JP2003293076A - High strength steel pipe stock having low yield ratio after pipe making and production method thereof - Google Patents
High strength steel pipe stock having low yield ratio after pipe making and production method thereofInfo
- Publication number
- JP2003293076A JP2003293076A JP2002106697A JP2002106697A JP2003293076A JP 2003293076 A JP2003293076 A JP 2003293076A JP 2002106697 A JP2002106697 A JP 2002106697A JP 2002106697 A JP2002106697 A JP 2002106697A JP 2003293076 A JP2003293076 A JP 2003293076A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- steel pipe
- yield ratio
- strength steel
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、パイプラインある
いは建築構造用に使用される大径溶接鋼管素材に関し、
特にAPI-5LX80級を超える強度の低降伏比高強度鋼管用
素材とその製造方法に関するものである。TECHNICAL FIELD The present invention relates to a large diameter welded steel pipe material used for pipelines or building structures,
In particular, the present invention relates to a material for low-yield ratio and high-strength steel pipes having strength exceeding API-5LX80 class and a manufacturing method thereof.
【0002】[0002]
【従来の技術】原油や天然ガスを輸送するためのパイプ
ラインに用いられる鋼管は、厚鋼板をUOE法あるいは
ロールベンダー法で成形・溶接された大径溶接鋼管が主
に使用されている。そして、近年、上記鋼管は、高強度
化して管厚(素材厚)を薄くすることにより、素材コスト
ひいては敷設コストの低減が図られている。従来、上記
鋼管の素材には、特開平08-35011号公報に開示されたよ
うな、Mn,Cu,Ni,Cr,Mo,Nb,Vといった合金元素を
多量に添加した鋼を熱間圧延し、その後、加速冷却を施
すことにより高強度化した厚鋼板や、特開平08-269544
号公報に開示されたような、Arl変態点〜Ar3変態点間
のいわゆる2相域圧延をしてフェライトの加工強化を付
与した後、加速冷却を行ってさらに高強度化した鋼板が
多く用いられている。2. Description of the Related Art As a steel pipe used for a pipeline for transporting crude oil or natural gas, a large diameter welded steel pipe formed by welding a thick steel plate by the UOE method or the roll bender method is mainly used. In recent years, the steel pipe has been strengthened to reduce the pipe thickness (material thickness), thereby reducing the material cost and thus the laying cost. Conventionally, as a material for the above-mentioned steel pipe, hot-rolled steel containing a large amount of alloying elements such as Mn, Cu, Ni, Cr, Mo, Nb, and V as disclosed in JP-A-08-35011 is used. After that, a thick steel plate that has been strengthened by subjecting it to accelerated cooling, and Japanese Patent Laid-Open No. 08-269544
No. as disclosed in Japanese, Ar l and the so-called two-phase region rolling between transformation point to Ar 3 transformation point after application of the machining strengthening of the ferrite, many more high strength steel plates and subjected to an accelerated cooling It is used.
【0003】しかし、安全性評価の研究が進むにつれ
て、例えば、地震発生時における鋼管の座屈防止の観点
からは、パイプラインに用いられる高強度鋼管として
は、鋼管の降伏比(YS/TS)が低い方が好ましいこと
がわかってきた。また、最近、鋼管を高層建築物の柱材
として使用するケースが増えており、この用途において
も、地震時の塑性変形能を確保するために低降伏比が要
求され始めている。なお、現状では、上記降伏比(YS
/TS)は85%以下を望ましい値としている。However, as research on safety evaluation progresses, for example, from the viewpoint of preventing buckling of a steel pipe when an earthquake occurs, as a high-strength steel pipe used for a pipeline, a yield ratio (YS / TS) of the steel pipe is used. It has been found that a lower value is preferable. Recently, the number of cases in which steel pipes are used as column materials for high-rise buildings is increasing, and in this application as well, a low yield ratio is required in order to ensure plastic deformability during an earthquake. At present, the yield ratio (YS
/ TS) has a desirable value of 85% or less.
【0004】[0004]
【発明が解決しようとする課題】ところが、前述した従
来技術で製造される高強度鋼管は、このような低降伏比
の要求を十分に満足できるものとは言い難い。すなわ
ち、合金元素を多量に添加し加速冷却して製造した厚鋼
板は、冷却時にマルテンサイト組織化するために降伏比
が高くなる。また、2相域圧延によりフェライト強化し
た厚鋼板は、特に、高YSとなるため、降伏比が著しく
高くなる。さらに、UOE法やロールベンディング法に
おいては、素材である厚鋼板を曲げ加工するため、さら
にYSが上昇することになる。このため、鋼管段階で低
降伏比を得るためには、元の鋼板の段階で、降伏比をよ
り低くしておかなければならない。However, it cannot be said that the high-strength steel pipe manufactured by the above-mentioned conventional technique can sufficiently satisfy the requirement of such a low yield ratio. That is, a thick steel sheet manufactured by adding a large amount of alloying elements and accelerating cooling has a high yield ratio due to martensitic structure during cooling. In addition, a thick steel sheet reinforced by ferrite by two-phase rolling has a particularly high YS, so that the yield ratio is remarkably high. Further, in the UOE method and the roll bending method, since the thick steel plate which is a raw material is bent, YS is further increased. Therefore, in order to obtain a low yield ratio at the steel pipe stage, the yield ratio must be made lower at the stage of the original steel sheet.
【0005】本発明の目的は、靭性特性を劣化させるこ
となく造管後の降伏比が低い(≦85%)高強度鋼管用素材
およびその製造方法を提案することにある。An object of the present invention is to propose a material for high-strength steel pipe having a low yield ratio after pipe making (≦ 85%) without deteriorating toughness characteristics and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】発明者らは、ミクロ組織
制御による高強度化について鋭意研究を行った。その結
果、素材鋼板のミクロ組織を、ベイナイトを主とし、さ
らにそのベイナイト中に硬いマルテンサイトとオーステ
ナイトとが共存状態で存在する低温変態生成相(Martens
ite-Austenite constituentsと呼ばれる。以降、「M−
A共存組織」と略記する)を分散させた場合、特に、こ
のM−A共存組織の体積率を全組織中の5vol%以上と
した場合、TSが顕著に増加することを見いだした。M
−A共存組織は、鋼中のCが、ベイナイト変態の過程
で、未変態オーステナイト中に拡散、濃化することによ
り生成する。したがって、M−A共存組織の体積率を必
要な量確保するためには、C量の確保とベイナイト変態
を起こすための合金元素の添加量と冷却条件の適正化が
必要である。[Means for Solving the Problems] The inventors of the present invention have earnestly studied the enhancement of strength by controlling the microstructure. As a result, the microstructure of the material steel sheet is mainly composed of bainite, and low temperature transformation formation phase (Martensite) in which the hard martensite and austenite coexist in the bainite in a coexisting state.
Called ite-Austenite constituents. After that, "M-
It was found that TS is remarkably increased when the A) coexisting structure is abbreviated), particularly when the volume ratio of the MA coexisting structure is 5 vol% or more of the whole structure. M
The -A coexisting structure is generated when C in the steel is diffused and concentrated in untransformed austenite during the bainite transformation. Therefore, in order to secure the required volume ratio of the MA coexisting structure, it is necessary to secure the C content and optimize the addition amount of the alloying element for causing the bainite transformation and the cooling conditions.
【0007】発明者らは、さらに研究を重ねた結果、C
を0.04mass%以上とすることにより、安定してベイナイ
ト中にM−A共存組織を生成し得ることを見いだした。
さらに、実験結果の回帰計算の結果、合金元素を、下記
式;
Mn/20+Cu/20+Ni/60+Cr/32+Mo/7≧0.11
の関係を満たす組成範囲に調整し、圧延後の冷却速度を
10℃/sec以上とすることにより、フェライト変態を起こ
すことなくベイナイト変態を起こせること、さらにその
後、200℃以下まで冷却すると、ベイナイト変態に続い
てM−A共存組織を生成し得ることを知見した。As a result of further research, the inventors have found that C
It was found that the content of 0.04 mass% or more can stably form the MA coexisting structure in bainite.
Furthermore, as a result of regression calculation of the experimental results, the alloying elements were adjusted to a composition range satisfying the following formula: Mn / 20 + Cu / 20 + Ni / 60 + Cr / 32 + Mo / 7 ≧ 0.11, and the cooling rate after rolling was adjusted.
It was found that by setting the temperature to 10 ° C./sec or more, bainite transformation can be caused without causing ferrite transformation, and further, if cooled to 200 ° C. or less, the MA coexisting structure can be generated following the bainite transformation. .
【0008】ところで、従来、前記M−A共存組織は、
脆性破壊の起点となる等の理由で靭性を低下させると考
えられてきた。発明者らは、M−A共存組織の形態に着
目して、この点について調査を進めた結果、アスペクト
比が4を超えるような細長い形状のM−A共存組織が脆
性破壊の起点となっていること、すなわち、アスペクト
比が4以下の塊状のM−A共存組織であれば、M−A共
存組織の体積率が20vol%を超えない範囲において、靭
性への悪影響が少ないことを突き止めた。そして、この
ような塊状のM−A共存組織を優先的に生成させるため
には、オーステナイトが再結晶しないような850℃以下
の温度域で、大変形を加えることにより、ベイナイトの
微細化に伴って塊状のM−A共存組織が生成しやすくな
ることも見出した。By the way, conventionally, the above-mentioned MA coexisting organization is
It has been considered that the toughness is lowered because it becomes a starting point of brittle fracture. As a result of investigating this point by paying attention to the morphology of the M-A coexisting structure, the inventors have found that the elongated M-A coexisting structure having an aspect ratio of more than 4 becomes a starting point of brittle fracture. That is, it was found that if the lumpy M-A coexisting structure having an aspect ratio of 4 or less has little adverse effect on the toughness in the range where the volume ratio of the M-A coexisting structure does not exceed 20 vol%. Then, in order to preferentially generate such a massive MA coexisting structure, a large deformation is applied in a temperature range of 850 ° C. or less at which austenite does not recrystallize, so that bainite is refined. It has also been found that a lumpy MA coexisting structure is easily generated.
【0009】上記知見に基づき完成した本発明は、C:
0.04〜0.08mass%、Si:0.05〜0.50mass%、Mn:1.5〜
2.5mass%、Al:0.01〜0.10mass%、Nb:0.01〜0.08mas
s%、Ti:0.005〜0.020mass%を含有し、さらにCu,N
i,CrおよびMoのうちから選ばれる1種または2種以上
を、Cu:0.2〜0.7mass%、Ni:0.2〜1.0mass%、Cr:0.
2〜0.7mass%、Mo:0.2〜0.7mass%で、かつ、下記式;
Mn/20+Cu/20+Ni/60+Cr/32+Mo/7≧0.11
の関係を満たすように含有し、残部Feおよび不可避的不
純物よりなり、アスペクト比≦4.0のマルテンサイト−
オーステナイト共存組織が全組織の5〜20vol%である
ベイナイト組織を主とするミクロ組織を有し、造管後の
降伏比が85%以下であることを特徴とする造管後の降伏
比が低い高強度鋼管素材である。The present invention completed on the basis of the above findings is C:
0.04 to 0.08 mass%, Si: 0.05 to 0.50 mass%, Mn: 1.5 to
2.5mass%, Al: 0.01 to 0.10mass%, Nb: 0.01 to 0.08mass
s%, Ti: 0.005-0.020mass%, and Cu, N
One or two or more selected from i, Cr and Mo are Cu: 0.2 to 0.7 mass%, Ni: 0.2 to 1.0 mass%, Cr: 0.
2 to 0.7mass%, Mo: 0.2 to 0.7mass%, and contains so as to satisfy the following formula; Mn / 20 + Cu / 20 + Ni / 60 + Cr / 32 + Mo / 7 ≧ 0.11 with the balance Fe and unavoidable impurities , Martensite with aspect ratio ≤ 4.0
Austenite coexisting structure has a microstructure mainly composed of bainite structure of 5 to 20% by volume of the whole structure, and the yield ratio after pipemaking is 85% or less, and the yield ratio after pipemaking is low. It is a high strength steel pipe material.
【0010】なお、本発明の鋼管素材は、上記成分組成
に加えてさらに、Ca:0.001〜0.003mass%、REM:0.
005〜0.020mass%のうちから選ばれる1種または2種を
含有することが好ましい。The steel pipe material of the present invention, in addition to the above-mentioned composition, further contains Ca: 0.001 to 0.003 mass% and REM: 0.
It is preferable to contain one or two selected from 005 to 0.020 mass%.
【0011】また、本願発明は、C:0.04〜0.08mass
%、Si:0.05〜0.50mass%、Mn:1.5〜2.5mass%、Al:
0.01〜0.10mass%、Nb:0.01〜0.08mass%、Ti:0.005
〜0.020mass%を含有し、さらにCu,Ni,CrおよびMoの
うちから選ばれる1種または2種以上を、Cu:0.2〜0.7
mass%、Ni:0.2〜1.0mass%、Cr:0.2〜0.7mass%、M
o:0.2〜0.7mass%で、かつ、下記式;
Mn/20+Cu/20+Ni/60+Cr/32+Mo/7≧0.11
の関係を満たすように含有し、残部Feおよび不可避的不
純物よりなる鋼スラブを、1000〜1250℃に加熱した後、
850℃以下での累積圧下率を75%以上、圧延終了温度を7
00〜800℃とする熱間圧延を行い、その後、(圧延終了温
度〜圧延終了温度−50℃)から200℃以下までを、冷却
速度10〜30℃/secで水冷することにより、アスペクト比
≦4.0のマルテンサイト−オーステナイト共存組織が全
組織の5〜20vol%であるベイナイト組織を主とするミ
クロ組織を有し、造管後の降伏比が85%以下のものとす
ることを特徴とする造管後の降伏比が低い高強度鋼管素
材の製造方法を提案する。Further, according to the present invention, C: 0.04 to 0.08 mass
%, Si: 0.05 to 0.50 mass%, Mn: 1.5 to 2.5 mass%, Al:
0.01 to 0.10mass%, Nb: 0.01 to 0.08mass%, Ti: 0.005
To 0.020 mass%, and one or more selected from Cu, Ni, Cr and Mo, Cu: 0.2 to 0.7
mass%, Ni: 0.2 to 1.0 mass%, Cr: 0.2 to 0.7 mass%, M
o: 0.2 to 0.7 mass% and a steel slab containing the following formula; Mn / 20 + Cu / 20 + Ni / 60 + Cr / 32 + Mo / 7 ≧ 0.11 with the balance Fe and unavoidable impurities After heating to 1250 ° C,
Cumulative rolling reduction at 850 ° C or less is 75% or more, rolling end temperature is 7
Perform hot rolling to 00 ~ 800 ℃, then (rolling end temperature ~ rolling end temperature -50 ℃) to 200 ℃ or less, by water cooling at a cooling rate of 10 ~ 30 ℃ / aspect ratio ≤ The martensite-austenite coexistence structure of 4.0 has a microstructure mainly composed of bainite structure which is 5 to 20 vol% of the whole structure, and the yield ratio after pipe forming is 85% or less. We propose a manufacturing method of high strength steel pipe material with low yield ratio after pipe.
【0012】なお、本発明の製造方法は、上記成分組成
に加えてさらに、Ca:0.001〜0.003mass%、REM:0.
005〜0.020mass%のうちから選ばれる1種または2種を
含有することが好ましい。In the production method of the present invention, in addition to the above component composition, Ca: 0.001 to 0.003 mass%, REM: 0.
It is preferable to contain one or two selected from 005 to 0.020 mass%.
【0013】また、本発明の製造方法は、熱間圧延後の
鋼板を450℃以下の温度で焼戻し処理することが好まし
い。In the manufacturing method of the present invention, it is preferable that the steel sheet after hot rolling is tempered at a temperature of 450 ° C. or lower.
【0014】[0014]
【発明の実施の形態】まず、本発明において、各成分組
成を上記請求範囲に限定した理由について説明する。
C:0.04〜0.08mass%
Cは、ベイナイト中に、全組織の5vol%以上のM−A
共存組織を分散させるためには、0.04mass%以上含有さ
せることが必要である。しかし、0.08mass%を超えて添
加すると、後述する合金元素量が多いために溶接部でマ
ルテンサイト変態が起こりやすく、硬さが高くなり過ぎ
て溶接性を損なうおそれがある。このため、Cの上限は
0.08mass%とする。BEST MODE FOR CARRYING OUT THE INVENTION First, the reasons why each component composition is limited to the above-mentioned claims in the present invention will be explained. C: 0.04 to 0.08 mass% C is 5% by volume or more of the entire structure in bainite.
In order to disperse the coexisting structure, it is necessary to contain 0.04 mass% or more. However, if added in excess of 0.08 mass%, martensitic transformation is likely to occur in the weld zone due to the large amount of alloying elements described below, and the hardness may become too high, impairing weldability. Therefore, the upper limit of C is
0.08 mass%
【0015】Si:0.05〜0.50mass%
Siは、製鋼での脱酸元素として0.05mass%以上の添加が
必要である。また、添加量の増加に伴い、鋼の強度は、
固溶強化により上昇する。しかし、0.50%を超えて添加
すると、靭性に悪影響を及ぼすため、上限は0.50mass%
とする。Si: 0.05 to 0.50 mass% Si needs to be added in an amount of 0.05 mass% or more as a deoxidizing element in steelmaking. In addition, the strength of steel increases with the addition amount.
Increased by solid solution strengthening. However, if added over 0.50%, the toughness is adversely affected, so the upper limit is 0.50 mass%.
And
【0016】Mn:1.5〜2.5mass%
Mnは、焼入性を高める元素であり、後述する式に従って
添加することでベイナイト変態を促進させることができ
る。また、他の元素と較べて安価であるため、下限を1.
5mass%以上添加することで、コスト増加を抑えて高強
度化が可能となる。しかし、2.5mass%を超えて添加す
ると、溶接部の靭性を劣化させるので、上限は2.5mass
%とした。Mn: 1.5 to 2.5 mass% Mn is an element that enhances the hardenability, and if added according to the formula described below, bainite transformation can be promoted. Also, since it is cheaper than other elements, the lower limit is 1.
By adding 5 mass% or more, cost increase can be suppressed and high strength can be achieved. However, if added in excess of 2.5 mass%, the toughness of the weld will deteriorate, so the upper limit is 2.5 mass.
%.
【0017】Al:0.01〜0.10mass%
Alは、製鋼における脱酸剤として0.01mass%以上添加す
る必要がある。しかし、0.10mass%を超えて添加する
と、Al2O3やAlN等の介在物の増加に伴って母材靭性が
劣化し、さらに溶接金属への希釈によって、特にTiO等
から生成するアシキュラフェライトにより高靭性を達成
している溶接金属のTiO形成を阻害するために、溶接金
属の靭性を著しく劣化させるので、上限を0.10mass%と
した。Al: 0.01 to 0.10 mass% Al must be added in an amount of 0.01 mass% or more as a deoxidizing agent in steelmaking. However, if it is added in excess of 0.10 mass%, the toughness of the base metal deteriorates with the increase of inclusions such as Al 2 O 3 and AlN, and the acicular ferrite formed especially from TiO by dilution into the weld metal. Therefore, since the toughness of the weld metal is significantly deteriorated in order to inhibit the formation of TiO in the weld metal achieving high toughness, the upper limit was made 0.10 mass%.
【0018】Nb:0.01〜0.08mass%
Nbは、オーステナイトの再結晶温度を高温側に移行させ
るために0.01mass%以上添加する必要がある。このNb添
加の効果により、850℃以下の圧延で、ベイナイト組織
の著しい微細化が起こり、それに伴って、アスペクト比
≦4の塊状M−A共存組織の生成が促進される。一方、
0.08mass%を超えて添加すると、溶接熱影響部の靭性を
著しく劣化させるので、上限は0.08mass%とした。Nb: 0.01 to 0.08 mass% Nb must be added in an amount of 0.01 mass% or more in order to shift the recrystallization temperature of austenite to the high temperature side. Due to the effect of the addition of Nb, the bainite structure is remarkably refined by rolling at 850 ° C. or less, and accordingly, the formation of a massive MA coexisting structure having an aspect ratio of ≦ 4 is promoted. on the other hand,
If added in excess of 0.08 mass%, the toughness of the weld heat affected zone will be significantly deteriorated, so the upper limit was made 0.08 mass%.
【0019】Ti:0.005〜0.020mass%
Tiは、不可避的に存在する鋼中のフリーNをTiNとして
固定するために、0.005mass%以上の添加が必要であ
る。また、このTiNは、溶接熱影響部のオーステナイト
粒成長抑制にも寄与する。一方、0.020mass%を超えて
添加すると、余剰Tiが炭化物を形成し、鋼のYSの上昇
を引き起こし、降伏比の増大を招くので、上限を0.020m
ass%とする。Ti: 0.005 to 0.020 mass% Ti needs to be added in an amount of 0.005 mass% or more in order to fix the free N in steel inevitably present as TiN. Further, this TiN also contributes to suppressing the growth of austenite grains in the heat affected zone of welding. On the other hand, when added in excess of 0.020 mass%, excess Ti forms carbides, which causes an increase in YS of the steel and causes an increase in the yield ratio, so the upper limit is 0.020 m.
Assass%
【0020】Cu:0.2〜0.7mass%
Cuは、0.2mass%以上の添加によりベイナイト変態の促
進に寄与する。しかし、0.7mass%を超えて添加する
と、特に、焼戻し処理した場合に析出して析出強化を起
こし、YSが上昇して降伏比の増加を招くため、上限を
0.7mass%とする。Cu: 0.2 to 0.7 mass% Cu contributes to the promotion of bainite transformation by adding 0.2 mass% or more. However, if added in excess of 0.7 mass%, in particular, when tempered, precipitation occurs and precipitation strengthening occurs, and YS increases, leading to an increase in yield ratio.
0.7mass%
【0021】Ni:0.2〜1.0mass%
Niは、0.2mass%以上の添加により、ベイナイト変態の
促進に寄与する。一方、1.0mass%を超えて添加しても
その効果が飽和するため、上限を1.0mass%とする。Ni: 0.2 to 1.0 mass% Ni contributes to the promotion of bainite transformation by adding 0.2 mass% or more. On the other hand, the effect is saturated even if added in excess of 1.0 mass%, so the upper limit is made 1.0 mass%.
【0022】Cr:0.2〜0.7mass%
Crは、0.2mass%以上の添加により、ベイナイト変態の
促進に寄与する。一方、0.7mass%を超えて添加する
と、溶接部の靭性に悪影響を及ぼすので、上限を0.7mas
s%とする。Cr: 0.2 to 0.7 mass% Cr contributes to the promotion of bainite transformation by adding 0.2 mass% or more. On the other hand, if added in excess of 0.7 mass%, the toughness of the weld will be adversely affected.
s%
【0023】Mo:0.2〜0.7mass%
Moは、0.2mass%以上の添加により、ベイナイト変態の
促進に寄与する。一方、0.7mass%を超えて添加する
と、Mo炭化物が析出して析出強化が起こり、特にYSが
増加して降伏比を高めるため、上限は0.7mass%とす
る。Mo: 0.2 to 0.7 mass% Mo contributes to the promotion of bainite transformation by adding 0.2 mass% or more. On the other hand, if added in excess of 0.7 mass%, Mo carbide precipitates and precipitation strengthening occurs, especially YS increases and the yield ratio is increased, so the upper limit is made 0.7 mass%.
【0024】Mn/20+Cu/20+Ni/60+Cr/32+Mo/7≧0.11
Cu,Ni,CrおよびMoは,Mnと合わせて、下記式;
Mn/20+Cu/20+Ni/60+Cr/32+Mo/7≧0.11
の関係を満たすよう添加することで、熱間圧延後の水冷
における冷却速度を10℃/sec以上としたときに、フェラ
イト変態を起こすことなくベイナイト変態させ、その後
のM−A共存組織の生成に寄与する。Mn / 20 + Cu / 20 + Ni / 60 + Cr / 32 + Mo / 7 ≧ 0.11 Cu, Ni, Cr and Mo together with Mn satisfy the following formula: Mn / 20 + Cu / 20 + Ni / 60 + Cr / 32 + Mo / 7 ≧ 0.11 With such addition, when the cooling rate in water cooling after hot rolling is set to 10 ° C./sec or more, bainite transformation occurs without ferrite transformation, and contributes to the subsequent formation of the MA coexisting structure.
【0025】なお、本発明では、上記必須成分の他に、
必要に応じて下記の成分を添加することができる。
Ca:0.001〜0.003mass%
Caは、Sの化合物の形態制御元素として添加することが
できる。すなわち、鋼中に不可避的に形成される非金属
介在物MnSが、HAZの靭性等で問題となる場合に、0.
001mass%以上添加することで、より高温で生成するCa
Sに介在物形態を制御し、その悪影響をなくすことがで
きる。しかし、0.003mass%を超えて添加すると、CaS
がクラスター状に生成して逆に悪影響を及ぼすので、上
限を0.003mass%とする。In the present invention, in addition to the above essential components,
The following components can be added as needed. Ca: 0.001 to 0.003 mass% Ca can be added as a morphology controlling element of the S compound. That is, when the non-metallic inclusion MnS inevitably formed in the steel becomes a problem in the toughness of the HAZ, etc.
Ca added at 001mass% or higher produces higher temperature Ca
It is possible to control the form of inclusions in S and eliminate its adverse effects. However, when added in excess of 0.003 mass%, CaS
Is generated in a cluster and adversely affects it, so the upper limit is made 0.003 mass%.
【0026】REM:0.005〜0.020mass%
REMも、Caと同じく、MnSの形態制御の目的で、0.00
5mass%以上添加することができる。しかし、0.020mass
%を超える添加は、鋼の清浄度を劣化させるため、上限
を0.020mass%とした。REM: 0.005 to 0.020 mass% REM, like Ca, is 0.00% for the purpose of controlling the morphology of MnS.
5 mass% or more can be added. But 0.020mass
%, The cleanliness of the steel deteriorates, so the upper limit was made 0.020 mass%.
【0027】次に、本発明に係る鋼管素材のミクロ組織
について説明する。
ベイナイト中のアスペクト比≦4.0のM−A共存組織の
体積率≧5vol%
本発明の目的とするAPI-5LX80級を超える大径溶接鋼管
の強度を満足させるためには、少なくとも鋼のミクロ組
織はベイナイトを基本とすることが必要である。さら
に、UOE法あるいはロールベンダー法で鋼管に成形す
る場合、曲げ加工によるYSの上昇が起きても、降伏比
≦85%を安定して満たすためには、鋼板段階での降伏比
をさらに低下させておく必要がある。Next, the microstructure of the steel pipe material according to the present invention will be described. In order to satisfy the strength of the large-diameter welded steel pipe exceeding the API-5LX80 class, which is the object of the present invention, at least the microstructure of the steel should be at least the microstructure of the steel in order to satisfy the strength of the API-5LX80 class which is the object of the present invention. Bainite needs to be the basis. Further, when forming a steel pipe by the UOE method or the roll bender method, even if the YS increases due to bending, in order to stably satisfy the yield ratio ≦ 85%, the yield ratio at the steel plate stage should be further reduced. Need to be kept.
【0028】このとき、ベイナイト中に、第2相として
硬いM−A共存組織を分散させると、分散強化により鋼
板のTSを著しく上昇させることができ、その結果、鋼
板段階で高強度かつ低降伏比を達成することができる。
ここで、M−A共存組織の硬さはベイナイトの約2〜3
倍であることから、上記目標とする降伏比85%以下を達
成するためには、少なくとも5vol%以上のM−A共存
組織の分散が必要である。また、M−A共存組織が脆性
破壊の起点となって、鋼板の靭性を著しく低下させるこ
とを防止するためには、M−A共存組織の形態を、アス
ペクト比>4.0のような細長い形態からアスペクト比≦
4.0の塊状の形態に制御する必要がある。しかしなが
ら、塊状の形態制御を行っても、M−A共存組織の体積
率が20vol%を超えると、靭性の劣化が起こるので、そ
の体積率の上限は20vol%とする。以上のように、従来
材並の靭性を確保しつつ、低降伏比を達成するために
は、アスペクト比≦4.0のM−A共存組織を全組織の5
〜20vol%とすることが必要である。At this time, when a hard MA coexisting structure as the second phase is dispersed in bainite, the TS of the steel sheet can be remarkably increased by dispersion strengthening, and as a result, high strength and low yield are achieved at the steel sheet stage. A ratio can be achieved.
Here, the hardness of the MA coexisting structure is about 2 to 3 of that of bainite.
Therefore, in order to achieve the target yield ratio of 85% or less, it is necessary to disperse at least 5 vol% of the MA coexisting structure. In order to prevent the M-A coexisting structure from becoming a starting point of brittle fracture and significantly lowering the toughness of the steel sheet, the form of the M-A coexisting structure is set to be an elongated form such as an aspect ratio> 4.0. Aspect ratio ≤
It is necessary to control the lumpy form of 4.0. However, even if the bulk morphology is controlled, if the volume ratio of the MA coexisting structure exceeds 20 vol%, the toughness deteriorates. Therefore, the upper limit of the volume ratio is 20 vol%. As described above, in order to achieve the low yield ratio while ensuring the toughness equivalent to that of the conventional material, the MA coexisting structure with the aspect ratio ≦ 4.0 is set to 5% of the whole structure.
~ 20vol% is required.
【0029】次に、本発明に係る鋼管素材の製造条件に
ついて説明する。
スラブ加熱温度:1000〜1250℃
熱間圧延前のスラブ加熱温度は、1000℃以上とすること
により、均一なオーステナイト組織となることから、下
限温度を1000℃とする。一方、1250℃以上に加熱する
と、オーステナイト粒が粗大化し、そのまま熱間圧延す
ると、鋼板の靭性の劣化が大きいので、上限温度を1250
℃とした。なお、好ましくは1050〜1150℃の温度範囲が
望ましい。Next, the manufacturing conditions of the steel pipe material according to the present invention will be described. Slab heating temperature: 1000 to 1250 ° C. Since the slab heating temperature before hot rolling is 1000 ° C. or higher, a uniform austenite structure is obtained, so the lower limit temperature is set to 1000 ° C. On the other hand, when heated to 1250 ° C or higher, the austenite grains coarsen, and if hot-rolled as it is, deterioration of the toughness of the steel sheet is large.
℃ was made. The temperature range of 1050-1150 ° C is preferable.
【0030】850℃以下の低温γ域での累積圧下率≧75
%
加熱されたスラブは、直ちに熱間圧延を行い、降伏比を
制御するのに重要なM−A共存組織を生成させる。この
際、母材靭性に悪影響を及ぼさないようM−A共存組織
を形態制御するため、オーステナイトが再結晶しない低
温域で強加工してベイナイトを微細化することが重要で
ある。具体的には、850℃以下での累積圧下率を75%以
上とすることで、M−A共存組織の形態がアスペクト比
≦4.0が主となり、これにより靭性劣化が少ない鋼板を
得ることができる。Cumulative rolling reduction in the low temperature γ region of 850 ° C. or lower ≧ 75
% The heated slab immediately undergoes hot rolling to produce the MA coexisting structure, which is important for controlling the yield ratio. At this time, in order to control the morphology of the MA coexisting structure so as not to adversely affect the toughness of the base material, it is important to refine the bainite by performing strong working in a low temperature region where austenite does not recrystallize. Specifically, by setting the cumulative rolling reduction at 850 ° C. or lower to 75% or higher, the morphology of the MA coexisting structure mainly has an aspect ratio of ≦ 4.0, whereby a steel sheet with little deterioration in toughness can be obtained. .
【0031】熱間圧延終了温度:700〜800℃
オーステナイトを再結晶させないためには、熱間圧延の
圧延温度は低いほど効果が大きいが、700℃を下回る温
度で圧延を行うと、逆に、フェライトが生成し、YSお
よびTSが低下してしまう。このため、熱間圧延終了温
度は700℃以上とする。また、熱間圧延温度が800℃を超
えると、850℃〜圧延終了温度までの間に、累積圧下率7
5%以上の圧延を加えることが困難となるので、圧延終
了温度の上限は800℃とする。Hot rolling end temperature: 700 to 800 ° C. In order not to recrystallize austenite, the lower the rolling temperature in hot rolling, the greater the effect, but when rolling at a temperature lower than 700 ° C., conversely, Ferrite is generated and YS and TS are reduced. Therefore, the hot rolling finish temperature is set to 700 ° C or higher. If the hot rolling temperature exceeds 800 ° C, the cumulative rolling reduction ratio of 7
Since it becomes difficult to add rolling of 5% or more, the upper limit of the rolling end temperature is 800 ° C.
【0032】冷却開始温度≧(圧延終了温度〜圧延終了
温度−50℃)
熱間圧延した板をベイナイト変態させるためには、直ち
に水冷を開始する必要がある。水冷開始温度が低いと、
水冷開始までにフェライト変態が起き、YSおよびTS
が低下するので、冷却開始温度は圧延終了温度−50℃以
上とする。Cooling start temperature ≧ (rolling end temperature to rolling end temperature−50 ° C.) In order to transform the hot-rolled sheet into bainite, it is necessary to start water cooling immediately. If the water cooling start temperature is low,
Ferrite transformation occurs by the start of water cooling, YS and TS
Therefore, the cooling start temperature is set to the rolling end temperature −50 ° C. or higher.
【0033】冷却速度:10〜30℃/sec
Mn,Cu,Ni,CrおよびMo量の最適化することにより、上
記熱間圧延条件の範囲内であれば、圧延後の水冷による
冷却速度を10℃/sec以上確保することにより、フェライ
ト変態を起こさずにベイナイト変態を起こさせ、さらに
その後、M−A共存組織を生成させることができる。一
方、冷却速度が30℃/secを超えると、ベイナイト変態が
起こらずにマルテンサイト変態が生じてしまい、YS,
TSとも上昇するが、降伏比も高くなってしまうため、
本発明の目的は達成できなくなる。よって、冷却速度の
上限は10〜30℃/secの範囲とする。Cooling rate: 10 to 30 ° C./sec By optimizing the amounts of Mn, Cu, Ni, Cr and Mo, the cooling rate by water cooling after rolling is 10 within the above range of hot rolling conditions. By securing at least C / sec, bainite transformation can be caused without ferrite transformation, and then a MA coexisting structure can be generated. On the other hand, when the cooling rate exceeds 30 ° C / sec, the martensitic transformation occurs without the bainite transformation, and the YS,
Although TS increases, the yield ratio also increases, so
The object of the present invention cannot be achieved. Therefore, the upper limit of the cooling rate is in the range of 10 to 30 ° C / sec.
【0034】冷却停止温度≦200℃
冷却中にM−A共存組織が生成するのは、およそ400℃
〜200℃の間と考えられ、200℃以上で水冷を停止する
と、必要なM−A共存組織の体積率が確保できなくな
る。このため、冷却停止温度は200℃以下とした。Cooling stop temperature ≦ 200 ° C. During the cooling, the M-A coexisting structure is generated at about 400 ° C.
It is considered to be between ~ 200 ° C, and if water cooling is stopped at 200 ° C or higher, the required volume ratio of the MA coexisting structure cannot be secured. Therefore, the cooling stop temperature is set to 200 ° C or lower.
【0035】焼戻温度≦450℃
本発明においては、熱間圧延後の鋼板に対し、歪時効特
性の改善を目的として、焼戻処埋を施すことができる。
この場合の焼戻温度は、450℃を超えると、ベイナイト
中に生成させたM−A共存組織が分解してしまい、焼戻
し後の鋼板の降伏比が高くなってしまう。よって、焼戻
温度の上限は450℃とする。Tempering temperature ≦ 450 ° C. In the present invention, the steel sheet after hot rolling can be subjected to tempering treatment for the purpose of improving strain aging characteristics.
If the tempering temperature in this case exceeds 450 ° C., the MA coexisting structure formed in bainite is decomposed, and the yield ratio of the steel sheet after tempering becomes high. Therefore, the upper limit of the tempering temperature is 450 ° C.
【0036】なお、熱間圧延に供するスラブの製造方法
については特に限定することなく、従来実施されている
転炉法あるいは電炉法で鋼の成分調整を行った後、連続
鋳造法あるいは造塊法のいずれで鋳造してもよい。ま
た、製造した鋼板を、鋼管に成形する方法は、UOE法
あるいはロールベンダー法のいずれでも、本発明の目的
とする高強度かつ低降伏比が達成できるので、どちらを
用いてもよい。The method for producing the slab to be subjected to hot rolling is not particularly limited, and after the composition of the steel is adjusted by the conventional converter method or electric furnace method, the continuous casting method or the ingot making method is used. Any of the above may be used for casting. As the method for forming the manufactured steel sheet into a steel pipe, either the UOE method or the roll bender method can achieve the high strength and the low yield ratio targeted by the present invention, and either method may be used.
【0037】次に、上記条件で製造した素材を用いて造
管した鋼管特性について説明する。造管後の鋼管の降伏
比は、85%以下である必要がある。この降伏比が85%超
えると、API-5LX80級を超えるような高強度鋼管では、
地震発生時の塑性変形能を確保することが難しくなるた
めである。Next, the characteristics of the steel pipe produced by using the material produced under the above conditions will be described. The yield ratio of the steel pipe after pipe making must be 85% or less. If this yield ratio exceeds 85%, in high strength steel pipes exceeding API-5LX80 class,
This is because it becomes difficult to secure plastic deformability when an earthquake occurs.
【0038】また、本発明の鋼管素材は、M−A共存組
織が存在するにもかかわらず、靭性特性の劣化が少ない
という特徴を有している。そのためには、造管後におけ
る温度−20℃でのシャルピー特性は、母材部でvE-20≧
250(J)、溶接部(HAZ)部でvE-20≧150(J)以上であ
ることが好ましい。Further, the steel pipe material of the present invention is characterized in that the deterioration of the toughness characteristics is small despite the existence of the MA coexisting structure. For that purpose, the Charpy property at a temperature of -20 ° C after pipe forming is vE-20 ≥
It is preferable that vE-20 ≧ 150 (J) or more at 250 (J) and welded portion (HAZ).
【0039】[0039]
【実施例】表1に示す成分組成を有する鋼スラブを用
い、表2に示す条件で、スラブ加熱、熱間圧延、冷却お
よび焼戻し処理を行い、板厚15〜30mmの厚鋼板を製造し
た。この鋼板から、ミクロ組織観察用の全厚×20mm幅×
10mm長さのブロックを採取した。この試料について、圧
延方向と平行な断面の表面を鏡面研磨した後、エチレン
ジアミン4酢酸5g、NaF0.5gを蒸留水100mlに溶解した
電解液中で、電圧3Vにて3秒間電解腐食を行い、さら
にNaOH25g、ピクリン酸5gを蒸留水100mlに溶解した
電解液中で、電圧6Vにて30秒間電解腐食を行って、M
−A共存組織を現出させた。その後、この試料の腐食面
を、走査型電子顕微鏡を用いて、800〜2000倍の適当な
倍率で無作為に4視野以上写真撮影を行い、それぞれの
写真に映ったM−A共存組織の形態および面積率を画像
解析処理で計算した。なお、本発明で製造した鋼板中の
M−A共存組織は3次元的に等方であると考えられるの
で、2次元断面像である走査型電子顕微鏡写真で得られ
た面積率を体積率と見なした。EXAMPLE Using a steel slab having the composition shown in Table 1, slab heating, hot rolling, cooling and tempering were performed under the conditions shown in Table 2 to produce a thick steel plate having a thickness of 15 to 30 mm. From this steel plate, the total thickness for microstructure observation × 20 mm width ×
A 10 mm long block was taken. After mirror-polishing the surface of the cross section parallel to the rolling direction of this sample, electrolytic corrosion was performed at a voltage of 3 V for 3 seconds in an electrolytic solution in which 5 g of ethylenediamine tetraacetic acid and 0.5 g of NaF were dissolved in 100 ml of distilled water. In an electrolytic solution prepared by dissolving 25 g of NaOH and 5 g of picric acid in 100 ml of distilled water, electrolytic corrosion is performed at a voltage of 6 V for 30 seconds, and M
-A A coexisting organization was revealed. Then, the corroded surface of this sample was randomly photographed with a scanning electron microscope at an appropriate magnification of 800 to 2000 times for 4 or more fields of view, and the morphology of the MA coexisting structure shown in each photograph was taken. And the area ratio was calculated by image analysis processing. In addition, since the MA coexisting structure in the steel sheet produced in the present invention is considered to be isotropic in three dimensions, the area ratio obtained by the scanning electron micrograph, which is a two-dimensional cross-sectional image, is defined as the volume ratio. Regarded
【0040】[0040]
【表1】 [Table 1]
【0041】[0041]
【表2】 [Table 2]
【0042】次に、上記の製造した鋼板を用いて、表3
に示すようにUOE法またはロールベンダー法により鋼
管に成形した後、溶接部から時計回りに180°の位置か
ら鋼管の長手方向に平行に、引張試験片(JIS4号試験
片)を採取し引張特性を調査した。また、溶接部および
溶接部から時計回りに180°の位置から、周方向にシャ
ルピー試験片(JIS4号試験片、Vノッチ)を採取し、温
度−20℃でのシャルピー特性も評価した。なお、溶接部
のシャルピー試験片は、溶接熱影響部の中心にノッチが
入るように採取した。Next, using the steel sheet produced above, Table 3
After forming into a steel pipe by the UOE method or roll bender method as shown in, a tensile test piece (JIS No. 4 test piece) is taken in parallel to the longitudinal direction of the steel pipe from the position of 180 ° clockwise from the welded part investigated. In addition, a Charpy test piece (JIS No. 4 test piece, V notch) was sampled in the circumferential direction from the welded portion and a position 180 ° clockwise from the welded portion, and the Charpy property at a temperature of −20 ° C. was also evaluated. The Charpy test piece of the welded portion was sampled so that a notch was formed in the center of the heat-affected zone of the welding.
【0043】表3に上記鋼管の機械的特性の調査結果を
示す。この表から明らかなように、本発明の条件を満た
した素材から製造された鋼管は、いずれもベイナイト主
体の組織でかつM−A共存組織が全組織の5vol%以上
のベイナイト組織からなり、しかも降伏比が85%以下、
シャルピー衝撃特性が母材部vE-20:250J以上、溶接
部vE-20:150J以上の良好な値を示している。一方、
本願発明の成分組成または製造条件を外れた素材から製
造された鋼管は、いずれも降伏比が85%を超えているか
あるいは母材部または溶接部のいずれかのシャルピー特
性が劣るものしか得られていない。Table 3 shows the examination results of the mechanical properties of the above steel pipes. As is clear from this table, all the steel pipes manufactured from the materials satisfying the conditions of the present invention have a bainite-based structure and a MA coexisting structure is 5 vol% or more of the total structure of the bainite structure. The yield ratio is 85% or less,
The Charpy impact properties show good values of vE-20: 250J or more for the base metal and vE-20: 150J or more for the weld. on the other hand,
Steel pipes manufactured from materials that deviate from the composition of ingredients or manufacturing conditions of the present invention have yield ratios of more than 85%, or have poor Charpy properties of either the base metal or the weld. Absent.
【0044】[0044]
【表3】 [Table 3]
【0045】[0045]
【発明の効果】以上説明したように、本発明によれば、
成分組成と熱間圧延後の冷却を適正化し、鋼管素材のミ
クロ組織を、アスペクト比≦4.0のM−A共存組織が全
組織の5〜20vol%であるベイナイトを主とする組織と
することにより、鋼管の靭性特性を劣化させることな
く、造管後の降伏比が85%以下の高強度鋼管用素材を得
ることができる。As described above, according to the present invention,
By optimizing the chemical composition and cooling after hot rolling, and by making the microstructure of the steel pipe material a structure mainly composed of bainite in which the MA coexisting structure with an aspect ratio ≤ 4.0 is 5 to 20 vol% of the total structure. A high-strength steel pipe material having a yield ratio after pipe production of 85% or less can be obtained without deteriorating the toughness characteristics of the steel pipe.
Claims (5)
ss%、Mn:1.5〜2.5mass%、Al:0.01〜0.10mass%、N
b:0.01〜0.08mass%、Ti:0.005〜0.020mass%を含有
し、さらにCu,Ni,CrおよびMoのうちから選ばれる1種
または2種以上を、Cu:0.2〜0.7mass%、Ni:0.2〜1.0
mass%、Cr:0.2〜0.7mass%、Mo:0.2〜0.7mass%で、
かつ、下記式; Mn/20+Cu/20+Ni/60+Cr/32+Mo/7≧0.11 の関係を満たすように含有し、残部Feおよび不可避的不
純物よりなり、アスペクト比≦4.0のマルテンサイト−
オーステナイト共存組織が全組織の5〜20vol%である
ベイナイト組織を主とするミクロ組織を有し、造管後の
降伏比が85%以下であることを特徴とする造管後の降伏
比が低い高強度鋼管素材。1. C: 0.04 to 0.08 mass%, Si: 0.05 to 0.50 ma
ss%, Mn: 1.5 to 2.5 mass%, Al: 0.01 to 0.10 mass%, N
b: 0.01 to 0.08 mass%, Ti: 0.005 to 0.020 mass%, and one or more selected from Cu, Ni, Cr and Mo, Cu: 0.2 to 0.7 mass%, Ni: 0.2 ~ 1.0
mass%, Cr: 0.2 to 0.7 mass%, Mo: 0.2 to 0.7 mass%,
In addition, the following formula: Mn / 20 + Cu / 20 + Ni / 60 + Cr / 32 + Mo / 7 ≧ 0.11 is contained so that the balance is Fe and unavoidable impurities, and the aspect ratio is ≦ 4.0 martensite −
Austenite coexisting structure has a microstructure mainly composed of bainite structure of 5 to 20% by volume of the whole structure, and the yield ratio after pipemaking is 85% or less, and the yield ratio after pipemaking is low. High strength steel pipe material.
項1に記載の高強度鋼管素材。2. The high component according to claim 1, further comprising, in addition to the above component composition, one or two selected from Ca: 0.001 to 0.003 mass% and REM: 0.005 to 0.020 mass%. High strength steel pipe material.
ss%、Mn:1.5〜2.5mass%、Al:0.01〜0.10mass%、N
b:0.01〜0.08mass%、Ti:0.005〜0.020mass%を含有
し、さらにCu,Ni,CrおよびMoのうちから選ばれる1種
または2種以上を、Cu:0.2〜0.7mass%、Ni:0.2〜1.0
mass%、Cr:0.2〜0.7mass%、Mo:0.2〜0.7mass%で、
かつ、下記式; Mn/20+Cu/20+Ni/60+Cr/32+Mo/7≧0.11 の関係を満たすように含有し、残部Feおよび不可避的不
純物よりなる鋼スラブを、1000〜1250℃に加熱した後、
850℃以下での累積圧下率を75%以上、圧延終了温度を7
00〜800℃とする熱間圧延を行い、その後、(圧延終了温
度〜圧延終了温度−50℃)から200℃以下までを、冷却
速度10〜30℃/secで水冷することにより、アスペクト比
≦4.0のマルテンサイト−オーステナイト共存組織が全
組織の5〜20vol%であるベイナイト組織を主とするミ
クロ組織を有し、造管後の降伏比が85%以下のものとす
ることを特徴とする造管後の降伏比が低い高強度鋼管素
材の製造方法。3. C: 0.04 to 0.08 mass%, Si: 0.05 to 0.50 ma
ss%, Mn: 1.5 to 2.5 mass%, Al: 0.01 to 0.10 mass%, N
b: 0.01 to 0.08 mass%, Ti: 0.005 to 0.020 mass%, and one or more selected from Cu, Ni, Cr and Mo, Cu: 0.2 to 0.7 mass%, Ni: 0.2 ~ 1.0
mass%, Cr: 0.2 to 0.7 mass%, Mo: 0.2 to 0.7 mass%,
Also, after heating a steel slab containing the following formula: Mn / 20 + Cu / 20 + Ni / 60 + Cr / 32 + Mo / 7 ≧ 0.11 and the balance Fe and unavoidable impurities to 1000 to 1250 ° C.,
Cumulative rolling reduction at 850 ° C or less is 75% or more, rolling end temperature is 7
Perform hot rolling to 00 ~ 800 ℃, then (rolling end temperature ~ rolling end temperature -50 ℃) to 200 ℃ or less, by water cooling at a cooling rate of 10 ~ 30 ℃ / aspect ratio ≤ The martensite-austenite coexistence structure of 4.0 has a microstructure mainly composed of bainite structure which is 5 to 20 vol% of the whole structure, and the yield ratio after pipe forming is 85% or less. A method for producing a high-strength steel pipe material having a low yield ratio after the pipe.
徴とする請求項3に記載の高強度鋼管素材の製造方法。4. The composition according to claim 3, further comprising, in addition to the above composition, one or two selected from Ca: 0.001 to 0.003 mass% and REM: 0.005 to 0.020 mass%. A method for producing the high-strength steel pipe material described.
を450℃以下の温度で焼戻し処理することを特徴とする
請求項3または4に記載の高強度鋼管素材の製造方法。5. The method for producing a high-strength steel pipe material according to claim 3, wherein the steel sheet after hot rolling is tempered at a temperature of 450 ° C. or lower in the production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002106697A JP2003293076A (en) | 2002-04-09 | 2002-04-09 | High strength steel pipe stock having low yield ratio after pipe making and production method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002106697A JP2003293076A (en) | 2002-04-09 | 2002-04-09 | High strength steel pipe stock having low yield ratio after pipe making and production method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003293076A true JP2003293076A (en) | 2003-10-15 |
Family
ID=29243200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002106697A Pending JP2003293076A (en) | 2002-04-09 | 2002-04-09 | High strength steel pipe stock having low yield ratio after pipe making and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003293076A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006291348A (en) * | 2005-03-17 | 2006-10-26 | Jfe Steel Kk | Low yield-ratio high-tensile steel having excellent weldability, and its production method |
JP2007177266A (en) * | 2005-12-27 | 2007-07-12 | Jfe Steel Kk | Low-yield-ratio high-strength thick steel plate and manufacturing method |
JP2008169468A (en) * | 2006-12-14 | 2008-07-24 | Nippon Steel Corp | High-strength thick steel plate having excellent brittle crack propagation-stopping performance |
JP2008303465A (en) * | 2008-07-10 | 2008-12-18 | Sumitomo Metal Ind Ltd | Steel tube for low yield ratio column for building and steel plate used for this, and manufacturing method therefor |
JP2012017522A (en) * | 2010-06-08 | 2012-01-26 | Sumitomo Metal Ind Ltd | Steel material for line pipe |
CN103266285A (en) * | 2013-06-11 | 2013-08-28 | 鞍钢股份有限公司 | Production method of X80 pipeline steel |
-
2002
- 2002-04-09 JP JP2002106697A patent/JP2003293076A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006291348A (en) * | 2005-03-17 | 2006-10-26 | Jfe Steel Kk | Low yield-ratio high-tensile steel having excellent weldability, and its production method |
JP4730102B2 (en) * | 2005-03-17 | 2011-07-20 | Jfeスチール株式会社 | Low yield ratio high strength steel with excellent weldability and manufacturing method thereof |
JP2007177266A (en) * | 2005-12-27 | 2007-07-12 | Jfe Steel Kk | Low-yield-ratio high-strength thick steel plate and manufacturing method |
JP4730088B2 (en) * | 2005-12-27 | 2011-07-20 | Jfeスチール株式会社 | Low yield ratio high strength thick steel plate and method for producing the same |
JP2008169468A (en) * | 2006-12-14 | 2008-07-24 | Nippon Steel Corp | High-strength thick steel plate having excellent brittle crack propagation-stopping performance |
JP2008303465A (en) * | 2008-07-10 | 2008-12-18 | Sumitomo Metal Ind Ltd | Steel tube for low yield ratio column for building and steel plate used for this, and manufacturing method therefor |
JP2012017522A (en) * | 2010-06-08 | 2012-01-26 | Sumitomo Metal Ind Ltd | Steel material for line pipe |
CN103266285A (en) * | 2013-06-11 | 2013-08-28 | 鞍钢股份有限公司 | Production method of X80 pipeline steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2484792B1 (en) | Steel plate with low yield ratio, high strength, and high toughness and process for producing same | |
RU2623551C2 (en) | High strength sheet steel having low ratio of yield strength to tensile strength, excellent as of resistance to post-deformation aging, method of its production and high strength welded steel pipe made thereof | |
RU2623562C2 (en) | High strength sheet steel having low ratio of yield strength to tensile strength, excellent as of resistance to post-deformation aging, method of its production and high strength welded steel pipe made thereof | |
JP4572002B1 (en) | Steel sheet for line pipe having good strength and ductility and method for producing the same | |
JP5277648B2 (en) | High strength steel sheet with excellent delayed fracture resistance and method for producing the same | |
EP2484791B1 (en) | Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same | |
KR101388334B1 (en) | High tensile steel products excellent in the resistance to delayed fracture and process for production of the same | |
JP5348386B2 (en) | Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method | |
JPWO2005080621A1 (en) | Steel plate or steel pipe with small expression of bauschinger effect and method for producing the same | |
EP3276026A1 (en) | Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe | |
JP2014218707A (en) | Heat treated steel sheet excellent in hydrogen-induced cracking resistance and method of producing the same | |
JP2005273002A (en) | Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor | |
JP2004332100A (en) | High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, and hole-expandability and manufacturing method therefor | |
KR102002241B1 (en) | Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes | |
JP3941211B2 (en) | Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance | |
CN111868282A (en) | Steel plate | |
JP2004156095A (en) | Steel sheet excellent in toughness of parent metal and weld-heat affected zone and its manufacturing method | |
JP2000256777A (en) | High tensile strength steel plate excellent in strength and low temperature toughness | |
JP2003293075A (en) | High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof | |
JP2003293076A (en) | High strength steel pipe stock having low yield ratio after pipe making and production method thereof | |
JP4161679B2 (en) | High-strength, high-toughness, low-yield ratio steel pipe material and its manufacturing method | |
JP4824142B2 (en) | Steel for line pipe with good strength and ductility and method for producing the same | |
JP4250113B2 (en) | Steel plate manufacturing method with excellent earthquake resistance and weldability | |
JP2002339037A (en) | High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor | |
JP5935678B2 (en) | High toughness high strength steel and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040728 |
|
A977 | Report on retrieval |
Effective date: 20060127 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060207 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20060410 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20070911 Free format text: JAPANESE INTERMEDIATE CODE: A02 |