JP2003163370A - Method of manufacturing semiconductor crystal - Google Patents

Method of manufacturing semiconductor crystal

Info

Publication number
JP2003163370A
JP2003163370A JP2002210805A JP2002210805A JP2003163370A JP 2003163370 A JP2003163370 A JP 2003163370A JP 2002210805 A JP2002210805 A JP 2002210805A JP 2002210805 A JP2002210805 A JP 2002210805A JP 2003163370 A JP2003163370 A JP 2003163370A
Authority
JP
Japan
Prior art keywords
semiconductor crystal
crystal
layer
semiconductor
seed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002210805A
Other languages
Japanese (ja)
Inventor
Seiji Nagai
誠二 永井
Shiro Yamazaki
史郎 山崎
Yuuta Tezeni
雄太 手銭
Toshio Hiramatsu
敏夫 平松
Kazuyoshi Tomita
一義 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP2002210805A priority Critical patent/JP2003163370A/en
Publication of JP2003163370A publication Critical patent/JP2003163370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-quality semiconductor crystal independent of a base substrate. <P>SOLUTION: A seed layer which consists of a GaN layer 103 (a second layer of the seed layer) and an AlN buffer layer 102 (a first layer of the seed layer) is formed on a sapphire substrate 101. The surface of the seed layer is etched into a stripe geometry having a stripe width (the seed layer width S) nearly equal to 5 μm, a wing width W nearly equal to 15 μm, and a depth of about 0.5 μm. After the etching, mesas having a nearly rectangular cross-sectional shape are formed, and the remainder of erosion having the multilayer seed layer in their flat top parts are disposed at a cycle L nearly equal to 20 μm, exposing part of the sapphire substrate 101 in a valley of each wing. The ratio S/W of the seed width to the wing is preferably about 1/3 to 1/5. Then, a semiconductor crystal A is grown to 50 μm or larger, and then separated from the base substrate to obtain a high-quality monocrystal independent of the base substrate. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下地基板上に III
族窒化物系化合物半導体から成る半導体結晶を成長さ
せ、下地基板から独立した良質の半導体結晶を得る方法
に関する。また、本発明は、LED等に代表される各種
の半導体素子の結晶成長基板の製造等に適用することが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method of growing a semiconductor crystal made of a group nitride compound semiconductor to obtain a good quality semiconductor crystal independent of a base substrate. Further, the present invention can be applied to manufacture of crystal growth substrates for various semiconductor elements represented by LEDs and the like.

【0002】[0002]

【従来の技術】下地基板上に III族窒化物系化合物半導
体から成る半導体結晶を成長させ、その下地基板から独
立した半導体結晶を得る従来技術としては、例えば、公
開特許公報「特開平7−202265: III族窒化物半
導体の製造方法」に記載されている湿式エッチングによ
る方法や、或いは、サファイア基板上にHVPE法等に
より厚膜のGaN(目的の半導体結晶)を成長させ、レ
ーザ照射や研磨等によりサファイア基板を取り除く方法
等が一般に知られている。
2. Description of the Related Art As a conventional technique for growing a semiconductor crystal made of a group III nitride compound semiconductor on an underlying substrate to obtain a semiconductor crystal independent of the underlying substrate, for example, Japanese Patent Laid-Open Publication No. Hei 7-202265. : Method of manufacturing group III nitride semiconductor ", or by growing a thick film of GaN (target semiconductor crystal) on a sapphire substrate by HVPE method, laser irradiation, polishing, etc. A method of removing the sapphire substrate is generally known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の従来技術においては、下地基板(例:サファイア等)
と III族窒化物系化合物半導体との間の熱膨張率差や格
子定数差等に起因して、結晶成長工程完了後の降温時等
に目的の単結晶(例:GaN等)に応力が加わり、目的
の単結晶に転位やクラックが多数発生すると言う問題が
ある。
However, in these conventional techniques, the underlying substrate (eg, sapphire, etc.) is used.
Due to the difference in the coefficient of thermal expansion and the difference in the lattice constant between the group III nitride compound semiconductor and the group III nitride compound semiconductor, stress is applied to the target single crystal (eg GaN) when the temperature is lowered after the crystal growth process is completed. However, there is a problem that many dislocations and cracks occur in the target single crystal.

【0004】例えば上記の様な従来技術を用いた場合、
サファイアや或いはシリコン(Si)等から形成された
下地基板上に窒化ガリウム(GaN)等の窒化物半導体
を結晶成長させ、その後常温まで冷却すると、熱膨張係
数差や或いは格子定数差等に起因する応力により窒化物
半導体層に転位やクラックが多数入る。
For example, in the case of using the conventional technique as described above,
When a nitride semiconductor such as gallium nitride (GaN) is crystal-grown on a base substrate formed of sapphire or silicon (Si) and then cooled to room temperature, it causes a difference in thermal expansion coefficient or a difference in lattice constant. A large number of dislocations and cracks are formed in the nitride semiconductor layer due to the stress.

【0005】この様に、成長層(窒化物半導体層)に転
位やクラックが多数入ると、その上にデバイスを作製し
た場合に、デバイス中に格子欠陥や転位、変形、クラッ
ク等が多数生じる結果となり、デバイス特性の劣化を引
き起こす原因となる。また、下地基板を除去し、成長層
のみを残して独立した基板(結晶)を得ようとする場
合、上記の転位やクラック等の作用により、大面積のも
のが得られない。また、厚膜成長の場合には、成長中に
さえ目的の単結晶にクラックが入り、部分的に小片剥離
が発生する等の問題が非常に生じ易い。
As described above, when a large number of dislocations and cracks are formed in the growth layer (nitride semiconductor layer), a large number of lattice defects, dislocations, deformations, cracks and the like are generated in the device when a device is formed on the growth layer. And cause deterioration of device characteristics. In addition, when the base substrate is removed and an independent substrate (crystal) is obtained by leaving only the growth layer, a large-area substrate cannot be obtained due to the above-mentioned effects of dislocations and cracks. Further, in the case of thick film growth, problems such as cracking of a target single crystal even during growth and partial peeling of the small piece are very likely to occur.

【0006】本発明は、上記の課題を解決するために成
されたものであり、その目的は、下地基板から独立した
良質の半導体結晶を得ることである。
The present invention has been made to solve the above problems, and an object thereof is to obtain a high-quality semiconductor crystal independent of a base substrate.

【0007】[0007]

【課題を解決するための手段、並びに、作用及び発明の
効果】上記の課題を解決するためには、以下の手段が有
効である。即ち、第1の手段は、下地基板上に III族窒
化物系化合物半導体から成る半導体結晶を成長させ、そ
の下地基板から独立した良質の半導体結晶Aを得る製造
工程において、下地基板上に単層又は複層のシード層を
積層するシード積層工程と、下地基板のシード層が成膜
されている側の面の一部を化学的若しくは物理的に侵食
処理して、シード層を下地基板上に部分的或いは分散的
に残留させる侵食残骸部形成工程と、シード層の侵食残
骸部の露出面を半導体結晶Aが結晶成長し始める最初の
結晶成長面とし、この結晶成長面が結晶成長により各々
互いに連結されて少なくとも一連の略平面に成長するま
で半導体結晶Aを結晶成長させる結晶成長工程と、侵食
残骸部を破断することにより半導体結晶Aと下地基板と
を分離する分離工程とを設けることである。
Means for Solving the Problems, and Functions and Effects of the Invention In order to solve the above problems, the following means are effective. That is, the first means is to grow a semiconductor crystal made of a group III nitride compound semiconductor on a base substrate and obtain a good quality semiconductor crystal A independent of the base substrate. Alternatively, a seed laminating step of laminating a plurality of seed layers, and a part of the surface of the base substrate on which the seed layer is formed are chemically or physically eroded to form the seed layer on the base substrate. The erosion debris part forming step of partially or dispersively remaining, and the exposed surface of the erosion debris part of the seed layer are used as the first crystal growth faces where the semiconductor crystal A starts crystal growth, and these crystal growth faces are mutually formed by crystal growth. A crystal growth step of growing the semiconductor crystal A until it is connected and grown to a series of substantially flat surfaces, and a separation step of separating the semiconductor crystal A and the base substrate by breaking the erosion debris portion are provided. That is.

【0008】ただし、ここで言う「 III族窒化物系化合
物半導体」一般には、2元、3元、又は4元の「Al
1-x-y Gay Inx N;0≦x≦1,0≦y≦1,0≦
1−x−y≦1」成る一般式で表される任意の混晶比の
半導体が含まれ、更に、p型或いはn型の不純物が添加
された半導体も、本明細書の「 III族窒化物系化合物半
導体」の範疇とする。また、上記の III族元素(Al,
Ga,In)の内の少なくとも一部をボロン(B)やタ
リウム(Tl)等で置換したり、或いは、窒素(N)の
少なくとも一部をリン(P)、砒素(As)、アンチモ
ン(Sb)、ビスマス(Bi)等で置換したりした半導
体等もまた、本明細書の「 III族窒化物系化合物半導
体」の範疇とする。また、上記のp型の不純物として
は、例えば、マグネシウム(Mg)や、或いはカルシウ
ム(Ca)等を添加することができる。また、上記のn
型の不純物としては、例えば、シリコン(Si)や、硫
黄(S)、セレン(Se)、テルル(Te)、或いはゲ
ルマニウム(Ge)等を添加することができる。また、
これらの不純物は、同時に2元素以上を添加しても良い
し、同時に両型(p型とn型)を添加しても良い。
However, in general, the "group III nitride compound semiconductor" referred to here is binary, ternary, or quaternary "Al.
1-xy Ga y In x N ; 0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦
1-x−y ≦ 1 ”, a semiconductor having an arbitrary mixed crystal ratio represented by the general formula, and a semiconductor to which a p-type or n-type impurity is added is also referred to as“ group III nitride in the present specification ”. It is in the category of "compound semiconductors". In addition, the group III element (Al,
At least a part of Ga, In) is replaced with boron (B), thallium (Tl), or at least a part of nitrogen (N) is phosphorus (P), arsenic (As), antimony (Sb). ), A semiconductor substituted with bismuth (Bi), and the like are also included in the category of “group III nitride compound semiconductor” in the present specification. Further, as the p-type impurities, for example, magnesium (Mg), calcium (Ca), or the like can be added. Also, the above n
As the type impurities, for example, silicon (Si), sulfur (S), selenium (Se), tellurium (Te), germanium (Ge), or the like can be added. Also,
Two or more of these impurities may be added at the same time, or both types (p-type and n-type) may be added at the same time.

【0009】また、上記の下地基板の材料としては、サ
ファイア、スピネル、酸化マンガン、酸化ガリウムリチ
ウム(LiGaO2 )、硫化モリブデン(MoS)、シ
リコン(Si)、炭化シリコン(SiC)、AlN,G
aAs,InP,GaP,MgO,ZnO、又はMgA
2 4 等を用ることができる。即ち、これらの下地基
板の材料としては、 III族窒化物系化合物半導体の結晶
成長に有用な、公知或いは任意の結晶成長基板を使用す
ることができる。
As the material of the above-mentioned base substrate, sapphire, spinel, manganese oxide, lithium gallium oxide (LiGaO 2 ), molybdenum sulfide (MoS), silicon (Si), silicon carbide (SiC), AlN, G.
aAs, InP, GaP, MgO, ZnO, or MgA
1 2 O 4 etc. can be used. That is, as a material for these underlying substrates, a known or arbitrary crystal growth substrate useful for crystal growth of a Group III nitride compound semiconductor can be used.

【0010】尚、下地基板の材料は、GaNとの反応、
熱膨張係数差、及び高温での安定性の観点から、サファ
イアを選択することがより望ましい。
The material of the base substrate is the reaction with GaN,
From the viewpoint of difference in thermal expansion coefficient and stability at high temperature, it is more desirable to select sapphire.

【0011】多数の侵食残骸部を有する下地基板上に I
II族窒化物系化合物より成る目的の半導体結晶Aを成長
させる場合、下地基板と半導体結晶Aとは侵食残骸部の
みで接続される。このため、半導体結晶Aの厚さを十分
に大きくすれば、内部応力または外部応力がこの侵食残
骸部に集中的に作用し易くなる。その結果、特にこれら
の応力は、侵食残骸部に対する剪断応力等として作用
し、この応力が大きくなった時に、侵食残骸部が破断す
る。
On a base substrate having many erosion debris
When the intended semiconductor crystal A made of a group II nitride compound is grown, the base substrate and the semiconductor crystal A are connected only by the erosion debris part. For this reason, if the thickness of the semiconductor crystal A is made sufficiently large, the internal stress or the external stress tends to act concentratedly on the erosion debris portion. As a result, in particular, these stresses act as a shear stress or the like for the erosion debris portion, and when this stress becomes large, the erosion debris portion is broken.

【0012】即ち、上記の本発明の手段に従ってこの応
力を利用すれば、容易に下地基板と半導体結晶Aとを分
離(剥離)することが可能となる。この手段により、下
地基板から独立した単結晶(半導体結晶A)を得ること
ができる。
That is, by utilizing this stress in accordance with the above-mentioned means of the present invention, it becomes possible to easily separate (separate) the base substrate and the semiconductor crystal A. By this means, a single crystal (semiconductor crystal A) independent of the underlying substrate can be obtained.

【0013】また、上記の様な侵食残骸部を形成し、横
方向成長させることにより、下地基板と半導体結晶Aと
の格子定数差に基づく歪が生じ難くなり、「下地基板と
半導体結晶Aの間の格子定数差に基づく応力」が緩和さ
れる。このため、所望の半導体結晶Aが結晶成長する際
に、成長中の半導体結晶Aに働く不要な応力が抑制され
て転位やクラックの発生密度が低減される。
Further, by forming the erosion debris portion as described above and growing it laterally, strain due to the difference in lattice constant between the base substrate and the semiconductor crystal A is less likely to occur, and "the base substrate and the semiconductor crystal A are The stress due to the difference in lattice constant between "is relaxed. Therefore, when the desired semiconductor crystal A grows, unnecessary stress acting on the growing semiconductor crystal A is suppressed, and the density of dislocations and cracks is reduced.

【0014】尚、上記の「多数の侵食残骸部」とは、少
なくとも例えば図1の様な垂直断面から見る限りにおい
て「多数」であれば良く、その平面形状としては一つに
繋がっていても差し支えない。したがって、例えば、一
次元的な一繋がりの矩形波形状や急峻なsin波形状、
或いは渦巻き状等にストライプ(侵食残骸部)の平面形
状を形成しても、本発明の作用・効果を得ることは可能
である。また、ストライプ形状に限らず、略円形、略楕
円形、略多角形、又は略正多角形等の任意の島型の形状
等に上記の侵食残骸部の平面形状を形成しても、勿論本
発明の作用・効果を得ることは可能である。
The "a large number of erosion debris parts" may be "a large number" at least as viewed from a vertical cross section as shown in FIG. 1, for example. It doesn't matter. Therefore, for example, a one-dimensionally connected rectangular wave shape or a steep sin wave shape,
Alternatively, it is possible to obtain the action and effect of the present invention by forming a stripe (erosion debris portion) plane shape in a spiral shape or the like. Further, not limited to the stripe shape, if the plane shape of the above-mentioned erosion debris portion is formed in any island shape such as a substantially circular shape, a substantially elliptical shape, a substantially polygonal shape, or a substantially regular polygonal shape, it is needless to say that It is possible to obtain the action and effect of the invention.

【0015】また、下地基板と半導体結晶Aとを分離
(剥離)する際に、下地基板側に半導体結晶Aの一部が
残っても良いし、或いは、半導体結晶A側に下地基板の
一部(例:侵食残骸部の破断残骸)が残っても良い。即
ち、上記の分離工程は、これらの材料の一部の残骸を皆
無とする様な各材料の完全な分離を前提(必要条件)と
するものではない。
Further, when the base substrate and the semiconductor crystal A are separated (separated), a part of the semiconductor crystal A may remain on the base substrate side, or a part of the base substrate on the semiconductor crystal A side. (Example: Broken wreckage of erosion debris) may remain. That is, the above-described separation step is not premised (a necessary condition) on the complete separation of the respective materials so that some of the debris of these materials are eliminated.

【0016】また、第2の手段は、上記の第1の手段の
結晶成長工程において、半導体結晶Aの膜厚を50μm
以上にすることである。結晶成長させる目的の半導体結
晶Aの厚さは、約50μm以上が望ましく、この厚さが
厚い程、半導体結晶Aを強固にでき、更に、上記の剪断
応力を上記の侵食残骸部に集中させ易くなる。また、こ
れらの作用により、格子定数差に基づいて結晶成長中等
の高温状態においても剥離現象は生じ得るため、その剥
離後には、熱膨張係数差に起因する応力が殆ど半導体結
晶Aに対して作用しなくなり、よって、転位やクラック
が発生せず、高品質の半導体結晶A(例:GaN単結
晶)が得られる。
In a second means, the film thickness of the semiconductor crystal A is 50 μm in the crystal growth step of the first means.
That is all. The thickness of the semiconductor crystal A for the purpose of crystal growth is preferably about 50 μm or more. The thicker the thickness, the stronger the strength of the semiconductor crystal A, and the easier the above-mentioned shear stress is to be concentrated on the erosion debris part. Become. Further, due to these effects, the peeling phenomenon may occur even in a high temperature state such as during crystal growth based on the lattice constant difference, and therefore, after the peeling, almost all the stress due to the difference in thermal expansion coefficient acts on the semiconductor crystal A. Therefore, dislocations and cracks do not occur, and a high-quality semiconductor crystal A (example: GaN single crystal) can be obtained.

【0017】また、第3の手段は、上記の第1又は第2
の手段において、半導体結晶Aと下地基板とを冷却また
は加熱することにより、半導体結晶Aと下地基板との熱
膨張係数差に基づく応力を発生させ、この応力を利用し
て侵食残骸部を破断することである。即ち、上記の破断
(剥離)は、半導体結晶Aと下地基板との熱膨張係数差
に基づく応力(剪断応力)によるものとしても良い。ま
た、この手段によれば、特に、半導体結晶Aの膜厚を5
0μm以上に形成した場合に、半導体結晶Aの結晶性を
高く維持しつつ、確実に半導体結晶Aと下地基板とを破
断することができる。
Further, a third means is the above-mentioned first or second.
In the above means, by cooling or heating the semiconductor crystal A and the base substrate, a stress based on the difference in thermal expansion coefficient between the semiconductor crystal A and the base substrate is generated, and the erosion debris part is broken by utilizing this stress. That is. That is, the break (peeling) may be caused by stress (shear stress) based on the difference in thermal expansion coefficient between the semiconductor crystal A and the underlying substrate. Further, according to this means, particularly, the film thickness of the semiconductor crystal A is set to 5
When the thickness is set to 0 μm or more, the semiconductor crystal A and the base substrate can be reliably broken while maintaining the crystallinity of the semiconductor crystal A high.

【0018】また、第4の手段は、上記の第1乃至第3
の何れか1つの手段において、シード層を、単層又は複
層から成る III族窒化物系化合物半導体としたことであ
る。
The fourth means is the above first to third means.
In any one of the means, the seed layer is a group III nitride compound semiconductor composed of a single layer or multiple layers.

【0019】また、第5の手段は、上記の第4の手段に
おいて、シード層、又はシード層の最上層を窒化ガリウ
ム(GaN)から形成することである。半導体結晶Aの
具体的な組成としては、半導体の結晶成長基板等に最適
で非常に有用な窒化ガリウム(GaN)が、今のところ
産業上最も利用価値が高いものと考えられる。したがっ
て、この様な場合、シード層、又はシード層の最上層を
窒化ガリウム(GaN)から形成することにより、目的
の半導体結晶A(GaN単結晶)の結晶成長を最も良好
に実施することができる。ただし、AlGaNや、或い
はAlGaInN等についても、勿論産業上の利用価値
は大きいので、半導体結晶層Aのより具体的な組成とし
てこれらを選択しても良い。これらの場合にも、目的の
単結晶(半導体結晶層A)の組成に比較的近い組成の半
導体( III族窒化物系化合物半導体)か或いは略同組成
の半導体からシード層、又はシード層の最上層を形成す
ることが望ましい。
A fifth means is that in the fourth means, the seed layer or the uppermost layer of the seed layer is formed of gallium nitride (GaN). As a specific composition of the semiconductor crystal A, gallium nitride (GaN), which is optimal and very useful as a semiconductor crystal growth substrate, is considered to have the highest utility value in the industry so far. Therefore, in such a case, by forming the seed layer or the uppermost layer of the seed layer from gallium nitride (GaN), the crystal growth of the target semiconductor crystal A (GaN single crystal) can be performed best. . However, since AlGaN, AlGaInN, and the like also have great industrial utility value, they may be selected as a more specific composition of the semiconductor crystal layer A. Also in these cases, a semiconductor (group III nitride compound semiconductor) having a composition relatively close to the composition of the target single crystal (semiconductor crystal layer A) or a semiconductor having substantially the same composition is used as the seed layer or the seed layer. It is desirable to form the upper layer.

【0020】また、第6の手段は、上記の第4の手段に
おいて、シード層、又はシード層の最下層を窒化アルミ
ニウム(AlN)から形成することである。これによ
り、窒化アルミニウム(AlN)から所謂バッファ層を
形成することができるので、このバッファ層(AlN)
の積層に基づいた公知の作用を得ることができる。即
ち、格子定数差に起因して目的の半導体結晶層Aに働く
応力を緩和できる等の周知の作用原理により、目的の半
導体結晶層Aの結晶性を向上させることが容易又は可能
となる。
A sixth means is that in the fourth means, the seed layer or the lowermost layer of the seed layer is formed of aluminum nitride (AlN). This makes it possible to form a so-called buffer layer from aluminum nitride (AlN), so that this buffer layer (AlN)
It is possible to obtain a known action based on the stacking of. That is, it is easy or possible to improve the crystallinity of the target semiconductor crystal layer A by a well-known action principle such as the stress acting on the target semiconductor crystal layer A due to the difference in lattice constant can be relaxed.

【0021】また、この手段によれば、AlNバッファ
層と下地基板間の応力をより大きくすることができるた
め、下地基板の分離を更に容易にすることができる。更
に、上記の作用効果を十分に得るためには、例えばシー
ド層を2層から形成し、その下層をAlNバッファ層
(シード層第1層)とし、その上層をGaN層(シード
層第2層)とする複層のシード層の層構成等が非常に有
効である。この組み合わせによれば、上記の第5及び第
6の手段の作用・効果を両方同時に良好に得ることがで
きる。
Further, according to this means, the stress between the AlN buffer layer and the base substrate can be further increased, so that the separation of the base substrate can be further facilitated. Further, in order to sufficiently obtain the above-described effects, for example, a seed layer is formed from two layers, the lower layer thereof is an AlN buffer layer (seed layer first layer), and the upper layer thereof is a GaN layer (seed layer second layer). ), The layer structure of the multiple seed layers is very effective. According to this combination, both the actions and effects of the above-mentioned fifth and sixth means can be satisfactorily obtained at the same time.

【0022】また、第7の手段は、上記の第1乃至第3
の何れか1つの手段において、シード層、又はシード層
の最上層又は最下層を酸化亜鉛(ZnO)又は窒化チタ
ン(TiNx)から形成したことを特徴とする。これら
化合物のような、 III族窒化物系化合物半導体を異種基
板にエピタキシャル成長させる際のバッファ層となり得
る化合物は、本願発明の単層のシード層又は複層のシー
ド層の最上層又は最下層として用いることができる。
The seventh means is the above first to third means.
In any one of the means, the seed layer, or the uppermost layer or the lowermost layer of the seed layer is formed of zinc oxide (ZnO) or titanium nitride (TiN x ). Compounds such as these compounds that can serve as a buffer layer when epitaxially growing a Group III nitride compound semiconductor on a heterogeneous substrate are used as the uppermost layer or the lowermost layer of the single-layer seed layer or the multiple-layer seed layer of the present invention. be able to.

【0023】また、第8の手段は、上記の第1乃至第7
の何れか1つの手段において、侵食残骸部形成工程にお
いて、侵食残骸部の配置間隔を1μm以上、50μm以
下にすることである。より望ましくは、結晶成長の実施
条件にも依存するが、侵食残骸部の配置間隔は、5〜3
0μm程度が良い。ただし、この配置間隔とは、互いに
接近する各侵食残骸部の中心点間の距離のことを言う。
The eighth means is the above first to seventh means.
In any one of the means, the arrangement interval of the erosion debris parts is set to 1 μm or more and 50 μm or less in the erosion debris part formation step. More preferably, the arrangement interval of the erosion debris portion is 5 to 3 although it depends on the conditions for crystal growth.
About 0 μm is preferable. However, this arrangement interval means the distance between the center points of the erosion debris parts that are close to each other.

【0024】この手段により、侵食残骸部間の谷部の上
方を半導体結晶Aで覆うことが可能となる。また、この
値が大きくなり過ぎると、確実に侵食残骸部間の谷部の
上方を半導体結晶Aで覆うことができなくなり、結晶性
が均質かつ良質の結晶(半導体結晶A)が得られなくな
る。或いは、この値が更に大き過ぎると、結晶方位のズ
レが顕著となり望ましくない。
By this means, it becomes possible to cover the upper part of the valley between the erosion debris parts with the semiconductor crystal A. On the other hand, if this value becomes too large, the semiconductor crystal A cannot be surely covered over the valley between the erosion debris portions, and a crystal having a uniform crystallinity and good quality (semiconductor crystal A) cannot be obtained. Alternatively, if this value is too large, the deviation of the crystal orientation becomes remarkable, which is not desirable.

【0025】また、侵食残骸部の頭頂部の横方向の太
さ、幅又は直径をSとし、上記の配置間隔(配置周期)
をLとすると、S/Lの値は1/4〜1/6程度が望ま
しい。この様な設定により、所望の半導体結晶Aの横方
向成長(ELO)が十分に促進されるため、高品質の単
結晶を得ることができる。以下、互いに向かい合う侵食
残骸部の側壁間の距離をW(=L−S)とし、この側壁
間の領域(即ち、侵食された凹部とその上方領域)をウ
イングと呼ぶことがある。また、以下、上記の幅Sをシ
ード幅と呼ぶことがある。したがって、ウイングに対す
るシード幅の比S/Wは1/3〜1/5程度が望まし
い。
Further, the lateral thickness, width or diameter of the crown of the erosion debris portion is S, and the above-mentioned arrangement interval (arrangement period)
Is L, the S / L value is preferably about 1/4 to 1/6. With such a setting, the lateral growth (ELO) of the desired semiconductor crystal A is sufficiently promoted, so that a high quality single crystal can be obtained. Hereinafter, the distance between the side walls of the erosion debris portions facing each other may be W (= LS), and the region between the side walls (that is, the eroded recess and the region above it) may be referred to as a wing. In addition, hereinafter, the width S may be referred to as a seed width. Therefore, the ratio S / W of the seed width to the wings is preferably about 1/3 to 1/5.

【0026】また、侵食残骸部が略等間隔又は略一定周
期で配置される様に上記の侵食処理を実施することがよ
り望ましい。これにより、横方向成長の成長条件が全体
的に略均等となり、結晶性の良否や成長膜厚にムラが生
じ難くなる。また、侵食残骸部間の谷部の上方が、半導
体結晶Aによって完全に覆われるまでの時間に、局所的
なバラツキが生じ難くなるため、例えば、結晶成長速度
の遅い結晶成長法から、結晶成長速度の速い結晶成長法
に、途中で結晶成長法を変更する場合に、その時期を的
確に、早期に、或いは一意に決定することが容易とな
る。また、この様な方法により、上記の剪断応力を各侵
食残骸部に略均等に分配することが可能となるため、全
侵食残骸部の破断がムラなく生じ、下地基板と半導体結
晶Aとの分離が確実に実施できる様になる。
Further, it is more desirable to carry out the above-mentioned erosion treatment so that the erosion debris parts are arranged at substantially equal intervals or at substantially constant intervals. As a result, the growth conditions for the lateral growth become substantially uniform, and the quality of the crystallinity and the growth film thickness are less likely to occur. In addition, since the local variation is less likely to occur in the time until the upper part of the valley between the erosion debris parts is completely covered with the semiconductor crystal A, for example, from the crystal growth method with a slow crystal growth rate, the crystal growth is performed. When the crystal growth method is changed to a high-speed crystal growth method on the way, it becomes easy to accurately, early, or uniquely determine the time. Further, since the above-mentioned shear stress can be distributed to each erosion debris portion substantially evenly by such a method, all the erosion debris portions are evenly fractured, and the base substrate and the semiconductor crystal A are separated. Can be surely implemented.

【0027】したがって、例えば、侵食残骸部をストラ
イプ状のメサ型に形成し、これを等方向、等間隔に配置
する様にしても良い。この様な侵食残骸部の形成は、容
易かつ確実に実施できる等の、現行一般のエッチング加
工の技術水準の現状に照らしたメリットがある。この
時、メサ(侵食残骸部)の方向は、半導体結晶の<1−
100>か<11−20>で良い。
Therefore, for example, the erosion debris portion may be formed in a stripe-shaped mesa shape and arranged in the same direction and at equal intervals. The formation of such an erosion debris portion is advantageous in light of the current state of the art of general etching processing, such as easy and reliable implementation. At this time, the direction of the mesa (erosion debris part) is <1-of the semiconductor crystal.
100> or <11-20> is sufficient.

【0028】また、1辺が0.1μm以上の略正三角形を
基調とする2次元三角格子の格子点上に侵食残骸部を形
成する方法も有効である。この方法によれば、下地基板
との接触面積をより小さくできるため、上記の作用に基
づいて、転位数を確実に低減できると共に下地基板の分
離を容易にすることができる。
It is also effective to form an erosion debris portion on a lattice point of a two-dimensional triangular lattice whose one side is a substantially equilateral triangle having a size of 0.1 μm or more. According to this method, the contact area with the base substrate can be made smaller, so that the number of dislocations can be reliably reduced and the base substrate can be easily separated based on the above-described action.

【0029】また、侵食残骸部の水平断面形状を、略正
三角形、略正六角形、略円形、又は四角形に形成する方
法も有効である。この方法により、 III族窒化物系化合
物半導体より形成される結晶の結晶軸の方向が各部で揃
い易くなるため、或いは、任意の水平方向に対して侵食
残骸部の水平方向の長さ(太さ)を略一様に制限できる
ため、転位の数を抑制することができる。特に、正六角
形や正三角形は、半導体結晶の結晶構造と合致し易いの
でより望ましい。また、円形や四角形は製造技術の面で
形成し易いと言う、現行一般のエッチング加工の技術水
準の現状に照らしたメリットが有る。
It is also effective to form the horizontal cross-sectional shape of the erosion debris portion into a substantially equilateral triangle, a substantially regular hexagon, a substantially circle, or a quadrangle. By this method, the direction of the crystal axis of the crystal formed from the group III nitride compound semiconductor can be easily aligned in each part, or the horizontal length (thickness) of the erosion debris part with respect to any horizontal direction ) Can be restricted substantially uniformly, the number of dislocations can be suppressed. In particular, a regular hexagon and a regular triangle are more preferable because they easily match the crystal structure of the semiconductor crystal. Further, there is a merit in light of the current state of the art of general etching processing that a circle or a quadrangle is easy to form in terms of manufacturing technology.

【0030】また、本発明の第9の手段は、上記下地基
板を0.01μm以上侵食処理することである。また、上
記の侵食処理(エッチング加工等)により、下地基板の
一部まで侵食すれば、その後の結晶成長工程において、
目的の半導体結晶Aの表面(結晶成長面)をより平坦化
し易くなり、更に、侵食残骸部の側方に「空洞」を形成
することが容易となる。この「空洞」は、大きく形成さ
れる程、侵食残骸部に応力(剪断応力)が集中し易くな
る。
Further, a ninth means of the present invention is to erode the above-mentioned base substrate by 0.01 μm or more. Further, if a part of the underlying substrate is eroded by the above erosion treatment (etching process, etc.), in the subsequent crystal growth step,
It becomes easier to flatten the surface (crystal growth surface) of the target semiconductor crystal A, and it becomes easier to form a “cavity” on the side of the erosion debris part. The larger the "cavity" is formed, the easier the stress (shear stress) is concentrated on the erosion debris portion.

【0031】また、第10の手段は、上記の第1乃至第
9の何れか1つの手段の侵食残骸部形成工程において、
侵食残骸部の横方向の太さ、幅又は直径を0.1μm以
上、20μm以下にすることである。より望ましくは、
結晶成長の実施条件にも依存するが、侵食残骸部の横方
向の太さ、幅、又は直径は、0.5〜10μm程度が良
い。この太さが太過ぎると、格子定数差に基づいて半導
体結晶Aに働く応力の影響が大きくなり、半導体結晶A
の転位数が増加し易くなる。また、細過ぎると、侵食残
骸部自身の形成が困難となるか、或いは、侵食残骸部の
頭頂部の結晶成長速度bが遅くなり、望ましくない。
The tenth means is, in the erosion debris forming step of any one of the first to ninth means,
The thickness, width or diameter in the lateral direction of the erosion debris part is to be 0.1 μm or more and 20 μm or less. More preferably,
Although depending on the crystal growth implementation conditions, the lateral thickness, width, or diameter of the erosion debris portion is preferably about 0.5 to 10 μm. If this thickness is too thick, the influence of the stress acting on the semiconductor crystal A based on the difference in lattice constant increases, and the semiconductor crystal A
The number of dislocations in is likely to increase. On the other hand, if it is too thin, it becomes difficult to form the erosion debris itself, or the crystal growth rate b at the crown of the erosion debris becomes slow, which is not desirable.

【0032】また、応力(剪断応力等)により侵食残骸
部を破断させる際にも、侵食残骸部の横方向の太さ、
幅、又は直径が大き過ぎると、下地基板との接触面積が
大きくなるため、確実に破断されない部分が生じ易くな
り、望ましくない。また、格子定数差に基づいて半導体
結晶Aに働く応力の影響の大小は、侵食残骸部の横方向
の太さ(長さ)だけに依るものではなく、侵食残骸部の
配置間隔等にも依存する。そして、これらの設定範囲が
不適切であれば、上記の様に格子定数差に基づく応力の
影響が大きくなり、半導体結晶Aの転位数が増加し易く
なり、望ましくない。
Further, when the erosion debris portion is broken by stress (shear stress or the like), the lateral thickness of the erosion debris portion,
If the width or the diameter is too large, the contact area with the base substrate becomes large, so that a portion that is not reliably broken is likely to occur, which is not desirable. Further, the magnitude of the influence of the stress acting on the semiconductor crystal A based on the difference in the lattice constant depends not only on the lateral thickness (length) of the erosion debris part but also on the arrangement interval of the erosion debris part and the like. To do. If these setting ranges are inappropriate, the influence of stress based on the difference in lattice constant becomes large as described above, and the number of dislocations in the semiconductor crystal A tends to increase, which is not desirable.

【0033】また、侵食残骸部の頭頂部付近の横方向の
太さ、幅、又は直径には、上記の様に最適値又は適正範
囲があるため、侵食残骸部の上面、底面、又は水平断面
の形状は、少なくとも局所的に閉じた形状(島状)、更
には、外側に向かって凸状に閉じた形状が良く、より望
ましくは、この上面、底面、又は水平断面の形状は、略
円形や略正多角形等が良い。この様な設定により、任意
の水平方向に対して確実に、上記の最適値又は適正範囲
を実現することが容易となる。
Since the lateral thickness, width, or diameter near the crown of the erosion debris part has the optimum value or appropriate range as described above, the top, bottom, or horizontal cross section of the erosion debris part. The shape of is preferably at least a locally closed shape (island shape), and more preferably a shape closed in a convex shape toward the outside. More desirably, the shape of the top surface, the bottom surface, or the horizontal cross section is substantially circular. Or a substantially regular polygon is preferable. By such setting, it becomes easy to surely realize the above-mentioned optimum value or appropriate range in an arbitrary horizontal direction.

【0034】また、第11の手段は、上記の第1乃至第
9の何れか1つの手段の結晶成長工程において、結晶成
長速度の遅い結晶成長法から、結晶成長速度の速い結晶
成長法に、途中で結晶成長法を変更することである。例
えば、横方向成長の速い結晶成長法から、縦方向成長の
速い結晶成長法に途中で結晶成長法を変更することによ
り、短時間に結晶性の良質な半導体結晶Aを得ることが
できる。
The eleventh means, in the crystal growth step of any one of the first to ninth means, changes from a crystal growth method with a slow crystal growth rate to a crystal growth method with a high crystal growth rate. It is to change the crystal growth method on the way. For example, by changing the crystal growth method from a crystal growth method with fast lateral growth to a crystal growth method with fast vertical growth, a semiconductor crystal A with good crystallinity can be obtained in a short time.

【0035】また、第12の手段は、上記の第1乃至第
11の何れか1つの手段において、少なくとも分離工程
よりも後に、半導体結晶Aの裏面に残った侵食残骸部の
破断残骸をエッチング等の、化学的或いは物理的な加工
処理により除去する残骸除去工程を設けることである。
この手段によれば、半導体結晶Aの裏面(下地基板を剥
離させた側の面)に、半導体発光素子等の電極を形成し
た際に、電極と半導体結晶Aとの界面付近に生じる電流
ムラや電気抵抗を抑制でき、よって駆動電圧の低減や、
或いは発光強度の向上等を図ることができる。
The twelfth means is the above-mentioned first to eleventh means, wherein the fractured debris of the erosion debris remaining on the back surface of the semiconductor crystal A is etched at least after the separation step. That is, a debris removing step of removing by chemical or physical processing is provided.
According to this means, when an electrode such as a semiconductor light emitting element is formed on the back surface of the semiconductor crystal A (the surface from which the base substrate is peeled), current unevenness that occurs near the interface between the electrode and the semiconductor crystal A and The electric resistance can be suppressed, so that the drive voltage can be reduced and
Alternatively, the emission intensity can be improved.

【0036】更に、侵食残骸部の破断残骸を除去するこ
とにより、電極を半導体発光素子等の反射鏡としても利
用する際には、鏡面付近での光の吸収や散乱が低減され
て反射率が向上するので、発光強度が向上する。また、
例えば、研磨等の物理的な加工処理によりこの残骸除去
工程を実施した場合等には、半導体結晶Aの裏面のバッ
ファ層までをも取り除いたり、或いは、半導体結晶Aの
裏面の平坦度を向上したりすることもできるので、電流
ムラや電気抵抗の抑制、或いは、鏡面付近での光の吸収
や散乱の低減等の、上記の作用効果を更に補強すること
ができる。
Further, by removing the broken debris of the erosion debris part, when the electrode is also used as a reflecting mirror of a semiconductor light emitting device or the like, absorption and scattering of light near the mirror surface are reduced and the reflectance is reduced. As a result, the emission intensity is improved. Also,
For example, when this debris removing step is performed by a physical processing such as polishing, even the buffer layer on the back surface of the semiconductor crystal A is removed, or the flatness of the back surface of the semiconductor crystal A is improved. It is also possible to further strengthen the above-mentioned operational effects such as suppression of current unevenness and electric resistance, or reduction of light absorption and scattering near the mirror surface.

【0037】尚、上記の加工処理は、熱処理であっても
良い。目的の半導体結晶Aの昇華温度よりも、除去した
い部分の昇華温度の方が低い場合等には、昇温処理やレ
ーザ照射等によっても不要な部分を除去することができ
る。
The above-mentioned processing may be heat treatment. When the sublimation temperature of the portion to be removed is lower than the sublimation temperature of the target semiconductor crystal A, the unnecessary portion can be removed by the temperature rising process or laser irradiation.

【0038】また、第13の手段は、 III族窒化物系化
合物半導体発光素子において、上記の第1乃至第12の
何れか1つの手段に依る半導体結晶の製造方法を用いて
製造された半導体結晶を結晶成長基板として備えること
である。この手段によれば、結晶性が良質で、内部応力
の少ない半導体より、 III族窒化物系化合物半導体発光
素子を製造することが可能又は容易となる。
A thirteenth means is a group III nitride compound semiconductor light-emitting device, wherein a semiconductor crystal manufactured by the method for manufacturing a semiconductor crystal according to any one of the above first to twelfth means. Is provided as a crystal growth substrate. According to this means, it is possible or easy to manufacture a group III nitride compound semiconductor light emitting device from a semiconductor having good crystallinity and a small internal stress.

【0039】また、第14の手段は、上記の第1乃至第
12の何れか1つの手段に依る半導体結晶の製造方法を
用いて製造された半導体結晶を結晶成長基板とした結晶
成長により、 III族窒化物系化合物半導体発光素子を製
造することである。この手段によれば、結晶性が良質
で、内部応力の少ない半導体より、 III族窒化物系化合
物半導体発光素子を製造することが可能又は容易とな
る。
A fourteenth means is crystal growth using a semiconductor crystal manufactured by the method for manufacturing a semiconductor crystal according to any one of the first to twelfth means as a crystal growth substrate. A group nitride compound semiconductor light emitting device is manufactured. According to this means, it is possible or easy to manufacture a group III nitride compound semiconductor light emitting device from a semiconductor having good crystallinity and a small internal stress.

【0040】尚、シード層を複層とする場合、最初に積
層する半導体層として、「Alx Ga1-x N(0≦x<
1)」より成るバッファ層を成膜することが望ましい。
ただし、このバッファ層とは別に、更に、上記のバッフ
ァ層と略同組成(例:AlNや、AlGaN)の中間層
を周期的に、又は他の層と交互に、或いは、多層構造が
構成される様に、積層しても良い。この様なバッファ層
(或いは、中間層)の積層により、格子定数差に起因す
る半導体結晶Aに働く応力を緩和できる等の従来と同様
の作用原理により、結晶性を向上させることが可能であ
る。
In the case where the seed layer is a multi-layer, the first semiconductor layer to be laminated is "Al x Ga 1-x N (0≤x <
It is desirable to form a buffer layer consisting of 1) ”.
However, in addition to this buffer layer, an intermediate layer having substantially the same composition (eg, AlN or AlGaN) as that of the buffer layer described above is periodically or alternately provided with another layer, or a multilayer structure is formed. You may laminate so that it may come out. By stacking such buffer layers (or intermediate layers), the crystallinity can be improved by the same action principle as in the past, such as relaxing the stress acting on the semiconductor crystal A due to the difference in lattice constant. .

【0041】また、前記の分離工程において、下地基板
と半導体結晶Aを降温する際には、これらを成長装置の
反応室に残し、略一定流量のアンモニア(NH3)ガスを反
応室に流したままの状態で、概ね「−100℃/min
〜−0.5℃/min」程度の冷却速度で略常温まで冷却
する方法が望ましい。例えば、この様な方法により、半
導体結晶Aの結晶性を安定かつ良質に維持したまま、確
実に前記の分離工程を実施することができる。以上の本
発明の手段により、前記の課題を効果的、或いは合理的
に解決することができる。
In the separation step, when the temperature of the base substrate and the semiconductor crystal A is lowered, they are left in the reaction chamber of the growth apparatus and an approximately constant flow rate of ammonia (NH 3 ) gas is flown into the reaction chamber. As it is, almost "-100 ° C / min
A method of cooling to about room temperature at a cooling rate of about "-0.5 ° C / min" is desirable. For example, by such a method, the above-mentioned separation step can be reliably carried out while maintaining the crystallinity of the semiconductor crystal A stable and of good quality. By the means of the present invention described above, the above problems can be effectively or rationally solved.

【0042】[0042]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。ただし、本発明は以下に示す実施例
に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on specific embodiments. However, the present invention is not limited to the examples shown below.

【0043】(第1実施例)図1は、本実施例の半導体
結晶の製造工程を例示する、半導体結晶の模式的な断面
図である。本実施例では、シード層第1層(AlNバッ
ファ層102)とシード層第2層(GaN層103)よ
り成るシード層( III族窒化物系化合物半導体)を、有
機金属化合物気相成長法(以下「MOVPE」と示す)
による気相成長により成膜した。そこで用いられたガス
は、アンモニア(NH3 )とキャリアガス(H2 又はN
2 )とトリメチルガリウム(Ga(CH3)3,以下「TMG」
と記す)とトリメチルアルミニウム(Al(CH3)3,以下
「TMA」と記す)である。
(First Embodiment) FIG. 1 is a schematic cross-sectional view of a semiconductor crystal illustrating the manufacturing process of the semiconductor crystal of this embodiment. In this embodiment, a seed layer (group III nitride compound semiconductor) including a seed layer first layer (AlN buffer layer 102) and a seed layer second layer (GaN layer 103) is formed by a metal organic chemical vapor deposition method ( Hereinafter referred to as "MOVPE")
The film was formed by vapor phase epitaxy. The gases used there are ammonia (NH 3 ) and carrier gas (H 2 or N
2 ) and trimethylgallium (Ga (CH 3 ) 3 , hereinafter “TMG”)
) And trimethylaluminum (Al (CH 3 ) 3 , hereinafter referred to as “TMA”).

【0044】1.シード積層工程 まず最初に、1インチ四方で厚さ約250μmのサファ
イア基板101(下地基板)を有機洗浄及び熱処理(ベ
ーキング)によりクリーニングした。そして、この単結
晶の下地基板101のa面を結晶成長面として、H2
10リットル/分、NH3 を5リットル/分、TMAを
20μmol/分で供給し、AlNバッファ層102(シー
ド層第1層)を約200nmの厚さにまで結晶成長させ
た。尚、この時の結晶成長温度は、約400℃とした。
1. Seed Laminating Step First, a sapphire substrate 101 (base substrate) having a size of 1 inch square and a thickness of about 250 μm was cleaned by organic cleaning and heat treatment (baking). Then, with the a-plane of the single-crystal base substrate 101 as a crystal growth surface, H 2 is supplied at 10 liters / minute, NH 3 is supplied at 5 liters / minute, and TMA is supplied at 20 μmol / minute, and the AlN buffer layer 102 (seed layer) is supplied. The first layer) was crystal-grown to a thickness of about 200 nm. The crystal growth temperature at this time was about 400 ° C.

【0045】更に、サファイア基板101の温度を10
00℃に昇温し、H2 を20リットル/分、NH3 を1
0リットル/分、TMGを300μmol/分で導入し、膜
厚約1.5μmのGaN層103(シード層第2層)を成
膜した(図1(a))。
Further, the temperature of the sapphire substrate 101 is set to 10
The temperature was raised to 00 ° C., H 2 was added at 20 liter / min, and NH 3 was added at 1
0 liter / min, TMG was introduced at 300 μmol / min to form a GaN layer 103 (seed layer second layer) having a film thickness of about 1.5 μm (FIG. 1A).

【0046】2.侵食残骸部形成工程 次に、ハードベークレジストマスクを使用して、反応性
イオンエッチング(RIE)を用いた選択ドライエッチ
ングにより、配置周期L≒20μmのストライプ状の侵
食残骸部を形成した(図1(b))。 即ち、ストライプ幅(シード幅S)≒5μm、ウイング
幅W≒15μmで、基板が約0.1μmエッチングされる
までストライプ状にエッチングすることにより、断面形
状が略矩形の侵食残骸部を形成した。また、上記のレジ
ストマスクは、ストライプ状に残留した侵食残骸部の側
壁が、GaN層103(シード層第2層)の{11−2
0}面と成る様に形成した。本エッチングにより、Ga
N層103(シード層第2層)とAlNバッファ層10
2(シード層第1層)とから成るシード層を平頂部に有
するストライプ状の侵食残骸部が略周期的に形成され、
ウイングの谷部にサファイア基板101の一部が露出し
た。
2. Step of forming erosion debris portion Next, a striped erosion debris portion having an arrangement period L≈20 μm was formed by selective dry etching using reactive ion etching (RIE) using a hard bake resist mask (FIG. 1). (B)). That is, the erosion debris portion having a substantially rectangular cross-sectional shape was formed by etching the substrate in a stripe shape with a stripe width (seed width S) ≈5 μm and a wing width W≈15 μm until the substrate was etched by about 0.1 μm. In addition, in the above resist mask, the sidewall of the erosion debris portion remaining in a stripe shape is formed of {11-2 of the GaN layer 103 (seed layer second layer).
It was formed so that it would become the 0 plane. By this etching, Ga
N layer 103 (second layer of seed layer) and AlN buffer layer 10
Stripe-shaped erosion debris having a seed layer composed of 2 (seed layer first layer) on the flat top is formed substantially periodically,
Part of the sapphire substrate 101 was exposed at the valley of the wing.

【0047】3.結晶成長工程 次に、ストライプ状に残留した侵食残骸部の露出面を最
初の結晶成長面としてGaN単結晶から成る目的の半導
体結晶AをHVPE法により形成した。
3. Crystal Growth Step Next, a target semiconductor crystal A made of a GaN single crystal was formed by the HVPE method with the exposed surface of the erosion debris portion remaining in a stripe shape as the first crystal growth surface.

【0048】最終的に目的の半導体結晶Aは250μm
程度まで結晶成長させる。このとき成長初期はGaNが
横方向と縦方向に成長し、一旦各部が連結されて一連の
略平面状に平坦化された後は、GaN結晶は縦方向に成
長する。このHVPE法においては、横型のHVPE装
置を用いた。また、V族原料にはアンモニア(NH3)を、
III族原料にはGaとHClとを反応させて得られたG
aClを用いた。
Finally, the target semiconductor crystal A is 250 μm.
The crystal is grown to some extent. At this time, GaN grows in the horizontal direction and the vertical direction in the initial stage of growth, and after each part is connected and flattened into a series of substantially flat surfaces, the GaN crystal grows in the vertical direction. In this HVPE method, a horizontal HVPE device was used. Ammonia (NH 3 ) is used as the V group raw material,
G obtained by reacting Ga with HCl as a group III raw material
aCl was used.

【0049】こうして主に、横方向エピタキシャル成長
によりシード層の側方が埋められ、その後は、縦方向成
長により、目的の膜厚の半導体結晶A(GaN単結晶)
が得られた(図1(c))。尚、図中の符号Rは「空
洞」を示している。尚、上記条件においては、GaNの
膜厚が250μmを超えると、結晶成長工程においてA
lNバッファ層102(シード層第1層)付近での剥離
が観測される。これは格子定数差に起因するものであ
り、以下の分離工程を省略することができる。この場
合、高温での剥離が可能であり、冷却時の熱膨張係数差
による欠陥発生を防止することができる。
Thus, the lateral side of the seed layer is mainly filled by the lateral epitaxial growth, and then the semiconductor crystal A (GaN single crystal) having a target film thickness is formed by the vertical growth.
Was obtained (FIG. 1 (c)). The symbol R in the figure indicates a "cavity". Under the above conditions, if the GaN film thickness exceeds 250 μm, A
Delamination is observed near the 1N buffer layer 102 (seed layer first layer). This is due to the difference in lattice constant, and the following separation step can be omitted. In this case, peeling can be performed at a high temperature, and it is possible to prevent the occurrence of defects due to the difference in thermal expansion coefficient during cooling.

【0050】4.分離工程 上記の半導体結晶Aを1.5℃/分の冷却速度で1100
℃から略室温までゆっくりと冷却する。これにより、A
lNバッファ層102(シード層第1層)付近で剥離が
生じ、下地基板101から独立した目的の膜厚の半導体
結晶A(GaN単結晶)が得られた(図1(d))。
4. Separation Step The above semiconductor crystal A is cooled to 1100 at a cooling rate of 1.5 ° C./min.
Cool slowly from ℃ to about room temperature. This gives A
Delamination occurred near the 1N buffer layer 102 (seed layer first layer), and a semiconductor crystal A (GaN single crystal) having a target film thickness independent of the base substrate 101 was obtained (FIG. 1D).

【0051】(第2実施例)図2は、本実施例の半導体
結晶の製造工程を例示する、半導体結晶の模式的な断面
図である。本実施例では、シード層をZnOとし、スパ
ッタリングにより形成した他は、第1実施例と同様であ
る。
(Second Embodiment) FIG. 2 is a schematic sectional view of a semiconductor crystal exemplifying the manufacturing process of the semiconductor crystal of this embodiment. This embodiment is the same as the first embodiment except that the seed layer is ZnO and is formed by sputtering.

【0052】1.シード積層工程 まず最初に、1インチ四方で厚さ約250μmのサファ
イア基板201(下地基板)を有機洗浄及び熱処理(ベ
ーキング)によりクリーニングした。そして、この単結
晶の下地基板201のa面に、スパッタリングにより膜
厚約200nmのZnO層202(シード層)を成膜し
た(図2(a))。
1. Seed Laminating Step First, a sapphire substrate 201 (base substrate) having a size of 1 inch square and a thickness of about 250 μm was cleaned by organic cleaning and heat treatment (baking). Then, a ZnO layer 202 (seed layer) having a film thickness of about 200 nm was formed on the a-plane of the single-crystal base substrate 201 by sputtering (FIG. 2A).

【0053】2.侵食残骸部形成工程 次に、ハードベークレジストマスクを使用して、反応性
イオンエッチング(RIE)を用いた選択ドライエッチ
ングにより、配置周期L≒20μmのストライプ状の侵
食残骸部を形成した(図2(b))。即ち、ストライプ
幅(シード幅S)≒3μm、ウイング幅W≒15μm
で、基板が約0.1μmエッチングされるまでストライプ
状にエッチングすることにより、断面形状が略矩形の侵
食残骸部を形成した。本エッチングにより、ZnO層2
02(シード層)から成るシード層を平頂部に有するス
トライプ状の侵食残骸部が略周期的に形成され、ウイン
グの谷部にサファイア基板201の一部が露出した。
2. Step of forming erosion debris portion Next, a striped erosion debris portion having an arrangement period L≈20 μm was formed by selective dry etching using reactive ion etching (RIE) using a hard bake resist mask (FIG. 2). (B)). That is, stripe width (seed width S) ≈3 μm, wing width W≈15 μm
Then, by etching the substrate in stripes until the substrate was etched by about 0.1 μm, an erosion debris portion having a substantially rectangular cross section was formed. By this etching, the ZnO layer 2
Striped erosion debris having a seed layer of 02 (seed layer) on the flat top was formed substantially periodically, and a part of the sapphire substrate 201 was exposed at the valley of the wing.

【0054】3.結晶成長工程 次に、ストライプ状に残留した侵食残骸部の露出面を最
初の結晶成長面としてGaN単結晶から成る目的の半導
体結晶AをHVPE法により形成した。
3. Crystal Growth Step Next, a target semiconductor crystal A made of a GaN single crystal was formed by the HVPE method with the exposed surface of the erosion debris portion remaining in a stripe shape as the first crystal growth surface.

【0055】最終的に目的の半導体結晶Aは300μm
程度まで結晶成長させる。このとき成長初期はGaNが
横方向と縦方向に成長し、一旦各部が連結されて一連の
略平面状に平坦化された後は、GaN結晶は縦方向に成
長する。このHVPE法においては、横型のHVPE装
置を用いた。また、V族原料にはアンモニア(NH3)を、
III族原料にはGaとHClとを反応させて得られたG
aClを用いた。
Finally, the intended semiconductor crystal A is 300 μm.
The crystal is grown to some extent. At this time, GaN grows in the horizontal direction and the vertical direction in the initial stage of growth, and after each part is connected and flattened into a series of substantially flat surfaces, the GaN crystal grows in the vertical direction. In this HVPE method, a horizontal HVPE device was used. Ammonia (NH 3 ) is used as the V group raw material,
G obtained by reacting Ga with HCl as a group III raw material
aCl was used.

【0056】こうして主に、横方向エピタキシャル成長
によりシード層の側方が埋められ、その後は、縦方向成
長により、目的の膜厚の半導体結晶A(GaN単結晶)
が得られた(図2(c))。尚、図中の符号Rは「空
洞」を示している。
Thus, the lateral side of the seed layer is mainly filled by the lateral epitaxial growth, and thereafter, the semiconductor crystal A (GaN single crystal) having a target film thickness is formed by the vertical growth.
Was obtained (FIG. 2 (c)). The symbol R in the figure indicates a "cavity".

【0057】4.分離工程 上記の半導体結晶Aを1.5℃/分の冷却速度で1100
℃から略室温までゆっくりと冷却する。これにより、Z
nO層202(シード層)付近で剥離が生じ、下地基板
201から独立した目的の膜厚の半導体結晶A(GaN
単結晶)が得られた(図2(d))。
4. Separation Step The above semiconductor crystal A is cooled to 1100 at a cooling rate of 1.5 ° C./min.
Cool slowly from ℃ to about room temperature. This gives Z
Delamination occurs near the nO layer 202 (seed layer), and the semiconductor crystal A (GaN) having a target film thickness independent of the base substrate 201 is formed.
A single crystal) was obtained (FIG. 2 (d)).

【0058】(第3実施例)シード層202を、スパッ
タリングにより形成した厚さ40nmのTiNxとした
他は第2実施例と同様にして300μmの膜厚の半導体
結晶A(GaN単結晶)をサファイア基板上に形成し
た。1.5℃/分の冷却速度で1100℃から略室温まで
ゆっくりと冷却すことにより、TiNx層(シード層)
付近で剥離が生じ、下地基板から独立した目的の膜厚の
半導体結晶A(GaN単結晶)が得られた。
(Third Embodiment) A semiconductor crystal A (GaN single crystal) having a film thickness of 300 μm is formed in the same manner as in the second embodiment except that the seed layer 202 is formed of TiN x having a thickness of 40 nm formed by sputtering. It was formed on a sapphire substrate. A TiN x layer (seed layer) is obtained by slowly cooling from 1100 ° C to about room temperature at a cooling rate of 1.5 ° C / min.
Peeling occurred in the vicinity, and a semiconductor crystal A (GaN single crystal) having a target film thickness independent of the underlying substrate was obtained.

【0059】尚、第1実施例におけるバッファ層とは別
に、更に、上記のバッファ層と略同組成(例:AlN
や、AlGaN)の中間層を周期的に、又は他の層と交
互に、或いは、多層構造が構成される様に、積層しても
良い。この様なバッファ層(或いは、中間層)の積層に
より、格子定数差に起因する半導体結晶Aに働く応力を
緩和できる等の従来と同様の作用原理により、結晶性を
向上させることが可能である。
In addition to the buffer layer in the first embodiment, the composition is substantially the same as that of the above-mentioned buffer layer (eg, AlN).
Alternatively, an intermediate layer of AlGaN) may be laminated periodically, alternately with other layers, or so as to form a multilayer structure. By stacking such buffer layers (or intermediate layers), the crystallinity can be improved by the same action principle as in the past, such as relaxing the stress acting on the semiconductor crystal A due to the difference in lattice constant. .

【0060】また、前記の分離工程において、下地基板
と半導体結晶Aを降温する際には、これらを成長装置の
反応室に残し、略一定流量のアンモニア(NH3)ガスを反
応室に流したままの状態で、概ね「−100℃/min
〜−0.5℃/min」程度の冷却速度で略常温まで冷却
する方法でも良い。この冷却速度が速過ぎると、半導体
結晶Aにワレ、クラックが発生する恐れがある。
In the separation step, when lowering the temperature of the base substrate and the semiconductor crystal A, they were left in the reaction chamber of the growth apparatus and an approximately constant flow rate of ammonia (NH 3 ) gas was flown into the reaction chamber. As it is, almost "-100 ° C / min
It may be a method of cooling to about room temperature at a cooling rate of about "-0.5 ° C / min". If this cooling rate is too fast, the semiconductor crystal A may be cracked or cracked.

【0061】上記各実施例では、半導体結晶Aのエピタ
キシャル成長は主としてHVPEにより行ったが、半導
体結晶Aのエピタキシャル成長を初期段階ではMOCV
Dとし、その後HVPEに切り換えても良い。この場
合、初期段階では結晶性良く半導体結晶Aの下層部分を
形成し、その後エピタキシャル成長を早めて全体の結晶
成長時間を冗長とせずに結晶性の良い半導体結晶Aを得
ることが可能となる。
In each of the above-mentioned embodiments, the epitaxial growth of the semiconductor crystal A is mainly carried out by HVPE. However, the epitaxial growth of the semiconductor crystal A is MOCV at the initial stage.
It may be set to D and then switched to HVPE. In this case, it is possible to form the lower layer portion of the semiconductor crystal A with good crystallinity in the initial stage, accelerate the epitaxial growth thereafter, and obtain the semiconductor crystal A with good crystallinity without making the entire crystal growth time redundant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係わる半導体結晶の製
造工程を例示する、半導体結晶の模式的な断面図。
FIG. 1 is a schematic cross-sectional view of a semiconductor crystal illustrating a manufacturing process of the semiconductor crystal according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係わる半導体結晶の製
造工程を例示する、半導体結晶の模式的な断面図。
FIG. 2 is a schematic cross-sectional view of a semiconductor crystal illustrating a manufacturing process of the semiconductor crystal according to the second embodiment of the present invention.

【符号の説明】 101、201 … 下地基板(例:サファイア等) 102 … AlNバッファ層(シード層第1層) 103 … GaN層(シード層第2層) 202 … ZnO層(シード層) A … 目的の半導体結晶( III族窒化物系化合物半導
体) R … 空洞 L … 侵食残骸部の配置周期 S … シード幅 W … ウイング幅
[Description of Reference Signs] 101, 201 ... Underlying substrate (eg, sapphire, etc.) 102 ... AlN buffer layer (seed layer first layer) 103 ... GaN layer (seed layer second layer) 202 ... ZnO layer (seed layer) A ... Target semiconductor crystal (group III nitride compound semiconductor) R ... Cavity L ... Arrangement period of erosion debris S ... Seed width W ... Wing width

フロントページの続き (72)発明者 永井 誠二 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 山崎 史郎 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 手銭 雄太 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 平松 敏夫 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 冨田 一義 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5F041 AA40 CA40 CA64 CA65 CA77Continued front page    (72) Inventor Seiji Nagai             Aichi Prefecture Kasuga-cho, Nishikasugai-gun Ochiai character Nagahata 1             Address within Toyoda Gosei Co., Ltd. (72) Inventor Shiro Yamazaki             Aichi Prefecture Kasuga-cho, Nishikasugai-gun Ochiai character Nagahata 1             Address within Toyoda Gosei Co., Ltd. (72) Inventor Yuta             Aichi Prefecture Kasuga-cho, Nishikasugai-gun Ochiai character Nagahata 1             Address within Toyoda Gosei Co., Ltd. (72) Inventor Toshio Hiramatsu             Aichi Prefecture Kasuga-cho, Nishikasugai-gun Ochiai character Nagahata 1             Address within Toyoda Gosei Co., Ltd. (72) Inventor Kazuyoshi Tomita             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. F-term (reference) 5F041 AA40 CA40 CA64 CA65 CA77

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】下地基板上に III族窒化物系化合物半導体
から成る半導体結晶を成長させ、前記下地基板から独立
した良質の半導体結晶Aを得る方法であって、 前記下地基板上に単層又は複層のシード層を積層するシ
ード積層工程と、 前記下地基板の前記シード層が成膜されている側の面の
一部を化学的若しくは物理的に侵食処理して、前記シー
ド層を前記下地基板上に部分的或いは分散的に残留させ
る侵食残骸部形成工程と、 前記シード層の侵食残骸部の露出面を前記半導体結晶A
が結晶成長し始める最初の結晶成長面とし、この結晶成
長面が結晶成長により各々互いに連結されて少なくとも
一連の略平面に成長するまで、前記半導体結晶Aを結晶
成長させる結晶成長工程と、 前記侵食残骸部を破断することにより、前記半導体結晶
Aと前記下地基板とを分離する分離工程とを有すること
を特徴とする半導体結晶の製造方法。
1. A method for growing a semiconductor crystal made of a group III nitride compound semiconductor on a base substrate to obtain a good quality semiconductor crystal A independent of the base substrate, comprising a single layer or a single layer on the base substrate. A seed laminating step of laminating a plurality of seed layers, and chemically or physically eroding a part of the surface of the base substrate on which the seed layer is formed to form the seed layer as the base. A step of forming an erosion debris part which partially or dispersively remains on the substrate; and exposing the exposed surface of the erosion debris part of the seed layer to the semiconductor crystal A
As a first crystal growth surface for starting crystal growth, and a crystal growth step of crystal-growing the semiconductor crystal A until the crystal growth surfaces are connected to each other by crystal growth to grow into at least a series of substantially flat surfaces; A method of manufacturing a semiconductor crystal, comprising a step of separating the semiconductor crystal A and the base substrate by breaking a debris portion.
【請求項2】前記結晶成長工程において、 前記半導体結晶Aの膜厚を50μm以上としたことを特
徴とする請求項1に記載の半導体結晶の製造方法。
2. The method for producing a semiconductor crystal according to claim 1, wherein in the crystal growing step, the film thickness of the semiconductor crystal A is 50 μm or more.
【請求項3】前記半導体結晶Aと前記下地基板とを冷却
または加熱することにより、前記半導体結晶Aと前記下
地基板との熱膨張係数差に基づく応力を発生させ、この
応力を利用して前記侵食残骸部を破断することを特徴と
する請求項1又は請求項2に記載の半導体結晶の製造方
法。
3. The semiconductor crystal A and the base substrate are cooled or heated to generate a stress based on a difference in thermal expansion coefficient between the semiconductor crystal A and the base substrate, and the stress is utilized to generate the stress. The method for manufacturing a semiconductor crystal according to claim 1, wherein the erosion debris portion is broken.
【請求項4】前記シード層は単層又は複層の III族窒化
物系化合物半導体から成ること特徴とする請求項1乃至
3の何れか1項に記載の半導体結晶の製造方法。
4. The method for producing a semiconductor crystal according to claim 1, wherein the seed layer is made of a single-layer or multi-layer group III nitride compound semiconductor.
【請求項5】前記シード層又は前記シード層の最上層を
窒化ガリウム(GaN)から形成したことを特徴とする
請求項4に記載の半導体結晶の製造方法。
5. The method of manufacturing a semiconductor crystal according to claim 4, wherein the seed layer or the uppermost layer of the seed layer is formed of gallium nitride (GaN).
【請求項6】前記シード層又は前記シード層の最下層を
窒化アルミニウム(AlN)から形成したことを特徴と
する請求項4に記載の半導体結晶の製造方法。
6. The method of manufacturing a semiconductor crystal according to claim 4, wherein the seed layer or the lowermost layer of the seed layer is formed of aluminum nitride (AlN).
【請求項7】前記シード層又は前記シード層の最上層又
は最下層を酸化亜鉛(ZnO)又は窒化チタン(TiN
x)から形成したことを特徴とする請求項1乃至3の何
れか1項に記載の半導体結晶の製造方法。
7. The seed layer or the uppermost layer or the lowermost layer of the seed layer is zinc oxide (ZnO) or titanium nitride (TiN).
4. The method for producing a semiconductor crystal according to claim 1, wherein the semiconductor crystal is formed from x ).
【請求項8】前記侵食残骸部形成工程において、前記侵
食残骸部の配置間隔を1μm以上、50μm以下とする
ことを特徴とする請求項1乃至請求項7の何れか1項に
記載の半導体結晶の製造方法。
8. The semiconductor crystal according to claim 1, wherein, in the step of forming the erosion debris portion, the arrangement interval of the erosion debris portion is set to 1 μm or more and 50 μm or less. Manufacturing method.
【請求項9】前記侵食残骸部形成工程において、前記下
地基板を0.01μm以上侵食処理したことを特徴とする
請求項1乃至請求項8の何れか1項に記載の半導体結晶
の製造方法。
9. The method for producing a semiconductor crystal according to claim 1, wherein in the erosion debris forming step, the underlying substrate is eroded by 0.01 μm or more.
【請求項10】前記侵食残骸部形成工程において、前記
侵食残骸部の横方向の太さ、幅、又は直径を0.1μm以
上、20μm以下とすることを特徴とする請求項1乃至
請求項9の何れか1項に記載の半導体結晶の製造方法。
10. The erosion debris portion forming step, wherein the lateral thickness, width, or diameter of the erosion debris portion is set to 0.1 μm or more and 20 μm or less. The method for producing a semiconductor crystal according to any one of 1.
【請求項11】前記結晶成長工程において、 結晶成長速度の遅い結晶成長法から、結晶成長速度の速
い結晶成長法に、途中で結晶成長法を変更することを特
徴とする請求項1乃至請求項10の何れか1項に記載の
半導体結晶の製造方法。
11. The crystal growth method is changed from a crystal growth method with a slow crystal growth rate to a crystal growth method with a fast crystal growth rate in the crystal growth step. 11. The method for producing a semiconductor crystal according to any one of 10.
【請求項12】少なくとも前記分離工程よりも後に、 前記半導体結晶Aの裏面に残った前記侵食残骸部の破断
残骸をエッチング等の、化学的或いは物理的な加工処理
により除去する残骸除去工程を有することを特徴とする
請求項1乃至請求項11の何れか1項に記載の半導体結
晶の製造方法。
12. A debris removing step of removing, at least after the separating step, a broken debris of the erosion debris portion remaining on the back surface of the semiconductor crystal A by a chemical or physical processing treatment such as etching. The method for producing a semiconductor crystal according to any one of claims 1 to 11, characterized in that.
【請求項13】請求項1乃至請求項12の何れか1項に
記載の半導体結晶の製造方法を用いて製造された、前記
半導体結晶Aを結晶成長基板として有することを特徴と
する III族窒化物系化合物半導体発光素子。
13. A group III nitride having the semiconductor crystal A as a crystal growth substrate, which is manufactured by using the method for manufacturing a semiconductor crystal according to claim 1. Description: Physical compound semiconductor light emitting device.
【請求項14】請求項1乃至請求項12の何れか1項に
記載の半導体結晶の製造方法を用いて製造された、前記
半導体結晶Aを結晶成長基板とした結晶成長により製造
されたことを特徴とする III族窒化物系化合物半導体発
光素子。
14. A method for producing a semiconductor crystal according to claim 1, wherein the semiconductor crystal A is produced by crystal growth using the semiconductor crystal A as a crystal growth substrate. A Group III nitride compound semiconductor light-emitting device featuring.
JP2002210805A 2001-09-11 2002-07-19 Method of manufacturing semiconductor crystal Pending JP2003163370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210805A JP2003163370A (en) 2001-09-11 2002-07-19 Method of manufacturing semiconductor crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-274376 2001-09-11
JP2001274376 2001-09-11
JP2002210805A JP2003163370A (en) 2001-09-11 2002-07-19 Method of manufacturing semiconductor crystal

Publications (1)

Publication Number Publication Date
JP2003163370A true JP2003163370A (en) 2003-06-06

Family

ID=26621960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210805A Pending JP2003163370A (en) 2001-09-11 2002-07-19 Method of manufacturing semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2003163370A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
WO2012128375A1 (en) * 2011-03-22 2012-09-27 日本碍子株式会社 Method for producing gallium nitride layer and seed crystal substrate used in same
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
JP2012243815A (en) * 2011-05-16 2012-12-10 Toshiba Corp Semiconductor light-emitting device, wafer, and method of manufacturing nitride semiconductor crystal layer
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
JP2013151388A (en) * 2012-01-25 2013-08-08 Nichia Corp Method for manufacturing nitride semiconductor substrate
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
CN113471062A (en) * 2021-06-30 2021-10-01 中国科学技术大学 Preparation method of III-group oxide film and epitaxial wafer thereof
DE102014217479B4 (en) 2013-09-30 2022-08-18 Samsung Electronics Co., Ltd. Method of forming a semiconductor layer or structure

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629477B2 (en) 2005-05-17 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US10522629B2 (en) 2005-05-17 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8519436B2 (en) 2005-05-17 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US11251272B2 (en) 2005-05-17 2022-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8796734B2 (en) 2005-05-17 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9219112B2 (en) 2005-05-17 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9431243B2 (en) 2005-05-17 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9318325B2 (en) 2006-09-07 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9559712B2 (en) 2006-09-27 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9105522B2 (en) 2006-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8629047B2 (en) 2006-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US10680126B2 (en) 2007-04-09 2020-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9543472B2 (en) 2007-04-09 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9449868B2 (en) 2007-04-09 2016-09-20 Taiwan Semiconductor Manufacutring Company, Ltd. Methods of forming semiconductor diodes by aspect ratio trapping with coalesced films
US9231073B2 (en) 2007-04-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US10961639B2 (en) 2008-06-03 2021-03-30 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8629045B2 (en) 2008-07-01 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9356103B2 (en) 2008-07-01 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9287128B2 (en) 2008-07-15 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US9455299B2 (en) 2008-09-24 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for semiconductor sensor structures with reduced dislocation defect densities
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8809106B2 (en) 2008-09-24 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for semiconductor sensor structures with reduced dislocation defect densities
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9576951B2 (en) 2009-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
WO2012128375A1 (en) * 2011-03-22 2012-09-27 日本碍子株式会社 Method for producing gallium nitride layer and seed crystal substrate used in same
US8795431B2 (en) 2011-03-22 2014-08-05 Ngk Insulators, Ltd. Method for producing gallium nitride layer and seed crystal substrate used in same
JP5100919B2 (en) * 2011-03-22 2012-12-19 日本碍子株式会社 Method for producing gallium nitride layer and seed crystal substrate used therefor
JP2012243815A (en) * 2011-05-16 2012-12-10 Toshiba Corp Semiconductor light-emitting device, wafer, and method of manufacturing nitride semiconductor crystal layer
JP2013151388A (en) * 2012-01-25 2013-08-08 Nichia Corp Method for manufacturing nitride semiconductor substrate
DE102014217479B4 (en) 2013-09-30 2022-08-18 Samsung Electronics Co., Ltd. Method of forming a semiconductor layer or structure
CN113471062A (en) * 2021-06-30 2021-10-01 中国科学技术大学 Preparation method of III-group oxide film and epitaxial wafer thereof

Similar Documents

Publication Publication Date Title
JP4201541B2 (en) Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device manufacturing method
JP2003163370A (en) Method of manufacturing semiconductor crystal
JP4084541B2 (en) Manufacturing method of semiconductor crystal and semiconductor light emitting device
EP1367150B1 (en) Production method for semiconductor crystal and semiconductor luminous element
JP4084544B2 (en) Semiconductor substrate and semiconductor device manufacturing method
CN100352004C (en) Substrate for growing gallium nitride, itsproducing method and method for preparing gallium nitride substrate
KR100629558B1 (en) GaN SINGLE CRYSTALLINE SUBSTRATE AND METHOD OF PRODUCING THE SAME
JP5552627B2 (en) Internally modified substrate for epitaxial growth, crystal film formed by using the same, device, bulk substrate, and manufacturing method thereof
JP3763753B2 (en) Group III nitride compound semiconductor device and method for manufacturing the same
JP4115187B2 (en) Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device
JP2005298319A (en) METHOD FOR MANUFACTURING GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE
JP2010232597A (en) Group-iii nitride compound semiconductor light-emitting element and method of manufacturing the same
TW544930B (en) Method for producing semiconductor crystal
JP5979547B2 (en) Epitaxial wafer and method for manufacturing the same
US7011707B2 (en) Production method for semiconductor substrate and semiconductor element
JP4749583B2 (en) Manufacturing method of semiconductor substrate
JP2002299253A5 (en)
JP4035971B2 (en) Manufacturing method of semiconductor crystal
JP4450202B2 (en) Semiconductor manufacturing method
JP4749584B2 (en) Manufacturing method of semiconductor substrate
JP2014196230A (en) Method of producing gallium nitride crystal self-standing substrate
JP2006306722A (en) MANUFACTURING METHOD OF GaN SINGLE CRYSTAL SUBSTRATE, AND GaN SINGLE CRYSTAL SUBSTRATE
JP2004091278A (en) Method of manufacturing semiconductor crystal
JP2007063121A (en) METHOD FOR MANUFACTURING GaN SELF-STANDING SUBSTRATE, GaN SELF-STANDING SUBSTRATE, AND BLUE LED
JP2009052089A (en) ZnO-BASED THIN FILM AND SEMICONDUCTOR ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415