JP2003205349A - Method for continuously casting cast slab having little blow hole defect, and produced cast slab - Google Patents

Method for continuously casting cast slab having little blow hole defect, and produced cast slab

Info

Publication number
JP2003205349A
JP2003205349A JP2002006567A JP2002006567A JP2003205349A JP 2003205349 A JP2003205349 A JP 2003205349A JP 2002006567 A JP2002006567 A JP 2002006567A JP 2002006567 A JP2002006567 A JP 2002006567A JP 2003205349 A JP2003205349 A JP 2003205349A
Authority
JP
Japan
Prior art keywords
molten steel
mass
slab
cast slab
immersion nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002006567A
Other languages
Japanese (ja)
Other versions
JP3984476B2 (en
Inventor
Akifumi Seze
昌文 瀬々
Takashi Morohoshi
隆 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002006567A priority Critical patent/JP3984476B2/en
Publication of JP2003205349A publication Critical patent/JP2003205349A/en
Application granted granted Critical
Publication of JP3984476B2 publication Critical patent/JP3984476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously casting a cast slab having little blow hole defect in which the cast slab having excellent quality is produced by restraining catching of argon gas bubble in molten steel into the solidified shell with a simple method at a low cost and preventing the surface defect, and the quality of a steel material applying a rolling work to the cast slab can be improved, too, and to provide the produced cast slab. <P>SOLUTION: In the method for continuously casting the cast slab which pours the molten steel into a mold from an immersion nozzle arranged at the bottom part of a tundish after receiving the molten steel into the tundish from a molten steel ladle and draws out while solidifying the molten steel by cooling with the mold, the argon gas is fed into the immersion nozzle at ≥0.5 NL/min and the cast slab having little blow hole defect is produced by continuously casting under casting condition and component concentration of the molten steel satisfying the following formula Y. Y=N.Vc.D.W.sinθ/A≤90000. N=79C mass%+208848S mass%+14339N(nitrogen) mass%+1280865O(oxygen) mass%. Wherein, N is surface tension gradient value with the component concentrations in the molten steel; Vc is casting velocity (m/min); D is thickness of the cast slab (m); W is width of the cast slab (m); θ is downward angle of the immersion nozzle (deg); and A is total cross sectional area of a spouting hole in the immersion nozzle (m<SP>2</SP>). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋳型に浸漬ノズル
を介して溶鋼を注湯し、この溶鋼を凝固させて表面及び
表層欠陥の無い鋳片を製造する気泡欠陥の少ない鋳片の
連続鋳造方法及び製造された鋳片に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous casting of slabs with few bubble defects by pouring molten steel into a mold through a dipping nozzle and solidifying the molten steel to produce slabs without surface and surface layer defects. A method and a manufactured slab.

【0002】[0002]

【従来の技術】従来、溶鋼鍋からタンディッシュに受湯
し、タンディッシュの底部に設けた浸漬ノズルを介して
鋳型に注湯して鋳型による冷却を行なった後、支持セグ
メントに配置したスプレーノズルから冷却水を噴霧しな
がら凝固させて鋳片の製造が行われる。この浸漬ノズル
を用いて溶鋼を鋳型に注湯する際、溶鋼中の介在物が浸
漬ノズル内に付着するため、吐出口が閉塞して注湯が不
可能になったり、溶鋼の吐出流が偏流して鋳造操業の継
続に支障をきたす事態を招く。また、付着した介在物が
剥離して溶鋼中に混入して介在物に起因した欠陥を生じ
る。
2. Description of the Related Art Conventionally, a spray nozzle is placed in a supporting segment after receiving hot water from a molten steel ladle into a tundish, pouring it into a mold through an immersion nozzle provided at the bottom of the tundish, and cooling the mold. A slab is manufactured by solidifying while cooling water is sprayed from. When pouring molten steel into the mold using this immersion nozzle, inclusions in the molten steel adhere to the inside of the immersion nozzle, blocking the discharge port and making pouring impossible, or the molten steel discharge flow is uneven. This may cause a situation in which the casting operation is interrupted and the continuation of the casting operation is hindered. In addition, the adhered inclusions are separated and mixed into the molten steel to cause defects due to the inclusions.

【0003】この問題を解消するため、浸漬ノズルにア
ルゴンガスを送給し、浸漬ノズルへの介在物の付着の防
止と、鋳型内の介在物をアルゴンガス気泡によって浮上
させて溶鋼中から分離し、介在物に起因する欠陥を防止
することが行われている。しかし、アルゴンガスを吹き
込むことによって浸漬ノズル内の介在物の付着を抑制す
ることはできたが、吹き込まれたアルゴンガスの気泡が
溶鋼の凝固によって形成される凝固殻に捕捉され、この
気泡が圧延加工時に表面に露出し、線状あるいは膨れ等
の表面疵になり、製造された鋼板の品質を損なう問題が
生じた。
In order to solve this problem, argon gas is fed to the immersion nozzle to prevent the inclusions from adhering to the immersion nozzle, and the inclusions in the mold are floated by argon gas bubbles and separated from the molten steel. , Defects caused by inclusions are prevented. However, although it was possible to suppress the adhesion of inclusions in the immersion nozzle by blowing argon gas, the bubbles of the blown argon gas were captured in the solidified shell formed by the solidification of the molten steel, and the bubbles were rolled. There was a problem that it was exposed on the surface during processing and became surface defects such as linear or swollen, which impaired the quality of the manufactured steel sheet.

【0004】この対策として、一般的には、鋳造速度を
遅くし、鋳型内の溶鋼中のアルゴンガス気泡を浮上さ
せ、気泡が凝固殻に捕捉されるのを防止することが行わ
れている。更に、特開平9−192801号公報、特開
2000−202603号公報等のように、移動磁場型
等の通常の電磁攪拌装置を用い、鋳型内の溶鋼の吐出流
の下向きの流れを抑制して溶鋼中のアルゴンガス気泡の
浮上を促進したり、鋳型の内壁に沿って旋回する溶鋼の
流れを形成し、凝固殻の近傍のアルゴンガス気泡や介在
物の凝固殻への付着を防止して清浄な凝固殻を形成し、
気泡欠陥、介在物欠陥等を防止することが行われてい
る。
As a countermeasure against this, generally, the casting speed is slowed down, and the argon gas bubbles in the molten steel in the mold are levitated to prevent the bubbles from being trapped by the solidified shell. Further, as in JP-A-9-192801, JP-A-2000-202603, etc., an ordinary electromagnetic stirrer such as a moving magnetic field type is used to suppress the downward flow of the molten steel discharge flow in the mold. It promotes the floating of argon gas bubbles in the molten steel and forms the flow of molten steel that swirls along the inner wall of the mold to prevent the argon gas bubbles and inclusions near the solidified shell from adhering to the solidified shell for cleaning. Form a solidified shell,
Prevention of bubble defects, inclusion defects, etc. has been carried out.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、鋳造速
度を遅くして鋳型内の溶鋼中のアルゴンガス気泡を浮上
させる方法では、鋳造速度が大幅に低下し、連続鋳造装
置の生産性が低下したり、一回当たりの溶鋼量が大きい
場合、この溶鋼が放熱によって温度低下を生じ、鋳造末
期の溶鋼の温度が目標温度から低目側に外れ、低温度に
起因した地金付着や浸漬ノズル詰まり等から鋳造操業の
継続に支障を生じる。更に、特開平9−192801号
公報、特開2000−202603号公報等のように、
移動磁場型等の通常の電磁攪拌装置を用い、鋳型内の溶
鋼の吐出流の下向きの流れを抑制して溶鋼中のアルゴン
ガス気泡の浮上を促進したり、鋳型の内壁に沿って旋回
する溶鋼の流れを形成する方法では、上向きの溶鋼流に
よるパウダーの巻き込み、あるいは旋回流の下方に体積
する介在物や気泡が存在し、これ等が新たな欠陥が生じ
たり、電磁攪拌等の装置の設置に多大の費用を要し、使
用中の電力消費の増加等の問題がある。
However, in the method of slowing down the casting speed to float up the argon gas bubbles in the molten steel in the mold, the casting speed is significantly lowered, and the productivity of the continuous casting apparatus is lowered. When the amount of molten steel per one time is large, this molten steel causes a temperature drop due to heat radiation, and the temperature of the molten steel at the end of casting deviates from the target temperature to the lower side, causing metal adhesion and clogging of immersion nozzle due to the low temperature. Will interfere with the continuation of the casting operation. Furthermore, as in JP-A-9-192801 and JP-A-2000-202603,
Using a normal electromagnetic stirrer such as a moving magnetic field type, the downward flow of molten steel in the mold is suppressed to promote downward floating of argon gas bubbles in the molten steel, and the molten steel swirls along the inner wall of the mold. In the method of forming the flow of the above, there is inclusion of powder by the upward molten steel flow, or there are inclusions and air bubbles that volume below the swirling flow, which causes new defects and installation of equipment such as electromagnetic stirring. However, there is a problem such as an increase in power consumption during use.

【0006】本発明はかかる事情に鑑みてなされたもの
で、簡単で、しかも安価に溶鋼中のアルゴンガス気泡が
凝固殻に捕捉されるのを抑制し、表面欠陥を防止して優
れた品質の鋳片を製造し、この鋳片を圧延加工を施した
鋼材の品質を向上することができる気泡欠陥の少ない鋳
片の連続鋳造方法及び製造された鋳片を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is possible to easily and inexpensively prevent the argon gas bubbles in molten steel from being trapped in the solidified shell, prevent surface defects, and have excellent quality. An object of the present invention is to provide a method for continuously casting a cast product having a small number of bubble defects capable of producing a cast product and improving the quality of a steel material obtained by rolling the cast product, and the produced cast product.

【0007】[0007]

【課題を解決するための手段】前記目的に沿う本発明に
係る気泡欠陥の少ない鋳片の連続鋳造方法は、溶鋼鍋か
らタンディッシュに受湯してから該タンディッシュの底
部に設けた浸漬ノズルから前記溶鋼を鋳型に注湯し、前
記鋳型により冷却して溶鋼を凝固させながら引き抜く鋳
片の連続鋳造方法において、前記浸漬ノズルに0.5N
L/分以上のアルゴンガスを送給し、下式を満たす鋳造
条件及び前記溶鋼の成分濃度にして連続鋳造する。 Y=N・Vc・D・W・sinθ/A≦90000 N=79C質量%+208848S質量%+14339
N質量%+1280865O質量%
According to the present invention, there is provided a method for continuously casting a slab having a small number of bubble defects according to the above object. The immersion nozzle is provided at the bottom of the tundish after receiving the hot water from the molten steel ladle into the tundish. In the continuous casting method of a slab, in which the molten steel is poured into a mold from which the molten steel is cooled and the molten steel is solidified and withdrawn, 0.5N is applied to the immersion nozzle.
Argon gas of L / min or more is fed, and continuous casting is performed under the casting conditions and the component concentrations of the molten steel satisfying the following formula. Y = N ・ Vc ・ D ・ W ・ sin θ / A ≦ 90000 N = 79C mass% + 2088848S mass% + 14339
N mass% + 128865O mass%

【0008】この方法により、鋳造条件と溶鋼の表面張
力勾配を適正な値を満たすように鋳造するため、鋳型内
の溶鋼中に吹き込まれたアルゴンガスの気泡が凝固殻の
内側に捕捉されるを抑制することができる。ここで、V
cは鋳造速度(m/分)、Dは鋳片の厚み(m)、Wは
鋳片の幅(m)、θは浸漬ノズルの下向き角度(de
g)、Aは浸漬ノズルの吐出口の総断面積(m2 )、N
は、溶鋼の成分濃度により計算される表面張力勾配値で
あり、Cは溶鋼中の炭素質量%、Sは溶鋼中の硫黄質量
%、Nは溶鋼中の窒素質量%、Oは溶鋼中の酸素質量%
である。なお、Y値が90000を超えると、浸漬ノズ
ルの吐出口からの溶鋼の下向きの速度が大きくなり、凝
固殻全面での溶鋼の表面張力勾配の関係から凝固殻の内
側にアルゴンガス気泡が捕捉され易くなり、鋳片の表層
の気泡が増加し、この鋳片に圧延加工を施した鋼材の表
面、あるいは表層に気泡性の欠陥が発生する。
According to this method, the casting conditions and the surface tension gradient of the molten steel are cast so as to satisfy appropriate values, so that the bubbles of argon gas blown into the molten steel in the mold are trapped inside the solidified shell. Can be suppressed. Where V
c is the casting speed (m / min), D is the thickness of the slab (m), W is the width of the slab (m), and θ is the downward angle (de) of the immersion nozzle.
g), A is the total cross-sectional area (m 2 ) of the discharge port of the immersion nozzle, N
Is a surface tension gradient value calculated by the component concentration of molten steel, C is carbon mass% in molten steel, S is sulfur mass% in molten steel, N is nitrogen mass% in molten steel, and O is oxygen in molten steel. mass%
Is. When the Y value exceeds 90,000, the downward velocity of the molten steel from the discharge port of the immersion nozzle increases, and argon gas bubbles are trapped inside the solidified shell due to the surface tension gradient of the molten steel over the entire solidified shell. This increases the number of bubbles in the surface layer of the slab, and causes a bubble-like defect on the surface of the steel material obtained by rolling the slab or on the surface layer.

【0009】更に、本発明に係る気泡欠陥の少ない鋳片
は、溶鋼鍋からタンディッシュに受湯してから該タンデ
ィッシュの底部に設けた浸漬ノズルから0.5NL/分
以上のアルゴンガスを送給し、下式を満たす鋳造条件及
び溶鋼の成分濃度で連続鋳造により製造する。 Y=N・Vc・D・W・sinθ/A≦90000 N=79C質量%+208848S質量%+14339
N質量%+1280865O質量%
Furthermore, the slab with few bubble defects according to the present invention receives 0.5 g / min or more of argon gas from an immersion nozzle provided at the bottom of the tundish after receiving the hot water from the molten steel ladle into the tundish. It is manufactured by continuous casting under the casting conditions and the molten steel component concentrations that satisfy the following formula. Y = N ・ Vc ・ D ・ W ・ sin θ / A ≦ 90000 N = 79C mass% + 2088848S mass% + 14339
N mass% + 128865O mass%

【0010】この鋳片は、鋳造条件と溶鋼の表面張力勾
配を適正な値を満たすように鋳造するため、鋳型内の溶
鋼中に吹き込まれたアルゴンガスの気泡が凝固殻の内側
に捕捉されるのを抑制しているので、鋳片の初期の凝固
殻(表層)に捕捉された気泡を少なくした鋳片を製造す
ることができる。そして、この鋳片に圧延加工を施して
製造した鋼材に発生する気泡に起因した線状の欠陥、膨
れ欠陥等を防止して品質を向上することができる。ここ
で、Vcは鋳造速度(m/分)、Dは鋳片の厚み
(m)、Wは鋳片の幅(m)、θは浸漬ノズルの下向き
角度(deg)、Aは浸漬ノズルの吐出口の総断面積
(m2 )、Nは、溶鋼の成分濃度により計算される表面
張力勾配値であり、Cは溶鋼中の炭素質量%、Sは溶鋼
中の硫黄質量%、Nは溶鋼中の窒素質量%、Oは溶鋼中
の酸素質量%である。
Since this cast piece is cast so that the casting conditions and the surface tension gradient of the molten steel satisfy appropriate values, the bubbles of argon gas blown into the molten steel in the mold are trapped inside the solidified shell. Since this is suppressed, it is possible to manufacture a slab in which the number of bubbles trapped in the initial solidified shell (surface layer) of the slab is reduced. Then, it is possible to improve the quality by preventing linear defects, swelling defects and the like due to bubbles generated in the steel material manufactured by rolling the slab. Here, Vc is the casting speed (m / min), D is the thickness of the slab (m), W is the width of the slab (m), θ is the downward angle (deg) of the immersion nozzle, and A is the discharge of the immersion nozzle. The total cross-sectional area (m 2 ) at the outlet, N is the surface tension gradient value calculated by the component concentration of the molten steel, C is the carbon mass% in the molten steel, S is the sulfur mass% in the molten steel, and N is the molten steel. Mass% of nitrogen and O are mass% of oxygen in the molten steel.

【0011】[0011]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の一実施の形態に係る
気泡欠陥の少ない鋳片の連続鋳造方法に適用される連続
鋳造装置の説明図、図2は浸漬ノズル部の拡大図であ
る。図1および図2に示すように、本発明の一実施の形
態に係る気泡欠陥の少ない鋳片の連続鋳造方法に用いら
れる連続鋳造装置Aにおいて、タンディッシュ1内の溶
鋼2は鋳型3に浸漬ノズル4を介して注湯される。この
とき、溶鋼中の介在物のノズルへの付着によるノズル閉
塞を防止するため、さらには、連鋳鋳型内の介在物を浮
上分離させるために浸漬ノズル4の内部に連通したアル
ゴンガスの供給管10を設けており、アルゴンガスは浸
漬ノズル4のスリット11を通り、ポーラス耐火物層1
2から、ノズル内に吹き込まれる。鋳型内に注湯された
溶鋼2は、鋳型3および複数の支持ロール群より構成さ
れる支持セグメント5により支持されながら、支持セグ
メント5に付設した図示しない冷却ノズルからの冷却水
の噴射により、外側から凝固が進行し、ピンチロール6
により鋳片7として引き抜きが行われる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. FIG. 1 is an explanatory view of a continuous casting apparatus applied to a continuous casting method of a slab with few bubble defects according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a dipping nozzle portion. As shown in FIG. 1 and FIG. 2, in a continuous casting apparatus A used in a continuous casting method for a slab with few bubble defects according to an embodiment of the present invention, molten steel 2 in a tundish 1 is immersed in a mold 3. It is poured through the nozzle 4. At this time, in order to prevent nozzle clogging due to adhesion of inclusions in the molten steel to the nozzle, and to float and separate inclusions in the continuous casting mold, an argon gas supply pipe communicating with the inside of the immersion nozzle 4 10 is provided, the argon gas passes through the slit 11 of the immersion nozzle 4, and the porous refractory layer 1
From 2, it is blown into the nozzle. The molten steel 2 poured into the mold is supported outside by the injection of cooling water from a cooling nozzle (not shown) attached to the support segment 5 while being supported by the support segment 5 composed of the mold 3 and a plurality of support roll groups. Solidification progresses from the pinch roll 6
Thus, the cast piece 7 is pulled out.

【0012】次に、本実施の形態に係る気泡欠陥の少な
い鋳片の連続鋳造方法について連続鋳造装置Aを用い説
明する。溶鋼鍋から溶鋼2をタンディッシュ1に受湯
し、このタンディッシュ1の底部に設けた浸漬ノズル4
から溶鋼2を内部を水冷した鋳型3に注湯し、鋳型3に
より冷却して溶鋼を凝固させなる。この鋳型3の冷却に
よって、凝固殻を形成し、更に、鋳型3の下方に配置さ
れた支持セグメント5による案内とスプレーノズルによ
る冷却によって凝固が進行し、軽圧下ロールセグメント
9を用いて未凝固部を圧着して後、完全に凝固した鋳片
7をピンチロール6により所定の速度で引き抜きを行
う。浸漬ノズル4から溶鋼2を鋳型3に注湯する際、浸
漬ノズル4に連通したアルゴンガス供給管10からアル
ゴンガスを送給し、浸漬ノズル4の内部に設けたスリッ
ト10を介してポーラス耐火物層11から0.5NL/
分以上の量のアルゴンガスを吹き込む。
Next, the continuous casting method for casting a slab with few bubble defects according to the present embodiment will be described using the continuous casting apparatus A. Molten steel 2 is received in a tundish 1 from a molten steel ladle, and a dipping nozzle 4 is provided at the bottom of the tundish 1.
The molten steel 2 is poured into a mold 3 whose interior is water-cooled and cooled by the mold 3 to solidify the molten steel. By cooling the mold 3, a solidified shell is formed, and further, solidification proceeds by the guide by the support segment 5 arranged below the mold 3 and the cooling by the spray nozzle, and the unsolidified portion is formed by using the light pressure roll segment 9. After pressing, the completely solidified slab 7 is pulled out by the pinch roll 6 at a predetermined speed. When pouring molten steel 2 into the mold 3 from the immersion nozzle 4, argon gas is fed from an argon gas supply pipe 10 communicating with the immersion nozzle 4, and a porous refractory material is provided through a slit 10 provided inside the immersion nozzle 4. Layer 11 to 0.5 NL /
Blow in more than the minute amount of argon gas.

【0013】更に、溶鋼2の成分及び鋳造条件として下
式を満たすように調整して溶鋼2の連続鋳造を行う。 Y=N・Vc・D・W・sinθ/A≦90000 ‥‥ (1) ここで、Vcは鋳造速度(m/分)、Dは鋳片の厚み
(m)、Wは鋳片の幅(m)、θは浸漬ノズルの下向き
角度(deg)、Aは浸漬ノズルの吐出口の総断面積
(m2 )、Nは、溶鋼の成分濃度により計算される値で
ある。また、N値については、下記溶鋼の成分を用いて
求められる下式を満たす条件にする。 N=79C質量%+208848S質量%+14339N質量%+12808 65O質量% ‥‥ (2) ここで、Cは溶鋼中の炭素質量%、Sは溶鋼中の硫黄質
量%、Nは溶鋼中の窒素質量%、Oは溶鋼中の酸素質量
%である。
Furthermore, the components of molten steel 2 and the casting conditions are adjusted so as to satisfy the following formula, and continuous casting of molten steel 2 is performed. Y = N · Vc · D · W · sin θ / A ≦ 90000 (1) where Vc is the casting speed (m / min), D is the thickness of the slab (m), and W is the width of the slab ( m) and θ are downward angles (deg) of the immersion nozzle, A is the total cross-sectional area (m 2 ) of the discharge port of the immersion nozzle, and N is a value calculated from the component concentration of the molten steel. Further, the N value is set to a condition that satisfies the following formula obtained by using the following molten steel components. N = 79 C mass% + 208848 S mass% + 14339 N mass% + 12808 65O mass% ... (2) Here, C is carbon mass% in the molten steel, S is sulfur mass% in the molten steel, N is nitrogen mass% in the molten steel, O is the mass% of oxygen in the molten steel.

【0014】前記(1)式に適用する(2)式で表すN
値は、溶鋼中に含まれる成分(元素)の凝固時の固液分
配により、連続鋳造中の凝固殻(凝固シェル)の前面に
形成される濃度境界層中に侵入したアルゴンガスを凝固
シュルに吸引する力の大小を表すものである。すなわ
ち、刊行物:「鉄と鋼」80(1994)p527に示
されているように、凝固シュル前面の濃度勾配によって
形成される表面張力勾配∂Y/∂Xによりアルゴンガス
を吸引する速度Vは(3)式で表される。 V=−(2d/9μ)(∂Y/∂X)=−(2d/9μ)(∂Y/∂C)(∂ C/∂X ‥‥ (3) ここで、dはアルゴンガスの径、μは溶鋼の粘度、Yは
溶鋼の表面張力、Xは凝固界面からの距離である。ま
た、∂Y/∂Xは表面張力勾配、∂Y/∂Cは表面張力
の成分濃度Cの依存項、∂C/∂Xは成分濃度の勾配で
ある。
N represented by the equation (2) applied to the equation (1)
The value is the argon gas that has penetrated into the concentration boundary layer formed on the front surface of the solidified shell (solidified shell) during continuous casting due to the solid-liquid distribution during solidification of the components (elements) contained in the molten steel to the solidification sur. It shows the magnitude of the suction force. That is, as shown in the publication: “Iron and Steel” 80 (1994) p527, the speed V at which the argon gas is sucked by the surface tension gradient ∂Y / ∂X formed by the concentration gradient on the front surface of the solidification sur It is expressed by equation (3). V = − (2d / 9μ) (∂Y / ∂X) = − (2d / 9μ) (∂Y / ∂C) (∂C / ∂X ... (3) where d is the diameter of the argon gas, μ is the viscosity of molten steel, Y is the surface tension of molten steel, X is the distance from the solidification interface, ∂Y / ∂X is the surface tension gradient, and ∂Y / ∂C is the dependency term of the component concentration C of surface tension. , ∂C / ∂X are gradients of component concentrations.

【0015】凝固の定常状態を考えると、バルク溶鋼中
の成分濃度をCo、平均分配係数をkとすれば、凝固シ
ェルと溶鋼界面の成分濃度はCo/kで表され、濃度境
界層の幅をδとして直線的な濃度分布を仮定すると、濃
度勾配は次式で表される。 ∂C/∂X=(Co/k−Co)/δ=(1−k)k・Co/δ ‥‥(4) よって、(4)式は(5)式のように書き直すことがで
きる。 V=−(2d/9μ)(∂Y/∂X)=−(2d/9μ)(∂Y/∂C)(1− k)k・Co/δ ‥‥ (5)
Considering the steady state of solidification, if the component concentration in the bulk molten steel is Co and the average distribution coefficient is k, the component concentration at the interface between the solidified shell and the molten steel is expressed as Co / k, and the width of the concentration boundary layer is expressed. Assuming that δ is δ and a linear concentration distribution is assumed, the concentration gradient is expressed by the following equation. ∂C / ∂X = (Co / k-Co) / δ = (1-k) k · Co / δ (4) Therefore, the equation (4) can be rewritten as the equation (5). V =-(2d / 9μ) (∂Y / ∂X) =-(2d / 9μ) (∂Y / ∂C) (1-k) k · Co / δ (5)

【0016】次に、(5)式の右辺の成分濃度に関する
項だけ取り出し、全ての構成元素に対して総和をとる
と、(6)式が得られる。 Z値=ΣY(i)・{1−k(i)}/k(i)・C(i) ‥‥ (6) ここで、Y(i)=−∂Y/∂C(i)(mN/m/m
ass%)は鉄の表面張力Yに及ぼすi元素の影響を表
す濃度係数(添加した際に表面張力を低下させる場合を
正の値とする)で公知刊行物「マテリア、vol,36
(1997).p.47」等に示されている。k(i)
は鉄中のi元素の平衡分配係数で公知刊行物「第3版鉄
鋼便覧I,日本鉄鋼協会編(1981)、p.193」
等で示されている。C(i)はi元素の質量%、Σは構
成元素に対する総和を示す。
Next, by taking out only the term relating to the component concentration on the right side of the equation (5) and summing all the constituent elements, the equation (6) is obtained. Z value = ΣY (i) · {1-k (i)} / k (i) · C (i) (6) where Y (i) = − ∂Y / ∂C (i) (mN / M / m
(ass%) is a concentration coefficient representing the influence of the i element on the surface tension Y of iron (a positive value is given when the surface tension is reduced when added), and the known publication "Materia, vol. 36".
(1997). p. 47 "and the like. k (i)
Is a well-known publication on the equilibrium partition coefficient of the i element in iron, "3rd Edition Iron and Steel Handbook I, edited by the Iron and Steel Institute of Japan (1981), p. 193".
Etc. C (i) is the mass% of the i element, and Σ is the sum of the constituent elements.

【0017】Z値に大きな影響を及ぼす元素は、C(炭
素)、S(硫黄)、N(窒素)、O(酸素)であり、
(2)式に示すような、これらの元素だけで計算したN
値を用いても、実用上問題なくアルゴンガス気泡の捕捉
程度を推定できる。ただし、計算に用いる成分濃度とし
ては、表面張力に影響を与える溶鋼中に単独(フリー)
の形で溶解している濃度であり、化合物(窒化物、酸化
物など)の形で存在している濃度は影響を及ぼさないこ
とに注意すべきである。
The elements having a great influence on the Z value are C (carbon), S (sulfur), N (nitrogen) and O (oxygen),
N calculated using only these elements as shown in equation (2)
Even if the value is used, the degree of trapping the argon gas bubbles can be estimated without any practical problem. However, the concentration of the component used in the calculation is independent (free) in the molten steel that affects the surface tension.
It should be noted that the concentration which is dissolved in the form of, and the concentration which is present in the form of compounds (nitride, oxide, etc.) have no effect.

【0018】次に、(1)式のVc・D・W/A×si
nθは、溶鋼中の気泡の鋳型内への侵入深さに対応する
ものである。すなわち、Vc・D・Wは鋳型への注入速
度(m3 /min)、Vc・D・W/Aは浸漬ノズルの
吐出口における断面平均注入速度(m/min)であ
り、Vc・D・W/A×sinθはその垂直下向きの速
度成分を表す。よって、上記(2)式で計算される気泡
の捕捉力が同じ場合、これらの値が大きな鋳造条件ほど
捕捉の程度は益々顕著になるものと考えられる。
Next, Vc · D · W / A × si of the equation (1)
nθ corresponds to the penetration depth of bubbles in the molten steel into the mold. That is, Vc · D · W is the injection speed into the mold (m 3 / min), Vc · D · W / A is the average cross-section injection speed (m / min) at the discharge port of the immersion nozzle, and Vc · D · W / A × sin θ represents the vertically downward velocity component. Therefore, when the trapping force of bubbles calculated by the above equation (2) is the same, it is considered that the trapping degree becomes more remarkable as the casting conditions have larger values.

【0019】さらに、本発明者らは、種々の組成の溶鋼
を種々の鋳造条件で鋳造し、(1)式で計算されるY値
と鋳片に捕捉されたアルゴンガスの個数との関係を調査
した結果を図3に示す。図3は本発明のY値と鋳片の気
泡捕捉指数の関係を表すグラフである。この図3に示す
ようにY値を90000以下とすることで、アルゴンガ
スの凝固シェルへの捕捉を防止し工業的に無害な0.1
個/cm3 以下のレベルまで低減できることを知見し
た。言い換えると、Y値が90000以下となるように
成分と鋳造条件を調整することで、気泡性の欠陥を計画
的に低減できることになる。
Furthermore, the present inventors cast molten steel of various compositions under various casting conditions, and show the relationship between the Y value calculated by the equation (1) and the number of argon gas trapped in the slab. The results of the investigation are shown in FIG. FIG. 3 is a graph showing the relationship between the Y value and the bubble trapping index of the slab according to the present invention. As shown in FIG. 3, by setting the Y value to 90,000 or less, it is possible to prevent trapping of argon gas in the solidified shell and to prevent industrially harmless 0.1
It has been found that the level can be reduced to the level of less than the number of pieces / cm 3 . In other words, by adjusting the components and the casting conditions so that the Y value becomes 90,000 or less, it is possible to systematically reduce the defects in the foaminess.

【0020】[0020]

【実施例】次に、気泡欠陥の少ない鋳片の連続鋳造方法
及び製造された鋳片の実施例について説明する。表1に
示す化学成分の溶鋼350トン(溶鋼鍋容量)を鋳型内
寸が250mm厚みの図1に示すような連続鋳造装置
で、アルゴンガスの吹き込み量を5NL/minとし、
Y値を90000以下となるようにして鋳造した。鋳造
後は、鋳片の表層(表面から0〜20mm)に捕捉され
たガスの個数をX線探傷法で調査すると共に、圧延後の
気泡性欠陥の発生状況についても一貫的に調査した。N
値が大きく気泡の捕捉されやすいD,I,Jのような鋼
種でも、本発明例にしたがって、鋳造速度、鋳片幅、浸
漬ノズルの吐出角度、浸漬ノズルの吐出面積を制御して
Y値が90000以下になるように制御することで、鋳
片の表層に捕捉されたアルゴンガス気泡の個数が少ない
品質の良好な鋳片を工業的に安定して得られることが判
った。
EXAMPLES Next, examples of a continuous casting method of cast pieces having few bubble defects and produced cast pieces will be described. With 350 tons of molten steel (molten steel ladle capacity) having the chemical composition shown in Table 1 in a continuous casting apparatus as shown in FIG. 1 in which the inner dimension of the mold is 250 mm, the blowing rate of argon gas was 5 NL / min,
Casting was performed so that the Y value was 90000 or less. After casting, the number of gases trapped in the surface layer (0 to 20 mm from the surface) of the slab was investigated by an X-ray flaw detection method, and the occurrence of bubble defects after rolling was also investigated consistently. N
Even for steel types such as D, I, and J that have large values and are easily trapped by bubbles, the Y value can be controlled by controlling the casting speed, the slab width, the dipping nozzle discharge angle, and the dipping nozzle discharge area according to the present invention. It was found that by controlling the slab to be 90,000 or less, a slab of good quality with a small number of argon gas bubbles trapped in the surface layer of the slab can be obtained industrially stably.

【0021】[0021]

【表1】 [Table 1]

【0022】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、本実施の形態で説明したY値を90000
以下にし、同時に電磁攪拌、あるいは鋳型の内側壁に沿
った旋回流を付与する攪拌方法等を組み合わせて用いる
ことができる。更に、浸漬ノズルに送給するアルゴンガ
スは、アルゴンガスの他にアルゴンガスに窒素ガスを混
合した気体を用いたり、アルゴンガス以外の不活性ガス
を用いることもできる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiment, and changes in conditions and the like without departing from the spirit are all within the scope of application of the present invention. For example, the Y value described in this embodiment is set to 90,000.
At the same time, electromagnetic stirring or a stirring method for imparting a swirling flow along the inner wall of the mold may be used in combination at the same time. Further, as the argon gas fed to the immersion nozzle, a gas obtained by mixing argon gas with nitrogen gas may be used in addition to the argon gas, or an inert gas other than the argon gas may be used.

【0023】[0023]

【発明の効果】以上述べたように、本発明により、簡単
で、しかも安価に溶鋼中のアルゴンガス気泡が凝固殻に
捕捉されるのを抑制し、表面欠陥を防止して優れた品質
の鋳片を製造でき、この鋳片を圧延加工を施した鋼材の
品質を向上することができる。特に、鋳造条件と溶鋼の
表面張力勾配とを適正な値にして鋳造するため、アルゴ
ンガス気泡が凝固殻の内側に捕捉されるを抑制し、鋳片
の表層に形成する気泡を防止できる。そして、この鋳片
に圧延加工を施して製造した鋼材に発生する気泡に起因
した線状の欠陥、膨れ欠陥等を防止して品質を向上する
ことができる等極めて優れた効果を奏するものである。
As described above, according to the present invention, it is possible to easily and inexpensively suppress the argon gas bubbles in molten steel from being trapped in the solidified shell, prevent surface defects, and obtain excellent quality casting. A piece can be manufactured, and the quality of the steel material obtained by rolling the cast piece can be improved. In particular, since the casting conditions and the surface tension gradient of the molten steel are set to proper values, it is possible to prevent the argon gas bubbles from being trapped inside the solidified shell and prevent the bubbles from forming on the surface layer of the slab. Then, it is possible to prevent the linear defects caused by the air bubbles generated in the steel material produced by rolling the slab, the swollen defects, etc., and to improve the quality, which is an extremely excellent effect. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る気泡欠陥の少ない
鋳片の連続鋳造方法に適用される連続鋳造装置の説明図
である。
FIG. 1 is an explanatory diagram of a continuous casting apparatus applied to a continuous casting method of a slab with few bubble defects according to an embodiment of the present invention.

【図2】浸漬ノズル部の拡大図である。FIG. 2 is an enlarged view of an immersion nozzle section.

【図3】本発明のY値と鋳片の気泡捕捉指数の関係を表
すグラフである。
FIG. 3 is a graph showing the relationship between the Y value and the bubble trapping index of the slab according to the present invention.

【符号の説明】[Explanation of symbols]

A 連続鋳造装置 1 タンディッシュ 2 溶鋼 3 鋳型 4 浸漬ノズル 5 支持セグメント 6 ピンチロール 7 鋳片 8 曲げ戻し矯正点 9 軽圧下ロールセグメント 10 アルゴンガス供給管 11 スリット 12 ポーラス耐火物層 13 吐出口 A continuous casting machine 1 tundish 2 Molten steel 3 molds 4 immersion nozzle 5 Supporting segments 6 pinch rolls 7 slab 8 Bending back correction points 9 Light rolling roll segment 10 Argon gas supply pipe 11 slits 12 Porous refractory layer 13 Discharge port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼鍋からタンディッシュに受湯してか
ら該タンディッシュの底部に設けた浸漬ノズルから前記
溶鋼を鋳型に注湯し、前記鋳型により冷却して溶鋼を凝
固させながら引き抜く鋳片の連続鋳造方法において、前
記浸漬ノズルに0.5NL/分以上のアルゴンガスを送
給し、下式を満たす鋳造条件及び前記溶鋼の成分濃度に
して連続鋳造することを特徴とする気泡欠陥の少ない鋳
片の連続鋳造方法。 Y=N・Vc・D・W・sinθ/A≦90000 N=79C質量%+208848S質量%+14339
N質量%+1280865O質量% ここで、Vcは鋳造速度(m/分)、Dは鋳片の厚み
(m)、Wは鋳片の幅(m)、θは浸漬ノズルの下向き
角度(deg)、Aは浸漬ノズルの吐出口の総断面積
(m2 )、Nは、溶鋼の成分濃度による表面張力勾配値
であり、Cは溶鋼中の炭素質量%、Sは溶鋼中の硫黄質
量%、Nは溶鋼中の窒素質量%、Oは溶鋼中の酸素質量
%である。
1. A slab for drawing molten steel from a molten steel pan into a tundish, pouring the molten steel into a mold from an immersion nozzle provided at the bottom of the tundish, and cooling the molten steel to solidify the molten steel. In the continuous casting method, the number of bubble defects is small, which is characterized in that the immersion nozzle is fed with argon gas of 0.5 NL / min or more and the casting conditions and the component concentration of the molten steel are satisfied to satisfy the following formula. Continuous casting method of slab. Y = N ・ Vc ・ D ・ W ・ sin θ / A ≦ 90000 N = 79C mass% + 2088848S mass% + 14339
N mass% + 12880865 mass% Here, Vc is the casting speed (m / min), D is the thickness of the slab (m), W is the width of the slab (m), θ is the downward angle (deg) of the dipping nozzle, A is the total cross-sectional area (m 2 ) of the discharge port of the immersion nozzle, N is the surface tension gradient value depending on the component concentration of the molten steel, C is the mass% of carbon in the molten steel, S is the mass% of sulfur in the molten steel, and N is N. Is nitrogen mass% in the molten steel, and O is oxygen mass% in the molten steel.
【請求項2】 溶鋼鍋からタンディッシュに受湯してか
ら該タンディッシュの底部に設けた浸漬ノズルから0.
5NL/分以上のアルゴンガスを送給し、下式を満たす
鋳造条件及び溶鋼の成分濃度で連続鋳造により製造した
ことを特徴とする気泡欠陥の少ない鋳片。 Y=N・Vc・D・W・sinθ/A≦90000 N=79C質量%+208848S質量%+14339
N質量%+1280865O質量% ここで、Vcは鋳造速度(m/分)、Dは鋳片の厚み
(m)、Wは鋳片の幅(m)、θは浸漬ノズルの下向き
角度(deg)、Aは浸漬ノズルの吐出口の総断面積
(m2 )、Nは、溶鋼の成分濃度により計算される値で
あり、Cは溶鋼中の炭素質量%、Sは溶鋼中の硫黄質量
%、Nは溶鋼中の窒素質量%、Oは溶鋼中の酸素質量%
である。
2. A tundish is heated from a molten steel ladle, and then a tundish from a dipping nozzle provided at the bottom of the tundish is used.
A slab with few bubble defects, characterized in that it is produced by continuous casting under the casting conditions and the component concentrations of molten steel that satisfy the following formula by supplying an argon gas at 5 NL / min or more. Y = N ・ Vc ・ D ・ W ・ sin θ / A ≦ 90000 N = 79C mass% + 2088848S mass% + 14339
N mass% + 12880865 mass% Here, Vc is the casting speed (m / min), D is the thickness of the slab (m), W is the width of the slab (m), θ is the downward angle (deg) of the dipping nozzle, A is the total cross-sectional area (m 2 ) of the discharge port of the immersion nozzle, N is a value calculated by the component concentration of the molten steel, C is the mass% of carbon in the molten steel, S is the mass% of sulfur in the molten steel, and N is N. Is nitrogen mass% in molten steel, O is oxygen mass% in molten steel
Is.
JP2002006567A 2002-01-15 2002-01-15 Continuous casting method of cast slab with few bubble defects and manufactured slab Expired - Fee Related JP3984476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006567A JP3984476B2 (en) 2002-01-15 2002-01-15 Continuous casting method of cast slab with few bubble defects and manufactured slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006567A JP3984476B2 (en) 2002-01-15 2002-01-15 Continuous casting method of cast slab with few bubble defects and manufactured slab

Publications (2)

Publication Number Publication Date
JP2003205349A true JP2003205349A (en) 2003-07-22
JP3984476B2 JP3984476B2 (en) 2007-10-03

Family

ID=27645300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006567A Expired - Fee Related JP3984476B2 (en) 2002-01-15 2002-01-15 Continuous casting method of cast slab with few bubble defects and manufactured slab

Country Status (1)

Country Link
JP (1) JP3984476B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090288799A1 (en) * 2005-10-27 2009-11-26 Masafumi Miyazaki Method of Production of Ultralow Carbon Cast Slab
JP2010184255A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Continuous casting method for steel slab
JP2010227944A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Continuous casting method for steel cast slab
WO2011111858A1 (en) 2010-03-10 2011-09-15 Jfeスチール株式会社 Method for continuously casting steel and process for producing steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090288799A1 (en) * 2005-10-27 2009-11-26 Masafumi Miyazaki Method of Production of Ultralow Carbon Cast Slab
JP2010184255A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Continuous casting method for steel slab
JP2010227944A (en) * 2009-03-26 2010-10-14 Jfe Steel Corp Continuous casting method for steel cast slab
WO2011111858A1 (en) 2010-03-10 2011-09-15 Jfeスチール株式会社 Method for continuously casting steel and process for producing steel sheet
CN102791400A (en) * 2010-03-10 2012-11-21 杰富意钢铁株式会社 Method for continuously casting steel and process for producing steel sheet
US8596334B2 (en) 2010-03-10 2013-12-03 Jfe Steel Corporation Continuous casting method for steel and method for manufacturing steel sheet

Also Published As

Publication number Publication date
JP3984476B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP2006515802A (en) Casting of steel strip with low surface roughness and low porosity
KR100654738B1 (en) Method for producing ultra low carbon steel slab
JP2003251438A (en) Method for continuously casting cast slab having little blow hole and steel material obtained by working the cast slab
JP3984476B2 (en) Continuous casting method of cast slab with few bubble defects and manufactured slab
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
JP2548696B2 (en) Direct casting and equipment of molten metal into continuous strips of crystalline metal
JP4932985B2 (en) Steel continuous casting method
JPH09192802A (en) Method for continuously casting extra-low carbon steel slab
JP2005152996A (en) Method for continuously casting steel
EP0174766A2 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JP2010099704A (en) Continuous casting method for steel cast slab
JP3538967B2 (en) Continuous casting method
JP2554105B2 (en) Method for preventing blockage of immersion nozzle in continuous casting
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP4492333B2 (en) Steel continuous casting method
JP2021087968A (en) Method of manufacturing thin cast piece
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JP3238090B2 (en) Continuous casting method of steel slab
JPH02247052A (en) Method for continuously casting cast slab for steel strip
JP4432263B2 (en) Steel continuous casting method
JP3426117B2 (en) Continuous casting method of molten steel
JPH1190595A (en) Manufacture of super-low carbon steel generating no blow hole
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP2006192441A (en) Method for continuously casting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3984476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees