Crystal orientation: The crystal state of the surface was measured by X-ray diffraction measurement by the θ / 2θ method. The measurement conditions were a Cu target radiation source, a tube voltage of 40 kV, a tube current of 20 mA, a sampling width of 0.02 degrees, a scanning speed of 4 degrees / minute, a divergence slit of 1.0 degree, a scattering slit of 1.0 degree, and a light receiving slit. It was set to 0.15 mm. In the diffraction intensity obtained from the peak height after subtracting the background, the (400) / (222) diffraction intensity ratio, which is the ratio of the diffraction intensity of the (400) plane and the diffraction intensity of the (222) plane obtained, It was calculated.

【0044】得られたITO膜付き基体の特性評価結果
を表1に示す。
Table 1 shows the evaluation results of the characteristics of the obtained substrate with an ITO film.

【0045】[0045]

【表1】 [Table 1]

【0046】また、触針式の膜厚測定装置を用いて、例
1〜例3により得られたITO膜付き基体のITO膜の
膜厚を測定したところ、ITO膜の膜厚は例1〜3それ
ぞれ150nmであり、逆スパッタ処理を行ってもIT
O膜の膜厚は変化しないことが確認された。
The thickness of the ITO film of the ITO film-provided substrates obtained in Examples 1 to 3 was measured using a stylus type film thickness measuring device. 3 150nm each, IT even if reverse sputtering process
It was confirmed that the thickness of the O film did not change.

【0047】[有機EL素子] (例4)例1において形成されたITO膜付き基体のI
TO膜をパターニング加工し、発光部分(2mm角)と
配線部分を作成した。パターニング加工を施したITO
膜の上に、ITO膜の発光部分とは重なるが、配線部分
とは重ならないようなパターニングを行うマスクをセッ
トした。次いで、真空蒸着法により、銅フタロシアニン
を材料として界面層を形成し、4,4’−ビス(N−
(1−ナフチル)−N−フェニルアミノ)ビフェニル
(α−NPD)を材料として正孔輸送層を形成し、トリ
ス(8−キリノール)アルミニウム(Alq)を材料と
して発光層を形成し、アルミニウムを材料として陰極を
形成し、有機EL素子を得た。界面層、正孔輸送層、発
光層、陰極の膜厚は各々、10nm、80nm、60n
m、80nmであった。
[Organic EL Element] (Example 4) I of the substrate with ITO film formed in Example 1
The TO film was patterned to form a light emitting portion (2 mm square) and a wiring portion. Patterned ITO
A mask for patterning was set on the film such that the light emitting portion of the ITO film overlaps but the wiring portion does not overlap. Then, an interface layer was formed using copper phthalocyanine as a material by a vacuum deposition method, and 4,4'-bis (N-
A hole transport layer is formed using (1-naphthyl) -N-phenylamino) biphenyl (α-NPD) as a material, a light emitting layer is formed using tris (8-quinolinol) aluminum (Alq) as a material, and aluminum is used as a material. A cathode was formed as to obtain an organic EL device. The thicknesses of the interface layer, the hole transport layer, the light emitting layer, and the cathode are 10 nm, 80 nm, and 60 n, respectively.
m and 80 nm.

【0048】(例5)例1において形成されたITO膜
付き基体の替わりに、例2において形成されたITO膜
付き基体を用いた以外は、例4と同様に処理し、有機E
L素子を得た。
(Example 5) The same procedure as in Example 4 was carried out except that the substrate with an ITO film formed in Example 2 was used in place of the substrate with an ITO film formed in Example 1, and the organic E film was treated.
An L element was obtained.

【0049】[有機EL素子の発光特性評価]例4およ
び例5により形成された有機EL素子を、以下の方法に
より評価した。 1)駆動電圧:窒素雰囲気下で、有機EL素子の陽極−
陰極間に電圧をかけ、有機EL素子からの発光輝度が1
000cd/mに達する時の電圧値を測定した。な
お、輝度は輝度計(BM−7トプコン社製)により測定
した。 2)ダークスポット数:封止をしない条件で、大気中で
陽極−陰極間に電圧をかけ、400cd/mの輝度で
発光する時に発生する、発光面2mm角の範囲内におけ
る50倍〜100倍程度の倍率の光学顕微鏡観察により
測定した数をダークスポット数として測定した。
[Evaluation of Light Emitting Properties of Organic EL Element] The organic EL elements formed in Examples 4 and 5 were evaluated by the following method. 1) Driving voltage: Anode of organic EL device under nitrogen atmosphere
When a voltage is applied between the cathodes, the emission brightness from the organic EL element is 1
The voltage value when reaching 000 cd / m 2 was measured. The brightness was measured by a brightness meter (BM-7 Topcon). 2) Number of dark spots: 50 times to 100 within a range of 2 mm square of the light emitting surface, which occurs when light is emitted at a brightness of 400 cd / m 2 by applying a voltage between the anode and the cathode in the atmosphere without sealing. The number measured by observing with an optical microscope at a magnification of about twice was measured as the number of dark spots.

【0050】得られた有機EL素子の発光特性評価結果
を表2に示す。
Table 2 shows the evaluation results of the emission characteristics of the obtained organic EL device.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】本発明によれば、酸化ジルコニウムを主
成分とする膜厚を限定した下地膜を有するITO膜に、
酸素ガスを含むスパッタガスの雰囲気中において逆スパ
ッタ処理を行うことにより、ITO膜形成後の加熱処理
やITO膜表面の研磨、酸処理などの複雑な製造工程を
経ることなく、表面の凹凸が少なく優れた平坦性を持
ち、高い導電性を有するITO膜付き基体を得ることが
できる。
EFFECTS OF THE INVENTION According to the present invention, an ITO film having a base film containing zirconium oxide as a main component and having a limited film thickness,
By performing the reverse sputtering treatment in the atmosphere of the sputtering gas containing oxygen gas, the unevenness of the surface can be reduced without the complicated manufacturing steps such as the heat treatment after the ITO film formation, the polishing of the ITO film surface and the acid treatment. It is possible to obtain a substrate with an ITO film having excellent flatness and high conductivity.

【0053】さらに、本発明のITO膜付き基体は、前
述したような優れた特性を有するため、有機EL素子の
陽極として好適に用いられ、リーク電流やダークスポッ
トの発生を抑制でき、歩留まりを向上させることができ
る。
Further, since the ITO film-coated substrate of the present invention has the excellent characteristics as described above, it is suitably used as an anode of an organic EL device, and it is possible to suppress the generation of leak current and dark spots and improve the yield. Can be made.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K007 AB03 AB06 AB08 CB01 DB03 4G059 AA08 AB09 AB11 AC03 AC14 EA01 EA03 EB02 EB04 GA01 GA04 GA12 5G307 FA01 FB01 FC10 5G323 BA02 BB05 BC03    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3K007 AB03 AB06 AB08 CB01 DB03                 4G059 AA08 AB09 AB11 AC03 AC14                       EA01 EA03 EB02 EB04 GA01                       GA04 GA12                 5G307 FA01 FB01 FC10                 5G323 BA02 BB05 BC03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基体上に酸化ジルコニウムを主成分とする
厚さが1〜15nmである下地膜を形成し、次いで前記
下地膜に接して錫ドープ酸化インジウム膜を形成し、次
いで酸素ガスを含むスパッタガスの雰囲気中において前
記錫ドープ酸化インジウム膜を逆スパッタ処理すること
を特徴とする錫ドープ酸化インジウム膜付き基体の製造
方法。
1. A base film having zirconium oxide as a main component and having a thickness of 1 to 15 nm is formed on a substrate, then a tin-doped indium oxide film is formed in contact with the base film, and then an oxygen gas is contained. A method for producing a substrate with a tin-doped indium oxide film, which comprises subjecting the tin-doped indium oxide film to reverse sputtering in an atmosphere of a sputtering gas.
【請求項2】スパッタガス中の前記酸素ガスの濃度が1
0〜100体積%である請求項1に記載の錫ドープ酸化
インジウム膜付き基体の製造方法。
2. The concentration of the oxygen gas in the sputtering gas is 1
The method for producing a substrate with a tin-doped indium oxide film according to claim 1, which is 0 to 100% by volume.
【請求項3】基体上に酸化ジルコニウムを主成分とする
下地膜と、前記下地膜に接して形成された錫ドープ酸化
インジウム膜とを有する錫ドープ酸化インジウム膜付き
基体であって、前記下地膜の膜厚が1〜15nmであ
り、前記錫ドープ酸化インジウム膜表面の平均表面粗さ
が1.2nm以下であることを特徴とする錫ドープ
酸化インジウム膜付き基体。
3. A substrate with a tin-doped indium oxide film, comprising: a base film containing zirconium oxide as a main component on a base; and a tin-doped indium oxide film formed in contact with the base film. thickness is 1-15 nm, tin-doped indium oxide film-substrate, wherein an average surface roughness R a of the tin-doped indium oxide film surface is not more than 1.2 nm.
【請求項4】陽極、正孔輸送層、発光層および陰極を有
する有機EL素子であって、前記陽極が請求項3に記載
の錫ドープ酸化インジウム膜付き基体である有機EL素
子。
4. An organic EL element having an anode, a hole transport layer, a light emitting layer and a cathode, wherein the anode is the substrate with a tin-doped indium oxide film according to claim 3.
JP2002146328A 2002-05-21 2002-05-21 Manufacturing method of substrate with ITO film Expired - Fee Related JP4114398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002146328A JP4114398B2 (en) 2002-05-21 2002-05-21 Manufacturing method of substrate with ITO film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002146328A JP4114398B2 (en) 2002-05-21 2002-05-21 Manufacturing method of substrate with ITO film

Publications (2)

Publication Number Publication Date
JP2003335552A true JP2003335552A (en) 2003-11-25
JP4114398B2 JP4114398B2 (en) 2008-07-09

Family

ID=29705347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002146328A Expired - Fee Related JP4114398B2 (en) 2002-05-21 2002-05-21 Manufacturing method of substrate with ITO film

Country Status (1)

Country Link
JP (1) JP4114398B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347215A (en) * 2004-06-07 2005-12-15 Sumitomo Metal Mining Co Ltd Transparent conductive film, sintered target for manufacturing transparent conductive film, transparent conductive base material, and display device using the transparent base material
JP2006147235A (en) * 2004-11-17 2006-06-08 Central Glass Co Ltd Film with indium tin oxide transparent conductive membrane
JP2010050279A (en) * 2008-08-21 2010-03-04 Denso Corp Organic electroluminescence (el) device and its production process
CN102208460A (en) * 2010-03-08 2011-10-05 住友重机械工业株式会社 Film formation substrate, manufacturing method for film formation substrate and film formation device
JP2013247075A (en) * 2012-05-29 2013-12-09 Kitagawa Ind Co Ltd Transparent conductive film and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347215A (en) * 2004-06-07 2005-12-15 Sumitomo Metal Mining Co Ltd Transparent conductive film, sintered target for manufacturing transparent conductive film, transparent conductive base material, and display device using the transparent base material
WO2005122186A1 (en) * 2004-06-07 2005-12-22 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, sintered target for production of transparent conductive film, transparent conductive base material and display device utilizing the same
JP4539181B2 (en) * 2004-06-07 2010-09-08 住友金属鉱山株式会社 Transparent conductive film, sintered compact target for manufacturing transparent conductive film, transparent conductive substrate, and display device using the same
US7960033B2 (en) 2004-06-07 2011-06-14 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, sintered body target for transparent conductive film fabrication, and transparent conductive base material and display device using the same
US7998603B2 (en) 2004-06-07 2011-08-16 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, sintered body target for transparent conductive film fabrication, and transparent conductive base material and display device using the same
JP2006147235A (en) * 2004-11-17 2006-06-08 Central Glass Co Ltd Film with indium tin oxide transparent conductive membrane
JP2010050279A (en) * 2008-08-21 2010-03-04 Denso Corp Organic electroluminescence (el) device and its production process
CN102208460A (en) * 2010-03-08 2011-10-05 住友重机械工业株式会社 Film formation substrate, manufacturing method for film formation substrate and film formation device
JP2013247075A (en) * 2012-05-29 2013-12-09 Kitagawa Ind Co Ltd Transparent conductive film and production method therefor

Also Published As

Publication number Publication date
JP4114398B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US7371475B2 (en) Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element and solar cell
TWI254080B (en) Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
US6818924B2 (en) Pulsed laser deposition of transparent conducting thin films on flexible substrates
US6188176B1 (en) Organic electroluminescent device and preparation method with ITO electrode (111) orientation
EP1450588B1 (en) El device
US7247074B2 (en) Organic electroluminescent element and process for its manufacture
JP3945395B2 (en) Transparent conductive thin film, method for forming the same, transparent conductive substrate for display panel using the same, and organic electroluminescence element
JP3918721B2 (en) Transparent conductive thin film, its production method and sintered compact target for production, organic electroluminescence element and its production method
JP4285019B2 (en) Transparent conductive thin film and method for producing the same, transparent conductive substrate for display panel using the same, and electroluminescence device
JP4114398B2 (en) Manufacturing method of substrate with ITO film
JPH1167460A (en) Organic electroluminescent element and its manufacture
KR20050073233A (en) Manufacturing method of indium tin oxide thin film
Kim et al. Indium Tin Oxide Thin Films Grown on Polyethersulphone (PES) Substrates by Pulsed‐Laser Deposition for Use in Organic Light‐Emitting Diodes
JP2005243604A (en) Organic electroluminescence device and method for manufacturing same
JPWO2003101158A1 (en) Substrate with transparent conductive film and organic EL element
JP2002170430A (en) Base body with conductive film and its manufacturing method
KR100680181B1 (en) Transparent conductive thin films and thereof manufacturing method
JP2004111201A (en) Substrate for light-emitting element, substrate with transparent conductive film for light-emitting element, and light-emitting element
JP2003234194A (en) Organic el element and its manufacturing method
KR100943975B1 (en) Indium tin oxide thin film and its manufacturing method
JP2008210653A (en) Organic el element
Satoh et al. Copper-doped indium tin oxide electrode for organic light-emitting devices
KR100967413B1 (en) ITO conducting layer, method for deposition thereof and apparatus for depositing the same
KR20040065503A (en) Method for formation of indium-tin oxide film
KR20050030403A (en) High flatness indium tin oxide thin film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees