【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、過酸化水素と尿素
から過酸化尿素を製造する方法に関する。
【0002】
【従来の技術】過酸化尿素は、医療用、農業、繊維など
の漂白等多岐にわたる分野での利用が期待されている。
その製造方法は過酸化水素と尿素を反応させて容易に得
ることができ、しかも中性領域で酸素を放出できる唯一
の過酸化水素の固形物として機能的にも有用な化合物で
ある。しかしながら、この過酸化尿素は尿素を原料とす
ることから吸湿性に富み、非常に固結しやすいという欠
点を有する。工業的スケールで使用する際には、容易に
固結することからハンドリング特性に問題点が生じ、有
用な物質にもかかわらず、その利用は非常に限られたも
のとなっているのが現状である。
【0003】過酸化尿素の固結防止対策の一部は過酸化
尿素の吸湿性を改良する方法として検討が行われてお
り、特公昭62−12789号公報では反応系に石こう
を添加する方法が公表されている。しかしながら、石こ
うが過酸化尿素に対して30重量%以上使用されてお
り、得られた結晶は過酸化尿素と称するよりも過酸化尿
素と石こうの混合物と称すべきものであり、かつ長期間
の保存に適したものではなかった。
【0004】
【発明が解決しようとする課題】本発明の目的は、従来
技術における課題を解決し、過酸化尿素の固結を抑制
し、ハンドリング特性を向上させた過酸化尿素の製造方
法を提供することにある。
【0005】
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討を行った結果、ソルビタン脂
肪酸エステル化合物を反応系に添加することで、得られ
た結晶を長期保存した場合、固結現象がみられないこと
を見いだした。また、これらのソルビタン脂肪酸エステ
ル化合物を添加しても、過酸化尿素の活性酸素の低下抑
制にも効果があることを見いだし本発明に到達した。
【0006】すなわち、本発明は過酸化水素と尿素とを
反応させて過酸化尿素を製造する方法において、ソルビ
タン脂肪酸エステル化合物を反応系に添加することを特
徴とする過酸化尿素の製造方法に関するものである。
【0007】
【発明の実施の形態】過酸化水素の濃度は、1〜98重
量%の範囲であり、効率的に過酸化尿素を取得するには
高濃度の過酸化水素を使用することが望ましいが、過酸
化水素水の取り扱い、安全面を考慮すると、20〜75
重量%の過酸化水素水を使用することが好ましい。
【0008】本発明のソルビタン脂肪酸エステル化合物
は、脂肪酸の炭素数に係わらず、いずれも効果があり、
使用可能である。ソルビタン脂肪酸エステル化合物の例
として、ソルビタンモノラウレート、ソルビタンモノパ
ルミテート、ソルビタンモノステアレート、ソルビタン
ジステアレート、ソルビタントリステアレート、ソルビ
タンモノオレエート、ソルビタンセスキオレエート、ポ
リオキシエチレンソルビタンモノラウレート、ポリオキ
シエチレンソルビタンモノパルミテート、ポリオキシエ
チレンソルビタンモノステアレート、ポリオキシエチレ
ンソルビタントリステアレート、ポリオキシエチレンソ
ルビタンモノオレエート、ポリオキシエチレンソルビタ
ンイソステアレート、ポリオキシエチレンソルビタンモ
ノヤシ脂肪酸エステル等が好適に挙げられ、これらは1
種又は2種以上の組み合わせで使用できる。
【0009】ソルビタン脂肪酸エステル化合物の添加量
は、使用する尿素に対して0.005〜20.0重量%
で十分に効果が得られるが、好ましくは2.5〜10.
0%である。
【0010】過酸化尿素の製造方法としては、あらかじ
め尿素を溶解した液に過酸化水素水を加えて晶析を行い
過酸化尿素の結晶を取得する方法が一般的であるが、尿
素の結晶に過酸化水素水を添加し混練りすることにより
過酸化尿素を取得する方法、尿素の結晶に過酸化水素水
を噴霧して反応を行うスプレードライ法などの技術も適
用できる。過酸化尿素の反応温度は、特に限定されるも
のではなく任意の温度を選ぶことが可能であるが、好ま
しくは0〜50℃が好ましい。
【0011】過酸化尿素の結晶を乾燥させる方法は、熱
風乾燥、真空乾燥、流動乾燥など一般的な乾燥方法を用
いることができる。乾燥温度は、過酸化尿素の分解温度
が75〜85℃であることから、それ以下であることが
望ましいが、工業的な処理時間を考慮すると30〜60
℃が好ましく、さらに35〜50℃が好適である。
【0012】ソルビタン脂肪酸エステル化合物の添加方
法は、反応前にあらかじめ尿素の結晶や過酸化水素と混
合させておく方法、反応途中に加える方法のいずれの方
法も可能である。また、過酸化尿素の結晶が得られた後
の製造工程でソルビタン脂肪酸エステル化合物を添加す
る方法も有効であり、たとえば造粒工程、乾燥工程、被
覆工程などで添加する方法が挙げられる。しかし、これ
らの後工程においては過酸化尿素の結晶中にミクロ分散
させることは困難であり、固結防止の効果はあるもの
の、反応工程においてソルビタン脂肪酸エステル化合物
を添加することがより望ましい。
【0013】本発明では、過酸化尿素に添加するソルビ
タン脂肪酸エステル化合物以外の成分として、公知の過
酸化尿素の安定剤・安定化助剤である無機酸や有機酸及
びカルボン酸基を有するキレート剤などを添加すること
ができる。具体的には、オルソリン酸、ピロリン酸、ポ
リリン酸、アルキルアリルポリエトキシリン酸、リン酸
アルキルの酸及びその塩、酢酸、プロピオン酸、クエン
酸、酒石酸、サリチル酸、エチレンジアミン4酢酸、プ
ロピレンジアミン4酢酸、ヒドロキシエチルエチレンジ
アミン3酢酸、ニトリロトリ酢酸、ジエチレントリアミ
ン5酢酸、トリエチレンテトラミン6酢酸、ポリヒドロ
キシカルボン酸、ビス(2−ヒドロキシフェニル酢
酸)、エチレンジアミンなどが挙げられる。これらは、
1種類又は2種類以上組み合わせて任意の量を添加して
もよい。
【0014】
【実施例】次の実施例によって本発明をさらに詳細に説
明する。本発明は以下の実施例に限定されるものではな
い。
【0015】実施例1
1000mlのガラス製ビーカーに尿素300g、ソル
ビタン脂肪酸エステル化合物としてソルビタンジステア
レート13.5gを仕込み、十分に混合する。混合しな
がら、60重量%過酸化水素295gを5分かけて添加
した。添加終了後1時間十分に混合を行った。スラリー
を減圧濾過にて濾別して、濾過物を40℃の流動乾燥機
で2時間乾燥させる。1/10N過マンガン酸滴定によ
り測定した結果、得られた乾燥粉末の活性酸素量は1
5.7%であった。得られた乾燥粉末を20℃/55%
RHの恒温恒湿器にいれ、2ヶ月放置したところ、活性
酸素量の保持率は98.8%であった。さらに、結晶状
態を目視観察すると、固結現象は確認されなかった。
【0016】実施例2
ソルビタンジステアレートを24.0g仕込んだ以外は
実施例1と同様の操作を行ったところ、得られた乾燥粉
末の活性酸素量は15.2%であった。得られた乾燥粉
末を実施例1と同様に放置したところ、活性酸素量の保
持率は98.5%であった。さらに、結晶状態を目視観
察すると、固結現象は確認されなかった。
【0017】実施例3
ソルビタン脂肪酸エステル化合物として、ソルビタンモ
ノラウレートを使用した以外は実施例1と同様の操作を
行ったところ、得られた乾燥粉末の活性酸素量は15.
8%であった。得られた乾燥粉末を実施例1と同様に放
置したところ、活性酸素量の保持率は98.9%であっ
た。さらに、結晶状態を目視観察すると、固結現象は確
認されなかった。
【0018】実施例4
ソルビタン脂肪酸エステル化合物として、ソルビタンモ
ノラウレートを24.0g使用した以外は実施例1と同
様の操作を行ったところ、得られた乾燥粉末の活性酸素
量は15.4%であった。得られた乾燥粉末を実施例1
と同様に放置したところ、活性酸素量の保持率は98.
4%であった。さらに、結晶状態を目視観察すると、固
結現象は確認されなかった。
【0019】比較例1
ソルビタン脂肪酸エステル化合物を加えない以外は実施
例1と同様の操作を行ったところ、得られた乾燥粉末の
活性酸素量は15.8%であった。得られた乾燥粉末を
実施例1と同様に放置したところ、活性酸素量の保持率
は94.5%であった。しかし、結晶状態を目視観察す
ると、固結現象が確認された。
【0020】比較例2
ソルビタン脂肪酸エステル化合物を加えず、安定剤とし
てピロリン酸ソーダを60mg使用した以外は実施例1
と同様の操作を行ったところ、得られた乾燥粉末の活性
酸素量は15.7%であった。得られた乾燥粉末を実施
例1と同様に放置したところ、活性酸素量の保持率は9
6.5%であった。しかし、結晶状態を目視観察する
と、固結現象が確認された。
【0021】
【発明の効果】本発明により、過酸化尿素の固結を抑制
してハンドリング特性に優れた、かつ過酸化尿素の活性
酸素の低下抑制による経済効率にも優れた過酸化尿素の
工業的製法が提供される。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing urea peroxide from hydrogen peroxide and urea. [0002] Urea peroxide is expected to be used in a wide variety of fields such as medical use, agriculture, and bleaching of textiles.
The production method is a compound that can be easily obtained by reacting hydrogen peroxide with urea, and is also functionally useful as the only solid hydrogen peroxide that can release oxygen in the neutral region. However, since urea peroxide is a raw material of urea, it has a drawback that it is highly hygroscopic and easily solidifies. At the time of use on an industrial scale, there is a problem in handling properties due to easy consolidation, and despite the fact that useful substances are used, their use is very limited at present. is there. Some measures for preventing urea peroxide from caking have been studied as a method for improving the hygroscopicity of urea peroxide. Japanese Patent Publication No. 62-12789 discloses a method of adding gypsum to a reaction system. It has been announced. However, gypsum is used in an amount of 30% by weight or more based on urea peroxide, and the obtained crystals are to be referred to as a mixture of urea peroxide and gypsum rather than urea peroxide, and stored for a long time. It was not suitable for. SUMMARY OF THE INVENTION An object of the present invention is to solve the problems in the prior art, and to provide a method for producing urea peroxide in which caking of urea peroxide is suppressed and handling properties are improved. Is to do. Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, by adding a sorbitan fatty acid ester compound to a reaction system, a crystal obtained was obtained. When stored for a long time, they found that no caking phenomenon was observed. In addition, they have found that the addition of these sorbitan fatty acid ester compounds is also effective in suppressing the reduction of active oxygen in urea peroxide, and have reached the present invention. That is, the present invention relates to a method for producing urea peroxide by reacting hydrogen peroxide with urea, wherein a sorbitan fatty acid ester compound is added to the reaction system. It is. DETAILED DESCRIPTION OF THE INVENTION The concentration of hydrogen peroxide is in the range of 1 to 98% by weight, and it is desirable to use a high concentration of hydrogen peroxide to efficiently obtain urea peroxide. However, considering the handling and safety of hydrogen peroxide solution, 20 to 75
It is preferred to use a weight percent aqueous hydrogen peroxide solution. The sorbitan fatty acid ester compound of the present invention is effective regardless of the number of carbon atoms in the fatty acid.
Can be used. Examples of sorbitan fatty acid ester compounds include sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monooleate, sorbitan sesquioleate, polyoxyethylene sorbitan monolaurate , Polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan isostearate, polyoxyethylene sorbitan monococo fatty acid ester, etc. And these are preferably 1
Species or a combination of two or more can be used. The amount of the sorbitan fatty acid ester compound is 0.005 to 20.0% by weight based on the urea used.
Can obtain a sufficient effect, but preferably 2.5 to 10.
0%. As a method for producing urea peroxide, a method is generally used in which a hydrogen peroxide solution is added to a solution in which urea is dissolved in advance to carry out crystallization to obtain urea peroxide crystals. Techniques such as a method of obtaining urea peroxide by adding and kneading an aqueous hydrogen peroxide solution, and a spray drying method in which a reaction is performed by spraying an aqueous hydrogen peroxide solution on urea crystals can also be applied. The reaction temperature of urea peroxide is not particularly limited and may be any temperature, but is preferably from 0 to 50 ° C. As a method for drying the crystals of urea peroxide, a general drying method such as hot air drying, vacuum drying and fluidized drying can be used. The drying temperature is desirably lower than this because the decomposition temperature of urea peroxide is 75 to 85 ° C., but is preferably 30 to 60 in consideration of the industrial processing time.
C is preferred, and more preferably 35 to 50C. As a method of adding the sorbitan fatty acid ester compound, any of a method of mixing it with urea crystals or hydrogen peroxide before the reaction or a method of adding it during the reaction is possible. Also effective is a method of adding the sorbitan fatty acid ester compound in the production process after the crystals of urea peroxide are obtained, such as a granulation process, a drying process, and a coating process. However, it is difficult to microdisperse urea peroxide in the crystals in these subsequent steps, and although it has an effect of preventing caking, it is more desirable to add a sorbitan fatty acid ester compound in the reaction step. In the present invention, as a component other than the sorbitan fatty acid ester compound to be added to urea peroxide, a chelating agent having a known urea peroxide stabilizer / stabilizing aid, such as an inorganic acid, an organic acid and a carboxylic acid group. Etc. can be added. Specifically, orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid, alkyl allyl polyethoxyphosphoric acid, acid of alkyl phosphate and its salt, acetic acid, propionic acid, citric acid, tartaric acid, salicylic acid, ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid , Hydroxyethylethylenediamine triacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetramine hexaacetic acid, polyhydroxycarboxylic acid, bis (2-hydroxyphenylacetic acid), ethylenediamine and the like. They are,
Any amount may be added alone or in combination of two or more. The present invention will be described in more detail with reference to the following examples. The present invention is not limited to the following examples. Example 1 A 1000 ml glass beaker was charged with 300 g of urea and 13.5 g of sorbitan distearate as a sorbitan fatty acid ester compound, and thoroughly mixed. While mixing, 295 g of 60% by weight hydrogen peroxide was added over 5 minutes. After completion of the addition, the mixture was sufficiently mixed for one hour. The slurry is separated by filtration under reduced pressure, and the filtrate is dried with a fluidized drier at 40 ° C. for 2 hours. As a result of measurement by 1 / 10N permanganate titration, the amount of active oxygen in the obtained dry powder was 1
It was 5.7%. The obtained dry powder is 20 ° C / 55%
When placed in an RH constant temperature and humidity chamber and allowed to stand for 2 months, the retention rate of the amount of active oxygen was 98.8%. Further, when the crystal state was visually observed, no consolidation phenomenon was confirmed. Example 2 The same operation as in Example 1 was carried out except that 24.0 g of sorbitan distearate was charged. As a result, the amount of active oxygen in the obtained dry powder was 15.2%. When the obtained dried powder was allowed to stand in the same manner as in Example 1, the retention rate of the amount of active oxygen was 98.5%. Further, when the crystal state was visually observed, no consolidation phenomenon was confirmed. Example 3 The same operation as in Example 1 was performed except that sorbitan monolaurate was used as the sorbitan fatty acid ester compound, and the amount of active oxygen in the obtained dry powder was 15.
8%. When the obtained dry powder was allowed to stand in the same manner as in Example 1, the retention rate of the amount of active oxygen was 98.9%. Further, when the crystal state was visually observed, no consolidation phenomenon was confirmed. Example 4 The same operation as in Example 1 was carried out except that 24.0 g of sorbitan monolaurate was used as the sorbitan fatty acid ester compound. The amount of active oxygen in the obtained dry powder was 15.4%. Met. The obtained dry powder was prepared in Example 1.
When it was left in the same manner as above, the retention rate of the amount of active oxygen was 98.
4%. Further, when the crystal state was visually observed, no consolidation phenomenon was confirmed. Comparative Example 1 The same operation as in Example 1 was carried out except that the sorbitan fatty acid ester compound was not added, and the amount of active oxygen in the obtained dry powder was 15.8%. When the obtained dry powder was allowed to stand in the same manner as in Example 1, the retention rate of the amount of active oxygen was 94.5%. However, when the crystal state was visually observed, a consolidation phenomenon was confirmed. Comparative Example 2 Example 1 was repeated except that no sorbitan fatty acid ester compound was added and 60 mg of sodium pyrophosphate was used as a stabilizer.
By performing the same operation as in the above, the amount of active oxygen in the obtained dry powder was 15.7%. When the obtained dry powder was allowed to stand in the same manner as in Example 1, the active oxygen content retention rate was 9%.
6.5%. However, when the crystal state was visually observed, a consolidation phenomenon was confirmed. Industrial Applicability According to the present invention, there is provided an industrial process for producing urea peroxide which is excellent in handling characteristics by suppressing solidification of urea peroxide and is also excellent in economic efficiency by suppressing reduction of active oxygen in urea peroxide. A typical recipe is provided.
─────────────────────────────────────────────────────
フロントページの続き
(72)発明者 林 勝茂
三重県四日市市日永東2丁目4番16号 三
菱瓦斯化学株式会社四日市工場内
Fターム(参考) 4H006 AA02 AC42 BA50 BB31 BC10
BC30 BC34 BE32
4H039 CA64 CC60
────────────────────────────────────────────────── ───
Continuation of front page
(72) Inventor Katsushige Hayashi
2-4-1-16, Hinagahigashi, Yokkaichi City, Mie Prefecture
Ryogas Chemical Co., Ltd. Yokkaichi Plant
F-term (reference) 4H006 AA02 AC42 BA50 BB31 BC10
BC30 BC34 BE32
4H039 CA64 CC60