JP2003159550A - Two-fluid nozzle - Google Patents

Two-fluid nozzle

Info

Publication number
JP2003159550A
JP2003159550A JP2001362092A JP2001362092A JP2003159550A JP 2003159550 A JP2003159550 A JP 2003159550A JP 2001362092 A JP2001362092 A JP 2001362092A JP 2001362092 A JP2001362092 A JP 2001362092A JP 2003159550 A JP2003159550 A JP 2003159550A
Authority
JP
Japan
Prior art keywords
injection port
baffle plate
fluid
nozzle
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001362092A
Other languages
Japanese (ja)
Inventor
Hikoroku Sugiura
彦六 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001362092A priority Critical patent/JP2003159550A/en
Publication of JP2003159550A publication Critical patent/JP2003159550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-fluid nozzle capable of miniaturizing droplets with a small-quantity of low-pressure driving gas and equalizing spraying. <P>SOLUTION: A clearance (20) around the almost entire periphery of a spray port (11) through which a fluid can pass is disposed in the spray port (11), and a baffle (12) is provided. In addition, the clearance section (20) around the almost entire periphery through which the fluid can pass is disposed in the inside including a direct upper stream portion of the spray port (11) having the predetermined length of a channel to accommodate the baffle (12). Further, the baffle (12) is positioned so as to allow an end of the same on the downstream side to be located ahead of a tip of the spray port (11) on the upstream side. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水と空気を噴射し
て、水滴をスプレー又は噴霧するような、複数流体(粉
状物等も一種の流体とみなす。)を混合して噴射する二
流体(流体は複数であれば、三流体以上でも差し支えな
い。)ノズルに関するもので、さらに詳しくは、複数流
体を予備混合した後にノズルより噴出させる、予備混合
方式に適した二流体ノズルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mixes and ejects a plurality of fluids (a powdery substance and the like are also regarded as a kind of fluid) which ejects water and air to spray or atomize water droplets. The present invention relates to a fluid (three or more fluids may be used as long as there are a plurality of fluids) nozzle, and more specifically, to a two-fluid nozzle suitable for a premixing method, in which a plurality of fluids are premixed and then ejected from the nozzle. is there.

【0002】[0002]

【従来の技術】従来の二流体ノズルには、駆動用気体と
噴霧液とを予備混合してノズルから噴出する例等の予備
混合方式と、ノズル先端で圧力解放される駆動用気体が
噴霧液体を巻き込んで噴霧する例等の噴射口直接混合方
式とが知られている。そして、多くの二流体ノズルは後
者の噴射口直接混合方式が採用され、その構成は図15
のようになっている。すなわち、この二流体ノズルは、
駆動気体用パイプ1の内側に噴霧液体用パイプ2を同芯
二重筒状に収納し、該駆動気体用パイプ1の先端部は順
次縮径し、駆動気体が圧縮された直後に圧力解放されつ
つ噴射されるようになし、噴霧液体用パイプ2より吐き
出される液体が、該噴射気体(駆動気体)に巻き込まれ
て微細に粉砕され、霧化・噴射されるようになしてあ
る。
2. Description of the Related Art A conventional two-fluid nozzle has a premixing system in which a driving gas and a spray liquid are premixed and ejected from the nozzle, and a driving gas whose pressure is released at the nozzle tip is a spray liquid. There is known an injection port direct mixing method such as an example of entraining and spraying. Many of the two-fluid nozzles adopt the latter injection port direct mixing method, and its configuration is shown in FIG.
It looks like. That is, this two-fluid nozzle
The spray liquid pipe 2 is housed inside the driving gas pipe 1 in the form of a concentric double cylinder, the diameter of the tip of the driving gas pipe 1 is gradually reduced, and the pressure is released immediately after the driving gas is compressed. While being sprayed, the liquid discharged from the spray liquid pipe 2 is caught in the spray gas (driving gas), finely pulverized, and atomized / sprayed.

【0003】しかし、上記噴射口直接混合方式は、噴霧
液体用パイプ2の噴出口径が小さくて少容量のものであ
れば問題はないが、該噴霧液体用パイプ2の噴出口径を
大きくしたり大容量の噴霧を行おうとすると、非常に高
圧な駆動用気体が大量に必要となり、ランニングコスト
が嵩むという問題点を有している。また、この噴射口直
接混合方式では、噴霧液体用パイプ2の噴出口径の大き
さに対する、必要とする駆動用気体の圧力の関係から、
噴霧液体の噴霧量を無制限に増やすことは、確実に液滴
を微細化することが保証できず合理的でないとされ、噴
霧容量を増やす場合はノズルの数を増やす方が経済的と
されているが、なお、この方法でも高圧の駆動用気体の
必要量が倍増するという問題点を有している。
However, the above-mentioned direct mixing method for the injection port is not a problem as long as the spray port diameter of the spray liquid pipe 2 is small and has a small capacity, but the spray port diameter of the spray liquid pipe 2 is large or large. When attempting to spray a large amount of gas, there is a problem in that a large amount of very high pressure driving gas is required and running costs increase. Further, in this injection port direct mixing method, from the relationship of the required pressure of the driving gas with respect to the size of the ejection port diameter of the spray liquid pipe 2,
It is considered unreasonable to increase the spray amount of the spray liquid indefinitely because it is not possible to guarantee that the liquid droplets are atomized reliably, and it is economical to increase the number of nozzles when increasing the spray volume. However, this method also has a problem that the required amount of high-pressure driving gas is doubled.

【0004】そこで、大容量の噴霧には、前者の予備混
合方式が適するとされている。この予備混合方式を図1
4例で説明すると、10がノズル本体で、このノズル本
体10には駆動気体用パイプ1と噴霧液体用パイプ2と
が連結されている。そして、該駆動気体用パイプ1に
は、圧力気体が矢印A3方向に供送されるようになして
ある。また、噴霧液体用パイプ2よりは、噴霧用の液体
が駆動気体用パイプ1内に供送されるようになしてあ
る。そして、この噴霧液体用パイプ2の下流側には、衝
突板式スタテックミキサー3が配され、駆動用気体と噴
霧液体とはこの衝突板式スタテックミキサー3に衝突
し、一部は該衝突板式スタテックミキサー3の周縁から
上流側に向けて突出させた周縁立壁3a部を乗り越える
際に、流れ方向を変え、複雑な乱流雰囲気と流体どうし
の衝突とで、気液が混合されて霧化されるようになして
ある。さらに、この衝突板式スタテックミキサー3の下
流側に噴射口11が設けられて、霧化した気液混合流体
が該噴射口11より吐き出されるようになしてある。な
お、図1例も原理的にはこの予備混合方式に分類される
もので、気液混合は噴射口11の先端よりは上流側で行
われるものである。
Therefore, the former premixing method is said to be suitable for large-volume spraying. This premixing scheme is shown in Figure 1.
Explaining in four examples, 10 is a nozzle body, and a drive gas pipe 1 and a spray liquid pipe 2 are connected to the nozzle body 10. The pressure gas is supplied to the driving gas pipe 1 in the direction of arrow A3. Further, the spray liquid is supplied from the spray liquid pipe 2 into the drive gas pipe 1. Then, a collision plate type static mixer 3 is arranged on the downstream side of the spray liquid pipe 2, the driving gas and the spray liquid collide with the collision plate type static mixer 3, and a part of the collision plate type static mixer is provided. When passing over the peripheral standing wall 3a protruding from the peripheral edge of the tech mixer 3 toward the upstream side, the flow direction is changed, and gas and liquid are mixed and atomized by a complicated turbulent atmosphere and collision of fluids. It is designed to work. Further, an injection port 11 is provided on the downstream side of the collision plate type static mixer 3 so that the atomized gas-liquid mixed fluid is discharged from the injection port 11. The example in FIG. 1 is also classified into this preliminary mixing method in principle, and gas-liquid mixing is performed upstream of the tip of the injection port 11.

【0005】上記図14例の従来例は、非常に圧力損失
が少なく、気液混合効率が高いもので、その結果、少動
力で大容量の噴霧が可能であることが確認できている
が、この方式においては、同図に高密度域D1と低密度
域D2とで示すように、噴射口の先方は、噴射軸方向
(図14の噴射口11の中心を通る図示しない水平線)
近くが水滴密度が高く、該噴射軸から遠ざかるにしたが
って水滴密度が粗になる傾向を有するものであった。す
なわち、この予備混合方式は噴霧液滴密度が局所的に異
なり、均一性がない傾向を有することが観測できた。
The conventional example shown in FIG. 14 has a very low pressure loss and a high gas-liquid mixing efficiency. As a result, it has been confirmed that a large amount of spray can be achieved with a small amount of power. In this method, as shown by a high-density region D1 and a low-density region D2 in the figure, the tip of the injection port is in the injection axis direction (a horizontal line (not shown) passing through the center of the injection port 11 in FIG. 14).
The water droplet density was high in the vicinity, and the water droplet density tended to become coarser as the distance from the jet axis increased. That is, it can be observed that this premixing method has a tendency that the spray droplet densities are locally different and there is no uniformity.

【0006】上記予備混合方式が、噴霧液滴密度が局所
的に異なる現象を呈する原因を追及したところ、管内
(噴射口11の流路)を流れる流体は、管内壁との摩擦
抵抗があって、濃度の密なる物質あるいは粘度の高い物
質は管内中央に集まる傾向を有する。従って、気液混合
流体が噴射口11より噴射される際、駆動用気体はノズ
ルの内周面側に集まり、液滴は中央側に集まり、噴霧軸
部位に図14に示す高密度域D1と低密度領域D2とが
生ずることになるものである。なお、この高密度領域D
1と低密度領域D2とが生ずることは、均一噴霧にとっ
て、無論望ましいものではなく、この高密度領域D1と
低密度領域D2との発生を防ぐことで、さらなる効率向
上が達成・期待できるものである。
When the above-mentioned premixing method was investigated for the cause of the phenomenon that the spray droplet density was locally different, the fluid flowing in the pipe (the flow path of the injection port 11) had a frictional resistance with the inner wall of the pipe. Substances with a high concentration or substances with a high viscosity tend to gather in the center of the pipe. Therefore, when the gas-liquid mixed fluid is jetted from the jet port 11, the driving gas gathers on the inner peripheral surface side of the nozzle, the droplet gathers on the center side, and the high-density region D1 shown in FIG. The low density region D2 is to be generated. In addition, this high-density area D
The occurrence of 1 and the low density region D2 is of course not desirable for uniform spraying, and by preventing the generation of the high density region D1 and the low density region D2, further improvement in efficiency can be achieved / expected. is there.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明は、上
記の問題点に鑑みなされたもので、低圧力の駆動気体用
の使用量を低減させても、液滴が微細化できると共に、
噴霧が均一になる二流体ノズルを提供することを課題と
したものである。
SUMMARY OF THE INVENTION Therefore, the present invention has been made in view of the above-mentioned problems, and the droplets can be made finer even if the amount used for the low pressure driving gas is reduced.
It is an object of the present invention to provide a two-fluid nozzle that makes spraying uniform.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を達
成するため、ノズル本体10の噴射口11に、邪魔板1
2を、その周縁部位略全周に流体が通過できる間隙部2
0を配して設けてなる技術的手段を講じたものである。
According to the present invention, in order to achieve the above-mentioned object, a baffle plate 1 is provided at an injection port 11 of a nozzle body 10.
2 is a gap portion 2 that allows fluid to pass through substantially the entire circumference of the peripheral portion.
It is a technical measure that is provided by arranging 0s.

【0009】上記請求項1の二流体ノズルによれば、駆
動用気体の噴出量を少なくしても、液滴が微少化され、
均一に噴霧される作用を呈する。この作用を図1を参照
に具体的に説明すると、矢印A1方向に噴射される流体
は、間隙部20を通過した際に流路面積が拡大し、邪魔
板12の下流側が低圧状態となる。すると同時に、一部
で流体が中心側に巻き込まれ矢印A2で示したような乱
流が発生する作用を呈する。そして低圧状態部位が発生
すると、摩擦抵抗値の小さい、しかも相対的に比重の小
さい物質が、この低圧状態部位に集合する。従って、中
央の低圧状態部位では、図14の従来とは逆に、液滴が
粗な駆動用気体の混入割合の高い状態となる。そして、
該噴射口11の噴射先方で、該噴射流体は一気に膨張又
は破裂することになり、結果的に、中心側よりの駆動気
体用の膨張で、液滴の粒径がより微少化され、均一化さ
れる作用を呈するものである。
According to the two-fluid nozzle of the above-mentioned claim 1, even if the ejection amount of the driving gas is reduced, the liquid droplets are miniaturized,
It has the effect of being uniformly sprayed. This action will be specifically described with reference to FIG. 1. When the fluid injected in the direction of arrow A1 passes through the gap portion 20, the flow passage area is enlarged, and the downstream side of the baffle plate 12 is in a low pressure state. At the same time, a part of the fluid is entangled in the center side, and a turbulent flow as shown by an arrow A2 is generated. When a low-pressure state portion is generated, substances having a small frictional resistance value and a relatively small specific gravity gather at the low-pressure state portion. Therefore, in the central low-pressure state portion, contrary to the conventional case of FIG. 14, the liquid droplets are in a state in which the mixing ratio of the driving gas is high. And
At the injection destination of the injection port 11, the injection fluid expands or bursts at a stretch, and as a result, the expansion of the driving gas from the center side further reduces the particle size of the droplets and makes them uniform. It exhibits the action described above.

【0010】次に、請求項2の発明は、ノズル本体10
に開口内周11bが非円形の噴射口11を設け、該噴射
口11に、邪魔板12を、その周縁部位略全周に流体が
通過できる間隙部20を配して設けてなる技術的手段を
講じたものである。
Next, the invention of claim 2 is directed to the nozzle body 10.
A technical means in which an injection port 11 having a non-circular opening inner periphery 11b is provided, and a baffle plate 12 is provided at the injection port 11 with a gap 20 through which fluid can pass around the entire periphery of the injection port 11. Was taken.

【0011】それ故、本発明二流体ノズルは、前記請求
項1の作用に加え、噴射口11の開口内周11bを非円
形とすることで、噴射流体は該開口内周11bの各部位
でその噴出速度と噴射方向とに差が生じ、その結果噴射
先端で乱流が生じたり、噴射流体どうしの衝突が生じ
て、より確実な気液混合と、液滴の細分化が行われる作
用を呈するものである。
Therefore, according to the two-fluid nozzle of the present invention, in addition to the function of the first aspect, the inner peripheral opening 11b of the ejection port 11 is made non-circular so that the ejected fluid is generated at each portion of the inner peripheral opening 11b. There is a difference between the jetting speed and the jetting direction, and as a result, turbulent flow occurs at the jetting tip, collision of jetting fluids occurs, and more reliable gas-liquid mixing and subdivision of droplets are performed. To present.

【0012】次に、請求項3の発明は、ノズル本体10
の先端偏心位置に噴射口11を設け、上記噴射口11
に、邪魔板12を、その周縁部位略全周に流体が通過で
きる間隙部20を配して設けてなる技術的手段を講じた
ものである。
Next, the invention of claim 3 relates to the nozzle body 10.
The injection port 11 is provided at the tip eccentric position of the
In addition, the baffle plate 12 is provided with a technical means provided by disposing a gap portion 20 through which fluid can pass around substantially the entire periphery of the baffle plate 12.

【0013】それ故、本発明二流体ノズルは、前記請求
項1の作用に加え、ノズル本体10の先端偏心位置に噴
射口11を設けたので、気液混合流体がこの噴射口11
に到達するのに時間的差が生じ、ノズル本体10内で局
所的な圧力差が生ずる作用を呈する。そして、その結果
流速が異なる気流同士に攪拌作用が生じ気液混合、液滴
細分化効率を向上する作用を呈するものである。
Therefore, in the two-fluid nozzle of the present invention, in addition to the function of the first aspect, the injection port 11 is provided at the tip eccentric position of the nozzle body 10, so that the gas-liquid mixed fluid is generated by this injection port 11.
There is a time lag in reaching the temperature, and a local pressure difference occurs in the nozzle body 10. As a result, agitation occurs between air streams having different flow velocities, and an effect of improving gas-liquid mixing and droplet segmentation efficiency is exhibited.

【0014】次に、請求項4の発明は、ノズル本体10
の先端偏心位置に、開口内周11bが非円形の噴射口1
1を設け、上記噴射口11に、邪魔板12を、その周縁
部位略全周に流体が通過できる間隙部20を配して設け
てなる技術的手段を講じたものである。
Next, the invention of claim 4 is the nozzle body 10.
At the eccentric position of the tip of
1 is provided, and the baffle plate 12 is provided at the injection port 11 and a gap portion 20 through which a fluid can pass is provided at substantially the entire periphery of the baffle plate 12.

【0015】それ故、本発明二流体ノズルは、前記請求
項3の作用に加え、開口内周11bが非円形の噴射口1
1を使用したので、前記請求項2の作用をも共に呈する
ものである。
Therefore, according to the two-fluid nozzle of the present invention, in addition to the function of the third aspect, the injection port 1 having the non-circular opening inner periphery 11b.
Since No. 1 is used, the operation of claim 2 is also exhibited.

【0016】次に、請求項5の発明は、ノズル本体10
に所定の流路長を有する噴射口11aを設け、この噴射
口11aの略直上流部を含む内部に、その周縁部位略全
周に流体が通過できる間隙部20を配して邪魔板12を
収納し、上記の邪魔板12は、その下流側端面を噴射口
11の先端より上流側に位置するようになした技術的手
段を講じたものである。
Next, the invention of claim 5 relates to the nozzle body 10.
An injection port 11a having a predetermined flow path length is provided in the interior of the injection port 11a, and a baffle plate 12 is provided by disposing a gap 20 through which fluid can pass around the entire periphery of the injection port 11a. The baffle plate 12 is housed, and the technical means is provided so that the downstream end face of the baffle plate 12 is located upstream of the tip of the injection port 11.

【0017】それ故、本発明二流体ノズルは、前記請求
項1の作用に加え、邪魔板12の下流側は、なお筒状の
噴射口11によってその周部が画定され(囲まれ)てい
るので、気液混合流体が邪魔板12部位を通過して、流
路断面積が拡張されて膨張するも、なお、完全な圧力解
法はなく、加圧状態を保つ作用を呈する。そして、該邪
魔板12の下流側の噴射口11内で、前記液滴が粗な駆
動用気体の混入割合の高い雰囲気を中心側に集め、その
後、噴射口11より噴射され完全に圧力解放されること
で、邪魔板12の下流側で中央に駆動用気体の集合と、
圧力の完全解放に伴う急激な膨張とを明確に前後して惹
起するようになす作用を呈するものである。
Therefore, in the two-fluid nozzle of the present invention, in addition to the function of the first aspect, the peripheral portion of the downstream side of the baffle plate 12 is still defined (enclosed) by the cylindrical injection port 11. Therefore, even though the gas-liquid mixed fluid passes through the baffle plate 12 and the cross-sectional area of the flow channel is expanded and expanded, there is still no complete pressure solution, and a function of maintaining a pressurized state is exhibited. Then, in the injection port 11 on the downstream side of the baffle plate 12, the atmosphere in which the liquid droplets are mixed with the coarse driving gas is gathered toward the center side, and thereafter, the liquid is injected from the injection port 11 and the pressure is completely released. As a result, the driving gas gathers in the center on the downstream side of the baffle plate 12,
It exerts a function of causing abrupt expansion and contraction due to complete release of pressure, clearly before and after.

【0018】また、請求項6の二流体ノズルは、ノズル
本体10に略同径で所定の流路長を有する噴射口11a
を設け、この噴射口11aに、その周縁部位略全周に流
体が通過できる間隙部20を有して邪魔板12を収納
し、この邪魔板12は噴射軸方向に移動する移動機構3
0を取り付けてなる技術的手段を講じたものである。
In the two-fluid nozzle according to the sixth aspect, the nozzle body 11 has an injection port 11a having substantially the same diameter and a predetermined flow path length.
The baffle plate 12 is accommodated in the ejection port 11a with a gap 20 through which fluid can pass around the perimeter of the ejection port 11a. The baffle plate 12 moves in the ejection axis direction.
It is a technical measure that is equipped with 0.

【0019】それ故、請求項6の発明によれば、前記請
求項2の作用を呈すると共に、邪魔板12の位置を調整
することで、前記邪魔板12の下流側で中央に駆動用気
体の集合を助長する時間を任意に調整させることが可能
となる作用を呈するものである。
Therefore, according to the invention of claim 6, the operation of claim 2 is exhibited, and by adjusting the position of the baffle plate 12, the driving gas is centered on the downstream side of the baffle plate 12. This has the effect of making it possible to arbitrarily adjust the time for promoting assembly.

【0020】[0020]

【実施例】次に、本発明の実施例を、添付図面を参照し
て詳細に説明する。図中、10がノズル本体で、このノ
ズル本体10には駆動気体用パイプ1と噴霧液体用パイ
プ2とが取り付けられている。そして該駆動気体用パイ
プ1の図1の左端側は、コンプレッサー等の圧力気体供
給源(図示せず)の吐出口に連結され、該圧力空気供送
源より供送される圧力気体が、図1の左側から右側に向
け流過し、右端の噴射口11より矢印A2方向に噴射さ
れるようになしてある。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the figure, 10 is a nozzle body, and a drive gas pipe 1 and a spray liquid pipe 2 are attached to the nozzle body 10. The left end side of the driving gas pipe 1 in FIG. 1 is connected to a discharge port of a pressure gas supply source (not shown) such as a compressor, and the pressure gas supplied from the pressure air supply source is 1 from the left side to the right side, and is injected in the direction of arrow A2 from the injection port 11 at the right end.

【0021】また、上記噴霧液体用パイプ2は、駆動気
体用パイプ1内に噴霧液体を供送するためのもので、該
噴霧液体用パイプ2の下流側端は駆動気体用パイプ1内
に開口してなるのは無論で、上流端である図1の左側端
は噴霧液体の供送源(図示せず)に連結されている。こ
の噴霧液体の供送源としては、単なる噴霧液体のタンク
でもよいが、駆動気体の噴射エネルギーで、噴霧液体を
吸引する力が充分でない場合は、該噴霧液体用パイプ2
への供送流路の途中に噴霧液体を圧送するポンプ等(同
じく、図示せず)を介装してもよいのは従来と同じであ
る。
The spray liquid pipe 2 is for feeding the spray liquid into the driving gas pipe 1, and the downstream end of the spray liquid pipe 2 is opened in the driving gas pipe 1. Of course, the left end of the upstream end of FIG. 1 is connected to a supply source (not shown) of the spray liquid. The supply source of the spray liquid may be a simple tank of the spray liquid, but if the spray energy of the driving gas is insufficient to suck the spray liquid, the spray liquid pipe 2
As in the conventional case, a pump or the like (also not shown) for pressure-feeding the sprayed liquid may be provided in the middle of the delivery flow path to.

【0022】なお、この駆動気体用パイプ1と噴霧液体
用パイプ2とは、図1又は図12例とでは、駆動気体用
パイプ1の先端側に下流側に向かって順次縮径する漏斗
状部1aを設け、該漏斗部1aの小径側先端を噴射口1
1となしてある。そして、噴霧液体用パイプ2はその先
端を、前記漏斗部1aの小径側先端部位に略一致させ同
芯状に開口してなる。したがって、この実施例では、駆
動気体用パイプ1内を流過する駆動用気体が漏斗部1a
で圧縮され、噴射口11より噴出することで膨張するよ
うになっており、この膨張時に噴霧液体用パイプ2より
供送又は吸引される噴霧液体とが気液混合されるように
なっている。
The driving gas pipe 1 and the spray liquid pipe 2 in FIG. 1 or FIG. 12 have a funnel-shaped portion in which the diameter of the driving gas pipe 1 is gradually reduced toward the tip end side toward the downstream side. 1a is provided, and the tip of the funnel portion 1a on the small diameter side is provided with an injection port 1
1 is set. Further, the spray liquid pipe 2 is formed so that its tip is substantially aligned with the tip portion of the funnel portion 1a on the small diameter side and is concentrically opened. Therefore, in this embodiment, the driving gas flowing through the driving gas pipe 1 is filled with the funnel portion 1a.
Is expanded and expanded by being ejected from the injection port 11, and at the time of this expansion, the spray liquid fed or sucked from the spray liquid pipe 2 is gas-liquid mixed.

【0023】なお、上記気液混合法は上記実施例に限定
されるものではなく、前記もしたように、図14のよう
な衝突板式スタテックミキサー3を使用してもよく、さ
らには、従来公知なその他の各種気液混合装置(気液混
合方式)を使用しても差し支えないものである。
The gas-liquid mixing method is not limited to the above-mentioned embodiment, and as described above, a collision plate type static mixer 3 as shown in FIG. 14 may be used. Various other known gas-liquid mixing devices (gas-liquid mixing system) may be used.

【0024】そして、本発明は、上記噴射口11に、邪
魔板12を、その周縁部位略全周に流体が通過できる間
隙部20を配して設けてなる。この邪魔板12は、噴射
口11より小径に構成したものを該噴射口11と同芯状
に設ければよいが、必ずしも厳格な同芯にする必要性は
なく、該邪魔板11の周縁部位略全周に流体が通過でき
る間隙部20を形成するものであればよい。すなわち、
この邪魔板11は気液が予備混合された後、この邪魔板
11で流体が略筒状の流れとなって、その断面積を縮小
するようになしている。そして、この邪魔板11部位を
通過した流体はその下流側では、流路断面積が拡大され
ることで減圧され、筒状の流れから再び柱状乃至略円錐
柱体状の流れに戻ることになり、その際、該邪魔板11
の下流側部位で複雑な乱流が発生し気液の攪拌が行われ
る。また、流路断面積の拡大は減圧部位を発生させ、こ
の減圧部位は筒状の流れではその流れの中心側に集ま
り、流れの中心側が低い圧力となり、この部位が噴射先
端側で圧力解放されることでさらに膨張し、液滴の粉砕
・微粒化が行われるものである。
In the present invention, the baffle plate 12 is provided at the injection port 11 and the gap portion 20 through which the fluid can pass is arranged substantially all around the peripheral edge portion. The baffle plate 12 having a diameter smaller than that of the ejection port 11 may be provided concentrically with the ejection port 11, but it is not necessarily required to be strictly concentric, and the peripheral portion of the baffle plate 11 is not necessarily required. Any material may be used as long as it forms the gap portion 20 through which the fluid can pass substantially all around. That is,
After the gas-liquid is premixed, the baffle plate 11 is configured so that the baffle plate 11 causes the fluid to flow in a substantially cylindrical shape to reduce its cross-sectional area. Then, the fluid that has passed through the baffle plate 11 portion is depressurized on the downstream side by expanding the flow passage cross-sectional area, and returns from the tubular flow to the columnar or substantially conical columnar flow again. At that time, the baffle 11
A complicated turbulent flow is generated in the downstream part of the and the gas-liquid is stirred. Further, the expansion of the flow passage cross-sectional area causes a depressurized portion, and in the tubular flow, the depressurized portion gathers on the center side of the flow, and the pressure on the center side of the flow becomes low, and this portion is released on the injection tip side. By doing so, it further expands, and the droplets are crushed and atomized.

【0025】上記の間隙部20は、一般的には図2に最
も明らかに示すように、同一幅のリング状開口20a
(非円形リング状でもよい。)で構成してなるので、こ
のようになすと噴射域を先方が順次拡径される略円錐状
となすものであるが、該間隙部20のその他の実施態様
としては、先ず、該前記間隙部20を、局所的に幅の変
化する略切溝状開口20bで形成される。すなわち、図
3に最も明らかに示すように、幅L2と幅L3とが同一
でないように構成する。この、局所的に幅の変化する切
溝状開口20bは噴射速度等の噴射条件及び噴射方向を
各部位で大きく変化させることができ、噴射先でさらに
噴射流体が衝突・混合される効果が期待できる。また、
図3のように、切溝状開口20bの両側を幅広として横
長状(猫の目状)とすると、噴射域を略楕円形状となし
て、広い幅に噴霧できるという用途に適するものであ
る。なお、図3例では、切溝状開口20bの外周側輪郭
形状(開口内周11b)を非円形としたが、該開口内周
11bは円形として、邪魔板12側を非円形としてもよ
いもので、さらには、邪魔板12と開口内周11bとの
双方を互いに異なる形状の非円形形状となしても無論差
し支えないものである。
The gap 20 is generally a ring-shaped opening 20a having the same width as shown most clearly in FIG.
Since it is configured to have a non-circular ring shape, the injection region has a substantially conical shape in which the diameter of the tip is gradually increased. However, other embodiments of the gap portion 20 are possible. First, the gap portion 20 is formed with a substantially kerf-shaped opening 20b whose width is locally changed. That is, as shown most clearly in FIG. 3, the width L2 and the width L3 are not the same. The kerf-shaped opening 20b of which the width locally changes can greatly change the injection conditions such as the injection speed and the injection direction at each part, and the effect that the injection fluids further collide and mix at the injection destination is expected. it can. Also,
As shown in FIG. 3, if the both sides of the kerf-shaped opening 20b are wide and have a horizontally long shape (cat's eye shape), the injection area is substantially elliptical, which is suitable for a wide range of spraying. In the example of FIG. 3, the outer peripheral side contour shape of the kerf-shaped opening 20b (opening inner circumference 11b) is non-circular, but the opening inner circumference 11b may be circular and the baffle plate 12 side may be non-circular. Further, it goes without saying that both the baffle plate 12 and the inner circumference 11b of the opening may have different non-circular shapes.

【0026】また、前記間隙部20を、図5に示すよう
に、略三日月形状のC型切溝状開口20cで構成しても
よい。この、C型切溝状開口20cの欠円部を下方に向
けることで、噴射方向の下方には噴射量が少なく、上方
に噴射量を多く設定できる。また、C型切溝状開口20
cは一部に不連続部位を有するので、邪魔板12をこの
不連続部で連結・固定できることになる。
Further, as shown in FIG. 5, the gap portion 20 may be formed by a substantially crescent-shaped C-shaped kerf-shaped opening 20c. By arranging the C-shaped kerf-shaped opening 20c to face downward, the injection amount can be set lower and the injection amount can be set higher. In addition, the C-shaped kerf-shaped opening 20
Since part c has a discontinuous portion, the baffle plate 12 can be connected and fixed at this discontinuous portion.

【0027】また、前記間隙部20を、図6に示すよう
に、ノズル噴射軸と同芯の円周線上に不連続で並置した
不連続開口20d,20d,20d・・・で構成しても
よい。この不連続開口20d,20d,20d・・・
は、邪魔板12を不連続部で固定でき、さらに、不連続
開口20d,20d,20d・・・の形状、配置位置を
変化させることで、噴射方向を調整できるものである。
なお、図6においては、該不連続開口20d,20d,
20d・・・は各個夫々を円形開口としてなるが、同図
に破線で示すように円弧状開口20e,20e,20e
・・・等他の形状に変えても差し支えはないものであ
る。
Further, as shown in FIG. 6, the gap portion 20 may be constituted by discontinuous openings 20d, 20d, 20d ... Discontinuously arranged on a circumferential line concentric with the nozzle injection axis. Good. These discontinuous openings 20d, 20d, 20d ...
The baffle plate 12 can be fixed at the discontinuous portion, and the ejection direction can be adjusted by changing the shape and arrangement position of the discontinuous openings 20d, 20d, 20d.
In FIG. 6, the discontinuous openings 20d, 20d,
Each of 20d ... Has a circular opening, but as shown by a broken line in the figure, arcuate openings 20e, 20e, 20e.
There is no problem even if the shape is changed to another shape.

【0028】なお、上記噴射口11は、駆動気体用パイ
プ1と必ずしも同芯状とする必要性はなく、駆動気体用
パイプ1又はノズル本体10とは偏心した噴射口11を
使用してもよい。具体的には、図8に示すように駆動気
体用パイプ1(ノズル本体10)の先端をエンドプレー
ト4で塞ぎ、このエンドプレート4の偏心位置に通孔を
設けて、この通孔を噴射口11として使用してもよいも
のである。
The injection port 11 does not necessarily have to be concentric with the drive gas pipe 1, and an injection port 11 eccentric from the drive gas pipe 1 or the nozzle body 10 may be used. . Specifically, as shown in FIG. 8, the tip of the driving gas pipe 1 (nozzle body 10) is closed by an end plate 4, a through hole is provided at an eccentric position of this end plate 4, and this through hole is used as an injection port. It may be used as 11.

【0029】そして、上記邪魔板12は、噴射口11内
に収納するが、試作の結果では、噴射口11の略直上流
側又は略直下流側に設けても良いものであった。そし
て、この邪魔板12の噴射口11に対する噴射軸方向の
位置を種々変更して試験したところ、噴射口11の直下
流側よりは、図7に破線で示すような略直上流側に位置
させる方が、噴霧液滴が微少化でき、より均一に噴霧で
きた。なお、本願では邪魔板12は必ずしも板状である
必要性はなく、図4及び図12例のように、柱体状のも
のであっても差し支えないものである。
The baffle plate 12 is housed in the injection port 11, but according to the result of the trial manufacture, it may be provided substantially directly upstream or downstream of the injection port 11. Then, the position of the baffle plate 12 in the injection axis direction with respect to the injection port 11 was changed and tested. As a result, the baffle plate 12 was positioned substantially immediately upstream of the injection port 11 as shown by a broken line in FIG. In this case, the spray droplets could be made finer and sprayed more uniformly. In addition, in the present application, the baffle plate 12 does not necessarily have to be a plate shape, and may be a columnar shape as shown in FIGS. 4 and 12.

【0030】また、上記邪魔板12は複数枚設けること
も可能で、10例では噴射口11と邪魔板12とを有し
たエンドプレート4を、必要枚数取り付けることで、多
段的に気液混合流体が、間隙部20,20,20・・・
を通過するようになしてある。
It is also possible to provide a plurality of baffle plates 12, and in ten examples, by installing a required number of end plates 4 each having an injection port 11 and a baffle plate 12, a gas-liquid mixed fluid can be provided in multiple stages. However, the gaps 20, 20, 20 ...
It is designed to pass through.

【0031】そして、上記邪魔板12は適宜手段で固定
するのは無論で、図3及び図4及び図8例ではノズル本
体10内に保持柱体21を固定して、この保持柱体21
に邪魔板12を連結固定してある。また、図9及び図1
0では、邪魔板12に放射方向の固定用爪片12a,1
2a,12a・・・を突設し、この固定用爪片12a,
12a,12a・・・を図10例ではエンドプレート4
a,4bとで挟持固定してある。また、図5及び図6例
では、邪魔板12がエンドプレート4と一体構成するこ
とで変位不能に固定され、この例の発展例である図11
例は噴射口11の先端から所定距離奥まった位置エンド
プレート4に代わる閉塞板4cを連設してこの閉塞板4
cに間隙部20を開穿してある。なお、この邪魔板12
の固定方法は、これら図示例に限定されるものではない
ことは無論である。
Needless to say, the baffle plate 12 is fixed by appropriate means. In the examples of FIGS. 3, 4, and 8, the holding column 21 is fixed in the nozzle body 10, and the holding column 21 is fixed.
The baffle plate 12 is connected and fixed to the. Also, FIG. 9 and FIG.
0, the baffle plate 12 has radial fixing claw pieces 12a, 1
2a, 12a ... are projected, and the fixing claw pieces 12a,
12a, 12a ... In the example of FIG.
It is clamped and fixed between a and 4b. In addition, in the example of FIGS. 5 and 6, the baffle plate 12 is integrally fixed to the end plate 4 so that the baffle plate 12 is fixed so as not to be displaced.
In the example, a closing plate 4c, which replaces the end plate 4 at a position recessed from the tip of the injection port 11 by a predetermined distance, is continuously provided.
The gap 20 is opened in c. In addition, this baffle plate 12
It is needless to say that the fixing method of is not limited to these illustrated examples.

【0032】次に,請求項2の発明は、ノズル本体10
に開口内周11bが非円形の噴射口11を設け、該噴射
口11に、邪魔板12を、その周縁部位略全周に流体が
通過できる間隙部20を配して設けてなるものである。
すなわち、前記もしたように、噴射口11は必ずしも円
形である必要性はなく、開口内周11bを非円形とする
ことで噴霧範囲を変えることができることは従来よりも
知られていた。しかし、本発明では、邪魔板12との組
み合わせで、非円形の開口内周11bの各部位より噴出
する流体の噴出速度に大きな差を生じさせ、噴射先方で
も噴射流体同士が衝突して液滴の細分化を生じさせるも
のである。
Next, the invention of claim 2 relates to the nozzle body 10.
The inner circumference 11b of the opening is provided with a non-circular injection port 11, and the baffle plate 12 is provided at the injection port 11 with a gap 20 through which fluid can pass around substantially the entire periphery of the injection port 11. .
That is, as described above, it has been known from the past that the injection port 11 does not necessarily have to be circular, and that the spray range can be changed by making the opening inner circumference 11b non-circular. However, in the present invention, the combination with the baffle plate 12 causes a large difference in the ejection speed of the fluid ejected from each portion of the inner circumference 11b of the non-circular opening, and the ejected fluids collide with each other even at the ejection destination and the droplets It causes the subdivision of.

【0033】なお、図3例において、上記非円形の開口
内周11bは横長の楕円形(楕円形に限定されるもので
はないが、目詰まり等の発生を考慮すると、方形等の角
部が無い方がよい。)として、邪魔板12を円形に構成
してなるが、無論、邪魔板12を一回り小さい楕円形に
構成してもよいが、間隙部20の幅が図3及び図8のよ
うに局所的に変わるようになすと、前記液滴の細分化が
より効率的に行えるものであった。
In the example of FIG. 3, the non-circular opening inner circumference 11b has a horizontally long elliptical shape (not limited to an elliptical shape, but in consideration of occurrence of clogging or the like, a square or the like has a corner portion). The baffle plate 12 is formed in a circular shape. However, the baffle plate 12 may be formed in an elliptical shape which is slightly smaller than the baffle plate 12, but the width of the gap portion 20 is smaller than that in FIGS. When the droplets are locally changed as described above, the droplets can be subdivided more efficiently.

【0034】次に、請求項3の発明は、ノズル本体10
の先端偏心位置に噴射口11を設け、上記噴射口11
に、邪魔板12を、その周縁部位略全周に流体が通過で
きる間隙部20を配して設けてなるものである。この、
噴射口11をノズル本体10の先端偏心位置に設ける例
としては、図9及び図10に示すように、ノズル本体1
0の先端をエンドプレート4で塞ぎ、このエンドプレー
ト4の偏心位置に噴射口11を設ければよいが、図示例
とは異なり、ノズル本体10の先端側を一定方向に傾斜
させて偏心するようになしても無論差し支えない。
Next, the invention of claim 3 relates to the nozzle body 10.
The injection port 11 is provided at the tip eccentric position of the
In addition, the baffle plate 12 is provided with a gap portion 20 through which fluid can pass around substantially the entire periphery of the baffle plate 12. this,
As an example of providing the injection port 11 at the tip eccentric position of the nozzle body 10, as shown in FIGS.
The tip of 0 is closed by the end plate 4 and the injection port 11 may be provided at the eccentric position of the end plate 4, but unlike the example shown in the drawing, the tip side of the nozzle body 10 is inclined in a certain direction to be eccentric. Of course it does not matter.

【0035】本発明における噴射口11を噴射中心軸よ
り偏心させることで、前記もしたように、噴射口11に
到達するまでに流体の流過時間に差が生じ、また、管内
圧力に局所的な差を生ずる。すると、この差で噴出方向
にも局所的に影響を与え流体同士が衝突し、また、乱流
が生じ液滴が細分化されることになる。
By making the injection port 11 eccentric from the injection center axis in the present invention, as described above, there is a difference in the flow-through time of the fluid before reaching the injection port 11, and the pipe pressure is locally changed. Make a difference. Then, this difference locally affects the ejection direction and causes the fluids to collide with each other, and a turbulent flow is generated to fragment the droplets.

【0036】次に、請求項4の発明は、ノズル本体10
の先端偏心位置に、開口内周11bが非円形の噴射口1
1を設け、上記噴射口11に、邪魔板12を、その周縁
部位略全周に流体が通過できる間隙部20を配して設け
てなるものである。すなわち、本発明は前記請求項3の
噴射口11を偏心位置に設ける構成と、請求項2の噴射
口11の開口内周11bを非円形とする構成とを組み合
わせたものである。
Next, the invention of claim 4 relates to the nozzle body 10.
At the eccentric position of the tip of
1 is provided, and the baffle plate 12 is provided at the injection port 11 with a gap 20 through which fluid can pass around the entire periphery of the baffle plate 12. That is, the present invention is a combination of the configuration in which the injection port 11 of claim 3 is provided at an eccentric position and the configuration in which the opening inner circumference 11b of the injection port 11 in claim 2 is non-circular.

【0037】したがって、本発明二流体ノズルは、邪魔
板12を用いることで請求項1の作用・効果を呈し、さ
らに、開口内周11bを非円形とすることで請求項2の
作用・効果を呈し、噴射口11を偏心位置に設けること
で請求項3の作用・効果を呈するもので、これらの作用
・効果の総合(一部相乗的効果も期待できる。)によっ
て、少動力で液滴を微細化できる二流体ノズルを提供で
きるものである。
Therefore, the two-fluid nozzle of the present invention exhibits the action and effect of claim 1 by using the baffle plate 12, and further the action and effect of claim 2 by making the inner circumference 11b of the opening non-circular. By presenting the jet port 11 at the eccentric position, the action and effect of claim 3 are exhibited, and by combining these actions and effects (partially synergistic effect can be expected), droplets can be formed with a small amount of power. It is possible to provide a two-fluid nozzle that can be miniaturized.

【0038】次に、請求項5の発明では、ノズル本体1
0に所定の流路長を有する噴射口11aを設け、この噴
射口11aの略直上流部を含む内部に、その周縁部位略
全周に流体が通過できる間隙部20を配して邪魔板12
を収納し、上記の邪魔板12は、その下流側端面を噴射
口11の先端より上流側に位置するようになしてある。
Next, in the invention of claim 5, the nozzle body 1
No. 0 is provided with an injection port 11a having a predetermined flow path length, and a baffle plate 12 is provided inside the injection port 11a including substantially immediately upstream thereof with a gap 20 through which fluid can pass around the entire periphery of the injection port 11a.
The baffle plate 12 is arranged such that the downstream end face of the baffle plate 12 is located upstream of the tip of the injection port 11.

【0039】上記所定の流路長を有する噴射口11とし
ては、該噴射口11を図1及び図12に示すように筒状
に構成するか、あるいは、図4及び図7等に示すよう
に、所定の厚みを有する部位(所定の厚みを有するエン
ドプレート4)に該噴射口11を形成する通孔を開穿す
ることで、所定の流路長を確保するようになせばよい。
そして、この噴射口11内に小径な邪魔板12を収納し
て、その周縁部位略全周に流体が通過できる間隙部20
を設けてなるのは請求項1と同じであるが、本発明にお
いては、該邪魔板12の下流側端面を噴射口11の先端
より上流側に位置するようになしてあるが、該邪魔板1
2の下流端面が噴射口11の先端面より上流側に寄った
位置にあれば、該邪魔板12は噴射口11内に必ずしも
収納することなく、図7に破線で示すように、該噴射口
11の略直上流部位に位置させても有益なものであっ
た。
As the injection port 11 having the predetermined flow path length, the injection port 11 may be formed in a tubular shape as shown in FIGS. 1 and 12, or as shown in FIGS. It suffices to ensure a predetermined flow path length by opening a through hole forming the injection port 11 in a portion having a predetermined thickness (the end plate 4 having a predetermined thickness).
Then, a small-diameter baffle plate 12 is housed in the injection port 11, and a gap portion 20 through which the fluid can pass through substantially the entire circumference of the peripheral portion.
In the present invention, the downstream end face of the baffle plate 12 is located upstream of the tip of the injection port 11, but the baffle plate is provided. 1
If the downstream end surface of 2 is closer to the upstream side than the front end surface of the injection port 11, the baffle plate 12 is not necessarily housed in the injection port 11 and the injection port is opened as shown by a broken line in FIG. It was also useful to locate it at a position just upstream of 11.

【0040】上記噴射口11の略直上流部位の実用的範
囲を実験によって求めたところ、噴射口11の総面積S
を求め、この総面積に相当する円の直径の二分の一以下
であればその効果が認められるものであった。すなわ
ち、略直上流部位である、図7の距離L4は以下の数式
1が成り立つことが望ましい。
When the practical range of the portion just upstream of the injection port 11 was found by experiment, the total area S of the injection port 11 was calculated.
Was obtained, and the effect was recognized as long as it was half or less of the diameter of the circle corresponding to this total area. That is, it is desirable that the distance L4 in FIG.

【0041】[0041]

【数1】 [Equation 1]

【0042】従って、本発明によると、邪魔板12の下
流側は、なお噴射口11の中に位置することになる。す
ると、この邪魔板12よりは下流側であるが噴射口11
内である部位(図1に、符号L1で示す部位)において
は、流路断面積は拡大され、噴出された気液混合流体は
膨張するも、完全には圧力解放されないので、加圧状態
を保つことになる。従って、この部位では、制限的な膨
張に伴い前記した、乱流発生と、液滴が粗な駆動用気体
の混入割合の高い雰囲気を中心側に集める現象が発生
し、その後、噴射口11より噴射されることで完全に圧
力解放され、中心側にあった駆動用気体の混入割合の高
い雰囲気部位が急撃・爆発的に膨張して、液滴の効果的
分断が行われるものである。
Therefore, according to the present invention, the downstream side of the baffle plate 12 is still located in the injection port 11. Then, although it is on the downstream side of the baffle plate 12, the injection port 11
At a portion inside (the portion indicated by reference numeral L1 in FIG. 1), the flow passage cross-sectional area is enlarged, and the jetted gas-liquid mixed fluid expands, but the pressure is not completely released. Will keep. Therefore, at this portion, due to the limited expansion, the turbulent flow generation and the phenomenon in which the atmosphere in which the droplets are coarse and the mixing ratio of the driving gas is high occur on the center side, and thereafter, from the injection port 11. By the injection, the pressure is completely released, and the atmosphere portion having a high mixing ratio of the driving gas on the center side expands suddenly and explosively to effectively divide the droplets.

【0043】次に、請求項6の発明は、ノズル本体10
に略同径で所定の流路長を有する噴射口11aを設け、
この噴射口11aに、その周縁部位略全周に流体が通過
できる間隙部20を有して邪魔板12を収納し、この邪
魔板12は噴射軸方向に移動する移動機構30を取り付
けてなるものである。
Next, the invention of claim 6 relates to the nozzle body 10.
Is provided with an injection port 11a having substantially the same diameter and a predetermined flow path length,
A baffle plate 12 is housed in the ejection port 11a with a gap 20 through which fluid can pass around the entire periphery of the ejection port 11a, and the baffle plate 12 is provided with a moving mechanism 30 that moves in the ejection axis direction. Is.

【0044】上記移動機構30の具体例を、図12を参
照して説明すると、先端が噴射口11内に差し込まれ
た、邪魔板12の後端側に螺旋棒部12bを連設し、こ
の螺旋棒部12bはノズル体10の後端面1cに螺合し
て外方に貫出させて、この螺旋棒部12bの螺進退で、
邪魔板12の噴射口11内への差し込み量を調整できる
ようになしてある。なお、同図中、符号5は螺旋棒部1
2bの固定用ナットを示すものである。
A specific example of the moving mechanism 30 will be described with reference to FIG. 12. A spiral rod portion 12b is continuously provided on the rear end side of the baffle plate 12 whose tip is inserted into the injection port 11, The spiral rod portion 12b is screwed into the rear end surface 1c of the nozzle body 10 and protrudes outward, and the spiral rod portion 12b is screwed forward and backward,
The amount of insertion of the baffle plate 12 into the injection port 11 can be adjusted. In the figure, reference numeral 5 is a spiral rod portion 1.
2b shows a fixing nut 2b.

【0045】[0045]

【発明の効果】本発明は上記のごときであるので、邪魔
板12で噴射気流に変化を持たせることで、大量の液体
を少動力で、均一に噴霧できる二流体ノズルを提供でき
るものである。特に、本発明は構成がきわめて簡易であ
ると共に、既存のノズル先端に装着することも容易であ
るので、効率向上に伴う省資源化に大きく貢献できるも
のと期待できる。
As described above, the present invention can provide a two-fluid nozzle capable of uniformly spraying a large amount of liquid with a small amount of power by changing the jet air flow with the baffle plate 12. . In particular, since the present invention has a very simple structure and can be easily attached to the tip of an existing nozzle, it can be expected that it can greatly contribute to resource saving due to improved efficiency.

【0046】なお、図7実施例で、上流部で図11の衝
突板式スタテックミキサー3を使用して水と3kg/c
のコンプレッサー空気とを予備混合し、衝突板12
を図7の破線部位(噴射口11の開始部よりプラスマイ
ナス0.5mmの位置)において噴霧実験を行ったとこ
ろ、該邪魔板12を外した場合との比較試験では以下の
ような差が測定でき本発明の有用性が確認できた。先ず
水量600cc/minで平均噴霧液滴粒径が15ミク
ロンとするには、本発明二流体ノズルでは120nl/
minであったが、邪魔板12を取り外すと360Nl
/minの空気が必要であった。また、1.2m/H
の水量で空気量180Nl/minとしたところ本発明
二流体ノズルでは粒径が20ミクロンであったが、邪魔
板12を取り除いて空気量220nl/minとしたと
ころでは、液体の約1割は霧化されることなく噴出口1
1より直接液垂れし、粒子形は非常に不均一なものであ
った。
In the embodiment of FIG. 7, water and 3 kg / c were used at the upstream side by using the collision plate type static mixer 3 of FIG.
m 2 Compressor air is premixed and impingement plate 12
7 was subjected to a spraying experiment at a broken line portion (position of ± 0.5 mm from the start portion of the injection port 11), the following difference was measured in a comparison test with the case where the baffle plate 12 was removed. The utility of the present invention was confirmed. First, in order to obtain an average spray droplet diameter of 15 microns at a water flow rate of 600 cc / min, 120 nl /
Although it was min, 360 Nl when the baffle plate 12 was removed
/ Min of air was required. In addition, 1.2m 3 / H
When the amount of water was 180 Nl / min and the particle size was 20 microns in the two-fluid nozzle of the present invention, when the baffle plate 12 was removed and the amount of air was 220 nl / min, about 10% of the liquid was fog. No spout 1
From 1 the liquid dripped directly and the particle shape was very non-uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明二流体ノズルの一実施例を示す要部断面
正面図である。
FIG. 1 is a sectional front view of an essential part showing an embodiment of a two-fluid nozzle of the present invention.

【図2】右側面図である。FIG. 2 is a right side view.

【図3】別の実施例での右側面図である。FIG. 3 is a right side view of another embodiment.

【図4】図3例の縦断面図である。4 is a vertical cross-sectional view of the example of FIG.

【図5】さらに別の実施例での右側面図である。FIG. 5 is a right side view of still another embodiment.

【図6】さらに別の実施例での右側面図である。FIG. 6 is a right side view of still another embodiment.

【図7】さらに別の実施例での縦断面図である。FIG. 7 is a vertical sectional view in still another embodiment.

【図8】さらに別の実施例での右側面図である。FIG. 8 is a right side view of still another embodiment.

【図9】さらに別の実施例での縦断面図である。FIG. 9 is a vertical sectional view of still another embodiment.

【図10】さらに別の実施例での縦断面図である。FIG. 10 is a vertical sectional view in still another embodiment.

【図11】さらに別の実施例での縦断面図である。FIG. 11 is a vertical cross-sectional view of still another embodiment.

【図12】さらに別の実施例での縦断面図である。FIG. 12 is a vertical sectional view in still another embodiment.

【図13】さらに別の実施例での縦断面図である。FIG. 13 is a vertical sectional view in still another embodiment.

【図14】従来例縦断面図である。FIG. 14 is a vertical sectional view of a conventional example.

【図15】別の従来例縦断面図である。FIG. 15 is a vertical sectional view of another conventional example.

【符号の説明】[Explanation of symbols]

11 噴射口 11a 噴射口 12 邪魔板 20 間隙部 30 移動機構 11 jets 11a injection port 12 baffle 20 Gap 30 moving mechanism

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ノズル本体(10)の噴射口(11)
に、邪魔板(12)を、その周縁部位略全周に流体が通
過できる間隙部(20)を配して設けてなる二流体ノズ
ル。
1. An injection port (11) of a nozzle body (10)
A two-fluid nozzle in which a baffle plate (12) is provided with a gap portion (20) through which fluid can pass around substantially the entire periphery of the baffle plate (12).
【請求項2】 ノズル本体(10)に開口内周(11
b)が非円形の噴射口(11)を設け、該噴射口(1
1)に、邪魔板(12)を、その周縁部位略全周に流体
が通過できる間隙部(20)を配して設けてなる二流体
ノズル。
2. An inner circumference of an opening (11) in a nozzle body (10).
b) is provided with a non-circular injection port (11), and the injection port (1)
A two-fluid nozzle having a baffle plate (12) provided in (1) with a gap portion (20) through which a fluid can pass around substantially the entire periphery of the baffle plate (12).
【請求項3】 ノズル本体(10)の先端偏心位置に噴
射口(11)を設け、 上記噴射口(11)に、邪魔板(12)を、その周縁部
位略全周に流体が通過できる間隙部(20)を配して設
けてなる二流体ノズル。
3. A nozzle body (10) is provided with an injection port (11) at an eccentric position at a tip thereof, and a baffle plate (12) is provided at the injection port (11) so that a fluid can pass through substantially the entire circumference of the peripheral portion thereof. A two-fluid nozzle provided by arranging a part (20).
【請求項4】 ノズル本体(10)の先端偏心位置に、
開口内周(11b)が非円形の噴射口(11)を設け、 上記噴射口(11)に、邪魔板(12)を、その周縁部
位略全周に流体が通過できる間隙部(20)を配して設
けてなる二流体ノズル。
4. The eccentric position of the tip of the nozzle body (10),
The opening inner periphery (11b) is provided with a non-circular injection port (11), and the baffle plate (12) is provided in the injection port (11) with a gap (20) through which fluid can pass almost all around the periphery. A two-fluid nozzle arranged and provided.
【請求項5】 ノズル本体(10)に所定の流路長を有
する噴射口(11a)を設け、この噴射口(11a)の
略直上流部を含む内部に、その周縁部位略全周に流体が
通過できる間隙部(20)を配して邪魔板(12)を収
納し、上記の邪魔板(12)は、その下流側端面を噴射
口(11)の先端より上流側に位置するようになした二
流体ノズル。
5. A nozzle main body (10) is provided with an injection port (11a) having a predetermined flow path length, and a fluid is provided substantially inside the peripheral part of the injection port (11a) including substantially immediately upstream thereof. The baffle plate (12) is accommodated by arranging a gap (20) through which the baffle can pass, and the baffle plate (12) is positioned so that its downstream end face is located upstream of the tip of the injection port (11). Made two-fluid nozzle.
【請求項6】 ノズル本体(10)に略同径で所定の流
路長を有する噴射口(11a)を設け、この噴射口(1
1a)に、その周縁部位略全周に流体が通過できる間隙
部(20)を有して邪魔板(12)を収納し、この邪魔
板(12)は噴射軸方向に移動する移動機構(30)を
取り付けてなる二流体ノズル。
6. A nozzle body (10) is provided with an injection port (11a) having substantially the same diameter and a predetermined flow path length, and the injection port (1) is provided.
1a) accommodates a baffle plate (12) with a gap (20) through which fluid can pass around the perimeter of the peripheral part, and the baffle plate (12) moves in the ejection axis direction. ) Is attached to the two-fluid nozzle.
JP2001362092A 2001-11-28 2001-11-28 Two-fluid nozzle Pending JP2003159550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362092A JP2003159550A (en) 2001-11-28 2001-11-28 Two-fluid nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362092A JP2003159550A (en) 2001-11-28 2001-11-28 Two-fluid nozzle

Publications (1)

Publication Number Publication Date
JP2003159550A true JP2003159550A (en) 2003-06-03

Family

ID=19172649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362092A Pending JP2003159550A (en) 2001-11-28 2001-11-28 Two-fluid nozzle

Country Status (1)

Country Link
JP (1) JP2003159550A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092868A1 (en) * 2005-03-01 2006-09-08 Shinyu Giken Co., Ltd. Fluid mixing injection apparatus
JP2012206071A (en) * 2011-03-30 2012-10-25 Jfe Engineering Corp Fluid atomization nozzle, fluid atomization nozzle device, and fluid atomization device
CN109059298A (en) * 2018-07-05 2018-12-21 中国矿业大学 Fluid is from evenly mixing device
CN111589380A (en) * 2020-06-18 2020-08-28 靖江神驹容器制造有限公司 Gas phase reactor
CN113020137A (en) * 2021-03-03 2021-06-25 方正晖 Steel pipe greasy dirt cleaning device with waste oil stain cleaning agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318008A (en) * 1976-07-31 1978-02-18 Bayer Ag Injectors and gaseous treatment of liquid by the same
JPS55124563A (en) * 1979-03-20 1980-09-25 Agency Of Ind Science & Technol Liquid atomization device
JPS61205648U (en) * 1985-06-14 1986-12-25
JPH11267555A (en) * 1998-03-25 1999-10-05 Hikoroku Sugiura Mixed jetting device
JP2001104842A (en) * 1999-10-04 2001-04-17 Hikoroku Sugiura Plural fluid nozzles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318008A (en) * 1976-07-31 1978-02-18 Bayer Ag Injectors and gaseous treatment of liquid by the same
JPS55124563A (en) * 1979-03-20 1980-09-25 Agency Of Ind Science & Technol Liquid atomization device
JPS61205648U (en) * 1985-06-14 1986-12-25
JPH11267555A (en) * 1998-03-25 1999-10-05 Hikoroku Sugiura Mixed jetting device
JP2001104842A (en) * 1999-10-04 2001-04-17 Hikoroku Sugiura Plural fluid nozzles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092868A1 (en) * 2005-03-01 2006-09-08 Shinyu Giken Co., Ltd. Fluid mixing injection apparatus
JP2012206071A (en) * 2011-03-30 2012-10-25 Jfe Engineering Corp Fluid atomization nozzle, fluid atomization nozzle device, and fluid atomization device
CN109059298A (en) * 2018-07-05 2018-12-21 中国矿业大学 Fluid is from evenly mixing device
CN109059298B (en) * 2018-07-05 2020-11-03 中国矿业大学 Fluid self-mixing device
CN111589380A (en) * 2020-06-18 2020-08-28 靖江神驹容器制造有限公司 Gas phase reactor
CN113020137A (en) * 2021-03-03 2021-06-25 方正晖 Steel pipe greasy dirt cleaning device with waste oil stain cleaning agent
CN113020137B (en) * 2021-03-03 2023-01-20 南京市同亮科技有限公司 Steel pipe greasy dirt cleaning device with waste oil stain cleaning agent

Similar Documents

Publication Publication Date Title
KR100562727B1 (en) Mist spray nozzle of internal mixed air
US5611490A (en) Foamer assembly for fluid dispenser
JP5500475B2 (en) Two-fluid nozzle
US9220376B2 (en) Shower apparatus
CN1572377A (en) Dual sprayer with external mixing chamber
JPS5953102B2 (en) spray nozzle
JPH0580250B2 (en)
KR20110031778A (en) Apparatus generating minute particles and micro/nano bubbles and system using the same
CN105772264B (en) Method for producing a jet of spray, and two-component nozzle
CN110449283A (en) A kind of novel atomized nozzle based on bubble cutting
US20040251320A1 (en) Nozzle for coating surfaces
JPH09220495A (en) Fluid injection nozzle
JP2007181802A (en) Spray nozzle and insert
KR102279187B1 (en) 2 Fluid Nozzle
JP2003159550A (en) Two-fluid nozzle
WO2013065503A1 (en) Liquid atomization device
CN103347617A (en) Liquid atomization device
EP0255208B1 (en) Sprayer having induced air assist
JP5269404B2 (en) Jet mill
JP2000210596A (en) Spray nozzle for liquid
JPS6350404A (en) Spray nozzle for producing metallic powder
JP6048656B2 (en) shower head
JPH04363162A (en) Forming nozzle for fitting atomizer
JP4575017B2 (en) Solid-gas mixing ejector and jet mill
JP2004344689A (en) Two-fluid nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731