JP2003222396A - Heat pump type water heater - Google Patents
Heat pump type water heaterInfo
- Publication number
- JP2003222396A JP2003222396A JP2002021143A JP2002021143A JP2003222396A JP 2003222396 A JP2003222396 A JP 2003222396A JP 2002021143 A JP2002021143 A JP 2002021143A JP 2002021143 A JP2002021143 A JP 2002021143A JP 2003222396 A JP2003222396 A JP 2003222396A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- heat pump
- temperature
- water
- heating source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 359
- 238000010438 heat treatment Methods 0.000 claims abstract description 92
- 238000009835 boiling Methods 0.000 claims description 29
- 239000003507 refrigerant Substances 0.000 claims description 21
- 239000008399 tap water Substances 0.000 claims description 18
- 235000020679 tap water Nutrition 0.000 claims description 18
- 230000007246 mechanism Effects 0.000 claims description 5
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 230000001932 seasonal effect Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 2
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1051—Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
- F24D19/1054—Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/212—Temperature of the water
- F24H15/215—Temperature of the water before heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/212—Temperature of the water
- F24H15/219—Temperature of the water after heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/258—Outdoor temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/375—Control of heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/375—Control of heat pumps
- F24H15/38—Control of compressors of heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/40—Control of fluid heaters characterised by the type of controllers
- F24H15/414—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
- F24H15/421—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
- F24H15/429—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data for selecting operation modes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
- F25B2600/0253—Compressor control by controlling speed with variable speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Computer Hardware Design (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、ヒートポンプ式
給湯機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type water heater.
【0002】[0002]
【従来の技術】ヒートポンプ式給湯機は、一般には図5
に示すように、貯湯タンク70を有するタンクユニット
71と、冷媒回路72を有する熱源ユニット73とを備
える。また、冷媒回路72は、圧縮機74と水熱交換器
75と膨張弁77と蒸発器78とを順に接続して構成さ
れる。そして、タンクユニット71は、上記貯湯タンク
70と循環路79とを備え、この循環路79には、水循
環用ポンプ80と熱交換路81とが介設されている。こ
の場合、熱交換路81は水熱交換器75にて構成され
る。2. Description of the Related Art Generally, a heat pump type water heater is shown in FIG.
As shown in, a tank unit 71 having a hot water storage tank 70 and a heat source unit 73 having a refrigerant circuit 72 are provided. Further, the refrigerant circuit 72 is configured by connecting a compressor 74, a water heat exchanger 75, an expansion valve 77 and an evaporator 78 in this order. The tank unit 71 includes the hot water storage tank 70 and a circulation path 79, and a water circulation pump 80 and a heat exchange path 81 are provided in the circulation path 79. In this case, the heat exchange passage 81 is composed of the water heat exchanger 75.
【0003】上記装置においては、圧縮機74を駆動さ
せると共に、ポンプ80を駆動(作動)させると、貯湯
タンク70の底部に設けた取水口から貯溜水(温湯)が
循環路79に流出し、これが熱交換路81を流通する。
そのときこの温湯は水熱交換器75によって加熱され
(沸き上げられ)、湯入口から貯湯タンク70の上部に
返流される。これによって、貯湯タンク70に高温の温
湯を貯めるものである。In the above apparatus, when the compressor 74 is driven and the pump 80 is driven (operated), stored water (hot water) flows out from the intake port provided at the bottom of the hot water storage tank 70 into the circulation path 79, This flows through the heat exchange passage 81.
At this time, this hot water is heated (boiled) by the water heat exchanger 75 and returned to the upper part of the hot water storage tank 70 from the hot water inlet. As a result, high-temperature hot water is stored in the hot water storage tank 70.
【0004】[0004]
【発明が解決しようとする課題】ところで、この種のヒ
ートポンプ式給湯機は、その性質上、圧縮機の運転周波
数が一定であれば、外気温度が低下すれば湯加熱能力
(沸上能力)も低下し、逆に外気温度が上昇すれば湯加
熱能力(沸上能力)が上昇する。また、沸き上げ運転中
に貯湯タンクから循環路79への入水温度が変化(上
昇)する場合がある。一般には、この種のヒートポンプ
加熱源の冷媒サイクルは、図4に示す実線に示すものと
なるが、熱交換路81への入水温度が上昇すれば、この
図4の仮想線(2点鎖線)で示すように、放熱過程での
エンタルピ差が狭くなり、湯加熱能力及びCOPが減少
していた。By the way, this type of heat pump type hot water supply device has the property that when the operating frequency of the compressor is constant, the hot water heating capacity (boiling capacity) also decreases if the outside air temperature decreases. When the outside air temperature rises, the hot water heating capacity (boiling capacity) rises. In addition, the temperature of water entering the circulation path 79 from the hot water storage tank may change (rise) during the boiling operation. Generally, the refrigerant cycle of this type of heat pump heating source is shown by the solid line in FIG. 4, but if the temperature of the water entering the heat exchange passage 81 rises, the phantom line (two-dot chain line) in FIG. As shown in, the enthalpy difference in the heat dissipation process was narrowed, and the hot water heating capacity and COP were reduced.
【0005】このように、この種のヒートポンプ式給湯
機では、外気温度や入水温度等の環境条件が変化すれ
ば、これらに伴って能力が変化していた。能力が変化す
れば、ユーザの湯の使用に対応する湯量を確保するため
の運転時間を算出することが困難であった。すなわち、
能力が分っていれば、必要湯量を得るための運転時間を
算出でき、その能力でもってその運転時間だけ運転すれ
ば、ユーザの使用量に対応する湯量の湯を沸き上げるこ
とができるが、能力が分らなければ、必要湯量を得るた
めの運転時間を算出することができず、ユーザの使用量
に対応する湯量の湯を沸き上げることが困難であった。
例えば、ある能力で所定時間だけ運転して所定量の湯量
が沸き上げることができる場合、能力が低下すれば、上
記所定時間内に必要湯量の温湯を沸き上げることができ
ない。そのため、湯が不足する湯切れ現象が生じるおそ
れがあり、逆に、必要湯量の温湯が沸き上がっているに
もかかわらず、無駄な沸き上げ運転が継続されてランニ
ングコスト高となる場合があった。As described above, in this type of heat pump type water heater, if the environmental conditions such as the outside air temperature and the incoming water temperature change, the capacity changes accordingly. If the ability changes, it is difficult to calculate the operation time for securing the amount of hot water corresponding to the user's use of hot water. That is,
If you know the ability, you can calculate the operating time to get the required amount of hot water, and if you drive for that operating time with that ability, you can boil the amount of hot water that corresponds to the usage amount of the user, If the ability is not known, the operating time for obtaining the required amount of hot water cannot be calculated, and it is difficult to boil the amount of hot water corresponding to the amount used by the user.
For example, when a certain amount of hot water can be boiled by operating for a certain time with a certain ability, if the ability decreases, the required amount of hot water cannot be boiled within the above predetermined time. For this reason, there is a possibility that hot water runs out due to lack of hot water, and conversely, even if the required amount of hot water is boiling, wasteful boiling operation may be continued, resulting in high running costs.
【0006】近年では、現状の電力料金制度は深夜の電
力料金単価が昼間に比べて安価に設定されているので、
この運転は低額である深夜時間帯(例えば、23時から
7時までの時間帯)に行い、ランニングコストの低減を
図るようにする場合が多くなっている。また、貯湯タン
ク70としても設置面積等を考慮して小型を図る場合が
多く、このような場合、一日の必要湯熱量が少なくて、
貯湯タンク内にその必要湯熱量の湯を貯めることができ
れば、深夜時間帯の運転でこの必要湯熱量を沸き上げる
ようにしていた。なお、必要湯熱量が多い場合には、こ
の深夜時間帯の運転に加えて、昼間の追加運転を行って
いた。[0006] In recent years, the current power rate system is set so that the power rate unit price at midnight is lower than that at daytime.
In many cases, this operation is performed at a low night time (for example, a time period from 23:00 to 7:00) to reduce the running cost. Also, the hot water storage tank 70 is often designed to be small in consideration of the installation area and the like, and in such a case, the amount of hot water required for one day is small,
If the required amount of hot water can be stored in the hot water storage tank, the required amount of hot water is boiled up during the operation at midnight. When the required amount of hot water is large, additional operation during the daytime was performed in addition to the operation during the midnight hours.
【0007】従って、深夜時間帯において一日の必要湯
熱量を沸き上げて貯湯タンク70にその湯を十分に貯え
ることができる場合、つまり、全深夜時間帯を使用する
ことなく沸き上げることができる場合、沸き上げた後の
経過時間が大となれば、その沸き上げた湯が冷めるの
で、深夜時間帯のある時刻(例えば、深夜時間開始後の
24時等)から所定時間運転して、深夜時間終了時刻、
つまり午前7時で必要湯熱量を沸き上げるようにするの
が好ましい。このため、上記所定時間である運転時間が
わっていなければ、深夜時間帯終了時刻に沸き上げが終
了するための沸き上げ開始時刻がわからず、沸き上げ終
了時刻が昼間にずれ込む場合があり、電力料金単価が安
価に設定されている深夜時間帯を有効利用することがで
きなかった。また、昼間の追加運転を行う場合にも、外
気温度等にて能力が変動すれば、この追加の運転時間が
分らず、このため、ユーザにとっては、電力料金単価が
高い昼間にどれだけ運転するかわからず、不安であっ
た。Therefore, when the required amount of hot water for one day can be boiled in the midnight time and the hot water can be sufficiently stored in the hot water storage tank 70, that is, it can be boiled without using the entire midnight time. In this case, if the elapsed time after boiling is too long, the boiled water will cool, so operate for a certain time from a certain time in the midnight time zone (for example, 24:00 after the start of midnight time) Time end time,
That is, it is preferable to boil the required amount of hot water at 7:00 am. For this reason, if the operating time that is the predetermined time is not known, the boiling start time for ending boiling at the end time of the midnight time zone is not known, and the boiling end time may shift in the daytime. It was not possible to effectively use the midnight hours when the unit price was set at a low price. In addition, even when performing additional operation during the day, if the capacity fluctuates due to the outside air temperature, etc., this additional operating time is not known, and therefore the user operates during the daytime when the unit price of electricity is high. I didn't understand, and I was anxious.
【0008】この発明は、上記従来の欠点を解決するた
めになされたものであって、その目的は、外気温度等の
環境条件が変化しても、ユーザの湯の使用量に対して最
適な運転時間を決定することができ、湯切れ現象の発生
を防止できると共に、経済的な運転が可能なヒートポン
プ式給湯機を提供することにある。The present invention has been made to solve the above-mentioned conventional drawbacks, and its object is to optimize the amount of hot water used by a user even when environmental conditions such as the outside air temperature change. An object of the present invention is to provide a heat pump type hot water supply device capable of determining an operating time, preventing the occurrence of hot water shortage, and enabling economical operation.
【0009】[0009]
【課題を解決するための手段】そこで請求項1のヒート
ポンプ式給湯機は、低温水をヒートポンプ加熱源2にて
沸き上げて貯湯タンク3に貯えるヒートポンプ式給湯機
であって、上記ヒートポンプ加熱源2の圧縮機25の運
転周波数を、湯加熱能力が略一定能力となるように、外
気温度に基づいて制御することを特徴としている。Therefore, the heat pump type hot water supply apparatus of claim 1 is a heat pump type hot water supply apparatus in which low temperature water is boiled by the heat pump heating source 2 and stored in the hot water storage tank 3, and the heat pump heating source 2 is used. The operating frequency of the compressor 25 is controlled on the basis of the outside air temperature so that the hot water heating capacity is substantially constant.
【0010】請求項1のヒートポンプ式給湯機では、湯
加熱能力が略一定能力となるので、必要湯量を確保する
ための運転時間を求めることができる。この場合、外気
温度に基づいて、ヒートポンプ加熱源2の圧縮機25の
運転周波数を制御すればよいので、制御として簡単に行
うことができる。In the heat pump type hot water supply apparatus according to the first aspect of the present invention, since the hot water heating capacity is substantially constant, it is possible to obtain the operating time for securing the required hot water amount. In this case, since the operating frequency of the compressor 25 of the heat pump heating source 2 may be controlled based on the outside air temperature, the control can be easily performed.
【0011】請求項2のヒートポンプ式給湯機は、低温
水をヒートポンプ加熱源2にて沸き上げて貯湯タンク3
に貯えるヒートポンプ式給湯機であって、上記ヒートポ
ンプ加熱源2の圧縮機25の運転周波数を、湯加熱能力
が略一定能力となるように、上記貯湯タンク3へ供給す
る水道水の温度に基づいて制御することを特徴としてい
る。In the heat pump type water heater of claim 2, low temperature water is boiled by the heat pump heating source 2 and the hot water storage tank 3 is used.
A heat pump water heater for storing the heat pump heating source 2 based on the temperature of tap water supplied to the hot water storage tank 3 so that the hot water heating capacity of the compressor 25 becomes substantially constant. It is characterized by controlling.
【0012】上記請求項2のヒートポンプ式給湯機で
は、加熱能力が略一定能力となるので、必要湯量を確保
するための運転時間を求めることができる。この場合、
水道水の温度に基づいて、ヒートポンプ加熱源2の圧縮
機25の運転周波数を制御すればよいので、制御として
簡単に行うことができる。In the heat pump type hot water supply apparatus according to the second aspect of the present invention, since the heating capacity is substantially constant, it is possible to obtain the operating time for securing the required amount of hot water. in this case,
Since the operation frequency of the compressor 25 of the heat pump heating source 2 may be controlled based on the temperature of the tap water, the control can be easily performed.
【0013】請求項3のヒートポンプ式給湯機は、低温
水をヒートポンプ加熱源2にて沸き上げて貯湯タンク3
に貯えるヒートポンプ式給湯機であって、上記ヒートポ
ンプ加熱源2の圧縮機25の運転周波数を、湯加熱能力
が略一定能力となるように、低温水の温度に基づいて制
御することを特徴としている。In the heat pump type hot water supply apparatus of claim 3, low temperature water is boiled by the heat pump heating source 2 to store the hot water in the hot water storage tank 3.
A heat pump water heater for storing in, characterized in that the operating frequency of the compressor 25 of the heat pump heating source 2 is controlled on the basis of the temperature of the low temperature water so that the hot water heating capacity becomes substantially constant. .
【0014】上記請求項3のヒートポンプ式給湯機で
は、加熱能力が略一定能力となるので、必要湯量を確保
するための運転時間を求めることができる。この場合、
低温水の温度に基づいて、ヒートポンプ加熱源2の圧縮
機25の運転周波数を制御すればよいので、制御として
簡単に行うことができる。In the heat pump type hot water supply apparatus according to the third aspect of the present invention, since the heating capacity is substantially constant, it is possible to obtain the operation time for securing the required amount of hot water. in this case,
Since the operating frequency of the compressor 25 of the heat pump heating source 2 may be controlled based on the temperature of the low temperature water, the control can be easily performed.
【0015】請求項4のヒートポンプ式給湯機は、低温
水をヒートポンプ加熱源2にて沸き上げて貯湯タンク3
に貯えるヒートポンプ式給湯機であって、上記ヒートポ
ンプ加熱源2の圧縮機25の運転周波数を、湯加熱能力
が略一定能力となるように、上記ヒートポンプ加熱源2
にて沸き上げられた温湯の温度に基づいて制御すること
を特徴としている。In the heat pump type water heater of claim 4, low temperature water is boiled by the heat pump heating source 2 and the hot water storage tank 3 is used.
A heat pump hot water heater for storing the heat pump heating source 2 such that the operating frequency of the compressor 25 of the heat pump heating source 2 is set so that the hot water heating capacity is substantially constant.
It is characterized in that it is controlled based on the temperature of the hot water boiled in.
【0016】上記請求項4のヒートポンプ式給湯機で
は、加熱能力が略一定能力となるので、必要湯量を確保
するための運転時間を求めることができる。この場合、
ヒートポンプ加熱源2にて沸き上げられた温湯温度に基
づいて、ヒートポンプ加熱源2の圧縮機25の運転周波
数を制御すればよいので、制御として簡単に行うことが
できる。In the heat pump type hot water supply apparatus according to the fourth aspect of the present invention, since the heating capacity is a substantially constant capacity, the operating time for securing the required amount of hot water can be obtained. in this case,
Since the operating frequency of the compressor 25 of the heat pump heating source 2 may be controlled based on the temperature of the hot water boiled by the heat pump heating source 2, the control can be easily performed.
【0017】請求項5のヒートポンプ式給湯機は、低温
水をヒートポンプ加熱源2にて沸き上げて貯湯タンク3
に貯えるヒートポンプ式給湯機であって、上記ヒートポ
ンプ加熱源2の圧縮機の運転周波数を、湯加熱能力が略
一定能力となるように、外気温度、貯湯タンク3へ供給
する水道水の温度、上記低温水の温度、及び上記ヒート
ポンプ加熱源2にて沸き上げられる温湯の温度のうち少
なくとも2種類の温度に基づいて制御することを特徴と
している。In the heat pump type hot water supply apparatus of claim 5, low temperature water is boiled by the heat pump heating source 2 to store the hot water in the hot water storage tank 3.
A heat pump water heater for storing the operating frequency of the compressor of the heat pump heating source 2 such that the temperature of the outside air, the temperature of tap water supplied to the hot water storage tank 3, The control is based on at least two types of temperatures of the low-temperature water and the temperature of the hot water boiled by the heat pump heating source 2.
【0018】上記請求項5のヒートポンプ式給湯機で
は、加熱能力が略一定能力となるので、必要湯量を確保
するための運転時間を求めることができる。この場合、
外気温度、貯湯タンク3へ供給する水道水の温度、上記
低温水の温度、及び上記ヒートポンプ加熱源2にて沸き
上げられる温湯の温度のうち少なくとも2種類の温度に
基づいて、制御することになるので、略一定能力とする
運転を確実に行うことができる。In the heat pump type hot water supply apparatus according to the fifth aspect of the present invention, since the heating capacity is substantially constant, it is possible to obtain the operating time for securing the required amount of hot water. in this case,
Control is performed based on at least two types of temperatures of the outside air temperature, the temperature of tap water supplied to the hot water storage tank 3, the temperature of the low temperature water, and the temperature of the hot water boiled by the heat pump heating source 2. Therefore, it is possible to reliably perform the operation with substantially constant capacity.
【0019】請求項6のヒートポンプ式給湯機は、ヒー
トポンプ加熱源2が、圧縮機25と、水熱交換器26
と、減圧機構27と、空気熱交換器28とを備えると共
に、上記空気熱交換器28にファン34を有するヒート
ポンプ式給湯機であって、湯加熱能力を略一定能力とす
る運転において、上記ファン34の回転数を、外気温
度、貯湯タンク3へ供給する水道水の温度、上記低温水
の温度、及び上記ヒートポンプ加熱源2にて沸き上げら
れる温湯の温度のいずれかに基づいて制御することを特
徴としている。In the heat pump type hot water supply apparatus of claim 6, the heat pump heating source 2 is a compressor 25 and a water heat exchanger 26.
A heat pump type hot water supply device having a decompression mechanism 27 and an air heat exchanger 28, and having a fan 34 in the air heat exchanger 28, wherein the fan is used in an operation in which the hot water heating capacity is substantially constant. The rotation speed of 34 is controlled based on any of the outside air temperature, the temperature of tap water supplied to the hot water storage tank 3, the temperature of the low temperature water, and the temperature of the hot water boiled by the heat pump heating source 2. It has a feature.
【0020】上記請求項6のヒートポンプ式給湯機で
は、加熱能力が略一定能力となるので、必要湯量を確保
するための運転時間を求めることができる。この場合、
外気温度、貯湯タンク3へ供給する水道水の温度、上記
低温水の温度、及び上記ヒートポンプ加熱源2にて沸き
上げられる温湯の温度いずれかに基づいてファン34の
回転数を制御することになるので、略一定能力とする運
転を高精度に行うことができる。In the heat pump type hot water supply apparatus according to the sixth aspect of the present invention, since the heating capacity is substantially constant, it is possible to obtain the operating time for securing the required amount of hot water. in this case,
The rotation speed of the fan 34 is controlled based on the outside air temperature, the temperature of the tap water supplied to the hot water storage tank 3, the temperature of the low temperature water, or the temperature of the hot water boiled by the heat pump heating source 2. Therefore, it is possible to perform highly accurate operation with substantially constant capacity.
【0021】請求項7のヒートポンプ式給湯機は、冷媒
に超臨界で使用する超臨界冷媒を用いたことを特徴とし
ている。The heat pump type hot water supply apparatus according to claim 7 is characterized in that a supercritical refrigerant used in supercritical is used as the refrigerant.
【0022】上記請求項7のヒートポンプ式給湯機で
は、超臨界冷媒を用いることにより、ヒートポンプ加熱
源にて加熱される低温水の温度(入水温度)が上昇すれ
ば、湯加熱能力及びCOPが減少する特徴があるので、
上記各作用が顕著に現われる。また、オゾン層の破壊、
環境汚染等の問題がなく、地球環境にやさしいヒートポ
ンプ式給湯機となる。In the heat pump type hot water supply apparatus according to the seventh aspect, by using the supercritical refrigerant, if the temperature of the low temperature water (inlet temperature) heated by the heat pump heating source rises, the hot water heating capacity and COP decrease. Because there is a feature that
Each of the above-mentioned actions is prominent. Also, destruction of the ozone layer,
It is a heat pump type water heater that is friendly to the global environment without problems such as environmental pollution.
【0023】[0023]
【発明の実施の形態】次に、この発明のヒートポンプ式
給湯機の具体的な実施の形態について、図面を参照しつ
つ詳細に説明する。図1はこのヒートポンプ式給湯機の
簡略図を示し、このヒートポンプ式給湯機は、低温水を
ヒートポンプ加熱源2にて沸き上げて貯湯タンク3に貯
えるものであり、この貯湯タンク3に貯湯された温湯が
図示省略の浴槽等に供給される。すなわち、貯湯タンク
3には、その底壁に給水口5が設けられると共に、その
上壁に出湯口6が設けられている。そして、給水口5か
ら貯湯タンク3に水道水が供給され、出湯口6から高温
の温湯が出湯される。また、貯湯タンク3には、その底
壁に取水口10が開設されると共に、側壁(周壁)の上
部に湯入口11が開設され、取水口10と湯入口11と
が循環路12にて連結されている。そして、この循環路
12に水循環用ポンプ13と熱交換路14とが介設され
ている。なお、給水口5には給水用流路8が接続されて
いる。BEST MODE FOR CARRYING OUT THE INVENTION Next, specific embodiments of the heat pump water heater of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a simplified diagram of this heat pump water heater, which heats low-temperature water by a heat pump heating source 2 and stores it in a hot water storage tank 3. The hot water is stored in this hot water storage tank 3. Hot water is supplied to a bath or the like (not shown). That is, the hot water storage tank 3 is provided with a water supply port 5 on its bottom wall and a hot water outlet 6 on its upper wall. Then, tap water is supplied from the water supply port 5 to the hot water storage tank 3, and high-temperature hot water is discharged from the hot water outlet 6. Further, in the hot water storage tank 3, a water intake 10 is opened in the bottom wall thereof, and a hot water inlet 11 is opened in the upper part of the side wall (peripheral wall), so that the hot water intake 10 and the hot water inlet 11 are connected by a circulation path 12. Has been done. A water circulation pump 13 and a heat exchange passage 14 are provided in the circulation passage 12. A water supply channel 8 is connected to the water supply port 5.
【0024】ところで、貯湯タンク3には、上下方向に
所定ピッチで4個の残湯量検出器18a、18b、18
c、18dと、後述する給水温度検出手段19を構成す
る温度検出器19aとが設けられている。上記各残湯量
検出器18a・・及び温度検出器19aは、例えば、そ
れぞれサーミスタからなる。また、上記循環路12に
は、熱交換路14の上流側に入水サーミスタ20aが設
けられると共に、熱交換路14の下流側に出湯サーミス
タ21aが設けられている。By the way, in the hot water storage tank 3, four remaining hot water amount detectors 18a, 18b, 18 are arranged at a predetermined pitch in the vertical direction.
c and 18d, and a temperature detector 19a that constitutes a supply water temperature detecting means 19 described later are provided. Each of the remaining hot water amount detectors 18a, ... And the temperature detector 19a are, for example, a thermistor. Further, the circulation path 12 is provided with an incoming water thermistor 20a on the upstream side of the heat exchange path 14 and an outlet hot water thermistor 21a on the downstream side of the heat exchange path 14.
【0025】そして、ヒートポンプ加熱源2は冷媒回路
を備え、この冷媒回路は、圧縮機25と、熱交換路14
を構成する水熱交換器26と、電動膨張弁(減圧機構)
27と、空気熱交換器(蒸発器)28とを順に接続して
構成される。すなわち、圧縮機25の吐出管29を水熱
交換器26に接続し、水熱交換器26と電動膨張弁27
とを冷媒通路30にて接続し、電動膨張弁27と蒸発器
28とを冷媒通路31にて接続し、蒸発器28と圧縮機
25とをアキュームレータ32が介設された冷媒通路3
3にて接続している。また、蒸発器28にはこの蒸発器
28の能力を調整するファン34が付設されている。さ
らに、このヒートポンプ加熱源2には、外気温度を検出
する外気温度検出用サーミスタ36aが配置されてい
る。そして、冷媒に超臨界で使用する超臨界冷媒(例え
ば、炭酸ガス)を用いた。The heat pump heating source 2 has a refrigerant circuit, and the refrigerant circuit includes a compressor 25 and a heat exchange passage 14.
Water heat exchanger 26, which constitutes a motor, and an electric expansion valve (pressure reducing mechanism)
27 and an air heat exchanger (evaporator) 28 are connected in this order. That is, the discharge pipe 29 of the compressor 25 is connected to the water heat exchanger 26, and the water heat exchanger 26 and the electric expansion valve 27 are connected.
Are connected by a refrigerant passage 30, the electric expansion valve 27 and the evaporator 28 are connected by a refrigerant passage 31, and the evaporator 28 and the compressor 25 are connected by an accumulator 32.
3 is connected. Further, the evaporator 28 is provided with a fan 34 for adjusting the capacity of the evaporator 28. Further, the heat pump heating source 2 is provided with an outside air temperature detecting thermistor 36a for detecting the outside air temperature. Then, a supercritical refrigerant (for example, carbon dioxide gas) used in a supercritical state was used as the refrigerant.
【0026】ところで、このヒートポンプ式給湯機の制
御部は、図2に示すように、残湯量検出手段37と、外
気温検出手段36と、入水温度検出手段20と、出湯温
度検出手段21と、貯湯タンク3へ供給する水道水の温
度を検出する給水温度検出手段19と、後述するように
圧縮機25の運転周波数等を設定する設定手段39と、
各検出手段19、20、21、36、37からのデータ
(数値)等が入力される制御手段38とを備える。この
場合、図1に示すように、残湯量検出手段37は、貯湯
タンク3に付設された残湯量検出器18a、18b、1
8c、18dにて構成することができ、外気温検出手段
36は外気温サーミスタ36aにて構成することがで
き、入水温度検出手段20は入水サーミスタ20aにて
構成することができ、出湯温度検出手段21は出湯サー
ミスタ21aにて構成することができ、給水温度検出手
段19は温度検出器19aにて構成することができる。
なお、上記制御手段38は例えばマイクロコンピュータ
を用いて構成することができる。By the way, as shown in FIG. 2, the control unit of this heat pump type hot water supply system has a residual hot water amount detecting means 37, an outside air temperature detecting means 36, an incoming water temperature detecting means 20, a hot water outlet temperature detecting means 21, and A water supply temperature detecting means 19 for detecting the temperature of tap water supplied to the hot water storage tank 3, a setting means 39 for setting an operating frequency of the compressor 25, etc., as described later,
And a control means 38 to which data (numerical values) and the like from the respective detection means 19, 20, 21, 36 and 37 are input. In this case, as shown in FIG. 1, the remaining hot water amount detecting means 37 includes the remaining hot water amount detectors 18a, 18b, 1 attached to the hot water storage tank 3.
8c, 18d, the outside air temperature detecting means 36 can be formed by an outside air temperature thermistor 36a, the incoming water temperature detecting means 20 can be formed by an incoming water thermistor 20a, and the hot water outlet temperature detecting means The hot water supply thermistor 21a can be constituted by 21, and the feed water temperature detecting means 19 can be constituted by a temperature detector 19a.
The control means 38 can be configured by using, for example, a microcomputer.
【0027】上記のように構成されたヒートポンプ式給
湯機によれば、圧縮機25を駆動させると共に、水循環
用ポンプ13を駆動(作動)させると、貯湯タンク3の
底部に設けた取水口10から貯溜水(低温水)が流出
し、これが循環路12の熱交換路14を流通する。その
ときこの温湯は水熱交換器26によって加熱され(沸き
上げられ)、湯入口11から貯湯タンク3の上部に返流
される。このような動作を継続して行うことによって、
貯湯タンク3に高温の温湯を貯湯することができる。こ
の場合、現状の電力料金制度は深夜の電力料金単価が昼
間に比べて安価に設定されているので、この運転は、低
額である深夜時間帯(例えば、23時から7時までの時
間帯)に行うものである。According to the heat pump type hot water supply device constructed as described above, when the compressor 25 is driven and the water circulation pump 13 is driven (operated), the water intake port 10 provided at the bottom of the hot water storage tank 3 is driven. The stored water (low temperature water) flows out, and this flows through the heat exchange passage 14 of the circulation passage 12. At this time, this hot water is heated (boiled) by the water heat exchanger 26 and returned from the hot water inlet 11 to the upper part of the hot water storage tank 3. By continuing this kind of operation,
Hot hot water can be stored in the hot water storage tank 3. In this case, since the current power rate system is set so that the power rate unit price at midnight is lower than that at daytime, this operation is low at midnight hours (for example, from 23:00 to 7:00). Is what you do.
【0028】すなわち、深夜時間(23時から次の日の
午前7時)帯のある時刻(例えば、深夜時間開始後の2
4時等)から所定時間の間運転して、所定時刻(深夜時
間終了時刻、つまり午前7時)で所定容量(例えば、貯
湯タンク3の容量)の湯を沸き上げる沸き上げ運転を行
うものである。また、一日の必要湯量がこの貯湯タンク
3の容量を越える場合には、深夜時間の運転を行った
後、さらに深夜時間外の昼間において追加運転を行っ
て、その一日の必要湯量を確保するものである。この場
合、貯湯タンク3の容量を満たす量の湯が沸き上げられ
ている場合に、所定量(例えば、50リットル)の湯を
使用して、その貯湯量が減少すれば、その減少した所定
量の湯を沸き上げる追加運転を行うものであり、この追
加運転を少なくとも1回以上行うことによって、その一
日の必要湯量を確保するものである。これらの沸き上げ
運転に際しては、上記残湯量検出器18a・・や入水サ
ーミスタ20a等の検出値等に基づいて、運転開始や運
転停止が決定される。That is, a certain time (for example, 2 after the start of the midnight time) of the midnight time (from 23:00 to 7:00 am of the next day) band.
It is operated for a predetermined time from 4 o'clock, etc., and performs a boiling operation of boiling a predetermined amount of hot water (for example, the capacity of the hot water storage tank 3) at a predetermined time (midnight time end time, that is, 7:00 am). is there. In addition, if the required amount of hot water for one day exceeds the capacity of the hot water storage tank 3, after operating at midnight, additional operation is performed during the daytime outside of midnight to secure the required amount of hot water for the day. To do. In this case, if a predetermined amount (for example, 50 liters) of hot water is used when the amount of hot water filling the capacity of the hot water storage tank 3 is boiled and the stored hot water amount decreases, the reduced predetermined amount The additional operation of boiling the hot water is performed, and the required amount of hot water for the day is secured by performing the additional operation at least once. In the boiling operation, the start or stop of the operation is determined based on the detected values of the remaining hot water amount detector 18a, the water entering thermistor 20a, and the like.
【0029】ところで、上記ヒートポンプ式給湯機にお
いて、圧縮機25の運転周波数が一定とした場合、外気
温度が低下すれば湯加熱能力(沸上能力)も低下し、逆
に外気温度が上昇すれば湯加熱能力(沸上能力)が上昇
する。すなわち、図3に示すように、例えば、外気温度
が5℃程度のときに、圧縮機25の運転周波数を75H
z程度とすれば、能力(湯加熱能力)が4.5kw(い
わゆる定格能力)となるが、外気温度が低下すれば、運
転周波数を上昇させなければ、4.5kwを維持でき
ず、逆に外気温度が上昇すれば、運転周波数を下降させ
ることによって、4.5kwを維持することができる。
また、入水温度が上昇すれば、湯加熱能力が低下する。
このため、これらの外気温度等の環境条件に対応して、
湯加熱能力が略一定能力となるように、沸き上げる際の
圧縮機25の運転周波数を次の表1のように決定するこ
とができる。この場合、出湯温度(出湯サーミスタ21
aの温度であって、ヒートポンプ加熱源2に沸き上げら
れた温湯の温度)が所定温度(例えば、75℃)である
場合について、外気温度や入水温度(入水サーミスタ2
0aの温度であって、ヒートポンプ加熱源2にて沸き上
げられる前の低温水の温度)等の環境条件に基づいて、
圧縮機25の運転周波数を決定(設定)し、環境条件毎
に設定されたこの運転周波数で沸き上げ運転を行うこと
によって、湯加熱能力が略一定能力となるようにしてい
る。たとえば、湯加熱能力としては、定格能力としての
4.5kwの能力の運転を可能としている。なお、電動
膨張弁27の開度は、上記運転周波数と外気温度に基づ
いて決定される。In the heat pump type hot water supply device, when the operating frequency of the compressor 25 is constant, if the outside air temperature decreases, the hot water heating capacity (boiling capacity) also decreases, and conversely if the outside air temperature rises. Hot water heating capacity (boiling capacity) increases. That is, as shown in FIG. 3, for example, when the outside air temperature is about 5 ° C., the operating frequency of the compressor 25 is set to 75H.
If it is about z, the capacity (hot water heating capacity) becomes 4.5 kw (so-called rated capacity), but if the operating temperature is not increased if the outside air temperature decreases, 4.5 kw cannot be maintained. If the outside air temperature rises, it is possible to maintain 4.5 kw by lowering the operating frequency.
Further, if the incoming water temperature rises, the hot water heating capacity decreases.
Therefore, in response to these environmental conditions such as outside temperature,
The operating frequency of the compressor 25 at the time of boiling can be determined as shown in Table 1 below so that the hot water heating capacity becomes substantially constant. In this case, the hot water temperature (hot water thermistor 21
When the temperature is a and the temperature of the hot water boiled by the heat pump heating source 2 is a predetermined temperature (for example, 75 ° C.), the outside air temperature and the incoming water temperature (the incoming water thermistor 2)
Based on environmental conditions such as the temperature of 0a and the temperature of the low-temperature water before being boiled by the heat pump heating source 2)
By determining (setting) the operating frequency of the compressor 25 and performing the boiling operation at this operating frequency set for each environmental condition, the hot water heating capacity becomes substantially constant. For example, as the hot water heating capacity, the operation of the rated capacity of 4.5 kw is possible. The opening degree of the electric expansion valve 27 is determined based on the operating frequency and the outside air temperature.
【0030】[0030]
【表1】 [Table 1]
【0031】また、この表1では、外気温度を季節モー
ド1から季節モード7の7モードに分け、入水温度を入
水モード1から入水モード7の7モードに分けている。
例えば、季節モード1を5℃以下とし、季節モード2を
5℃を越えかつ9℃以下とし、季節モード3を9℃を越
えかつ13℃以下とし、季節モード4を13℃を越えか
つ18℃以下とし、季節モード5を18℃を越えかつ2
3℃以下とし、季節モード6を23℃を越えかつ28℃
以下とし、季節モード7を28℃を越える場合としてい
る。また、入水モード1を5℃以下とし、入水モード2
を5℃を越えかつ10℃以下とし、入水モード3を10
℃を越えかつ15℃以下とし、入水モード4を15℃を
越えかつ20℃以下とし、入水モード5を20℃を越え
かつ27℃以下とし、入水モード6を27℃を越えかつ
33℃以下とし、入水モード7を33℃を越える場合と
している。なお、夏場においても水道水の温度が33℃
を越える場合はほとんどないので、入水モード7の基準
を33℃としている。Further, in Table 1, the outside air temperature is divided into seven modes of the seasonal mode 1 to the seasonal mode 7, and the incoming water temperature is divided into seven modes of the incoming water mode 1 to the incoming water mode 7.
For example, seasonal mode 1 is 5 ° C. or lower, seasonal mode 2 is 5 ° C. or higher and 9 ° C. or lower, seasonal mode 3 is 9 ° C. or higher and 13 ° C. or lower, and seasonal mode 4 is 13 ° C. or higher and 18 ° C. Seasonal mode 5 exceeds 18 ° C and 2
3 ℃ or less, seasonal mode 6 exceeds 23 ℃ and 28 ℃
In the following, seasonal mode 7 is set to exceed 28 ° C. In addition, the water entry mode 1 is set to 5 ° C or lower, and the water entry mode 2 is set.
Above 5 ° C and below 10 ° C, and set water entry mode 3 to 10
Above 15 ° C and below 15 ° C, water entering mode 4 above 15 ° C and below 20 ° C, water entering mode 5 above 20 ° C and below 27 ° C, and water entering mode 6 above 27 ° C and below 33 ° C. The water entry mode 7 is set to exceed 33 ° C. The temperature of tap water is 33 ° C even in summer.
Since there is almost no case where the temperature exceeds the above, the standard for water entry mode 7 is 33 ° C.
【0032】例えば、圧縮機25の運転周波数は、季節
モード1でかつ入水モード1である場合には85Hzと
され、季節モード1でかつ入水モード7である場合には
90Hzとされ、季節モード7でかつ入水モード1であ
る場合には45Hzとされ、季節モード7でかつ入水モ
ード1である場合には50Hzとされる。この場合、各
季節モードにおいては、入水モード1からモードが増加
するに従って運転周波数が増加し、各入水モードにおい
ては、季節モード1からモードが増加するに従って運転
周波数が減少する。すなわち、外気温度が高くなるほど
圧縮機25の運転周波数を減少させ、入水温度が高くな
るほど圧縮機25の運転周波数を増加させている。な
お、各季節モードにおいて、入水モード1からモードが
増加するに従って運転周波数を増加させる場合、入水モ
ード毎に変化させても、数モードを同一の周波数として
もよい。また、各入水モードにおいては、季節モード1
からモードが増加するに従って運転周波数を減少させる
場合は、季節モード毎に相違させるのが好ましい。For example, the operating frequency of the compressor 25 is set to 85 Hz in the season mode 1 and the water entry mode 1, 90 Hz in the season mode 1 and the water entry mode 7, and the season mode 7 And in the water entry mode 1, the frequency is set to 45 Hz, and in the seasonal mode 7 and the water entry mode 1, the frequency is set to 50 Hz. In this case, in each season mode, the operating frequency increases as the mode increases from water entry mode 1, and in each water entry mode the operating frequency decreases as the mode increases from seasonal mode 1. That is, the operating frequency of the compressor 25 is decreased as the outside air temperature is increased, and the operating frequency of the compressor 25 is increased as the incoming water temperature is increased. In each season mode, when the operating frequency is increased as the mode increases from the water entry mode 1, the operation frequency may be changed for each water entry mode, or the several modes may have the same frequency. In addition, in each water entry mode, seasonal mode 1
When decreasing the operating frequency as the number of modes increases, it is preferable to change the frequency for each seasonal mode.
【0033】ところで、上記表1は出湯温度が例えば7
5℃である場合であり、出湯温度がこの表1よりも高い
場合、例えば、85℃である場合には、この表1の各デ
ータ(数値)よりも例えば2Hzだけ上昇させ、出湯温
度がこの表1よりも低い場合、例えば、65℃である場
合には、この表1の各データ(数値)よりも例えば2H
zだけ下降させることによって、能力を略一定とするこ
とができる。すなわち、出湯温度に応じたデータを設定
し、このデータに従って運転すれば、その出湯温度にお
いて能力を略一定とすることができる。By the way, in Table 1 above, the tapping temperature is, for example, 7
When the hot water temperature is 5 ° C. and the hot water temperature is higher than that in Table 1, for example, when the hot water temperature is 85 ° C., the hot water temperature is increased by 2 Hz, for example, from each data (numerical value) in Table 1, and the hot water temperature is When the temperature is lower than that in Table 1, for example, when the temperature is 65 ° C., the data (numerical value) in Table 1 is, for example, 2H.
By lowering by z, the ability can be made substantially constant. That is, by setting data according to the hot water temperature and operating according to this data, the capacity can be made substantially constant at the hot water temperature.
【0034】従って、このヒートポンプ式給湯機では、
上記表1のデータ、表1のデータよりも2Hzだけ上昇
させたデータ、及び表1のデータよりも2Hzだけ下降
させたデータ等を上記設定手段3にて設定し、これらの
データ(設定データ)が制御手段38に入力されてい
る。そして、外気温度、入水温度、出湯温度が検出さ
れ、これらの検出データが制御手段38に入力され、制
御手段38ではこれらの検出データに対応する設定デー
タの運転周波数が決定され、この運転周波数でもって、
沸き上げ運転を行う。これによって、外気温度、入水温
度、出湯温度の変化に応じて、運転周波数が変更(制
御)されて、略一定能力での運転を行うことができる。Therefore, in this heat pump type water heater,
The data shown in Table 1 above, the data raised from the data shown in Table 1 by 2 Hz, and the data lowered from the data shown in Table 1 by 2 Hz are set by the setting means 3, and these data (set data) are set. Is input to the control means 38. Then, the outside air temperature, the incoming water temperature, and the outgoing hot water temperature are detected, these detection data are input to the control means 38, and the control means 38 determines the operating frequency of the setting data corresponding to these detection data, and at this operating frequency So,
Perform boiling operation. As a result, the operating frequency is changed (controlled) according to changes in the outside air temperature, the incoming water temperature, and the outgoing hot water temperature, and it is possible to perform operation with a substantially constant capacity.
【0035】このように、環境条件の変化に伴って能力
が変化せず、略一定能力での運転が可能であるので、必
要湯量を確保する場合の運転時間を求めることができ
る。すなわち、所定温度の湯を所定量だけ上記深夜時間
帯に沸き上げる場合、運転開始時間を決定して、その時
刻から運転を開始して、深夜時間終了時刻、つまり午前
7時で沸き上げるようにすることができる。また、必要
湯量を確保する場合の運転時間を求めることができるの
で、ユーザの使用量を確実に確保することができ、湯が
不足する湯切れの発生を防止することができると共に、
ユーザの使用量を確保した後の無駄な運転を回避するこ
とができ、ランニングコスト高となるのを防止すること
ができる。As described above, since the capacity does not change in accordance with the change of the environmental condition and the operation can be performed with a substantially constant capacity, it is possible to obtain the operation time when the required amount of hot water is secured. That is, when boiling a predetermined amount of hot water in the above-mentioned midnight time zone, determine the operation start time, start the operation from that time, and boil at the midnight time end time, that is, 7:00 am can do. Further, since it is possible to obtain the operating time when securing the required amount of hot water, it is possible to reliably secure the usage amount of the user, it is possible to prevent the occurrence of shortage of hot water, and
It is possible to avoid useless driving after securing the usage amount of the user, and prevent an increase in running cost.
【0036】ところで、湯加熱能力を略一定能力とする
運転を行う場合、外気温度に代えて、給水温度(水道水
の温度)を用いてもよい。これは、水道水の温度が外気
温度と略同一か又は略比例するので、この水道水の温度
に基づいて運転周波数を制御しても、湯加熱能力が略一
定能力となる運転を行うことができるからである。この
ため、湯加熱能力が略一定能力となる運転を行う場合、
上記ヒートポンプ加熱源の圧縮機の運転周波数を、外気
温度、貯湯タンク3へ供給する水道水の温度、上記低温
水の温度(入水温度)、及び上記ヒートポンプ加熱源に
て沸き上げられる温湯の温度(出湯温度)のうちいずれ
かの温度に基づいて制御することが可能であり、好まし
くはこれらの温度のうち2種類以上に基づくのがよい。
2種類以上用いれば、入力データが多くなって、より確
実で高精度な制御を行うことができる。By the way, in the case of an operation in which the hot water heating capacity is kept substantially constant, the supply water temperature (the temperature of tap water) may be used instead of the outside air temperature. This is because the temperature of the tap water is approximately the same as or proportional to the outside air temperature, so even if the operating frequency is controlled based on the temperature of this tap water, the hot water heating capacity can be operated at a substantially constant capacity. Because you can. Therefore, when performing an operation in which the hot water heating capacity is approximately constant,
The operating frequency of the compressor of the heat pump heating source is the outside air temperature, the temperature of tap water supplied to the hot water storage tank 3, the temperature of the low-temperature water (inlet temperature), and the temperature of hot water boiled by the heat pump heating source ( It is possible to control the temperature based on any one of the tapping temperatures), and it is preferable to control based on two or more of these temperatures.
If two or more types are used, the amount of input data increases, and more reliable and highly accurate control can be performed.
【0037】また、湯加熱能力が略一定能力となる運転
を行う場合、上記空気熱交換器28に付設されたファン
34の回転数を、外気温度等に基づいて制御してもよ
い。この場合、次の表2の回転数に設定される。Further, when performing an operation in which the hot water heating capacity is substantially constant, the rotation speed of the fan 34 attached to the air heat exchanger 28 may be controlled based on the outside air temperature or the like. In this case, the number of rotations shown in Table 2 below is set.
【0038】[0038]
【表2】 [Table 2]
【0039】表2においても、表1の場合と同様、季節
モード1〜季節モード7があり、入水モード1〜入水モ
ード7があり、各欄に所定の回転数が入る。例えば、季
節モード1でかつ入水モード1であるRSR11を57
0rpmとし、季節モード7でかつ入水モード7である
RSR77を470rpmとしている。この場合、外気
温度が上昇するに従ってファン34の回転数が減少し、
入水温度が上昇するに従ってファン34の回転数が増加
する傾向にある。Also in Table 2, as in the case of Table 1, there are a season mode 1 to a season mode 7, a water entry mode 1 to a water entry mode 7, and a predetermined rotation speed is entered in each column. For example, if the RSR11 that is in the seasonal mode 1 and the water entry mode 1 is 57
It is set to 0 rpm, and RSR77 which is the season mode 7 and the water entry mode 7 is set to 470 rpm. In this case, the rotation speed of the fan 34 decreases as the outside air temperature increases,
The rotation speed of the fan 34 tends to increase as the incoming water temperature rises.
【0040】このように、圧縮機25の運転周波数に加
え、ファン34の回転数を、外気温度、入水温度に基づ
いて制御すれば、一層高精度に一定能力とすることがで
き、正確な運転時間把握することができる。これによ
り、湯切れ防止、低コスト化の信頼性が向上する。As described above, if the rotation frequency of the fan 34 is controlled on the basis of the outside air temperature and the incoming water temperature in addition to the operating frequency of the compressor 25, it is possible to obtain a constant capacity with higher accuracy and to perform an accurate operation. I can grasp the time. As a result, the reliability of preventing hot water outage and cost reduction is improved.
【0041】以上にこの発明の具体的な実施の形態につ
いて説明したが、この発明は上記形態に限定されるもの
ではなく、この発明の範囲内で種々変更して実施するこ
とができる。例えば、ファン34の回転数を制御する場
合、表2に示すように、外気温度、入水温度に基づくも
のに限らず、貯湯タンク3へ供給する水道水の温度(給
水温度)や上記ヒートポンプ加熱源2にて沸き上げる温
湯の温度(出湯温度)に基づいて制御するものであって
もよい。また、各モードでの運転周波数やファン34の
回転数としては、設定する能力等に応じて変更すること
ができる。さらに、各季節モードや各入水モードの温度
範囲、モード数の変更も自由である。また、上記実施の
形態のヒートポンプ式給湯機では、貯湯タンク3と、こ
の貯湯タンク3に連結される循環路12と、この循環路
12に介設される熱交換路14とを備え、この熱交換路
14をヒートポンプ加熱源にて加熱して、上記貯湯タン
ク3の下部から循環路12に流出した低温水を沸き上げ
てこの貯湯タンク3の上部に出湯する運転が可能である
と共に、上記ヒートポンプ加熱源の冷媒循環回路が、圧
縮機25と、上記低温水を加熱する水熱交換器26と、
減圧機構27と、空気熱交換器28とを順次接続して構
成されているが、ヒートポンプ式給湯機としては、低温
水をヒートポンプ加熱源2にて沸き上げて貯湯タンク3
に貯えるものであればよいので、このような循環路12
を有さなくてもよい。すなわち、ヒートポンプ加熱源2
にて沸き上げるための低温水を貯湯タンク3以外から供
給したりしてもよい。また、冷媒回路の冷媒として炭酸
ガスを用いることにより、ヒートポンプ加熱源にて加熱
される低温水の温度(入水温度)が上昇すれば、湯加熱
能力及びCOPが減少する特徴があるので、上記実施の
形態のような特有の作用効果が顕著に現われるので好ま
しい。なお、冷媒として、その他、ジクロロジフルオロ
メタン(R−12)やクロロジフルオロメタン(R−2
2)のような冷媒であっても、オゾン層の破壊、環境汚
染等の問題から、1,1,1,2−テトラフルオロエタ
ン(R−134a)のような代替冷媒であってもよい。Although the specific embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. For example, when controlling the rotation speed of the fan 34, as shown in Table 2, the temperature of the tap water (water supply temperature) supplied to the hot water storage tank 3 and the heat pump heating source are not limited to those based on the outside air temperature and the incoming water temperature. The control may be performed based on the temperature of hot water boiled in 2 (outlet temperature). Further, the operating frequency and the rotation speed of the fan 34 in each mode can be changed according to the set capability and the like. Furthermore, the temperature range and the number of modes for each season mode and each water entry mode can be freely changed. Further, the heat pump type hot water supply apparatus of the above-described embodiment includes the hot water storage tank 3, the circulation path 12 connected to the hot water storage tank 3, and the heat exchange path 14 interposed in the circulation path 12. It is possible to heat the exchange passage 14 with a heat pump heating source to boil the low temperature water flowing from the lower portion of the hot water storage tank 3 to the circulation passage 12 and discharge the hot water to the upper portion of the hot water storage tank 3, and at the same time, to operate the heat pump. The refrigerant circulation circuit of the heating source includes a compressor 25, a water heat exchanger 26 that heats the low-temperature water,
The decompression mechanism 27 and the air heat exchanger 28 are sequentially connected, but as a heat pump type water heater, low temperature water is boiled by the heat pump heating source 2 and the hot water storage tank 3 is used.
As long as it can be stored in
Need not have. That is, the heat pump heating source 2
The low temperature water for boiling up may be supplied from other than the hot water storage tank 3. Further, by using carbon dioxide gas as the refrigerant of the refrigerant circuit, if the temperature of the low temperature water heated by the heat pump heating source (inlet temperature) rises, the hot water heating capacity and COP are reduced, so It is preferable because the unique action and effect such as the form of (2) above appears remarkably. In addition, as a refrigerant, in addition, dichlorodifluoromethane (R-12) and chlorodifluoromethane (R-2)
Even a refrigerant such as 2) may be an alternative refrigerant such as 1,1,1,2-tetrafluoroethane (R-134a) due to problems such as ozone layer destruction and environmental pollution.
【0042】[0042]
【発明の効果】請求項1のヒートポンプ式給湯機によれ
ば、必要湯量を確保するための運転時間を求めることが
できるので、必要湯量の確保が容易となり、湯が不足す
る湯切れの発生を防止することができ、ユーザは安心し
て湯を使用することができる。また、必要湯量を確保し
た後の無駄な運転を防止することができるので、ランニ
ングコストの低減を図ることができる。さらに、深夜時
間帯において所定量の湯を沸き上げることができる場合
に、その運転時間がわかるので、深夜時間帯終了時刻
(例えば、午前7時)に沸き上げが終了するための沸き
上げ開始時刻を算出することができ、電力料金単価が安
価に設定されている深夜時間帯を有効利用することがで
きる。また、必要量の湯を確保のための昼間の追加運転
の運転時間も分り、電力料金単価が高い昼間の消費電力
を把握することができ、ユーザにとっては経済的に安心
した運転を行うことができる。そして、湯加熱能力が略
一定能力とするには、外気温度を検出すればよいので、
その制御は簡単であり、既存のヒートポンプ式給湯機を
そのまま使用することができ、経済的である。According to the heat pump type hot water supply apparatus of the present invention, since the operating time for securing the required hot water amount can be obtained, it becomes easy to secure the required hot water amount, and the shortage of hot water can be prevented. This can be prevented, and the user can use the hot water with peace of mind. In addition, since it is possible to prevent wasteful operation after securing the required amount of hot water, it is possible to reduce running costs. Further, when a predetermined amount of hot water can be boiled in the midnight time period, the operating time is known, so the boiling start time for ending the boiling at the midnight time end time (for example, 7:00 am) Can be calculated, and it is possible to effectively use the midnight time period when the unit price of electric power is set to be low. In addition, it is possible to know the operation time of the additional operation in the daytime to secure the required amount of hot water, and it is possible to grasp the power consumption during the daytime when the power unit price is high. it can. Then, in order to make the hot water heating capacity almost constant, it is sufficient to detect the outside air temperature.
The control is simple, and the existing heat pump water heater can be used as it is, which is economical.
【0043】請求項2〜請求項4のヒートポンプ式給湯
機によれば、上記請求項1のヒートポンプ式給湯機と同
様、必要湯量を確保することができ、湯が不足する湯切
れの発生を防止することができ、ユーザは安心して湯を
使用することができる。また、必要湯量を確保した後の
無駄な運転を防止することができるので、ランニングコ
ストの低減を図ることができる。湯加熱能力が略一定能
力とするには、請求項2のヒートポンプ式給湯機では水
道水の温度、請求項3のヒートポンプ式給湯機では低温
水の温度、請求項4のヒートポンプ式給湯機では沸き上
げられた温湯の温度を検出するものであるので、それぞ
れ制御は簡単であり、既存のヒートポンプ式給湯機をそ
のまま使用することができ、経済的である。According to the heat pump type hot water supply apparatus of claims 2 to 4, the required amount of hot water can be secured and the occurrence of shortage of hot water can be prevented, like the heat pump type hot water supply apparatus of claim 1. Therefore, the user can use the hot water without anxiety. In addition, since it is possible to prevent wasteful operation after securing the required amount of hot water, it is possible to reduce running costs. In order for the hot water heating capacity to be substantially constant, the temperature of tap water in the heat pump water heater of claim 2, the temperature of low-temperature water in the heat pump water heater of claim 3, and the boiling of the heat pump water heater in claim 4. Since the temperature of the heated hot water is detected, each control is simple and the existing heat pump water heater can be used as it is, which is economical.
【0044】請求項5のヒートポンプ式給湯機によれ
ば、略一定能力とする運転を確実に行うことができ、こ
れにより、必要量の湯の確保するための運転時間を確実
に知ることができ、湯切れの不安を解消できると共に、
経済的に安心した運転が可能となる。According to the heat pump type hot water supply apparatus of claim 5, it is possible to surely carry out the operation with a substantially constant capacity, so that it is possible to surely know the operation time for securing the necessary amount of hot water. , While eliminating the anxiety of running out of water,
Economically safe driving becomes possible.
【0045】請求項6のヒートポンプ式給湯機によれ
ば、略一定能力とする運転を高精度に行うことができ、
これによって、必要量の湯の確保を確実に行うことがで
き、しかも無駄な沸き上げ運転も回避することができ
て、経済的に安心した運転が可能となる。According to the heat pump type water heater of claim 6, the operation with substantially constant capacity can be performed with high accuracy,
As a result, the required amount of hot water can be reliably secured, and unnecessary boiling operation can be avoided, so that economically safe operation can be performed.
【0046】請求項7のヒートポンプ式給湯機によれ
ば、超臨界冷媒を用いることにより、ヒートポンプ加熱
源にて加熱される低温水の温度(入水温度)が上昇すれ
ば、湯加熱能力及びCOPが減少する特徴があるので、
上記各効果が顕著に現われる。また、オゾン層の破壊、
環境汚染等の問題がなく、地球環境にやさしいヒートポ
ンプ式給湯機となる。According to the heat pump type hot water supply apparatus of claim 7, when the temperature of the low temperature water (inlet temperature) heated by the heat pump heating source rises by using the supercritical refrigerant, the hot water heating capacity and COP are improved. Since there is a feature that decreases,
The above-mentioned respective effects are remarkably exhibited. Also, destruction of the ozone layer,
It is a heat pump type water heater that is friendly to the global environment without problems such as environmental pollution.
【図1】この発明のヒートポンプ式給湯機の実施の形態
を示す簡略図である。FIG. 1 is a simplified diagram showing an embodiment of a heat pump type hot water supply device of the present invention.
【図2】上記ヒートポンプ式給湯機の制御部の簡略ブロ
ック図である。FIG. 2 is a simplified block diagram of a control unit of the heat pump water heater.
【図3】上記ヒートポンプ式給湯機の能力と圧縮機の運
転周波数と外気温度との関係を示すグラフ図である。FIG. 3 is a graph showing the relationship between the capacity of the heat pump water heater, the operating frequency of the compressor, and the outside air temperature.
【図4】従来のヒートポンプ式給湯機の入水が上昇した
場合の問題点を説明する冷凍サイクル図である。[Fig. 4] Fig. 4 is a refrigeration cycle diagram for explaining a problem in the case where the water input of a conventional heat pump water heater rises.
【図5】従来のヒートポンプ式給湯機の簡略図である。FIG. 5 is a simplified view of a conventional heat pump water heater.
2 ヒートポンプ加熱源 3 貯湯タンク 25 圧縮機 26 水熱交換器 27 減圧機構 28 空気熱交換器 34 ファン 2 Heat pump heating source 3 hot water storage tank 25 compressor 26 Water heat exchanger 27 Decompression mechanism 28 Air heat exchanger 34 fans
Claims (7)
沸き上げて貯湯タンク(3)に貯えるヒートポンプ式給
湯機であって、上記ヒートポンプ加熱源(2)の圧縮機
(25)の運転周波数を、湯加熱能力が略一定能力とな
るように、外気温度に基づいて制御することを特徴とす
るヒートポンプ式給湯機。1. A heat pump water heater for boiling low temperature water in a heat pump heating source (2) and storing it in a hot water storage tank (3), the operating frequency of a compressor (25) of the heat pump heating source (2). Is controlled on the basis of the outside air temperature so that the hot water heating capacity is substantially constant.
沸き上げて貯湯タンク(3)に貯えるヒートポンプ式給
湯機であって、上記ヒートポンプ加熱源(3)の圧縮機
(25)の運転周波数を、湯加熱能力が略一定能力とな
るように、上記貯湯タンク(3)へ供給する水道水の温
度に基づいて制御することを特徴とするヒートポンプ式
給湯機。2. A heat pump water heater for boiling low-temperature water in a heat pump heating source (2) and storing it in a hot water storage tank (3), wherein an operating frequency of a compressor (25) of the heat pump heating source (3). Is controlled on the basis of the temperature of the tap water supplied to the hot water storage tank (3) so that the hot water heating capacity becomes substantially constant.
沸き上げて貯湯タンク(3)に貯えるヒートポンプ式給
湯機であって、上記ヒートポンプ加熱源(3)の圧縮機
(25)の運転周波数を、湯加熱能力が略一定能力とな
るように、低温水の温度に基づいて制御することを特徴
とするヒートポンプ式給湯機。3. A heat pump water heater for boiling low-temperature water in a heat pump heating source (2) and storing it in a hot water storage tank (3), the operating frequency of a compressor (25) of the heat pump heating source (3). Is controlled based on the temperature of the low-temperature water so that the hot water heating capacity is substantially constant.
沸き上げて貯湯タンク(3)に貯えるヒートポンプ式給
湯機であって、上記ヒートポンプ加熱源(2)の圧縮機
(25)の運転周波数を、湯加熱能力が略一定能力とな
るように、上記ヒートポンプ加熱源(2)にて沸き上げ
られた温湯の温度に基づいて制御することを特徴とする
ヒートポンプ式給湯機。4. A heat pump water heater for boiling low temperature water in a heat pump heating source (2) and storing it in a hot water storage tank (3), the operating frequency of a compressor (25) of the heat pump heating source (2). Is controlled on the basis of the temperature of the hot water boiled by the heat pump heating source (2) so that the hot water heating capacity becomes substantially constant.
沸き上げて貯湯タンク(3)に貯えるヒートポンプ式給
湯機であって、上記ヒートポンプ加熱源(2)の圧縮機
(25)の運転周波数を、湯加熱能力が略一定能力とな
るように、外気温度、貯湯タンク(3)へ供給する水道
水の温度、上記低温水の温度、及び上記ヒートポンプ加
熱源(2)にて沸き上げられる温湯の温度のうち少なく
とも2種類の温度に基づいて制御することを特徴とする
ヒートポンプ式給湯機。5. A heat pump water heater for boiling low-temperature water in a heat pump heating source (2) and storing it in a hot water storage tank (3), the operating frequency of a compressor (25) of the heat pump heating source (2). The hot water boiled by the outside air temperature, the temperature of the tap water supplied to the hot water storage tank (3), the temperature of the low temperature water, and the heat pump heating source (2) so that the hot water heating capacity becomes substantially constant. A heat pump water heater characterized by being controlled based on at least two kinds of temperatures among the above.
(25)と、水熱交換器(26)と、減圧機構(27)
と、空気熱交換器(28)とを備えると共に、上記空気
熱交換器(28)にファン(34)を有するヒートポン
プ式給湯機であって、湯加熱能力を略一定能力とする運
転において、上記ファン(34)の回転数を、外気温
度、貯湯タンク(3)へ供給する水道水の温度、上記低
温水の温度、及び上記ヒートポンプ加熱源(2)にて沸
き上げられる温湯の温度のいずれかに基づいて制御する
ことを特徴とする請求項1〜請求項5のいずれかのヒー
トポンプ式給湯機。6. The heat pump heating source (2) comprises a compressor (25), a water heat exchanger (26), and a pressure reducing mechanism (27).
And a heat exchanger (28) and a fan (34) in the air heat exchanger (28), the heat pump water heater having a substantially constant capacity for heating the hot water. The rotation speed of the fan (34) is one of the outside air temperature, the temperature of tap water supplied to the hot water storage tank (3), the temperature of the low temperature water, and the temperature of hot water boiled by the heat pump heating source (2). The heat pump water heater according to any one of claims 1 to 5, which is controlled based on
いたことを特徴とする請求項1〜請求項6のいずれかの
ヒートポンプ式給湯機。7. The heat pump water heater according to claim 1, wherein a supercritical refrigerant used in a supercritical condition is used as the refrigerant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002021143A JP2003222396A (en) | 2002-01-30 | 2002-01-30 | Heat pump type water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002021143A JP2003222396A (en) | 2002-01-30 | 2002-01-30 | Heat pump type water heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003222396A true JP2003222396A (en) | 2003-08-08 |
Family
ID=27744463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002021143A Pending JP2003222396A (en) | 2002-01-30 | 2002-01-30 | Heat pump type water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003222396A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007192499A (en) * | 2006-01-20 | 2007-08-02 | Sanden Corp | Hot water supply device |
JP2008032291A (en) * | 2006-07-27 | 2008-02-14 | Denso Corp | Heat pump type hot water supply heating device |
JP2008039289A (en) * | 2006-08-07 | 2008-02-21 | Matsushita Electric Ind Co Ltd | Heat pump type water heater |
EP2009370A1 (en) * | 2007-06-27 | 2008-12-31 | Sanden Corporation | Water heater |
WO2009107261A1 (en) | 2008-02-29 | 2009-09-03 | 日立アプライアンス株式会社 | Heat-pump hot water apparatus |
JP2009299908A (en) * | 2008-06-10 | 2009-12-24 | Corona Corp | Heat pump type hot-water supply device |
JP2010025494A (en) * | 2008-07-23 | 2010-02-04 | Sanden Corp | Heat pump type hot water supply device |
JP2010133597A (en) * | 2008-12-03 | 2010-06-17 | Daikin Ind Ltd | Heat pump type water heater |
JP2010133598A (en) * | 2008-12-03 | 2010-06-17 | Daikin Ind Ltd | Heat pump type water heater |
JP2010242985A (en) * | 2009-04-01 | 2010-10-28 | Panasonic Corp | Heat pump water heater |
EP2677251A1 (en) * | 2011-02-14 | 2013-12-25 | Mitsubishi Electric Corporation | Refrigeration cycle device and refrigeration cycle control method |
WO2015045116A1 (en) | 2013-09-27 | 2015-04-02 | 三菱電機株式会社 | Refrigeration cycle device |
JP6080959B2 (en) * | 2013-08-30 | 2017-02-15 | 三菱電機株式会社 | Refrigeration cycle equipment |
CN106813399A (en) * | 2015-12-02 | 2017-06-09 | 青岛海尔新能源电器有限公司 | The control method and its control device of Teat pump boiler |
-
2002
- 2002-01-30 JP JP2002021143A patent/JP2003222396A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007192499A (en) * | 2006-01-20 | 2007-08-02 | Sanden Corp | Hot water supply device |
JP2008032291A (en) * | 2006-07-27 | 2008-02-14 | Denso Corp | Heat pump type hot water supply heating device |
JP2008039289A (en) * | 2006-08-07 | 2008-02-21 | Matsushita Electric Ind Co Ltd | Heat pump type water heater |
EP2009370A1 (en) * | 2007-06-27 | 2008-12-31 | Sanden Corporation | Water heater |
WO2009107261A1 (en) | 2008-02-29 | 2009-09-03 | 日立アプライアンス株式会社 | Heat-pump hot water apparatus |
JP2009299908A (en) * | 2008-06-10 | 2009-12-24 | Corona Corp | Heat pump type hot-water supply device |
JP2010025494A (en) * | 2008-07-23 | 2010-02-04 | Sanden Corp | Heat pump type hot water supply device |
JP2010133597A (en) * | 2008-12-03 | 2010-06-17 | Daikin Ind Ltd | Heat pump type water heater |
JP2010133598A (en) * | 2008-12-03 | 2010-06-17 | Daikin Ind Ltd | Heat pump type water heater |
JP2010242985A (en) * | 2009-04-01 | 2010-10-28 | Panasonic Corp | Heat pump water heater |
EP2677251A1 (en) * | 2011-02-14 | 2013-12-25 | Mitsubishi Electric Corporation | Refrigeration cycle device and refrigeration cycle control method |
EP2677251A4 (en) * | 2011-02-14 | 2014-10-15 | Mitsubishi Electric Corp | Refrigeration cycle device and refrigeration cycle control method |
JP6080959B2 (en) * | 2013-08-30 | 2017-02-15 | 三菱電機株式会社 | Refrigeration cycle equipment |
WO2015045116A1 (en) | 2013-09-27 | 2015-04-02 | 三菱電機株式会社 | Refrigeration cycle device |
CN106813399A (en) * | 2015-12-02 | 2017-06-09 | 青岛海尔新能源电器有限公司 | The control method and its control device of Teat pump boiler |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3893676B2 (en) | Air conditioner | |
JP2003222396A (en) | Heat pump type water heater | |
JP2002206805A (en) | Hot water supply apparatus | |
JP3855902B2 (en) | Heat pump water heater | |
JP3840573B2 (en) | Heat pump type water heater | |
JP2007170690A (en) | Heat pump water heater and its control method | |
JP2003161545A (en) | Heat pump type water heater | |
JP3742858B2 (en) | Heat pump water heater | |
JP5028656B2 (en) | Water heater abnormality detection device | |
JP4254532B2 (en) | Heat pump type water heater | |
JP3855938B2 (en) | Hot water storage water heater | |
JP3498671B2 (en) | Heat pump water heater | |
JP2010216681A (en) | Heat pump type water heater | |
JP2004132628A (en) | Hot-water supplier | |
JP5353328B2 (en) | Heat pump water heater | |
JP3840574B2 (en) | Water heater | |
JP2003056907A (en) | Heat pump water heater | |
JP3564687B2 (en) | Hot water supply device | |
JP3850653B2 (en) | Heat pump type water heater | |
JP2004116955A (en) | Heat pump type water heater | |
JP3908668B2 (en) | Heat pump water heater | |
JP4304950B2 (en) | Water heater | |
JP2004183932A (en) | Hot water storage type water heater | |
EP1541939A1 (en) | Refrigerating cycle | |
JP2004138299A (en) | Hot water supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050307 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060126 |