JP2003221214A - Method for producing carbonyl difluoride - Google Patents
Method for producing carbonyl difluorideInfo
- Publication number
- JP2003221214A JP2003221214A JP2002022628A JP2002022628A JP2003221214A JP 2003221214 A JP2003221214 A JP 2003221214A JP 2002022628 A JP2002022628 A JP 2002022628A JP 2002022628 A JP2002022628 A JP 2002022628A JP 2003221214 A JP2003221214 A JP 2003221214A
- Authority
- JP
- Japan
- Prior art keywords
- fluoride
- reaction
- yield
- metal fluoride
- difluoride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、有機合成の試薬、
半導体製造装置のクリーニングガス、エッチングガス等
に有用な二フッ化カルボニル(COF2)の製造方法に
関するものである。
【0002】
【従来の技術】COF2の合成法は、一般に、二塩化カ
ルボニルいわゆるホスゲンをフッ化水素、三フッ化アン
チモン、三フッ化砒素、フッ化ナトリウム等の適当なフ
ッ素化剤と反応させ、分子中の塩素原子を対応するフッ
素原子にハロゲン交換する方法、一酸化炭素をフッ素、
二フッ化銀等の適当なフッ素化剤と反応させて酸化する
方法の2つに大別される。例えば、特開昭54−158
396号公報には、ホスゲンをアセトニトリルの存在下
でフッ化水素と反応させることでフッ化カルボニルを製
造する方法が開示されている。フッ化カルボニルのその
他の合成法として、フッ化エタンをオゾンと反応させる
方法(J.Amer.Chem.Soc.,102,7
572(1980))、一酸化炭素と四フッ化炭素の平
衡反応を用いた方法(J.Amer.Chem.So
c.,62,3479(1940))等が開示されてい
る。しかしながら、ホスゲンを用いる反応では、原料に
毒性の高いホスゲンを用いる必要があり、また合成され
たCOF2も塩素由来の不純物であるフッ化塩化カルボ
ニルやフッ素化剤等の水分由来の二酸化炭素との分離が
困難である。また、一酸化炭素とフッ素との直接反応に
よりCOF2を合成する方法では、可燃性ガスの一酸化
炭素と強力な支燃性ガスであるフッ素との反応であるた
め、反応が爆発的に生じたり、反応熱のため四フッ化炭
素等の不純物が生じ、純度低下をもたらす。フッ化エタ
ンとオゾンとの反応や、一酸化炭素と四フッ化炭素との
平衡反応においては、収率、純度ともに低く工業的なプ
ロセスとして使用するのは困難である。
【0003】一酸化炭素と二フッ化銀とを反応させる方
法は、比較的安全に高純度でCOF 2を合成することが
可能であるが、Inorg.Synth.,6,155
(1960)に記載されているように収率も70〜85
%で、純度も悪く、二酸化炭素が不純物として混入す
る。
【0004】
【発明が解決しようとする課題】上述のように従来技術
では、収率、純度、安全性の面で全てを満たした製造方
法はなかった。また、一酸化炭素と二フッ化銀とを反応
させる方法は、安全性の面では優れているが、二フッ化
銀は極めて反応性に富むため、大気中では、水分等との
反応で分解してフッ化銀となってしまう。このため、大
気中で反応器に二フッ化銀を仕込むと、かなりの二フッ
化銀がフッ化銀となるため、収率低下が起こる。また、
二フッ化銀は吸湿性が高く、反応器への仕込みの時に吸
湿した水分が原因で、一酸化炭素との反応によって生成
した二フッ化カルボニルが加水分解を起こして二酸化炭
素とフッ化水素を生成し、純度低下、収率低下を引き起
こす。本発明者らは、この課題を解決すべく、一酸化炭
素と金属フッ化物との反応により二フッ化カルボニルを
製造するに際し、同一反応器内で、一酸化炭素と金属フ
ッ化物とを反応させる工程と、金属フッ化物とフッ素を
反応させる工程と、交互に繰り返し二フッ化カルボニル
を製造する方法を見出した。しかしながら、この方法に
よると、初期の繰り返しでは優れているが、反応を繰り
返していくと、金属フッ化物が固結して利用効率が低下
し、収率低下が起こる。
【0005】
【課題を解決するための手段】本発明者らは、かかる問
題点に鑑み鋭意検討の結果、一酸化炭素と反応させる金
属フッ化物に他種の金属フッ化物を混合することによ
り、固結を防止でき二フッ化カルボニルの収率低下を防
止できることを見出し、本発明に至ったものである。
【0006】すなわち、本発明は、一酸化炭素と三フッ
化コバルト、四フッ化セリウム、二フッ化銀、またはK
3NiF7の少なくとも1種の金属フッ化物との反応によ
り二フッ化カルボニルを製造するに際し、該金属フッ化
物の固結を抑制するために、該金属フッ化物にフッ化バ
リウム、またはフッ化リチウムの少なくとも1種を混合
して用いることを特徴とする二フッ化カルボニルの製造
方法を提供するものである。
【0007】本発明によれば、一酸化炭素との反応に使
用する金属フッ化物が反応の繰り返しにより固結しにく
くなるため、繰り返し合成による収率の低下なしにCO
F2を製造することが可能となる。
【0008】
【発明の実施の形態】本発明において、一酸化炭素との
反応に使用可能な金属フッ化物としては、三フッ化コバ
ルト(CoF3)、四フッ化セリウム(CeF4)、二フ
ッ化銀(AgF2)、三フッ化マンガン(MnF3)、二
フッ化銅(CuF2)、四フッ化鉛(PbF4)、四フッ
化スズ(SnF4)、K3NiF7等が挙げられる。この
他にも、一酸化炭素との反応が自発的に進行し、一酸化
炭素との反応後の金属フッ化物がフッ素と反応して元の
金属フッ化物へ再生が可能なものであれば使用可能であ
る。特に好ましいのは、三フッ化コバルト、四フッ化セ
リウム、二フッ化銀、K 3NiF7(以下、この4つの化
合物を金属フッ化物Aと称す。)である。三フッ化コバ
ルト、四フッ化セリウム、二フッ化銀、K3NiF7は、
フッ素化能力が非常に高いため、高収率でしかも生産性
良くCOF2を製造できる点において好ましい。
【0009】本発明において、上記金属フッ化物Aの固
結を防止するために混合する化合物としては、フッ化バ
リウム(BaF2)、フッ化リチウム(LiF)(以
下、この2つの化合物を金属フッ化物Bと称す。)が好
ましい。
【0010】金属フッ化物Aと金属フッ化物Bを混合す
る割合は、使用する金属フッ化物によって適宜選択すれ
ばよいが、通常、金属フッ化物Bの割合が5mol%〜
90mol%の範囲で混合することが好ましい。金属フ
ッ化物Bの割合が5mol%以下の場合には、固結防止
が不完全となり、収率の低下を引き起こす。また、90
mol%以上の場合には、金属フッ化物Aと一酸化炭素
との反応活性を低下させて収率が低下するのに加えて、
反応器に仕込む金属フッ化物全体の体積が増加し生産性
の低下を引き起こすため好ましくない。
【0011】本発明において、反応温度は、使用する金
属フッ化物によって適宜選択すればよいが、一酸化炭素
との反応において300℃を越えると四フッ化炭素や二
酸化炭素の副生が顕著になり、純度、収率が低下するた
め好ましくない。特に、三フッ化コバルトを一酸化炭素
との反応に用いた場合、100℃以下の反応温度では反
応速度が極端に低下するため、100〜300℃の温度
範囲で使用することが好ましい。また、四フッ化セリウ
ムを一酸化炭素との反応に用いた場合には、150℃以
下の反応温度では反応速度が極端に低下するため、15
0〜300℃の温度範囲で使用することが好ましい。二
フッ化銀、K3NiF7はフッ素化能力が高いため、一酸
化炭素と室温から反応するため、室温〜300℃の温度
範囲で使用することが好ましい。
【0012】本発明において使用可能な反応器は、加熱
できるような構造であれば特に限定されないが、反応器
の材質には高温のフッ素に耐え得るようなニッケル、ニ
ッケル基耐熱合金、銅、白金等を用いる。反応形式は、
バッチ式、流通式のどちらを用いても良い。また、本発
明では一酸化炭素との反応も、フッ素による再生反応も
発熱反応であるため、除熱が十分にできる流動床方式の
ものも好ましい。
【0013】反応器内に仕込んだ金属フッ化物を初めて
一酸化炭素と反応させる場合には、反応させる前にあら
かじめ金属フッ化物を反応器内でフッ素処理することが
好ましい。金属フッ化物は、反応器に仕込んだ時点で程
度の差はあるが吸湿しており、また、二フッ化銀のごと
き金属フッ化物では反応性の高さのために一部がフッ化
銀となっている。フッ素処理をすることで、金属フッ化
物の水分を除去できるとともに、低次フッ化物となって
しまった金属フッ化物を高次フッ化物へと戻すことがで
きる。更に好ましくは、フッ素処理を終えた後にCOF
2で処理する。これにより、金属フッ化物中の水分が完
全に除去できるため、一酸化炭素との反応で生成される
COF2中の不純物である二酸化炭素が減少し高純度の
ものが得られる。
【0014】
【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はかかる実施例に限定されるものではない。
【0015】実施例1
CoF3を6.0g、BaF2を9.0g(50mol
%)秤取し、均一に混合した。ヒータを取り付けた容量
800mlのNi製反応器(φ100mm×100m
m)に混合物を仕込み、200℃に昇温した。反応器内
を真空状態とした後、COを144KPa導入し、2h
r放置した。反応後のガスを液体窒素で冷却した1Lの
ステンレス鋼製トラップへ捕集し、深冷脱気した。トラ
ップ内のガスをGC−MS、FT−IRで分析した結
果、主成分はCOF2であり、不純物としてCO2が0.
67vol%、HFが0.74vol%、CF4が0.
055vol%含まれているだけであり、純度は98.
5vol%、収率91%であった。
【0016】反応器は真空に引き、200℃でF2を導
入した。導入したF2は吸収されていき、吸収が止まっ
た時点で再生終了とした。上述のCOとの反応とF2で
の再生のサイクルを7回繰り返した結果、収率は89%
とほとんど低下することはなく、純度も各サイクルとも
99vol%以上であった。
【0017】比較例1
実施例1と同様の反応器内にCoF3を7.0g仕込
み、実施例1と同様に繰り返し合成を行った。初回のC
Oとの反応収率が93%であるのに対し、7回繰り返し
後の収率は58%であった。
【0018】実施例2
CoF3を6.2g、LiFを1.4g(50mol
%)秤取し、均一に混合した。実施例1と同様の反応器
内にこの混合物を仕込み、実施例1と同様に繰り返し合
成を行った。初回のCOとの反応収率が89%であるの
に対し、7回繰り返し後の収率は77%であり、比較例
1と比べて収率低下が少なくなっており、LiFとの混
合による収率低下抑制の効果が認められた。
【0019】実施例3
CoF3を6.0g、BaF2を0.48g(5mol
%)秤取し、均一に混合した。実施例1と同様の反応器
内にこの混合物を仕込み、実施例1と同様に繰り返し合
成を行った。初回のCOとの反応収率が91%であるの
に対し、7回繰り返し後の収率は85%であり、比較例
1と比べて収率低下が少なくなっており、BaF2との
混合による収率低下抑制の効果が認められた。
【0020】実施例4
CoF3を1.1g、BaF2を12.0g(88mol
%)秤取し、均一に混合した。実施例1と同様の反応器
内にこの混合物を仕込み、実施例1と同様に繰り返し合
成を行った。初回のCOとの反応収率が80%であるの
に対し、7回繰り返し後の収率は79%とほとんど低下
することはなかった。
【0021】実施例5〜7
金属フッ化物Aとして、実施例1のCoF3をCeF4、
AgF2、K3NiF7に変更し、金属フッ化物Bとし
て、BaF2と50mol%の割合で混合した混合金属
フッ化物を用いて、実施例1と同様に繰り返し合成を行
った。結果を表1にまとめて示した。いずれの場合も、
繰り返し合成によって収率低下はほとんど起こらなかっ
た。AgF2、K3NiF7については、初回収率が、金
属フッ化物仕込み時の水分による分解等で低くなってい
るが、2回目以降の収率については7回目の収率とほぼ
同等の収率であった。
【0022】
【表1】
【0023】
【発明の効果】本発明の方法により、安全性が高く、高
純度でかつ高収率に、しかも生産性良くCOF2を製造
することができる。DETAILED DESCRIPTION OF THE INVENTION
[0001]
The present invention relates to a reagent for organic synthesis,
Cleaning gas, etching gas, etc. for semiconductor manufacturing equipment
Difluoride (COF) useful forTwo) For the manufacturing method
It is about.
[0002]
2. Description of the Related Art COFTwoThe synthesis of
Rubonyl so-called phosgene is converted to hydrogen fluoride,
Suitable materials such as thymon, arsenic trifluoride, sodium fluoride, etc.
Reacts with a fluorinating agent to convert chlorine atoms in the molecule to the corresponding fluorine.
Halogen exchange for elementary atoms, carbon monoxide to fluorine,
Oxidizes by reacting with a suitable fluorinating agent such as silver difluoride
There are roughly two methods. For example, JP-A-54-158
No. 396 discloses that phosgene is prepared in the presence of acetonitrile.
To produce carbonyl fluoride by reacting with hydrogen fluoride
A method of making is disclosed. That of carbonyl fluoride
Another synthesis method is to react ethane fluoride with ozone
Method (J. Amer. Chem. Soc., 102, 7).
572 (1980)), the carbon monoxide and carbon tetrafluoride
Method using an equilibrium reaction (J. Amer. Chem. So
c. , 62, 3479 (1940)).
You. However, in the reaction using phosgene,
Highly toxic phosgene must be used and
COFTwoIs also a chlorine-derived impurity
Separation from carbon dioxide derived from water such as
Have difficulty. In addition, the direct reaction between carbon monoxide and fluorine
More COFTwoIn the method of synthesizing flammable gas,
It is the reaction between carbon and fluorine, a strong supportive gas.
Reaction occurs explosively, or due to heat of reaction, carbon tetrafluoride
Impurities such as nitrogen occur, resulting in a decrease in purity. Fluoride
Reaction between carbon monoxide and carbon tetrafluoride
In the equilibrium reaction, the yield and purity are low and industrial processes are low.
It is difficult to use as a process.
A method for reacting carbon monoxide with silver difluoride
The method is relatively safe and high purity COF TwoCan be synthesized
While possible, Inorg. Synth. ,6, 155
The yield is also 70-85 as described in (1960).
%, Poor purity, carbon dioxide as impurities
You.
[0004]
SUMMARY OF THE INVENTION As described above, the prior art
A manufacturing method that satisfies all aspects of yield, purity and safety
There was no law. Also reacts carbon monoxide with silver difluoride.
This method is excellent in terms of safety, but difluoride
Since silver is extremely reactive, it reacts with moisture in the atmosphere.
Decomposes into silver fluoride by the reaction. Because of this,
If silver difluoride is charged into the reactor in the air, considerable
Since silver halide is converted to silver fluoride, the yield is reduced. Also,
Silver difluoride has high hygroscopicity and absorbs when charged into the reactor.
Produced by reaction with carbon monoxide due to wet moisture
Carbonyl difluoride causes hydrolysis to cause carbon dioxide
Generates hydrogen and hydrogen fluoride, resulting in lower purity and lower yield
Rub The present inventors have attempted to solve this problem by using carbon monoxide.
Carbonyl difluoride by the reaction of silicon and metal fluoride
During production, carbon monoxide and metal
Reacting with metal fluoride and metal fluoride and fluorine.
Reacting and alternately repeating carbonyl difluoride
And found a method of manufacturing. However, this method
According to the report, although it is excellent in the initial iteration,
When returned, the metal fluoride solidifies and the utilization efficiency drops
However, the yield decreases.
[0005]
Means for Solving the Problems The present inventors have solved such a problem.
As a result of intensive examination in view of the title, gold reacted with carbon monoxide
By mixing other types of metal fluorides with genus fluorides
To prevent consolidation and prevent a decrease in the yield of carbonyl difluoride.
It has been found that the present invention can be stopped, and the present invention has been accomplished.
[0006] That is, the present invention relates to carbon monoxide and trifluoride.
Cobalt, cerium tetrafluoride, silver difluoride, or K
ThreeNiF7Reaction with at least one metal fluoride
When producing carbonyl difluoride,
In order to suppress solidification of the material, the metal fluoride
Mix at least one of lithium or lithium fluoride
Production of carbonyl difluoride characterized by using
It provides a method.
According to the present invention, it is used for the reaction with carbon monoxide.
The metal fluoride used is difficult to solidify due to repetition of the reaction.
CO2 without reducing the yield due to repeated synthesis
FTwoCan be manufactured.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the reaction with carbon monoxide
Metal trifluoride that can be used for the reaction
Ruto (CoFThree), Cerium tetrafluoride (CeF)Four), Nif
Silver nitride (AgFTwo), Manganese trifluoride (MnF)Three),two
Copper fluoride (CuFTwo), Lead tetrafluoride (PbFFour), Four feet
Tin fossil (SnFFour), KThreeNiF7And the like. this
In addition, the reaction with carbon monoxide proceeds spontaneously,
The metal fluoride after reaction with carbon reacts with fluorine to
It can be used if it can be regenerated to metal fluoride.
You. Particularly preferred are cobalt trifluoride and tetrafluoride.
Lium, silver difluoride, K ThreeNiF7(Hereafter, these four forms
The compound is referred to as metal fluoride A. ). Koba trifluoride
, Cerium tetrafluoride, silver difluoride, KThreeNiF7Is
High yield and high productivity due to very high fluorination capacity
Well COFTwoIs preferable in that it can be produced.
In the present invention, the metal fluoride A
Compounds to be mixed to prevent
Lium (BaFTwo), Lithium fluoride (LiF) (hereinafter
Below, these two compounds are called metal fluoride B. ) Is good
Good.
Mixing metal fluoride A and metal fluoride B
The ratio can be appropriately selected depending on the metal fluoride used.
Usually, the ratio of the metal fluoride B is 5 mol% or more.
It is preferable to mix in a range of 90 mol%. Metal foil
When the ratio of nitride B is 5 mol% or less,
Is incomplete and causes a decrease in yield. Also, 90
mol% or more, metal fluoride A and carbon monoxide
In addition to reducing the reaction activity with
Increased volume of metal fluoride to be charged into reactor and increased productivity
Is not preferred because it causes a decrease in
In the present invention, the reaction temperature depends on the gold used.
What is necessary is just to select appropriately according to the genus fluoride, but carbon monoxide
If the temperature exceeds 300 ° C in the reaction with
The by-product of carbon oxide became remarkable, and the purity and yield decreased.
Not preferred. In particular, cobalt trifluoride is replaced by carbon monoxide.
When used in the reaction with
Since the response speed is extremely low, the temperature is 100-300 ° C.
It is preferable to use in the range. Also, cerium tetrafluoride
If the system is used for reaction with carbon monoxide,
At the lower reaction temperature, the reaction rate is extremely reduced,
It is preferable to use in a temperature range of 0 to 300 ° C. two
Silver fluoride, KThreeNiF7Has high fluorination ability,
Temperature from room temperature to 300 ° C to react with activated carbon from room temperature
It is preferable to use in the range.
The reactor usable in the present invention is a heated reactor.
The reactor is not particularly limited as long as it has a structure that can be used.
Nickel and nickel that can withstand high-temperature fluorine
Use a nickel-based heat-resistant alloy, copper, platinum, or the like. The reaction format is
Either a batch type or a flow type may be used. In addition,
In the Ming, both the reaction with carbon monoxide and the regeneration reaction with fluorine
Because of the exothermic reaction, fluidized bed
Those are also preferred.
For the first time, the metal fluoride charged in the reactor
When reacting with carbon monoxide,
Preliminary treatment of metal fluoride in the reactor
preferable. When the metal fluoride is charged into the reactor,
There is a difference in the degree, but it absorbs moisture.
Some metal fluorides are fluorinated due to their high reactivity.
It is silver. Fluorine treatment allows metal fluoride
It can remove water from the material and becomes a lower fluoride
It is possible to return lost metal fluoride to higher fluoride
Wear. More preferably, after finishing the fluorine treatment, COF
TwoTo process. As a result, the water in the metal fluoride is completely
Generated by reaction with carbon monoxide because it can be completely removed
COFTwoCarbon dioxide, which is an impurity in
Things are obtained.
[0014]
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments.
However, the present invention is not limited to such an embodiment.
Embodiment 1
CoFThree6.0 g, BaFTwo9.0 g (50 mol
%) And weighed and mixed uniformly. Heater mounted capacity
800ml Ni reactor (φ100mm × 100m
m) and the mixture was heated to 200 ° C. Inside the reactor
Was brought into a vacuum state, CO was introduced at 144 KPa, and 2 h
r. 1 L of the gas after the reaction was cooled with liquid nitrogen.
The sample was collected in a stainless steel trap and degassed at low temperature. Tiger
The gas in the tip was analyzed by GC-MS and FT-IR.
As a result, the main component is COFTwoAnd CO as an impurityTwoIs 0.
67 vol%, HF is 0.74 vol%, CFFourIs 0.
055 vol%, the purity is 98.
The yield was 5% by volume and the yield was 91%.
The reactor is evacuated and at 200 ° C.TwoLed
I entered. F introducedTwoIs absorbed, absorption stops
At this point, playback is terminated. The above reaction with CO and FTwoso
As a result of repeating the regeneration cycle 7 times, the yield was 89%.
And the purity is hardly reduced.
It was 99 vol% or more.
Comparative Example 1
In the same reactor as in Example 1, CoFThree7.0g
Only, synthesis was repeated in the same manner as in Example 1. First time C
Repeated 7 times while the reaction yield with O is 93%
The subsequent yield was 58%.
Embodiment 2
CoFThree6.2 g and LiF 1.4 g (50 mol
%) And weighed and mixed uniformly. Reactor similar to Example 1
The mixture was charged into the
Performed. The first reaction yield with CO is 89%
On the other hand, the yield after repeating 7 times was 77%.
1, the decrease in yield is smaller than that of
The effect of suppressing the decrease in yield due to the combination was recognized.
Embodiment 3
CoFThree6.0 g, BaFTwo0.48 g (5 mol
%) And weighed and mixed uniformly. Reactor similar to Example 1
The mixture was charged into the
Performed. The first reaction yield with CO is 91%
On the other hand, the yield after repeating 7 times was 85%.
1, the decrease in yield is smaller than that of BaFTwoWith
The effect of suppressing the yield reduction by mixing was observed.
Embodiment 4
CoFThree1.1 g, BaFTwo12.0 g (88 mol
%) And weighed and mixed uniformly. Reactor similar to Example 1
The mixture was charged into the
Performed. The first reaction yield with CO is 80%
On the other hand, the yield after repeating 7 times was almost reduced to 79%.
I never did.
Examples 5 to 7
As the metal fluoride A, the CoF of Example 1ThreeIs CeFFour,
AgFTwo, KThreeNiF7To metal fluoride B
And BaFTwoMixed metal mixed with 50mol%
The synthesis was repeatedly performed using fluoride in the same manner as in Example 1.
Was. The results are summarized in Table 1. In either case,
Almost no yield loss due to repeated synthesis
Was. AgFTwo, KThreeNiF7About the initial yield, gold
Degradation due to moisture during preparation of genus fluoride
However, the yield for the second and subsequent rounds is almost the same as the yield for the seventh round.
Comparable yields.
[0022]
[Table 1]
[0023]
According to the method of the present invention, high safety and high safety
COF with high purity, high yield, and high productivityTwoManufacture
can do.
Claims (1)
化セリウム、二フッ化銀、またはK3NiF7の少なくと
も1種の金属フッ化物との反応により二フッ化カルボニ
ルを製造するに際し、該金属フッ化物の固結を抑制する
ために、該金属フッ化物にフッ化バリウム、またはフッ
化リチウムの少なくとも1種を混合して用いることを特
徴とする二フッ化カルボニルの製造方法。Claims: 1. Difluoride by reaction of carbon monoxide with at least one metal fluoride of cobalt trifluoride, cerium tetrafluoride, silver difluoride, or K 3 NiF 7 . In producing carbonyl, carbonyl difluoride is used by mixing at least one of barium fluoride and lithium fluoride with the metal fluoride in order to suppress solidification of the metal fluoride. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002022628A JP4059680B2 (en) | 2002-01-31 | 2002-01-31 | Method for producing carbonyl difluoride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002022628A JP4059680B2 (en) | 2002-01-31 | 2002-01-31 | Method for producing carbonyl difluoride |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003221214A true JP2003221214A (en) | 2003-08-05 |
JP4059680B2 JP4059680B2 (en) | 2008-03-12 |
Family
ID=27745576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002022628A Expired - Fee Related JP4059680B2 (en) | 2002-01-31 | 2002-01-31 | Method for producing carbonyl difluoride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4059680B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005056472A1 (en) * | 2003-12-11 | 2005-06-23 | Asahi Glass Company, Limited | Method and apparatus for producing carbonyl fluoride |
JP5315610B2 (en) * | 2004-04-28 | 2013-10-16 | ダイキン工業株式会社 | Method for producing carbonyl difluoride |
-
2002
- 2002-01-31 JP JP2002022628A patent/JP4059680B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005056472A1 (en) * | 2003-12-11 | 2005-06-23 | Asahi Glass Company, Limited | Method and apparatus for producing carbonyl fluoride |
JPWO2005056472A1 (en) * | 2003-12-11 | 2007-07-05 | 旭硝子株式会社 | Method and apparatus for producing carbonyl fluoride |
US7371898B2 (en) | 2003-12-11 | 2008-05-13 | Asahi Glass Company, Limited | Methods for producing carbonyl fluoride and apparatus for production |
JP4765630B2 (en) * | 2003-12-11 | 2011-09-07 | 旭硝子株式会社 | Method and apparatus for producing carbonyl fluoride |
JP5315610B2 (en) * | 2004-04-28 | 2013-10-16 | ダイキン工業株式会社 | Method for producing carbonyl difluoride |
Also Published As
Publication number | Publication date |
---|---|
JP4059680B2 (en) | 2008-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1807354A2 (en) | Process for producing manganese fluoride | |
JP2003221214A (en) | Method for producing carbonyl difluoride | |
JP4104320B2 (en) | Method for producing carbonyl difluoride | |
JP5034322B2 (en) | Synthesis method of nitrogen halides | |
JPS5842849B2 (en) | Method for producing lower perfluoroalkane | |
JP5036990B2 (en) | Method for producing manganese fluoride | |
WO2020145088A1 (en) | Method for producing cyclobutane | |
JPS5841829A (en) | Preparation of octafuoropropane | |
JP2010116395A (en) | Manufacturing method of decafluorocyclohexene | |
JP3880301B2 (en) | Method for producing hexafluoroaluminum ammonium | |
JP3765969B2 (en) | Method for treating metal fluoride and synthetic catalyst comprising said metal fluoride | |
KR102493899B1 (en) | The preparation method for trifluoroamine oxide including the reuse of SbF5 | |
JP3865571B2 (en) | Method for producing trifluoromethyl hypofluorite | |
JP4205325B2 (en) | Method for producing trifluoromethyl hypofluorite | |
JP2916602B2 (en) | Method for producing fluorine-containing ether compound | |
US20100121116A1 (en) | Process for preparing octafluorocyclohexadiene | |
JPH03232710A (en) | Production of nf3 | |
JPH06345421A (en) | Production of ammonium cryolite | |
JP2008056519A (en) | Method and apparatus for producing cof2 | |
JPS61134330A (en) | Production of perfluoromethane | |
JPH0664917A (en) | Production of ammonium cryolite | |
JPH03170306A (en) | Production of nitrogen trifluoride | |
CN1454194A (en) | Fluorocarbon manufacturing process | |
JPS6116276B2 (en) | ||
JPH11116214A (en) | Method for purifying gaseous nitrogen trifluroride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040907 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131228 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |