JP2003141933A - Resin composition for electric insulation, insulation material for electronic material, and their manufacturing method - Google Patents
Resin composition for electric insulation, insulation material for electronic material, and their manufacturing methodInfo
- Publication number
- JP2003141933A JP2003141933A JP2002225269A JP2002225269A JP2003141933A JP 2003141933 A JP2003141933 A JP 2003141933A JP 2002225269 A JP2002225269 A JP 2002225269A JP 2002225269 A JP2002225269 A JP 2002225269A JP 2003141933 A JP2003141933 A JP 2003141933A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- resin
- electrical insulation
- cured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 99
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 239000012776 electronic material Substances 0.000 title claims description 24
- 238000009413 insulation Methods 0.000 title abstract description 19
- 239000012774 insulation material Substances 0.000 title 1
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 191
- 239000003822 epoxy resin Substances 0.000 claims abstract description 190
- 229920003986 novolac Polymers 0.000 claims abstract description 78
- 229920005989 resin Polymers 0.000 claims abstract description 76
- 239000011347 resin Substances 0.000 claims abstract description 76
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 57
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims abstract description 52
- 239000004593 Epoxy Substances 0.000 claims abstract description 44
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000007142 ring opening reaction Methods 0.000 claims abstract description 38
- 150000001875 compounds Chemical class 0.000 claims abstract description 23
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 23
- 238000000465 moulding Methods 0.000 claims abstract description 13
- 238000006482 condensation reaction Methods 0.000 claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 52
- 238000010292 electrical insulation Methods 0.000 claims description 43
- 239000000203 mixture Substances 0.000 claims description 43
- 239000011810 insulating material Substances 0.000 claims description 38
- 239000004065 semiconductor Substances 0.000 claims description 31
- 239000011229 interlayer Substances 0.000 claims description 29
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 24
- 238000012986 modification Methods 0.000 claims description 24
- 230000004048 modification Effects 0.000 claims description 24
- 239000000565 sealant Substances 0.000 claims description 24
- -1 methoxy compound Chemical class 0.000 claims description 19
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 229930185605 Bisphenol Natural products 0.000 claims description 10
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 8
- 150000002989 phenols Chemical class 0.000 claims description 8
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 3
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 43
- 238000009833 condensation Methods 0.000 abstract description 2
- 230000005494 condensation Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 239000007859 condensation product Substances 0.000 abstract 1
- 238000004925 denaturation Methods 0.000 abstract 1
- 230000036425 denaturation Effects 0.000 abstract 1
- 239000011800 void material Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 85
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 42
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 35
- 239000000758 substrate Substances 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 29
- 229910000679 solder Inorganic materials 0.000 description 24
- 239000000377 silicon dioxide Substances 0.000 description 22
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 19
- 239000002904 solvent Substances 0.000 description 15
- 239000003054 catalyst Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000011889 copper foil Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 239000010410 layer Substances 0.000 description 12
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000005011 phenolic resin Substances 0.000 description 11
- 229910052718 tin Inorganic materials 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 7
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 7
- 239000004020 conductor Substances 0.000 description 7
- 238000005187 foaming Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000007650 screen-printing Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 239000012975 dibutyltin dilaurate Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000004843 novolac epoxy resin Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000008065 acid anhydrides Chemical class 0.000 description 4
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000008393 encapsulating agent Substances 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 239000011256 inorganic filler Substances 0.000 description 4
- 229910003475 inorganic filler Inorganic materials 0.000 description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 3
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 3
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229930003836 cresol Natural products 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- FUGYGGDSWSUORM-UHFFFAOYSA-N 4-hydroxystyrene Chemical compound OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 description 2
- ZVNPWFOVUDMGRP-UHFFFAOYSA-N 4-methylaminophenol sulfate Chemical compound OS(O)(=O)=O.CNC1=CC=C(O)C=C1.CNC1=CC=C(O)C=C1 ZVNPWFOVUDMGRP-UHFFFAOYSA-N 0.000 description 2
- FKBMTBAXDISZGN-UHFFFAOYSA-N 5-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)CCC2C(=O)OC(=O)C12 FKBMTBAXDISZGN-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- NIOYEYDJTAEDFH-UHFFFAOYSA-N 1-(2-hydroxyethoxy)-2-methylpropan-2-ol Chemical compound CC(C)(O)COCCO NIOYEYDJTAEDFH-UHFFFAOYSA-N 0.000 description 1
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- DAPXOJOQSNBLKY-UHFFFAOYSA-N 2-hexyl-1h-imidazole Chemical compound CCCCCCC1=NC=CN1 DAPXOJOQSNBLKY-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- NJBCRXCAPCODGX-UHFFFAOYSA-N 2-methyl-n-(2-methylpropyl)propan-1-amine Chemical compound CC(C)CNCC(C)C NJBCRXCAPCODGX-UHFFFAOYSA-N 0.000 description 1
- LLEASVZEQBICSN-UHFFFAOYSA-N 2-undecyl-1h-imidazole Chemical compound CCCCCCCCCCCC1=NC=CN1 LLEASVZEQBICSN-UHFFFAOYSA-N 0.000 description 1
- FAXDZWQIWUSWJH-UHFFFAOYSA-N 3-methoxypropan-1-amine Chemical compound COCCCN FAXDZWQIWUSWJH-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- RIAHASMJDOMQER-UHFFFAOYSA-N 5-ethyl-2-methyl-1h-imidazole Chemical compound CCC1=CN=C(C)N1 RIAHASMJDOMQER-UHFFFAOYSA-N 0.000 description 1
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UHFFFAOYSA-N 826-62-0 Chemical compound C1C2C3C(=O)OC(=O)C3C1C=C2 KNDQHSIWLOJIGP-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- HZCDANOFLILNSA-UHFFFAOYSA-N Dimethyl hydrogen phosphite Chemical compound COP(=O)OC HZCDANOFLILNSA-UHFFFAOYSA-N 0.000 description 1
- 102100029235 Histone-lysine N-methyltransferase NSD3 Human genes 0.000 description 1
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101100461044 Homo sapiens NSD3 gene Proteins 0.000 description 1
- 101100405322 Homo sapiens NSL1 gene Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100021532 Kinetochore-associated protein NSL1 homolog Human genes 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 229920005645 diorganopolysiloxane polymer Polymers 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000004704 methoxides Chemical class 0.000 description 1
- UJNZOIKQAUQOCN-UHFFFAOYSA-N methyl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C)C1=CC=CC=C1 UJNZOIKQAUQOCN-UHFFFAOYSA-N 0.000 description 1
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N methylimidazole Natural products CC1=CNC=N1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical compound PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- USFPINLPPFWTJW-UHFFFAOYSA-N tetraphenylphosphonium Chemical compound C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 USFPINLPPFWTJW-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- LGROXJWYRXANBB-UHFFFAOYSA-N trimethoxy(propan-2-yl)silane Chemical compound CO[Si](OC)(OC)C(C)C LGROXJWYRXANBB-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical class CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、メトキシ基含有シ
ラン変性エポキシ樹脂を含有する電気絶縁用樹脂組成物
に関する。また、本発明は、当該電気絶縁用樹脂組成物
を加工(コーティング、注型、接着、積層、含浸、成形
等)した後、硬化させてなる電子材料用絶縁材料および
その製造方法に関する。本明細書において、「電子材料
用絶縁材料」とは、メトキシ基含有シラン変性エポキシ
樹脂を含有する樹脂組成物、または当該樹脂組成物から
得られる硬化物(半硬化物および完全硬化物を含む)を
用いて得られる電子材料用途に適した絶縁材料であっ
て、例えば、プリント基板用プリプレグ、プリント基板
用銅張り積層板、及びこれらを組み合わせてできるプリ
ント配線基板やインターポーザー、更にはビルドアップ
プリント基板用層間絶縁材料、半導体の層間絶縁膜、電
子部品や半導体チップの封止剤、アンダーフィル樹脂硬
化物、ソルダーレジストなどのレジストインキ硬化物、
導電ペースト硬化物、ICトレイなど成形物、異方性導
電膜等を意味する。TECHNICAL FIELD The present invention relates to a resin composition for electrical insulation containing a methoxy group-containing silane-modified epoxy resin. The present invention also relates to an insulating material for electronic materials, which is obtained by processing (coating, casting, bonding, laminating, impregnating, molding, etc.) the resin composition for electrical insulation and then curing it, and a method for producing the same. In the present specification, the “insulating material for electronic materials” refers to a resin composition containing a methoxy group-containing silane-modified epoxy resin, or a cured product (including a semi-cured product and a completely cured product) obtained from the resin composition. An insulating material suitable for use in electronic materials obtained by using, for example, a prepreg for a printed circuit board, a copper clad laminate for a printed circuit board, a printed wiring board or an interposer made by combining these, and further a build-up print. Interlayer insulating material for substrates, semiconductor interlayer insulating film, sealant for electronic parts and semiconductor chips, cured underfill resin, cured resist ink such as solder resist,
It means a conductive paste cured product, a molded product such as an IC tray, and an anisotropic conductive film.
【0002】[0002]
【従来の技術】従来より、エポキシ樹脂は、一般に、硬
化剤と組み合わせた組成物として使用されており、電子
材料関係の分野においても、該組成物が賞用されてき
た。しかしながら、近年の電子材料分野の発展に伴い、
当該分野で用いる絶縁材料に対して、より高水準の耐熱
性、低線膨張性、絶縁性、高密着性などが要求されるよ
うになっている。例えば、環境対応型の半田である鉛フ
リー半田を使用する場合は、従来の鉛含有半田に比べて
リフロー温度が高いため、従来の絶縁材料よりも一層優
れた耐熱性や長寿命の絶縁材料の開発が切望されてい
る。これらの分野において、従来から臭素化エポキシ樹
脂は特に難燃性の高い絶縁材料として賞用されてきた
が、当該樹脂を用いた製品の廃棄物が焼却時に臭素由来
の有害ガスを発生するため、近年は臭素化エポキシ樹脂
などのハロゲン化樹脂の使用が敬遠されている。2. Description of the Related Art Epoxy resins have hitherto been generally used as a composition in combination with a curing agent, and the composition has been favored in the field of electronic materials. However, with the recent development of the electronic materials field,
Higher levels of heat resistance, low linear expansion, insulation, and high adhesion have been demanded for insulating materials used in this field. For example, when using lead-free solder, which is an environmentally friendly solder, the reflow temperature is higher than that of conventional lead-containing solder, so it is possible to use an insulating material with better heat resistance and longer life than conventional insulating materials. Development is coveted. In these fields, brominated epoxy resins have been traditionally nominated as highly flame-retardant insulating materials, but since the waste products of products using the resins generate toxic gas derived from bromine when incinerated, Recently, the use of halogenated resins such as brominated epoxy resins has been shunned.
【0003】非ハロゲン化エポキシ樹脂組成物の硬化物
の耐熱性を向上させるため、例えば、エポキシ樹脂およ
び硬化剤に加え、ガラス繊維、ガラス粒子、マイカ等の
フィラーを混合した組成物を用いる方法が行われてい
る。しかし、この方法でも十分な耐熱性は得られない。
また、この方法では得られる硬化物の透明性が失われ、
しかもフィラーとエポキシ樹脂との界面の接着性が劣る
ため、伸長率等の機械的特性も不十分である。In order to improve the heat resistance of a cured product of a non-halogenated epoxy resin composition, for example, a method of using a composition in which a filler such as glass fiber, glass particles, mica, etc. is mixed with an epoxy resin and a curing agent is used. Has been done. However, even with this method, sufficient heat resistance cannot be obtained.
In addition, the transparency of the cured product obtained by this method is lost,
Moreover, since the adhesiveness at the interface between the filler and the epoxy resin is poor, mechanical properties such as elongation are insufficient.
【0004】また、エポキシ樹脂組成物の硬化物の耐熱
性を向上させる方法として、エポキシ樹脂とシリカとの
複合体を用いる方法が提案されている(特開平8−10
0107号公報)。当該複合体は、エポキシ樹脂の部分
硬化物の溶液に、加水分解性アルコキシシランを加え、
該硬化物を更に硬化すると共に、該アルコキシシランを
加水分解してゾル化し、更に重縮合してゲル化すること
により得られる。しかし、かかる複合体から得られる硬
化物は、エポキシ樹脂単独の硬化物に比して、ある程度
耐熱性は向上するものの、複合体中の水や硬化時に生じ
る水、アルコールに起因して、硬化物中にボイド(気
泡)が発生する。また、耐熱性を一層向上させる目的で
アルコキシシラン量を増やすと、ゾル−ゲル硬化反応に
より生成するシリカが凝集して得られる硬化物の透明性
が失われて白化するうえ、多量のアルコキシシランをゾ
ル化するために多量の水が必要となり、その結果として
硬化物のそり、クラック等を招く。Further, as a method for improving the heat resistance of a cured product of an epoxy resin composition, a method using a composite of an epoxy resin and silica has been proposed (JP-A-8-10).
No. 0107). The complex is a solution of a partially cured epoxy resin, hydrolyzable alkoxysilane,
It can be obtained by further curing the cured product, hydrolyzing the alkoxysilane to form a sol, and further polycondensing to form a gel. However, the cured product obtained from such a composite has improved heat resistance to some extent as compared with the cured product of the epoxy resin alone, but due to water in the composite, water generated during curing, and alcohol, a cured product is obtained. Voids are generated inside. Further, when the amount of alkoxysilane is increased for the purpose of further improving heat resistance, transparency of the cured product obtained by aggregation of silica generated by the sol-gel curing reaction is lost and whitening occurs, and a large amount of alkoxysilane is added. A large amount of water is required to turn it into a sol, and as a result, warpage and cracks of the cured product are caused.
【0005】また、エポキシ樹脂にシリコーン化合物を
反応させたシラン変性エポキシ樹脂と、硬化剤であるフ
ェノールノボラック樹脂とを組み合わせた組成物(特開
平3−201466号公報)や、ビスフェノールA型エ
ポキシ樹脂、テトラビスブロモビスフェノールAおよび
メトキシ基含有シリコーン中間体を反応させたシラン変
性エポキシ樹脂と、硬化剤であるフェノールノボラック
樹脂とを組み合わせた組成物(特開昭61−27224
3号公報、特開昭61−272244号公報など)も提
案されている。しかし、これらのエポキシ樹脂組成物の
硬化物は、シリコーン化合物やメトキシ基含有シリコー
ン中間体の主構成単位がジオルガノポリシロキサン単位
であってシリカを生成できないため、いずれも耐熱性が
不十分である。Further, a composition in which a silane-modified epoxy resin obtained by reacting an epoxy resin with a silicone compound and a phenol novolac resin as a curing agent are combined (Japanese Patent Laid-Open No. 3-201466), a bisphenol A type epoxy resin, A composition in which a silane-modified epoxy resin obtained by reacting tetrabisbromobisphenol A and a methoxy group-containing silicone intermediate is combined with a phenol novolac resin which is a curing agent (JP-A-61-27224).
No. 3, JP-A-61-272244, etc.) are also proposed. However, the cured products of these epoxy resin compositions have insufficient heat resistance because the main constituent units of the silicone compound and the methoxy group-containing silicone intermediate are diorganopolysiloxane units and cannot form silica. .
【0006】本出願人は、ビスフェノール型エポキシ樹
脂とメトキシシラン部分縮合物とを脱メタノール反応さ
せてなるメトキシ基含有シラン変性エポキシ樹脂を硬化
してなる硬化物が、ガラス転移点を消失し、高耐熱性材
料となる(特許第3077695号)ことを見出してき
た。当該方法では、硬化物を得るために、樹脂組成物か
ら溶剤を揮発させるとともにメトキシシリル基をゾル−
ゲル硬化、エポキシ基をエポキシ硬化させて、エポキシ
樹脂−シリカハイブリッド硬化物とするが、電気・電子
材料関係の用途では必須となる、半硬化状態での成型加
工が難しいといった問題があった。The applicant of the present invention has found that a cured product obtained by curing a methoxy group-containing silane-modified epoxy resin obtained by subjecting a bisphenol type epoxy resin and a methoxysilane partial condensate to a methanol removal reaction has a high glass transition point, It has been found that it can be used as a heat resistant material (Japanese Patent No. 3077765). In this method, in order to obtain a cured product, the solvent is volatilized from the resin composition and the methoxysilyl group is sol-formed.
Although gel curing and epoxy curing of an epoxy group are carried out to obtain an epoxy resin-silica hybrid cured product, there is a problem that it is difficult to perform molding processing in a semi-cured state, which is indispensable for applications related to electric / electronic materials.
【0007】また近年、ポリイミド、ポリフェニレンエ
ーテル等のエンジニアリングプラスチックが、高耐熱性
の絶縁材料として用いられている。しかしながら、これ
ら材料は、銅など金属(導体)に対する密着力が弱いた
めアンカー剤として耐熱性の弱いエポキシ系密着剤を使
用しなければならないことや、高価格であるなどの不利
があった。In recent years, engineering plastics such as polyimide and polyphenylene ether have been used as highly heat resistant insulating materials. However, since these materials have weak adhesion to a metal (conductor) such as copper, there is a disadvantage that an epoxy adhesive having weak heat resistance must be used as an anchoring agent and that the cost is high.
【0008】[0008]
【発明が解決しようとする課題】本発明は、耐熱性、低
熱膨張性、絶縁性、密着性に優れ、しかもボイド、クラ
ック等を生じないハイブリッド硬化物を収得することが
でき、かつ半硬化状態での成形加工が容易である、特定
の電気絶縁用樹脂組成物並びに当該組成物から得られる
電子材料用絶縁材料および当該材料の製造方法を提供す
ることを目的とする。DISCLOSURE OF THE INVENTION The present invention is capable of obtaining a hybrid cured product which is excellent in heat resistance, low thermal expansion property, insulation property and adhesiveness and does not cause voids, cracks and the like, and is in a semi-cured state. It is an object of the present invention to provide a specific resin composition for electrical insulation, which is easy to mold and process, an insulating material for electronic materials obtained from the composition, and a method for producing the material.
【0009】[0009]
【課題を解決するための手段】本発明者は前記課題を解
決すべく、鋭意検討を重ねた結果、特定のエポキシ樹脂
と特定のメトキシシラン部分縮合物からなるメトキシ基
含有シラン変性エポキシ樹脂を含有する樹脂組成物や、
当該樹脂組成物から得られる電子材料用絶縁材料が前記
目的に合致していることを見出し、本発明を完成するに
至った。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a methoxy group-containing silane-modified epoxy resin containing a specific epoxy resin and a specific methoxysilane partial condensate is contained. A resin composition to
The inventors have found that an insulating material for electronic materials obtained from the resin composition meets the above-mentioned object, and completed the present invention.
【0010】すなわち、本発明は、ノボラック型エポキ
シ樹脂のエポキシ基の一部を開環変性して得られる水酸
基含有エポキシ樹脂(1)とメトキシシラン部分縮合物
(2)とを脱メタノール縮合反応させて得られるメトキ
シ基含有シラン変性エポキシ樹脂を含有することを特徴
とする電気絶縁用樹脂組成物に関する。また本発明は、
ノボラック型エポキシ樹脂のエポキシ基の一部を開環変
性して得られる水酸基含有エポキシ樹脂(1)、メトキ
シシラン部分縮合物(2)、および1分子中に1つの水
酸基を有するエポキシ化合物(3)を脱メタノール縮合
反応させて得られるメトキシ基含有シラン変性ノボラッ
ク型エポキシ樹脂を含有することを特徴とする電気絶縁
用樹脂組成物に関する。また本発明は、かかる電気絶縁
用樹脂組成物を硬化させてなる電子材料用絶縁材料およ
び当該材料の製造方法に関する。That is, according to the present invention, a hydroxyl group-containing epoxy resin (1) obtained by ring-opening modification of a part of the epoxy groups of a novolac type epoxy resin and a methoxysilane partial condensate (2) are subjected to a methanol removal condensation reaction. The present invention relates to a resin composition for electrical insulation containing the silane-modified epoxy resin containing methoxy group obtained as described above. Further, the present invention is
Hydroxyl group-containing epoxy resin (1) obtained by ring-opening modification of a part of the epoxy groups of novolak type epoxy resin, methoxysilane partial condensate (2), and epoxy compound (3) having one hydroxyl group in one molecule And a methoxy group-containing silane-modified novolac type epoxy resin obtained by subjecting the above to a methanol removal condensation reaction. The present invention also relates to an insulating material for electronic materials obtained by curing the resin composition for electrical insulation and a method for producing the material.
【0011】[0011]
【発明の実施の形態】本発明では、メトキシ基含有シラ
ン変性エポキシ樹脂の構成成分として、ノボラック型エ
ポキシ樹脂のエポキシ基の一部を開環変性して得られる
水酸基含有エポキシ樹脂(1)を必須使用する。水酸基
含有エポキシ樹脂(1)の構成原料であるノボラック型
エポキシ樹脂は、ノボラックフェノール樹脂類とエピク
ロルヒドリン等のハロエポキシドとの反応生成物であ
る。ノボラックフェノール樹脂類としては、ノボラック
フェノール樹脂、クレゾールノボラック樹脂、ビスフェ
ノールノボラック樹脂、ポリp−ビニルフェノール等が
あげられる。これらノボラックフェノール樹脂の中で
も、特にフェノールノボラック樹脂を用いたフェノール
ノボラック型エポキシ樹脂は、硬化物の熱膨張性が低い
ため好ましい。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a hydroxyl group-containing epoxy resin (1) obtained by ring-opening modification of a part of epoxy groups of a novolac type epoxy resin is essential as a constituent component of a methoxy group-containing silane modified epoxy resin. use. The novolak type epoxy resin, which is a constituent raw material of the hydroxyl group-containing epoxy resin (1), is a reaction product of a novolac phenol resin and a haloepoxide such as epichlorohydrin. Examples of the novolac phenolic resins include novolac phenolic resins, cresol novolac resins, bisphenol novolac resins, and poly-p-vinylphenol. Among these novolac phenol resins, a phenol novolac epoxy resin using a phenol novolac resin is particularly preferable because the cured product has low thermal expansion property.
【0012】本発明において、水酸基含有エポキシ樹脂
(1)の構成原料としてノボラック型エポキシ樹脂を用
いるのは、ビスフェノール型エポキシ樹脂に代表される
2官能のエポキシ樹脂を使用した場合に比べ、得られる
エポキシ樹脂−シリカハイブリッド硬化物の熱膨張性が
低くなるためである。In the present invention, the novolac type epoxy resin is used as the constituent raw material of the hydroxyl group-containing epoxy resin (1), as compared with the case where the bifunctional epoxy resin represented by the bisphenol type epoxy resin is used. This is because the resin-silica hybrid cured product has a low thermal expansion property.
【0013】ノボラック型エポキシ樹脂の数平均フェノ
ール核体数は3〜10であることが好ましく、さらに好
ましくは3〜6である。平均核体数が3未満であると、
熱膨張性が高くなり、10を超えるとメトキシシラン部
分縮合物(2)との相溶性が低くなるため好ましくな
い。The number average phenol nucleus number of the novolac type epoxy resin is preferably 3 to 10, and more preferably 3 to 6. If the average number of nuclear bodies is less than 3,
The thermal expansion property becomes high, and if it exceeds 10, the compatibility with the methoxysilane partial condensate (2) becomes low, which is not preferable.
【0014】フェノールノボラック型エポキシ樹脂は、
一般式(a):The phenol novolac type epoxy resin is
General formula (a):
【0015】[0015]
【化1】 [Chemical 1]
【0016】(式中、mは1〜8の整数を表す。)で表
される化合物である。(Wherein, m represents an integer of 1 to 8).
【0017】本発明中のメトキシ基含有シラン変性エポ
キシ樹脂の原料である水酸基含有エポキシ樹脂(1)
は、メトキシシラン部分縮合物(2)との脱メタノール
縮合反応により、珪酸エステルを形成しうる水酸基を有
するように、ノボラック型エポキシ樹脂のエポキシ基の
1つ以上を開環変性したものである。開環変性する化合
物としては、フェノール類、アミン類、カルボン酸類な
どの活性水素化合物が例示できる。具体的には、フェノ
ール、パラターシャリーブチルフェノール、パラターシ
ャリーオクチルフェノール、クレゾール、キシレノー
ル、カテコール、ビスフェノールA、ビスフェノール
F、ビスフェノールSなどのフェノール類、ハイドロキ
ノンなどのキノン類、エチルアミン、イソプロピルアミ
ン、2−エチルヘキシルアミン、3−メトキシプロピル
アミン、アリルアミンなどの一級アミン類、ジエチルア
ミン、ジイソプロピルアミン、ジイソブチルアミンなど
の2級アミン類、ギ酸、酢酸、プロピオン酸、シュウ
酸、クエン酸、安息香酸、フマル酸、マレイン酸などの
カルボン酸類、リン酸、メチルホスホン酸、ジメチルホ
スホン酸などのリン酸類等が挙げられる。これらの中で
も、活性水素を2つ有する2官能性の化合物が、エポキ
シ樹脂―シリカハイブリッドの熱膨張性が低くなるため
好ましい。さらに好ましくは、水酸基含有エポキシ樹脂
(1)とメトキシシラン部分縮合物(2)との相溶性が
よく反応しやすいことから、ビスフェノール類で開環変
性するのがより好ましい。Hydroxyl group-containing epoxy resin (1) which is a raw material for the methoxy group-containing silane-modified epoxy resin in the present invention
Is obtained by ring-opening modification of one or more epoxy groups of a novolac type epoxy resin so as to have a hydroxyl group capable of forming a silicate ester by a demethanol condensation reaction with a methoxysilane partial condensate (2). Examples of the compound that undergoes ring-opening modification include active hydrogen compounds such as phenols, amines, and carboxylic acids. Specifically, phenol, paratertiary butylphenol, paratertiary octylphenol, cresol, xylenol, catechol, bisphenol A, bisphenol F, phenols such as bisphenol S, quinones such as hydroquinone, ethylamine, isopropylamine, 2-ethylhexyl. Amine, primary amines such as 3-methoxypropylamine, allylamine, secondary amines such as diethylamine, diisopropylamine, diisobutylamine, formic acid, acetic acid, propionic acid, oxalic acid, citric acid, benzoic acid, fumaric acid, maleic acid And carboxylic acids such as phosphoric acid, methylphosphonic acid, and dimethylphosphonic acid. Among these, a bifunctional compound having two active hydrogens is preferable because the epoxy resin-silica hybrid has a low thermal expansion property. More preferably, since the compatibility between the hydroxyl group-containing epoxy resin (1) and the methoxysilane partial condensate (2) is good and the reaction is easy, the ring-opening modification with a bisphenol is more preferable.
【0018】ノボラック型エポキシ樹脂を開環変性する
のに使用する活性水素化合物の量は特に制限されない
が、ノボラック型エポキシ樹脂分子1モルに対する開環
変性する活性水素のモル比が0.2〜3モルであるこ
と、すなわち、ノボラック型エポキシ樹脂の有するエポ
キシ基のうち、開環変性されるエポキシ基の平均個数が
0.2〜3個であることが好ましい。本数値が0.2未
満であると本発明の効果が得られず、3を超えると開環
変性時にゲル化したり、熱膨張性が高くなる傾向があり
好ましくない。The amount of the active hydrogen compound used for ring-opening modification of the novolac type epoxy resin is not particularly limited, but the molar ratio of active hydrogen for ring-opening modification to 1 mol of the novolak type epoxy resin molecule is 0.2 to 3. It is preferable that the average number of ring-opening modified epoxy groups is 0.2 to 3 among the epoxy groups of the novolac type epoxy resin. If this numerical value is less than 0.2, the effect of the present invention cannot be obtained, and if it exceeds 3, there is a tendency that gelation occurs at the time of ring-opening modification and thermal expansion becomes high, which is not preferable.
【0019】また、ノボラック型エポキシ樹脂のすべて
の分子が開環変性されている必要はない。変性されなか
ったノボラック型エポキシ樹脂は、水酸基含有エポキシ
樹脂(1)とメトキシシラン部分縮合物(2)との脱メ
タノール反応を進行させるため、双方を相溶解させる反
応媒体としての役割と、ゾル−ゲル硬化した半硬化物を
柔軟化する役割を担う。このため、特に、接着剤、成形
中間材料、プリプレグ、封止剤などの半硬化状態での加
工が必要な用途には、ノボラック型エポキシ樹脂の一部
を変性しないまま残すために、ノボラック型エポキシ樹
脂1モルに対する開環変性する活性水素のモル比を0.
8以下にすることが好ましい。Further, it is not necessary that all molecules of the novolac type epoxy resin are ring-opening modified. The unmodified novolac type epoxy resin promotes a demethanol reaction between the hydroxyl group-containing epoxy resin (1) and the methoxysilane partial condensate (2), and thus serves as a reaction medium for phase-dissolving both and sol- It plays the role of softening the semi-cured product that is gel-cured. Therefore, in particular, for applications that require processing in a semi-cured state such as adhesives, molding intermediate materials, prepregs, and encapsulants, in order to leave part of the novolac epoxy resin unmodified, novolac epoxy The molar ratio of active hydrogen for ring-opening modification to 1 mol of the resin is 0.
It is preferably 8 or less.
【0020】本発明に使用するメトキシシラン部分縮合
物(2)としては、一般的にゾル−ゲル法に用いられて
いるメトキシシランを部分的に加水分解、縮合したオリ
ゴマーを使用できる。例えば、一般式:RpSi(OC
H3)4−p(式中、pは0または1の整数を示し、R
は炭素数6以下の低級アルキル基またはフェニル基を示
す。)で表される化合物の部分縮合物等を例示できる。
なお、pが2〜4である場合は、3次元架橋が起こらな
くなるため、最終的に得られる硬化物に所望の高耐熱性
を付与することが難しくなる。As the methoxysilane partial condensate (2) used in the present invention, an oligomer obtained by partially hydrolyzing and condensing methoxysilane which is generally used in the sol-gel method can be used. For example, the general formula: R p Si (OC
H 3 ) 4-p (In the formula, p represents an integer of 0 or 1, and R
Represents a lower alkyl group having 6 or less carbon atoms or a phenyl group. Examples of the partial condensate of the compound represented by
When p is 2 to 4, three-dimensional crosslinking does not occur, and it becomes difficult to impart desired high heat resistance to the finally obtained cured product.
【0021】前記メトキシシラン部分縮合物(2)の具
体例としては、テトラメトキシシランの部分縮合物;メ
チルトリメトキシシラン、エチルトリメトキシシラン、
n−プロピルトリメトキシシラン、イソプロピルトリメ
トキシシラン、ビニルトリメトキシシラン、フェニルト
リメトキシシラン等のトリメトキシシラン類の部分縮合
物があげられる。これらの中でも、テトラメトキシシラ
ン、メチルトリメトキシシラン等の部分縮合物が、汎用
性が高く、ゾル−ゲル硬化速度が速いため好ましい。Specific examples of the methoxysilane partial condensate (2) include tetramethoxysilane partial condensate; methyltrimethoxysilane, ethyltrimethoxysilane,
Partial condensates of trimethoxysilanes such as n-propyltrimethoxysilane, isopropyltrimethoxysilane, vinyltrimethoxysilane and phenyltrimethoxysilane can be mentioned. Among these, partial condensates such as tetramethoxysilane and methyltrimethoxysilane are preferable because they have high versatility and a high sol-gel curing rate.
【0022】メトキシシラン部分縮合物(2)は、上記
物質の中から1種または2種以上を適宜選択すればよい
が、1分子あたりのSiの平均個数は3〜12であるこ
とが好ましい。Siの平均個数が3未満であると、水酸
基含有エポキシ樹脂(1)との脱メタノール反応の際、
副生メタノールと一緒に系外に流出する有毒なメトキシ
シラン類の量が増えるため好ましくない。また12を超
えると、水酸基含有エポキシ樹脂(1)との相溶性が落
ち、前記重量比率を超える量のノボラックエポキシ樹脂
(1)や大量の有機溶剤を必要とし、目的とするメトキ
シ基含有シラン変性エポキシ樹脂は得られにくい。As the methoxysilane partial condensate (2), one kind or two or more kinds may be appropriately selected from the above substances, but the average number of Si per molecule is preferably 3 to 12. When the average number of Si is less than 3, during the methanol removal reaction with the hydroxyl group-containing epoxy resin (1),
It is not preferable because the amount of toxic methoxysilanes flowing out of the system together with by-product methanol increases. Further, when it exceeds 12, the compatibility with the hydroxyl group-containing epoxy resin (1) deteriorates, the amount of the novolak epoxy resin (1) and the large amount of organic solvent exceeding the above weight ratio are required, and the desired methoxy group-containing silane modification is performed. Epoxy resin is difficult to obtain.
【0023】特に、一般式(b):In particular, the general formula (b):
【0024】[0024]
【化2】 [Chemical 2]
【0025】(式中、Meはメチル基を示し、nの平均
繰り返し単位数は3〜12である。)で表されるテトラ
メトキシシランの部分縮合物、あるいは一般式(c):(In the formula, Me represents a methyl group, and the average number of repeating units of n is 3 to 12.) or a partial condensate of tetramethoxysilane represented by the general formula (c):
【0026】[0026]
【化3】 [Chemical 3]
【0027】(式中、Meはメチル基を示し、nの平均
繰り返し単位数は3〜12である。)で表されるメチル
トリメトキシシランの部分縮合物が好ましい。A partial condensate of methyltrimethoxysilane represented by the formula (wherein Me represents a methyl group and the average number of repeating units of n is 3 to 12) is preferred.
【0028】本発明において、メトキシ基含有シラン変
性エポキシ樹脂は、水酸基含有エポキシ樹脂(1)とメ
トキシシラン部分縮合物(2)を脱メタノール反応して
得られるが、この時、1分子中に1つの水酸基を有する
エポキシ化合物(3)(以下、単にエポキシ化合物
(3)という)を使用してもよい。エポキシ化合物
(3)も又、メトキシシラン部分縮合物(2)と脱メタ
ノール反応して、メトキシ基含有シラン変性エポキシ樹
脂を構成する。In the present invention, the methoxy group-containing silane-modified epoxy resin is obtained by subjecting the hydroxyl group-containing epoxy resin (1) and the methoxysilane partial condensate (2) to a demethanol reaction. An epoxy compound (3) having one hydroxyl group (hereinafter, simply referred to as epoxy compound (3)) may be used. The epoxy compound (3) also undergoes a demethanol reaction with the methoxysilane partial condensate (2) to form a methoxy group-containing silane-modified epoxy resin.
【0029】水酸基含有エポキシ樹脂(1)中には、水
酸基が存在しなければならないが、ノボラック型エポキ
シ樹脂1モルに対する開環変性する活性水素のモル比を
1未満とした場合、水酸基を有さないノボラック型エポ
キシ樹脂が水酸基含有エポキシ樹脂(1)中に存在す
る。このようなノボラック型エポキシ樹脂はメトキシシ
ラン部分縮合物(2)とは反応しないため、未反応のま
まメトキシ基含有シラン変性エポキシ樹脂中に存在して
いる。当該分子は、エポキシ樹脂−シリカハイブリッド
半硬化膜形成時には、柔軟性付与や密着性付与に効果的
に働く一方、メトキシ基含有シラン変性エポキシ樹脂中
にノボラック型エポキシ樹脂が多く含まれる場合には、
最終的に得られる硬化膜の耐熱性が不十分である場合が
ある。A hydroxyl group must be present in the hydroxyl group-containing epoxy resin (1). However, when the molar ratio of active hydrogen for ring-opening modification to 1 mol of the novolac type epoxy resin is less than 1, it has no hydroxyl group. No novolac type epoxy resin is present in the hydroxyl group-containing epoxy resin (1). Since such a novolac type epoxy resin does not react with the methoxysilane partial condensate (2), it is present in the methoxy group-containing silane-modified epoxy resin in an unreacted state. When the epoxy resin-silica hybrid semi-cured film is formed, the molecule effectively acts to impart flexibility and adhesion, and when the methoxy group-containing silane-modified epoxy resin contains a large amount of novolac type epoxy resin,
The heat resistance of the finally obtained cured film may be insufficient.
【0030】本発明では、水酸基を有さないノボラック
型エポキシ樹脂が多く存在する水酸基含有エポキシ樹脂
(1)を使用した場合、具体的にはノボラック型エポキ
シ樹脂1モルに対する開環変性する活性水素のモル比が
1未満の場合であっても、得られるエポキシ樹脂−シリ
カハイブリッド硬化膜に十分な耐熱性を付与するため
に、エポキシ化合物(3)を使用することが好ましいと
している。すなわち、エポキシ化合物(3)は、水酸基
を有しないノボラック型エポキシ樹脂によるエポキシ樹
脂−シリカハイブリッド硬化膜の耐熱性の低下を防止す
る作用効果を有する。メトキシ基含有シラン変性エポキ
シ樹脂の製造に際して、エポキシ化合物(3)の使用量
は特に限定されず、エポキシ樹脂(1)中の水酸基を有
さない分子の含有量に応じて適宜に決定すればよい。In the present invention, when the hydroxyl group-containing epoxy resin (1) containing a large amount of novolac type epoxy resin having no hydroxyl group is used, specifically, 1 mol of the novolac type epoxy resin is treated with active hydrogen that undergoes ring-opening modification. Even when the molar ratio is less than 1, it is preferable to use the epoxy compound (3) in order to impart sufficient heat resistance to the obtained epoxy resin-silica hybrid cured film. That is, the epoxy compound (3) has a function and effect of preventing a decrease in heat resistance of the epoxy resin-silica hybrid cured film by the novolac type epoxy resin having no hydroxyl group. In the production of the methoxy group-containing silane-modified epoxy resin, the amount of the epoxy compound (3) used is not particularly limited and may be appropriately determined depending on the content of the molecule having no hydroxyl group in the epoxy resin (1). .
【0031】エポキシ樹脂−シリカハイブリッド硬化物
の耐熱性の観点から、ノボラック型エポキシ樹脂1モル
に対する開環変性する活性水素のモル比が0.3以下の
水酸基含有エポキシ樹脂(1)を使用する場合には、エ
ポキシ化合物(3)の重量/水酸基含有エポキシ樹脂
(1)の重量=0.1以上であり、当該値が0.5以下
の場合には0.03以上であるのが好ましい。なお、エ
ポキシ化合物(3)は、多少の毒性を有するものも多い
ため、メトキシ基含有シラン変性エポキシ樹脂中のエポ
キシ化合物(3)残存量を極力少なくするのがよい。上
記重量比が0.3を超える場合には、未反応エポキシ化
合物(3)を低減させるためにメトキシ基含有シラン変
性エポキシ樹脂の製造時間が長くなり、製造効率が低下
する。From the viewpoint of heat resistance of the epoxy resin-silica hybrid cured product, when a hydroxyl group-containing epoxy resin (1) having a molar ratio of active hydrogen for ring-opening modification of 0.3 or less to 1 mol of a novolac type epoxy resin is used. In addition, the weight of the epoxy compound (3) / the weight of the hydroxyl group-containing epoxy resin (1) is 0.1 or more, and when the value is 0.5 or less, it is preferably 0.03 or more. Since many epoxy compounds (3) have some toxicity, it is preferable to minimize the residual amount of the epoxy compound (3) in the methoxy group-containing silane-modified epoxy resin. If the weight ratio exceeds 0.3, the production time of the methoxy group-containing silane-modified epoxy resin becomes long in order to reduce the unreacted epoxy compound (3), and the production efficiency decreases.
【0032】エポキシ化合物(3)としては、1分子中
に水酸基を1つもつエポキシ化合物であれば、エポキシ
基の数は特に限定されない。また、エポキシ化合物
(3)としては、分子量が小さいもの程、エポキシ樹脂
(1)やメトキシシラン部分縮合物(3)に対する相溶
性がよく、耐熱性付与効果が高いことから、炭素数が1
5以下のものが好適である。その具体例としては、エピ
クロロヒドリンと、水、2価アルコールまたは2つの水
酸基を有するフェノール類とを反応させて得られる分子
末端に1つの水酸基を有するモノグリシジルエーテル
類;エピクロロヒドリンとグリセリンやペンタエリスリ
トールなどの3価以上の多価アルコールとを反応させて
得られる分子末端に1つの水酸基を有するポリグリシジ
ルエーテル類;エピクロロヒドリンとアミノモノアルコ
ールとを反応させて得られる分子末端に1つの水酸基を
有するエポキシ化合物;分子中に1つの水酸基を有する
脂環式炭化水素モノエポキシド(例えば、エポキシ化テ
トラヒドロベンジルアルコール)などが例示できる。こ
れらのエポキシ化合物の中でも、グリシドールが耐熱性
付与効果の点で最も優れており、またメトキシシラン部
分縮合物(2)との反応性も高いため、最適である。The number of epoxy groups is not particularly limited as long as the epoxy compound (3) is an epoxy compound having one hydroxyl group in one molecule. Further, as the epoxy compound (3), the smaller the molecular weight, the better the compatibility with the epoxy resin (1) and the methoxysilane partial condensate (3), and the higher the heat resistance imparting effect, the more the number of carbon atoms is 1.
Those of 5 or less are preferable. As a specific example thereof, monoglycidyl ethers having one hydroxyl group at the molecular end obtained by reacting epichlorohydrin with water, dihydric alcohol or phenols having two hydroxyl groups; epichlorohydrin and Polyglycidyl ethers having one hydroxyl group at the molecular end obtained by reacting a trihydric or higher polyhydric alcohol such as glycerin or pentaerythritol; a molecular end obtained by reacting epichlorohydrin and aminomonoalcohol Examples thereof include an epoxy compound having one hydroxyl group; and an alicyclic hydrocarbon monoepoxide having one hydroxyl group in the molecule (for example, epoxidized tetrahydrobenzyl alcohol). Of these epoxy compounds, glycidol is the most excellent in terms of the heat resistance imparting effect, and is also the most suitable because it has high reactivity with the methoxysilane partial condensate (2).
【0033】本発明に記載のメトキシ基含有シラン変性
エポキシ樹脂は、ノボラック型エポキシ樹脂、水酸基含
有エポキシ樹脂(1)およびメトキシシラン部分縮合物
(2)を、溶剤の存在下または無溶剤下に脱メタノール
縮合反応させることにより得られる。水酸基含有エポキ
シ樹脂(1)とメトキシシラン部分縮合物(2)の使用
量は特に限定されず、水酸基含有エポキシ樹脂(1)の
水酸基の当量/メトキシシラン部分縮合物(2)のメト
キシ基の当量(当量比)を、通常、0.02〜0.6程
度、好ましくは0.03〜0.5とする。当量比が0.
02未満であると未反応のメトキシシラン部分縮合物
(2)が多くなりすぎるため、0.6を超える(化学量
論的に等量に近づく)と脱メタノール反応の進行でゲル
化しやすくなるため好ましくない。The methoxy group-containing silane-modified epoxy resin according to the present invention is obtained by removing a novolac type epoxy resin, a hydroxyl group-containing epoxy resin (1) and a methoxysilane partial condensate (2) in the presence or absence of a solvent. It is obtained by a methanol condensation reaction. The amount of the hydroxyl group-containing epoxy resin (1) and the methoxysilane partial condensate (2) used is not particularly limited, and the hydroxyl group equivalent of the hydroxyl group-containing epoxy resin (1) / the methoxy group equivalent of the methoxysilane partial condensate (2) is used. The (equivalent ratio) is usually about 0.02 to 0.6, preferably 0.03 to 0.5. The equivalence ratio is 0.
If it is less than 02, the amount of unreacted methoxysilane partial condensate (2) becomes too much, and if it exceeds 0.6 (stoichiometrically approaching the same amount), gelation tends to occur due to progress of the demethanol reaction. Not preferable.
【0034】なお、水酸基含有エポキシ樹脂(1)の水
酸基の当量/メトキシシラン部分縮合物(2)のメトキ
シ基の当量(当量比)が、0.2以上の場合や、1分子
あたりのSiの平均個数が7個以上のメトキシシラン部
分縮合物(2)を使用原料とする場合には、水酸基含有
エポキシ樹脂(1)、ノボラック型エポキシ樹脂および
ノボラック型エポキシ樹脂の水酸基が完全に消失するま
で脱メタノール縮合反応を行うと、高粘度化やゲル化を
招き易い。このような場合には、脱メタノール反応を反
応途中で停止させるなどの方法により、高粘度化やゲル
化を防ぐ。例えば、高粘度化してきた時点で、流出する
メタノールを還流して、反応系からのメタノールの留去
量を調整したり、反応系を冷却し反応を終了させる等の
方法を採用できる。When the hydroxyl group equivalent of the hydroxyl group-containing epoxy resin (1) / the methoxy group equivalent (equivalent ratio) of the methoxysilane partial condensate (2) is 0.2 or more, or the amount of Si per molecule is When the methoxysilane partial condensate (2) having an average number of 7 or more is used as a starting material, the hydroxyl group-containing epoxy resin (1), the novolac type epoxy resin and the novolac type epoxy resin are removed until the hydroxyl groups completely disappear. When the methanol condensation reaction is carried out, it tends to lead to high viscosity and gelation. In such a case, it is possible to prevent the increase in viscosity and gelation by a method such as stopping the demethanol reaction during the reaction. For example, it is possible to adopt a method of refluxing the methanol flowing out to adjust the amount of methanol distilled from the reaction system, or cooling the reaction system to terminate the reaction when the viscosity is increased.
【0035】メトキシ基含有シラン変性エポキシ樹脂の
製造は、前記のように、溶剤存在下または無溶剤下で行
うことができる。本発明における脱メタノール縮合反応
では、反応温度は50〜130℃程度、好ましくは70
〜110℃であり、全反応時間は1〜15時間程度であ
る。この反応は、メトキシシラン部分縮合物(2)自体
の重縮合反応を防止するため、実質的に無水条件下で行
うのが好ましい。反応溶剤としては、エポキシ基と反応
せず、沸点が上記脱メタノールの反応温度以上で、水酸
基含有樹脂(1)およびメトキシシラン部分縮合物
(2)を溶解するものであれば、従来公知の溶剤を使用
することができる。このような有機溶剤としては、メチ
ルエチルケトン、メチルイソブチルケトン、トルエン、
キシレン、テトラヒドロフラン、ジメチルジグリコー
ル、ジメチルトリグリコール、ジメチルホルムアミド、
ジメチルアセトアミド、ジメチルスルホキシド、N−メ
チルピロリドン等が例示できる。これらの中でも、半硬
化状態での加工が必要な用途には、メチルエチルケト
ン、トルエンのような沸点が120℃未満で、乾燥が容
易な有機溶剤が好ましい。The silane-modified epoxy resin containing a methoxy group can be produced in the presence or absence of a solvent as described above. In the demethanol condensation reaction in the present invention, the reaction temperature is about 50 to 130 ° C, preferably 70 ° C.
It is ~ 110 ° C, and the total reaction time is about 1 to 15 hours. This reaction is preferably carried out under substantially anhydrous conditions in order to prevent the polycondensation reaction of the methoxysilane partial condensate (2) itself. As the reaction solvent, any conventionally known solvent may be used as long as it does not react with an epoxy group and has a boiling point of at least the reaction temperature for demethanol and dissolves the hydroxyl group-containing resin (1) and the methoxysilane partial condensate (2). Can be used. Such organic solvents include methyl ethyl ketone, methyl isobutyl ketone, toluene,
Xylene, tetrahydrofuran, dimethyldiglycol, dimethyltriglycol, dimethylformamide,
Examples thereof include dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone and the like. Among these, organic solvents having a boiling point of less than 120 ° C. and easily dried, such as methyl ethyl ketone and toluene, are preferable for applications requiring processing in a semi-cured state.
【0036】また、上記の脱メタノール縮合反応に際し
ては、反応促進のために従来公知の触媒の内、エポキシ
環を開環しないものを使用することができる。該触媒と
しては、例えば、リチウム、ナトリウム、カリウム、ル
ビジウム、セシウム、マグネシウム、カルシウム、バリ
ウム、ストロンチウム、亜鉛、アルミニウム、チタン、
コバルト、ゲルマニウム、錫、鉛、アンチモン、砒素、
セリウム、硼素、カドミウム、マンガンのような金属;
これら金属の酸化物、有機酸塩、ハロゲン化物、メトキ
シド等があげられる。これらのなかでも、特に有機錫、
有機酸錫が好ましく、具体的には、ジブチル錫ジラウレ
ート、オクチル酸錫等が有効である。In the demethanol condensation reaction described above, a conventionally known catalyst that does not open the epoxy ring can be used to accelerate the reaction. Examples of the catalyst include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, strontium, zinc, aluminum, titanium,
Cobalt, germanium, tin, lead, antimony, arsenic,
Metals such as cerium, boron, cadmium, manganese;
Examples thereof include oxides, organic acid salts, halides and methoxides of these metals. Among these, especially organic tin,
Organic acid tin is preferable, and specifically, dibutyltin dilaurate, tin octylate and the like are effective.
【0037】本発明におけるメトキシ基含有シラン変性
エポキシ樹脂は、その分子中にメトキシシラン部分縮合
物(2)に由来するメトキシ基を有している。当該メト
キシ基の含有量は、このメトキシ基は加熱処理や水分
(湿気)との反応により、ゾル−ゲル反応や脱メタノー
ル縮合して、相互に結合したハイブリッド硬化物を形成
するために必要となるため、メトキシ基含有シラン変性
エポキシ樹脂は通常、反応原料となるメトキシシラン部
分縮合物(2)のメトキシ基の40〜95モル%、好ま
しくは50〜90モル%を未反応のままで保持しておく
のがよい。かかるハイブリッド硬化物は、ゲル化した微
細なシリカ部位(シロキサン結合の高次網目構造)を有
するものである。またメトキシ基含有シラン変性エポキ
シ樹脂中には、やメトキシシラン部分縮合物(2)が未
反応のまま含有されていてもよい。未反応のメトキシシ
ラン部分縮合物(2)は、ゾル−ゲル硬化時に加水分
解、重縮合によりシリカとなり、メトキシ基含有シラン
変性エポキシ樹脂と結合する。The methoxy group-containing silane-modified epoxy resin of the present invention has a methoxy group derived from the methoxysilane partial condensate (2) in its molecule. The content of the methoxy group is necessary for the methoxy group to undergo a sol-gel reaction or a demethanol condensation by a heat treatment or a reaction with moisture (humidity) to form a hybrid cured product bonded to each other. Therefore, the methoxy group-containing silane-modified epoxy resin usually retains 40 to 95 mol%, preferably 50 to 90 mol%, of the methoxy group of the methoxysilane partial condensate (2) which is a reaction raw material in an unreacted state. It's good to leave. Such a hybrid cured product has a gelled fine silica site (a higher-order network structure of siloxane bonds). The methoxy group-containing silane-modified epoxy resin may contain the methoxysilane partial condensate (2) in an unreacted state. The unreacted methoxysilane partial condensate (2) becomes silica by hydrolysis and polycondensation during sol-gel curing, and bonds with the methoxy group-containing silane-modified epoxy resin.
【0038】本発明では、メトキシ基含有シラン変性エ
ポキシ樹脂を、潜在性エポキシ樹脂用硬化剤を組み合わ
せてなる電気絶縁用樹脂組成物として使用する。本発明
の電気絶縁用樹脂組成物においては、メトキシ基含有シ
ラン変性エポキシ樹脂に加えて、各種のエポキシ樹脂、
エポキシ樹脂用硬化剤、硬化促進剤、エポキシ重合触媒
などを併用できる。本発明の電気絶縁用樹脂組成物を各
種用途へ適用するにあたっては、エポキシ樹脂−シリカ
ハイブリッド硬化物や半硬化物の柔軟性や力学強度を調
整するため、各種のエポキシ樹脂やゴム成分などを併用
することもできる。当該併用しうるエポキシ樹脂として
は、本発明の構成成分として記載した前記ノボラック型
エポキシ樹脂;ビスフェノール類とエピクロロヒドリン
を反応させて得られるビスフェノール型エポキシ樹脂;
フタル酸、ダイマー酸などの多塩基酸類およびエピクロ
ロヒドリンを反応させて得られるグリシジルエステル型
エポキシ樹脂;ジアミノジフェニルメタン、イソシアヌ
ル酸などのポリアミン類とエピクロロヒドリンを反応さ
せて得られるグリシジルアミン型エポキシ樹脂;オレフ
ィン結合を過酢酸などの過酸で酸化して得られる線状脂
肪族エポキシ樹脂および脂環式エポキシ樹脂などがあげ
られる。またゴム成分としてはポリイソブテン、ポリブ
チレン、ポリブタジエン、ブタジエン−アクリロニトリ
ルゴム、クロロプレンゴム、シリコンゴム等が挙げられ
るIn the present invention, the methoxy group-containing silane-modified epoxy resin is used as an electrical insulating resin composition in which a curing agent for a latent epoxy resin is combined. In the electrical insulation resin composition of the present invention, in addition to the methoxy group-containing silane-modified epoxy resin, various epoxy resins,
A curing agent for epoxy resin, a curing accelerator, an epoxy polymerization catalyst, etc. can be used in combination. In applying the resin composition for electrical insulation of the present invention to various applications, various epoxy resins and rubber components are used together in order to adjust the flexibility and mechanical strength of the epoxy resin-silica hybrid cured product and semi-cured product. You can also do it. As the epoxy resin which can be used in combination, the novolac type epoxy resin described as a constituent of the present invention; a bisphenol type epoxy resin obtained by reacting a bisphenol with epichlorohydrin;
Glycidyl ester type epoxy resin obtained by reacting polybasic acids such as phthalic acid and dimer acid and epichlorohydrin; glycidyl amine type obtained by reacting polyamines such as diaminodiphenylmethane and isocyanuric acid with epichlorohydrin Epoxy resin: linear aliphatic epoxy resin and alicyclic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid. Examples of the rubber component include polyisobutene, polybutylene, polybutadiene, butadiene-acrylonitrile rubber, chloroprene rubber, and silicone rubber.
【0039】また、潜在性エポキシ樹脂用硬化剤として
は、通常、エポキシ樹脂の硬化剤として使用されている
従来公知の潜在性硬化剤が使用できる。潜在性エポキシ
樹脂用硬化剤は、ノボラック樹脂系硬化剤、イミダゾー
ル系硬化剤、酸無水物系硬化剤等が例示できる。具体的
には、ノボラック樹脂系のものとしては、フェノールノ
ボラック樹脂、クレゾールノボラック樹脂、ビスフェノ
ールノボラック樹脂、ポリp−ビニルフェノール等があ
げられ、イミダゾール系硬化剤としては、2−メチルイ
ミダゾール、2−エチルへキシルイミダゾール、2−ウ
ンデシルイミダゾール、2−フェニルイミダゾール、1
−シアノエチル−2−フェニルイミダゾリウム・トリメ
リテート、2−フェニルイミダゾリウム・イソシアヌレ
ート等があげられ、酸無水物系硬化剤としては、無水フ
タル酸、テトラヒドロ無水フタル酸、メチルテトラヒド
ロ無水フタル酸、3,6−エンドメチレンテトラヒドロ
無水フタル酸、ヘキサクロルエンドメチレンテトラヒド
ロ無水フタル酸、メチル−3,6−エンドメチレンテト
ラヒドロ無水フタル酸があげられ、またその他の硬化剤
としてジシアンジアミド、ケチミン化合物等があげられ
る。これらの中でも電気絶縁用樹脂組成物の貯蔵安定性
を考慮すると、ノボラック樹脂系硬化剤、イミダゾール
系硬化剤が好ましい。As the latent epoxy resin curing agent, a conventionally known latent curing agent which is usually used as an epoxy resin curing agent can be used. Examples of the latent epoxy resin curing agent include a novolac resin-based curing agent, an imidazole-based curing agent, and an acid anhydride-based curing agent. Specifically, examples of novolac resin-based ones include phenol novolac resin, cresol novolac resin, bisphenol novolac resin, poly-p-vinylphenol, and the like, and imidazole-based curing agents include 2-methylimidazole and 2-ethyl. Hexyl imidazole, 2-undecyl imidazole, 2-phenyl imidazole, 1
-Cyanoethyl-2-phenylimidazolium trimellitate, 2-phenylimidazolium isocyanurate, and the like. Examples of acid anhydride-based curing agents include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, 3, 6-endomethylenetetrahydrophthalic anhydride, hexachloroendmethylenetetrahydrophthalic anhydride, methyl-3,6-endmethylenetetrahydrophthalic anhydride, and other curing agents include dicyandiamide and ketimine compounds. Of these, novolac resin-based curing agents and imidazole-based curing agents are preferable in consideration of the storage stability of the electrical insulating resin composition.
【0040】潜在性エポキシ樹脂用硬化剤の使用割合
は、通常、電気絶縁用樹脂組成物中のエポキシ基1当量
に対し、硬化剤中の活性水素を有する官能基が0.2〜
1.5当量程度となるような割合で配合して調製され
る。The latent epoxy resin curing agent is usually used in an amount of 0.2 to 0.2% of the functional group having active hydrogen in the curing agent with respect to 1 equivalent of the epoxy group in the electrically insulating resin composition.
It is prepared by mixing in a ratio such that the amount becomes about 1.5 equivalents.
【0041】また、前記電気絶縁用樹脂組成物には、エ
ポキシ樹脂と硬化剤との硬化反応を促進するための硬化
促進剤を含有することができる。例えば、1,8−ジア
ザ−ビシクロ[5.4.0]ウンデセン−7、トリエチ
レンジアミン、ベンジルジメチルアミン、トリエタノー
ルアミン、ジメチルアミノエタノール、トリス(ジメチ
ルアミノメチル)フェノールなどの三級アミン類;2−
メチルイミダゾール、2−フェニルイミダゾール、2−
フェニル−4−メチルイミダゾール、2−ヘプタデシル
イミダゾールなどのイミダゾール類;トリブチルホスフ
ィン、メチルジフェニルホスフィン、トリフェニルホス
フィン、ジフェニルホスフィン、フェニルホスフィンな
どの有機ホスフィン類;テトラフェニルホスホニウム・
テトラフェニルボレート、2−エチル−4−メチルイミ
ダゾール・テトラフェニルボレート、N−メチルモルホ
リン・テトラフェニルボレートなどのテトラフェニルボ
ロン塩などをあげることができる。硬化促進剤はエポキ
シ樹脂の100重量部に対し、0.1〜5重量部の割合
で使用するのが好ましい。Further, the resin composition for electrical insulation may contain a curing accelerator for promoting the curing reaction between the epoxy resin and the curing agent. For example, tertiary amines such as 1,8-diaza-bicyclo [5.4.0] undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2 −
Methylimidazole, 2-phenylimidazole, 2-
Imidazoles such as phenyl-4-methylimidazole and 2-heptadecylimidazole; organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine and phenylphosphine; tetraphenylphosphonium.
Examples thereof include tetraphenyl borate, 2-ethyl-4-methylimidazole tetraphenyl borate, and tetraphenyl boron salts such as N-methylmorpholine tetraphenyl borate. The curing accelerator is preferably used in a proportion of 0.1 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.
【0042】前記電気絶縁用樹脂組成物には、本発明の
効果を損なわない範囲で、必要に応じて、有機溶剤、充
填剤、離型剤、表面処理剤、難燃剤、粘度調節剤、可塑
剤、抗菌剤、防黴剤、レベリング剤、消泡剤、着色剤、
安定剤、カップリング剤等を配合してもよい。If necessary, the resin composition for electrical insulation may contain an organic solvent, a filler, a release agent, a surface treatment agent, a flame retardant, a viscosity modifier, and a plasticizer as long as the effects of the present invention are not impaired. Agent, antibacterial agent, antifungal agent, leveling agent, defoaming agent, coloring agent,
You may mix | blend a stabilizer, a coupling agent, etc.
【0043】本発明の電子材料用絶縁材料は、前記のと
おり電気絶縁用樹脂組成物から得られるものである。す
なわち、電気絶縁用樹脂組成物から、電子材料用絶縁材
料となるハイブリッド硬化物を直接的に得るには、当該
組成物を室温〜250℃で硬化させる。半硬化物を経由
させる場合は、当該組成物を50〜120℃で溶剤を揮
発、ゾルゲル硬化させ、そののち150〜250℃で完
全硬化させる。硬化温度は、エポキシ樹脂用硬化剤の種
類によって適宜決定される。当該硬化剤として、フェノ
ール樹脂系硬化剤や酸無水物系硬化剤を用いる場合に
は、当該硬化剤以外にゾル−ゲル硬化触媒を0.1%以
上併用して、コーティングや含浸などの加工を施した
後、150〜250℃で硬化させるのが好ましい。なぜ
なら、メトキシシリル部位のゾル−ゲル硬化反応ではメ
タノールが発生するため、メトキシ基含有シラン変性エ
ポキシ樹脂中のエポキシ基とエポキシ樹脂用硬化剤との
エポキシ基の開環・架橋反応による硬化が進行した後
に、当該アルコールが発生した場合には、発泡やクラッ
クを生じる。そのため、触媒を適宜に選択することによ
ってゾル−ゲル硬化反応速度を調整する必要がある。The insulating material for electronic materials of the present invention is obtained from the electrical insulating resin composition as described above. That is, in order to directly obtain a hybrid cured product as an insulating material for electronic materials from the resin composition for electrical insulation, the composition is cured at room temperature to 250 ° C. When passing through a semi-cured product, the composition is volatilized with a solvent at 50 to 120 ° C. to be sol-gel cured, and then completely cured at 150 to 250 ° C. The curing temperature is appropriately determined depending on the type of curing agent for epoxy resin. When a phenol resin-based curing agent or an acid anhydride-based curing agent is used as the curing agent, 0.1% or more of a sol-gel curing catalyst is used in combination with the curing agent to perform processing such as coating or impregnation. After application, it is preferably cured at 150 to 250 ° C. Because methanol is generated in the sol-gel curing reaction at the methoxysilyl site, curing proceeds by ring-opening / crosslinking reaction of the epoxy group in the methoxy group-containing silane-modified epoxy resin and the epoxy resin curing agent. Later, when the alcohol is generated, foaming or cracking occurs. Therefore, it is necessary to adjust the sol-gel curing reaction rate by appropriately selecting the catalyst.
【0044】以下、本発明の電気絶縁用樹脂組成物から
各種の絶縁材料を得るための方法につき説明する。当該
電気絶縁用樹脂組成物から半硬化シートや成形用中間材
料などを経て、最終的な硬化物を収得するには、当該樹
脂組成物中のエポキシ硬化剤の種類、更には半硬化条件
などを慎重に選択することが重要となる。エポキシ硬化
剤として、フェノール樹脂系硬化剤、酸無水物系硬化
剤、イミダゾール類等の潜在性硬化剤を用い、錫系のゾ
ル−ゲル硬化触媒をメトキシ基含有シラン変性エポキシ
樹脂の固形残分当り0.05〜5%程度配合することが
好ましい。上記電気絶縁用樹脂組成物を用いて半硬化フ
ィルムや成形用中間材料を作製するには、好ましくは5
0〜150℃で加熱することにより、溶剤を含有してい
る場合には溶剤を蒸発させ、当該樹脂組成物中に含有さ
れるメトキシ基含有シラン変性エポキシ樹脂のメトキシ
シリル部位のゾル−ゲル硬化を70%以上、好ましくは
90%以上進行させ、シロキサン結合を生成させる必要
がある。なぜなら、メトキシシリル部位のゾル−ゲル硬
化反応ではメタノールが発生するため、半硬化物作製時
のゾル−ゲル硬化の進行が少ないと、これに引き続く完
全硬化反応において硬化収縮やクラック、発泡が生じる
可能性があるためである。こうして得られた半硬化フィ
ルムや成形中間材料は60〜150℃に加熱することに
よって軟化し、成形加工やモールド、部品装着などの操
作が可能になる。その後、当該加工させた半硬化フィル
ムや成形中間材料を150〜250℃で加熱すること
で、当該エポキシ基とエポキシ硬化剤とが硬化し、目的
とする電子材料用絶縁材料が得られる。The method for obtaining various insulating materials from the electrical insulating resin composition of the present invention will be described below. To obtain a final cured product from the electrical insulating resin composition through a semi-cured sheet or an intermediate material for molding, the type of epoxy curing agent in the resin composition, and further the semi-curing condition, etc. Careful selection is important. As the epoxy curing agent, a phenol resin-based curing agent, an acid anhydride-based curing agent, a latent curing agent such as imidazole is used, and a tin-based sol-gel curing catalyst is added to the solid residue of the methoxy group-containing silane-modified epoxy resin. It is preferable to add about 0.05 to 5%. In order to produce a semi-cured film or an intermediate material for molding using the above-mentioned electrical insulating resin composition, preferably 5
When the solvent is contained, the solvent is evaporated by heating at 0 to 150 ° C., so that the methoxysilyl moiety of the methoxy group-containing silane-modified epoxy resin contained in the resin composition is sol-gel cured. It is necessary to proceed 70% or more, preferably 90% or more to form a siloxane bond. Because methanol is generated in the sol-gel curing reaction at the methoxysilyl site, if the progress of sol-gel curing during preparation of semi-cured product is small, curing shrinkage, cracks, and foaming may occur in the subsequent complete curing reaction. Because there is a nature. The semi-cured film and intermediate molding material thus obtained are softened by heating at 60 to 150 ° C., and operations such as molding, molding, and component mounting become possible. After that, the processed semi-cured film and the molding intermediate material are heated at 150 to 250 ° C., whereby the epoxy group and the epoxy curing agent are cured, and the intended insulating material for electronic material is obtained.
【0045】本発明の電気絶縁用樹脂組成物からプリン
ト基板用プリプレグを得るには、例えば特開平9−14
3286号公報に記載されているように、電気絶縁用樹
脂組成物を溶剤でワニス化し、当該ワニスを補強基材に
含浸し、加熱してプリプレグシートを得ることができ
る。この時、上記エポキシ樹脂組成物の組成や作製条件
については、上記の半硬化フィルムや成形用中間材料と
同様に決定すればよい。なお、溶剤としては、例えばメ
チルエチルケトン、アセトン、エチルセロソルブ、ジメ
チルホルムアミド、メタノール、エタノール、イソプロ
ピルアルコールなどの沸点が160℃以下の極性溶剤が
あげられ、これらはプレプリグ中に残存しないため好ま
しい。加熱温度は、用いる溶剤の種類を考慮して決定さ
れ、好ましくは50〜150℃とされる。尚、補強基材
の種類は特に限定はされず、例えば紙、ガラス布、ガラ
ス不織布、アラミド紙、アラミド布、ガラスマット、ガ
ラスロービング布などの各種を例示できる。また、樹脂
分と補強基材の割合も特に限定されないが、通常、プリ
プレグ中の樹脂分が20〜80重量%となるように調整
するのが好ましい。To obtain a prepreg for a printed circuit board from the resin composition for electric insulation of the present invention, for example, JP-A-9-14 is used.
As described in Japanese Patent No. 3286, a prepreg sheet can be obtained by varnishing a resin composition for electrical insulation with a solvent, impregnating the varnish into a reinforcing base material, and heating. At this time, the composition and production conditions of the epoxy resin composition may be determined in the same manner as the semi-cured film and the molding intermediate material. Examples of the solvent include polar solvents having a boiling point of 160 ° C. or less such as methyl ethyl ketone, acetone, ethyl cellosolve, dimethylformamide, methanol, ethanol and isopropyl alcohol, which are preferable because they do not remain in the prepreg. The heating temperature is determined in consideration of the type of solvent used, and is preferably 50 to 150 ° C. The type of the reinforcing base material is not particularly limited, and various examples such as paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth can be exemplified. The ratio of the resin component to the reinforcing base material is not particularly limited, but it is usually preferable to adjust the resin component in the prepreg to be 20 to 80% by weight.
【0046】本発明の電気絶縁用樹脂組成物から銅張り
積層板を得るには、例えば特開平5−86215号公報
や特開平6−100763号公報に記載されているよう
に、上記のプリプレグを3〜8枚程度重ね、さらに上下
に銅箔を重ねて、1〜10MPaの加圧下に、170〜
250℃で10分〜3時間、加熱圧着させる。In order to obtain a copper clad laminate from the resin composition for electrical insulation of the present invention, the above prepreg is used as described in, for example, JP-A-5-86215 and JP-A-6-100763. About 3 to 8 sheets are piled up, copper foils are further piled up and down, and 170 to 170 MPa under a pressure of 1 to 10 MPa.
It is thermocompression bonded at 250 ° C. for 10 minutes to 3 hours.
【0047】上記プリプレグと銅張り積層板からプリン
ト配線基板やインターポーザーを得るには、銅張り積層
板をレジストエッチングして回路を形成させた後、プリ
プレグおよび銅箔を重ねて上記の銅張り積層板作製時と
同じ条件で加熱圧着し、多層化すればよい。To obtain a printed wiring board or an interposer from the prepreg and the copper-clad laminate, the copper-clad laminate is resist-etched to form a circuit, and then the prepreg and the copper foil are laminated to form the copper-clad laminate. It suffices to perform thermocompression bonding under the same conditions as in the production of the plate to form a multilayer.
【0048】本発明の電気絶縁用樹脂組成物からビルド
アップ基板用層間絶縁材料を得る方法としては特に限定
されないが、例えば特公平4−6116号、特開平7−
304931号、特開平8−64960号、特開平9−
71762号、特開平9−298369号公報などに記
載の各種方法を採用できる。より具体的には、ゴム、フ
ィラーなどを適宜含有した当該エポキシ樹脂組成物を、
回路を形成した配線基板にスプレーコーティング法、カ
ーテンコーティング法等の公知の方法で塗布した後、上
記のような直接ハイブリッド体を得る方法に従って硬化
させる。その後、必要に応じて所定のスルーホール部等
の穴あけを行った後、粗化剤により処理し、その表面を
湯洗することによって、凹凸を形成させ、銅などの金属
をめっき処理する。当該めっき方法としては、無電解め
っき、電解めっき処理が好ましく、また上記の粗化剤と
しては酸化剤、アルカリ及び有機溶剤の中から選ばれた
少なくとも1種が用いられる。このような操作を所望に
応じて順次繰り返し、樹脂絶縁層及び所定の回路パター
ンの導体層を交互にビルドアップして形成することがで
きる。但し、スルーホール部の穴あけは、最外層の樹脂
絶縁層の形成後に行なう。また、本発明の電気絶縁用樹
脂組成物から得られた半硬化フィルムや半硬化物を用い
てビルドアップ基板用層間絶縁材料を作製することもで
きる。たとえば、回路を形成した配線基板上で、前記と
同様の条件下に当該電気絶縁用樹脂組成物を半硬化さ
せ、その後、必要に応じて所定のスルーホール部等の穴
あけを行った後、粗化剤により粗面化処理を行ない、樹
脂絶縁層の表面及びスルーホール部に凹凸状の良好な粗
化面を形成させる。次いで、このように粗面化された樹
脂絶縁層表面に前記と同様に金属めっきを施した後、再
度、当該電気絶縁用樹脂組成物をコーティングし、17
0〜250℃で加熱処理を行う。このような操作を所望
に応じて順次繰り返し、樹脂絶縁層及び所定の回路パタ
ーンの導体層を交互にビルドアップして形成することも
できる。また、銅箔上で当該エポキシ樹脂組成物を半硬
化させた樹脂付き銅箔を、回路を形成した配線基板上
に、170〜250℃で加熱圧着することで、粗化面を
形成、メッキ処理の工程を省き、ビルドアップ基板を作
製することも可能である。The method for obtaining the interlayer insulating material for the build-up substrate from the resin composition for electrical insulation of the present invention is not particularly limited, but for example, Japanese Patent Publication No. 4-6116, JP-A-7-.
304931, JP-A-8-64960, JP-A-9-
Various methods described in JP-A No. 71762, JP-A No. 9-298369, etc. can be adopted. More specifically, the epoxy resin composition containing rubber, a filler and the like,
The wiring substrate on which the circuit is formed is applied by a known method such as a spray coating method or a curtain coating method, and then cured according to the method for directly obtaining the hybrid body as described above. After that, a predetermined through-hole portion or the like is bored as needed, and then treated with a roughening agent, and the surface thereof is washed with hot water to form irregularities, and a metal such as copper is plated. The plating method is preferably electroless plating or electrolytic plating, and the roughening agent used is at least one selected from an oxidizing agent, an alkali and an organic solvent. Such an operation can be sequentially repeated as desired to build up the resin insulating layer and the conductor layer having a predetermined circuit pattern alternately. However, the through holes are formed after the outermost resin insulating layer is formed. Further, a semi-cured film or a semi-cured product obtained from the resin composition for electric insulation of the present invention can be used to produce an interlayer insulating material for build-up substrates. For example, on a wiring board on which a circuit is formed, the resin composition for electrical insulation is semi-cured under the same conditions as described above, and then, if necessary, a predetermined through-hole portion or the like is punched, and then roughened. A roughening treatment is carried out with an agent to form a good roughened surface having unevenness on the surface of the resin insulating layer and the through holes. Then, the surface of the resin insulating layer thus roughened is subjected to metal plating in the same manner as described above, and then the resin composition for electrical insulation is coated again.
Heat treatment is performed at 0 to 250 ° C. Such an operation may be sequentially repeated as desired to alternately build up the resin insulating layer and the conductor layer having a predetermined circuit pattern to form the resin layer. In addition, a resin-coated copper foil obtained by semi-curing the epoxy resin composition on a copper foil is heat-pressed at 170 to 250 ° C. onto a wiring board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to manufacture the build-up substrate by omitting the step.
【0049】電子部品用封止剤として、モールド型封止
剤、テープ状封止剤、ポッティング型液状封止剤など各
種のものが知られている。本発明の電気絶縁用樹脂組成
物から、例えばモールド型封止剤を調製する場合、その
方法について特に限定されないが、当該樹脂組成物をゾ
ル−ゲル硬化させた硬化物の粉末を用いる方法が好まし
い。例えば、メトキシ基含有シラン変性エポキシ樹脂に
錫系のゾル−ゲル硬化触媒を樹脂分当り0.05〜5%
と、必要に応じてシリカなど無機充填剤を配合して本発
明の電気絶縁用樹脂組成物(エポキシ樹脂硬化剤を配合
せず)とした後、テフロン(登録商標)シート上で10
0〜200℃にて硬化させ、更に当該ゾル−ゲル硬化物
を粉砕機にかけて、粉末化する方法がある。また、当該
樹脂組成物を溶剤で希釈し、25℃で500mPa・s
以下の粘度になるよう調整した後、スプレーして空気中
の湿気と反応させることにより、ゾル−ゲル硬化物の粉
末を得ることもできる。当該溶剤としては、前記と同様
のものであり、特に沸点が100℃以下の溶剤が好まし
い。この様にして得られたゾル−ゲル硬化物の粉末に、
エポキシ樹脂硬化剤としてのノボラックフェノール樹
脂、エポキシ樹脂硬化触媒、および無機充填剤を通常8
0〜170℃の温度で30〜300秒間、混練して、封
止剤用組成物を得る。当該封止剤用組成物を金型に封入
し、通常170〜250℃、5〜20MPaでトランス
ファー成形する事により、半導体や電子部品を封止す
る。封止剤の使用は電子部品や半導体を長寿命化する事
が目的であるため、低吸水性は最も大切な性能である。
本特許のメトキシ基含有シラン変性エポキシ樹脂の製造
において、メトキシシラン部分縮合物(3)にメチルト
リメトキシシランの部分縮合物を用いると、硬化物が低
い吸水率を示し、好適である。Various types of sealants for electronic parts, such as mold type sealants, tape type sealants, potting type liquid sealants, etc., are known. When preparing, for example, a mold-type sealant from the resin composition for electrical insulation of the present invention, the method is not particularly limited, but a method using a powder of a cured product obtained by sol-gel curing the resin composition is preferable. . For example, a silane-modified epoxy resin containing a methoxy group and a tin-based sol-gel curing catalyst in an amount of 0.05 to 5% per resin content.
And, if necessary, an inorganic filler such as silica is blended to obtain the resin composition for electrical insulation of the present invention (without blending an epoxy resin curing agent), and then 10 on a Teflon (registered trademark) sheet.
There is a method of curing at 0 to 200 ° C. and further pulverizing the sol-gel cured product into a powder. In addition, the resin composition is diluted with a solvent to obtain 500 mPa · s at 25 ° C.
It is also possible to obtain a powder of a sol-gel cured product by adjusting the viscosity to the following and spraying it to react with moisture in the air. The solvent is the same as that described above, and a solvent having a boiling point of 100 ° C. or lower is particularly preferable. In the powder of the sol-gel cured product thus obtained,
A novolac phenol resin as an epoxy resin curing agent, an epoxy resin curing catalyst, and an inorganic filler are usually used.
The composition for a sealant is obtained by kneading at a temperature of 0 to 170 ° C. for 30 to 300 seconds. The semiconductor or electronic component is sealed by encapsulating the composition for a sealant in a mold and usually transfer molding at 170 to 250 ° C. and 5 to 20 MPa. Low water absorption is the most important performance because the use of a sealant is intended to prolong the life of electronic parts and semiconductors.
In the production of the methoxy group-containing silane-modified epoxy resin of the present patent, it is preferable to use a methyltrimethoxysilane partial condensate as the methoxysilane partial condensate (3), since the cured product shows a low water absorption.
【0050】またテープ状封止剤として使用する場合に
は、必要に応じてシリカなど無機充填剤を配合した本発
明の電気絶縁用樹脂組成物を用いて、前記手順に従って
半硬化シートを作製し、封止剤テープとする。この封止
剤テープを半導体チップ上に置き、100〜150℃に
加熱して軟化させ成形した後、170〜250℃で完全
に硬化させる。When it is used as a tape-shaped sealant, a semi-cured sheet is prepared according to the above procedure using the resin composition for electrical insulation of the present invention containing an inorganic filler such as silica if necessary. , A sealant tape. This sealant tape is placed on a semiconductor chip, heated to 100 to 150 ° C. to be softened and molded, and then completely cured at 170 to 250 ° C.
【0051】更にポッティング型液状封止剤として使用
する場合には、必要に応じてシリカなど無機充填剤を配
合した本発明の電気絶縁用樹脂組成物を半導体チップや
電子部品上に塗布し、直接、硬化させればよい。Further, when it is used as a potting type liquid sealant, the resin composition for electrical insulation of the present invention containing an inorganic filler such as silica, if necessary, is applied on a semiconductor chip or an electronic component and directly applied. It may be cured.
【0052】本発明の電気絶縁用樹脂組成物をアンダー
フィル樹脂として使用する方法についても特に限定され
ないが、例えば特開平9−266221号公報や「エレ
クトロニクス分野のプラスチック」(工業調査会発行、
1999年、27〜34頁)に記載されるような方法を
採用できる。より具体的には、フリップチップ実装時に
電極のついた半導体素子と半田のついたプリント配線基
板との空隙に、本発明の電気絶縁用樹脂組成物を、毛細
管現象を利用してキャピラリーフロー法によって注入
し、上記直接ハイブリッド体を得る方法で硬化させる方
法と、予め基板ないし半導体素子上に前記手順に従っ
て、半硬化樹脂を形成させてから、加熱して半導体素子
と基板を半硬化樹脂で密着させ、完全硬化させるコンプ
レッションフロー法などによりアンダーフィル樹脂層を
形成する。この場合、本発明の電気絶縁用樹脂組成物
を、溶剤を含有しない液状の樹脂組成物の形態で使用す
るのが好ましい。特にキャピラリーフロー法を用いる場
合には、低粘度である必要があり、5000mPa・s
以下の粘度であることが好ましい。エポキシ樹脂組成物
がこれを超える粘度であれば、室温〜100℃以下に加
温して注入することもできる。また、アンダーフィル樹
脂の目的は、半導体素子と基板の線膨張性の違いから生
じる半田周辺の応力を緩和する事であり、界面ジョイン
トである半田の線膨張係数に近い、低い線膨張係数を有
する絶縁材料が好ましいとされている。そのため、エポ
キシ樹脂組成物が低粘度であれば、シリカなどフィラー
を添加することによって、線膨張率係数を更に下げるこ
ともできる。The method of using the resin composition for electrical insulation of the present invention as an underfill resin is not particularly limited, but for example, JP-A-9-266221 and "Plastics in the field of electronics" (published by the Industrial Research Board,
The method as described in 1999, pp. 27-34) can be adopted. More specifically, the resin composition for electrical insulation of the present invention is provided in the gap between the semiconductor element with electrodes and the printed wiring board with solder during flip-chip mounting by a capillary flow method using capillary action. A method of injecting and curing by the method of directly obtaining the hybrid body, and a semi-cured resin is previously formed on the substrate or the semiconductor element according to the above procedure, and then heated to bring the semiconductor element and the substrate into close contact with the semi-cured resin. Then, an underfill resin layer is formed by a compression flow method or the like for completely curing. In this case, it is preferable to use the electrical insulating resin composition of the present invention in the form of a liquid resin composition containing no solvent. Especially when the capillary flow method is used, it is necessary to have a low viscosity, and the viscosity is 5000 mPa · s.
The following viscosities are preferred. When the epoxy resin composition has a viscosity exceeding this range, it can be heated at room temperature to 100 ° C. or lower and then injected. The purpose of the underfill resin is to relieve the stress around the solder caused by the difference in the linear expansion coefficient between the semiconductor element and the substrate, and to have a low linear expansion coefficient close to that of the solder that is the interface joint. Insulating materials are said to be preferred. Therefore, if the epoxy resin composition has a low viscosity, the coefficient of linear expansion can be further reduced by adding a filler such as silica.
【0053】本発明の電気絶縁用樹脂組成物をソルダー
レジストなどの熱硬化型レジストインキとして使用する
場合には、例えば特開平5−186567号公報や特開
平8−307041号公報に記載の方法に準じて、レジ
ストインキ用組成物とした後、スクリーン印刷方式で、
プリント基板上に塗布した後、直接ハイブリッド硬化物
を得る方法によって、レジストインキ硬化物とする。好
適には、レジストインキ用組成物として、メトキシ基含
有シラン変性エポキシ樹脂及びエポキシ樹脂硬化剤の
他、必要に応じてアクリル酸エステルやメタクリル酸エ
ステルなどのエチレン性不飽和二重結合を有するビニル
系モノマー、フタロシアニンブルーをはじめとする各種
の顔料、シリカ、アルミナ等の充填剤、レベリング剤な
どを添加する。When the resin composition for electric insulation of the present invention is used as a thermosetting resist ink such as a solder resist, it can be prepared by the method described in, for example, JP-A-5-186567 and JP-A-8-307041. According to the above, after the composition for resist ink, by the screen printing method,
A resist ink cured product is obtained by a method of directly obtaining a hybrid cured product after coating on a printed board. Preferably, as the composition for the resist ink, a methoxy group-containing silane-modified epoxy resin and an epoxy resin curing agent, and optionally a vinyl-based resin having an ethylenically unsaturated double bond such as an acrylic ester or a methacrylic ester. Monomers, various pigments such as phthalocyanine blue, fillers such as silica and alumina, and leveling agents are added.
【0054】本発明の電気絶縁用樹脂組成物を半導体の
層間絶縁材料として使用する場合は、例えば特開平6−
85091公報の記載の方法が採用できる。具体的に
は、半導体上に当該樹脂組成物をスピンコートし、直接
ハイブリッド硬化物を得る方法によって得られる。層間
絶縁膜に用いる場合は半導体に直接接することになるた
め、高温環境下において線膨張率の差によるクラックが
生じないよう、絶縁材の線膨張率を半導体の線膨張率に
近づけるよう低くすることが要求される。また、半導体
の微細化、多層化、高密度化による信号遅延の問題に対
応するため、絶縁材の低容量化技術が求められており、
絶縁材を低誘電化することによってこの問題を解決する
ことができる。これらの要求を満たすため、本発明の電
気絶縁用樹脂組成物においては、ノボラックエポキシ樹
脂を変性して水酸基含有エポキシ樹脂(1)を得る際、
ノボラック型エポキシ樹脂分子1モルに対する開環変性
する活性水素のモル比が0.8〜3モルであること、す
なわち、ノボラック型エポキシ樹脂の有するエポキシ基
のうち、開環変性されるエポキシ基の平均個数が0.8
〜3個とし、変性されなかったノボラック型エポキシ樹
脂の残存量を少なくすることが好ましい。またメトキシ
シラン部分縮合物(2)としてテトラメトキシシラン部
分縮合物を用いること、更にはエポキシ樹脂組成物の固
形残分中のメトキシシラン部分縮合物(2)のゾル−ゲ
ル硬化によって生成するシリカの含有量が10重量%以
上であることが好ましい。When the resin composition for electrical insulation of the present invention is used as an interlayer insulating material for semiconductors, it is disclosed in, for example, JP-A-6-
The method described in 85091 publication can be adopted. Specifically, it can be obtained by a method in which the resin composition is spin-coated on a semiconductor to directly obtain a hybrid cured product. When it is used as an interlayer insulating film, it is in direct contact with the semiconductor, so the coefficient of linear expansion of the insulating material should be low so as to approach the coefficient of linear expansion of the semiconductor so that cracks due to the difference in coefficient of linear expansion do not occur in high temperature environments. Is required. Moreover, in order to cope with the problem of signal delay due to miniaturization, multi-layering, and high density of semiconductors, a technology for reducing the capacity of insulating materials is required,
This problem can be solved by reducing the dielectric constant of the insulating material. To meet these requirements, in the resin composition for electrical insulation of the present invention, when the novolac epoxy resin is modified to obtain the hydroxyl group-containing epoxy resin (1),
The molar ratio of active hydrogen for ring-opening modification to 1 mol of the novolak epoxy resin molecule is 0.8 to 3 mol, that is, the average of the epoxy groups to be ring-opened modified among the epoxy groups of the novolak epoxy resin. The number is 0.8
It is preferable to reduce the residual amount of the unmodified novolac type epoxy resin to 3 or less. Further, tetramethoxysilane partial condensate is used as methoxysilane partial condensate (2), and further, silica formed by sol-gel curing of methoxysilane partial condensate (2) in the solid residue of the epoxy resin composition. The content is preferably 10% by weight or more.
【0055】本発明の電気絶縁用樹脂組成物を導電ペー
ストとして使用する場合には、例えば特開平9−355
30号公報に記載されるように、真球状やリン片状の銀
やニッケルなどの導電粉を絶縁材料に配合しなければな
らない。導電粉の含有量は、導電ペーストに対して導電
性と経済性の観点から、50〜80重量%であることが
好ましい。この含有率が50重量%未満であると抵抗値
が高くなる傾向にあり、80重量%を超えると接着性が
低下したり製品の価格が上昇するなどの不利がある。導
電ペーストは高温や高湿等の過酷な条件にさらされた後
に比抵抗変化が小さいことが求められる。吸水率を低減
させる観点から、本発明の電気絶縁用樹脂組成物におけ
るメトキシ基含有シラン変性エポキシ樹脂の成分である
メトキシシラン部分縮合物(2)として、メチルトリメ
トキシシランの部分縮合物を用いること、更にはエポキ
シ樹脂硬化剤としてノボラックフェノール樹脂を用いる
ことが特に好ましい。When the electrically insulating resin composition of the present invention is used as a conductive paste, it is disclosed in, for example, JP-A-9-355.
As described in Japanese Patent Laid-Open No. 30, a conductive powder such as a spherical or flake shaped silver or nickel must be mixed with the insulating material. The content of the conductive powder is preferably 50 to 80% by weight from the viewpoint of conductivity and economy with respect to the conductive paste. If the content is less than 50% by weight, the resistance tends to increase, and if it exceeds 80% by weight, there are disadvantages such as a decrease in adhesiveness and an increase in product price. The conductive paste is required to have a small change in resistivity after being exposed to severe conditions such as high temperature and high humidity. From the viewpoint of reducing water absorption, use of a partial condensate of methyltrimethoxysilane as the methoxysilane partial condensate (2) which is a component of the methoxy group-containing silane-modified epoxy resin in the resin composition for electrical insulation of the present invention. Further, it is particularly preferable to use a novolac phenol resin as an epoxy resin curing agent.
【0056】本発明の電気絶縁用樹脂組成物からICト
レイなどの電子部品を収納するための容器(成形物)を
製造する場合には、前記方法で得られた半硬化シートや
成形用中間材料を得た後、これらを60〜150℃で再
溶融させて金型に入れ、150〜250℃、1〜30M
Paの条件下で成形することにより得られる。In the case of producing a container (molded product) for housing an electronic component such as an IC tray from the resin composition for electric insulation of the present invention, the semi-cured sheet or the molding intermediate material obtained by the above method. After obtaining these, they are remelted at 60 to 150 ° C and put in a mold, and 150 to 250 ° C, 1 to 30M.
It is obtained by molding under the condition of Pa.
【0057】[0057]
【発明の効果】本発明によれば、耐熱性、低線膨張性、
絶縁性、密着性に優れ、しかもボイド、クラック等を生
じない電子材料用絶縁材料を収得しうる。According to the present invention, heat resistance, low linear expansion,
It is possible to obtain an insulating material for electronic materials, which has excellent insulating properties and adhesion, and which is free from voids, cracks and the like.
【0058】[0058]
【実施例】以下、実施例および比較例をあげて本発明を
具体的に説明する。なお、各例中、%は特記しない限り
重量基準である。EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. In each example,% is based on weight unless otherwise specified.
【0059】製造例1(メトキシ基含有シラン変性エポ
キシ樹脂の製造)
攪拌機、分水器、温度計、窒素吹き込み口を備えた反応
装置に、ノボラック型エポキシ樹脂(東都化成(株)
製、商品名「エポトートYDPN−638P」、エポキ
シ当量177g/eq、数平均フェノール核体数5.
2)400gとビスフェノールA21.2gとを150
℃で溶解させ、開環変性の触媒として、N,N−ジメチ
ルベンジルアミン0.1gを加え、2時間反応させるこ
とによって、水酸基含有エポキシ樹脂(以下、開環変性
樹脂A−1という)であるビスフェノール変性ノボラッ
ク型エポキシ樹脂を得た。開環変性する活性水素のモル
数/ノボラック型エポキシ樹脂のモル数=0.4であっ
た。さらにここにポリ(メチルトリメトキシシラン)
(多摩化学(株)製、商品名「MTMS-A」、1分子
あたりのSiの平均個数3.5)215.2g、メチル
エチルケトン350g、グリシドール30.99gと触
媒としてジブチル錫ジラウレート1gを加え、窒素気流
下にて、100℃で5時間、分水器を用いて脱メタノー
ル反応させることによって、メトキシ基含有シラン変性
エポキシ樹脂(以下、樹脂(A−1)という)を得た。
なお、仕込み時の水酸基含有エポキシ樹脂(1)の水酸
基の当量/メトキシシラン部分縮合物(2)のメトキシ
基の当量=0.056、グリシドールの重量/開環変性
樹脂の重量=0.17であった。樹脂(A−1)のエポ
キシ当量は324g/eqであった。Production Example 1 (Production of methoxy group-containing silane-modified epoxy resin) A novolac type epoxy resin (Toto Kasei Co., Ltd.) was added to a reactor equipped with a stirrer, a water divider, a thermometer, and a nitrogen inlet.
Manufactured, product name "Epototo YDPN-638P", epoxy equivalent 177 g / eq, number average phenol nuclide number 5.
2) 150g of 400g and 21.2g of bisphenol A
It is a hydroxyl group-containing epoxy resin (hereinafter referred to as a ring-opening modified resin A-1) by dissolving at 0 ° C. and adding 0.1 g of N, N-dimethylbenzylamine as a catalyst for ring-opening modification and reacting for 2 hours. A bisphenol-modified novolac type epoxy resin was obtained. The number of moles of active hydrogen for ring-opening modification / the number of moles of a novolac type epoxy resin was 0.4. Further poly (methyltrimethoxysilane)
(Tama Chemical Co., Ltd., trade name "MTMS-A", average number of Si per molecule 3.5) 215.2 g, methyl ethyl ketone 350 g, glycidol 30.99 g and dibutyltin dilaurate 1 g as a catalyst were added, and nitrogen was added. A methoxy group-containing silane-modified epoxy resin (hereinafter, referred to as resin (A-1)) was obtained by performing a demethanol reaction using a water divider at 100 ° C. for 5 hours under an air stream.
In addition, at the time of charging, the hydroxyl group equivalent of the hydroxyl group-containing epoxy resin (1) / the methoxy group equivalent of the methoxysilane partial condensate (2) = 0.056, the weight of glycidol / the weight of the ring-opening modified resin = 0.17. there were. The epoxy equivalent of the resin (A-1) was 324 g / eq.
【0060】製造例2
製造例1と同様の反応装置に、ノボラック型エポキシ樹
脂(東都化成(株)製、商品名「エポトートYDPN−
638P」、エポキシ当量177g/eq数平均フェノ
ール核体数5.2)500gおよびビスフェノールA3
3.14gを150℃で溶解させ、開環変性の触媒とし
て、N,N−ジメチルベンジルアミン0.1gを加え、
2時間反応させることによって、水酸基含有エポキシ樹
脂(以下、開環変性樹脂A−2という)であるビスフェ
ノール変性ノボラック型エポキシ樹脂を得た。開環変性
する活性水素のモル数/ノボラック型エポキシ樹脂のモ
ル数=0.5であった。さらにここにポリ(テトラメト
キシシラン)(多摩化学(株)製、商品名「MS−5
1」、1分子あたりのSiの平均個数4)413.4
g、メチルエチルケトン350g、グリシドール64.
53gと触媒としてジブチル錫ジラウレート0.5gを
加え、窒素気流下にて、100℃で5時間、分水器を用
いて脱メタノール反応させることによって、メトキシ基
含有シラン変性エポキシ樹脂(以下、樹脂(A−2)と
いう)を得た。なお、仕込み時の開環変性樹脂(A−
2)の水酸基の当量/メトキシシラン部分縮合物(2)
のメトキシ基の当量=0.033、グリシドールの重量
/開環変性樹脂(A−2)の重量=0.23であった。
樹脂(A−2)のエポキシ当量は329g/eqであっ
た。Production Example 2 A novolac type epoxy resin (manufactured by Toto Kasei Co., Ltd., trade name "Epototo YDPN-" was added to the same reactor as in Production Example 1.
638P ", epoxy equivalent 177 g / eq number average phenol nucleus number 5.2) 500 g and bisphenol A3
Dissolve 3.14 g at 150 ° C., add 0.1 g of N, N-dimethylbenzylamine as a catalyst for ring-opening modification,
By reacting for 2 hours, a bisphenol-modified novolac type epoxy resin which is a hydroxyl group-containing epoxy resin (hereinafter referred to as ring-opening modified resin A-2) was obtained. The number of moles of active hydrogen for ring-opening modification / the number of moles of a novolac type epoxy resin was 0.5. Further, here, poly (tetramethoxysilane) (manufactured by Tama Chemical Co., Ltd., trade name "MS-5"
1 ”, average number of Si per molecule 4) 413.4
g, methyl ethyl ketone 350 g, glycidol 64.
53 g and 0.5 g of dibutyltin dilaurate as a catalyst were added, and a methoxy group-containing silane-modified epoxy resin (hereinafter, resin ( A-2)) was obtained. The ring-opening modified resin (A-
Hydroxyl equivalent of 2) / Methoxysilane partial condensate (2)
Of the methoxy group of 0.033, the weight of glycidol / the weight of the ring-opening modified resin (A-2) = 0.23.
The epoxy equivalent of the resin (A-2) was 329 g / eq.
【0061】製造例3
攪拌機、還流管、温度計、窒素吹き込み口を備えた反応
装置に、ノボラック型エポキシ樹脂(東都化成(株)
製、商品名「エポトートYDPN−638P」、エポキ
シ当量177g/eq数平均フェノール核体数5.2)
1200gおよびビスフェノールA159.07gを1
50℃で溶解させ、開環変性の触媒として、N,N−ジ
メチルベンジルアミン0.5gを加え、2時間反応させ
ることによって、水酸基含有エポキシ樹脂(以下、開環
変性樹脂A−3という)であるビスフェノール変性ノボ
ラック型エポキシ樹脂を得た。開環変性する活性水素の
モル数/ノボラック型エポキシ樹脂のモル数=1.0で
あった。さらにここにポリ(テトラメトキシシラン)
(多摩化学(株)製、商品名「MS−51」、1分子あ
たりのSiの平均個数4)1228.3g、メチルエチ
ルケトン2100g、グリシドール191.8gと触媒
としてジブチル錫ジラウレート1.5gを加え、還流下
にて、80℃で7時間、分水器を用いて脱メタノール反
応させることによって、メトキシ基含有シラン変性エポ
キシ樹脂(以下、樹脂(A−3)という)を得た。な
お、仕込み時の開環変性樹脂(A−3)の水酸基の当量
/メトキシシラン部分縮合物(2)のメトキシ基の当量
=0.070、グリシドールの重量/開環変性樹脂(A
−3)の重量=0.14であった。樹脂(A−3)のエ
ポキシ当量は609g/eqであった。Production Example 3 A novolac type epoxy resin (Toto Kasei Co., Ltd.) was added to a reactor equipped with a stirrer, a reflux pipe, a thermometer and a nitrogen blowing port.
Made by trade name "Epototo YDPN-638P", epoxy equivalent 177 g / eq number average phenol nucleus number 5.2)
1200 g and bisphenol A 159.07 g in 1
It was dissolved at 50 ° C., 0.5 g of N, N-dimethylbenzylamine was added as a catalyst for ring-opening modification, and a reaction was carried out for 2 hours to obtain a hydroxyl group-containing epoxy resin (hereinafter referred to as ring-opening modified resin A-3). A bisphenol-modified novolak type epoxy resin was obtained. The number of moles of active hydrogen for ring-opening modification / the number of moles of a novolac type epoxy resin was 1.0. Furthermore, here poly (tetramethoxysilane)
(Tama Chemical Co., Ltd., trade name "MS-51", average number of Si per molecule is 4) 1228.3 g, methyl ethyl ketone 2100 g, glycidol 191.8 g and dibutyltin dilaurate 1.5 g as a catalyst are added and refluxed. A methoxy group-containing silane-modified epoxy resin (hereinafter referred to as resin (A-3)) was obtained by performing a methanol removal reaction at 80 ° C. for 7 hours using a water divider. The equivalent of hydroxyl group of the ring-opening modified resin (A-3) at the time of charging / equivalent of methoxy group of the methoxysilane partial condensate (2) = 0.070, weight of glycidol / ring-opening modified resin (A)
The weight of -3) was 0.14. The epoxy equivalent of the resin (A-3) was 609 g / eq.
【0062】比較製造例1
ノボラック型エポキシ樹脂(東都化成(株)製、商品名
「エポトートYDPN−638P」、エポキシ当量17
7g/eq数平均フェノール核体数5.2)をそのまま
用いた。以下、該樹脂組成物を樹脂(a−1)という。Comparative Production Example 1 Novolak type epoxy resin (manufactured by Tohto Kasei Co., Ltd., trade name "Epototo YDPN-638P", epoxy equivalent 17)
7 g / eq number average phenol nucleus number 5.2) was used as it was. Hereinafter, the resin composition will be referred to as resin (a-1).
【0063】比較製造例2
製造例1で得た開環変性樹脂Aをそのまま用いた。以
下、該樹脂組成物を樹脂(a−2)という。Comparative Production Example 2 The ring-opening modified resin A obtained in Production Example 1 was used as it was. Hereinafter, the resin composition will be referred to as resin (a-2).
【0064】比較製造例3
製造例1で得た開環変性樹脂A 200g、ポリ(メチ
ルトリメトキシシラン)(多摩化学(株)製、商品名
「MTMS-A」、1分子あたりのSiの平均個数3.
5)102.2gおよびメチルエチルケトン200gを
混合することにより、エポキシ樹脂組成物を得た。以
下、該樹脂組成物を樹脂(a−3)という。Comparative Production Example 3 200 g of the ring-opening modified resin A obtained in Production Example 1, poly (methyltrimethoxysilane) (manufactured by Tama Chemical Co., Ltd., trade name “MTMS-A”, average of Si per molecule) Number 3.
5) An epoxy resin composition was obtained by mixing 102.2 g and 200 g of methyl ethyl ketone. Hereinafter, the resin composition is referred to as a resin (a-3).
【0065】比較製造例4
製造例1と同様の反応装置に、ビスフェノールA型エポ
キシ樹脂(ジャパンエポキシレジン(株)製、商品名
「エピコート1001」、エポキシ当量472g/e
q)336.0gおよびメチルエチルケトン268.8
gを加え、70℃で溶解した。さらにポリ(テトラメト
キシシラン)(多摩化学(株)製、商品名「MS−5
1」、1分子あたりのSiの平均個数4)360.4g
と、触媒としてジブチル錫ジラウレート0.3gを加
え、80℃で6時間還流反応させた後、50℃まで冷却
し、メタノール33.6gを加え、メトキシ基含有シラ
ン変性エポキシ樹脂(以下、樹脂(a−4)という)を
得た。ビスフェノール型エポキシ樹脂の水酸基の当量/
メトキシシラン部分縮合物(2)のメトキシ基の当量=
0.1、エポキシ当量は1400g/eqであった。Comparative Production Example 4 A bisphenol A type epoxy resin (manufactured by Japan Epoxy Resins Co., Ltd., trade name "Epicoat 1001", epoxy equivalent 472 g / e, was placed in the same reactor as in Production Example 1.
q) 336.0 g and methyl ethyl ketone 268.8
g was added and melted at 70 ° C. Further, poly (tetramethoxysilane) (manufactured by Tama Chemical Co., Ltd., trade name "MS-5"
1 ”, average number of Si per molecule 4) 360.4 g
Then, 0.3 g of dibutyltin dilaurate as a catalyst was added, and the mixture was refluxed at 80 ° C. for 6 hours, cooled to 50 ° C., added with 33.6 g of methanol, and added with a methoxy group-containing silane-modified epoxy resin (hereinafter referred to as resin (a -4)) was obtained. Equivalent hydroxyl group of bisphenol epoxy resin /
Equivalent amount of methoxy group of methoxysilane partial condensate (2) =
0.1 and the epoxy equivalent were 1400 g / eq.
【0066】実施例1、2および比較例1〜4(電気絶
縁用エポキシ樹脂組成物の調製と半硬化状態の電子材料
用絶縁材料の作製)
製造例1、2および比較製造例1〜4で得られた各樹脂
に、ノボラック型フェノール樹脂(荒川化学工業(株)
製、商品名「タマノル759」)をメチルエチルケトン
で50%に希釈した溶液を、エポキシ当量/フェノール
当量が1/1となる割合で加え、オクチル酸錫を固形分
当り2%加え、電気絶縁用エポキシ樹脂組成物とした。Examples 1 and 2 and Comparative Examples 1 to 4 (Preparation of Epoxy Resin Composition for Electrical Insulation and Preparation of Insulating Material for Electronic Material in Semi-Cured State) Production Examples 1 and 2 and Comparative Production Examples 1 to 4 Novolak type phenolic resin (Arakawa Chemical Industry Co., Ltd.)
(Trade name "Tamanor 759" manufactured by Mitsui Chemicals, Inc.) was diluted to 50% with methyl ethyl ketone at a ratio of epoxy equivalent / phenol equivalent of 1/1, and tin octylate was added at 2% per solid content to obtain an epoxy for electrical insulation. It was a resin composition.
【0067】(半硬化状態の電子材料用絶縁材料の評
価)実施例1、2および比較例1〜4で得られた電気絶
縁用エポキシ樹脂組成物を、フッ素樹脂コーティングさ
れた容器(縦×横×深さ=10cm×10cm×1.5
cm)に注ぎ、80℃で1時間加熱することにより、溶
剤の揮発及びゾル−ゲル硬化を行い、半硬化状態の電子
材料用絶縁材料を得た。得られた半硬化物の状態(外
観、収縮、発泡、柔軟性)を以下の基準で評価した。結
果を表1に示す。(Evaluation of Insulating Material for Electronic Material in Semi-Cured State) The epoxy resin compositions for electrical insulation obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were coated with a fluororesin container (length × width). × depth = 10 cm × 10 cm × 1.5
cm) and heated at 80 ° C. for 1 hour to volatilize the solvent and cure the sol-gel to obtain a semi-cured insulating material for electronic materials. The state (appearance, shrinkage, foaming, flexibility) of the obtained semi-cured product was evaluated according to the following criteria. The results are shown in Table 1.
【0068】(外観の評価) ○:透明。 △:曇りがある。 ×:白化している。(Evaluation of appearance) ○: Transparent. Δ: There is cloudiness. X: Whitened.
【0069】(収縮の評価) ○:硬化物にクラック、そりがない。 △:硬化物にそりが存在する。 ×:硬化物にクラックがある。(Evaluation of shrinkage) ◯: The cured product has no cracks or warpage. B: Warp exists in the cured product. X: The cured product has cracks.
【0070】(発泡の評価) ○:硬化物中に気泡がない。 △:硬化物中に気泡が5つ未満存在する。 ×:硬化物中に気泡が5つ以上存在する。(Evaluation of foaming) ◯: There are no bubbles in the cured product. Δ: There are less than 5 bubbles in the cured product. X: Five or more bubbles are present in the cured product.
【0071】(柔軟性の評価) ○:柔軟であり、成形性に富む。 ×:変形させると割れる。(Evaluation of flexibility) ◯: Flexible and rich in moldability. X: Breaks when deformed.
【0072】[0072]
【表1】 [Table 1]
【0073】表1から明らかなように、各実施例1、2
および比較例1、2では、いずれも透明な半硬化物が得
られた。しかし比較例3で得られた半硬化物は、エポキ
シ樹脂とシリカの相分離によって白化しており、しかも
非常に脆いものであった。比較例4で得られた半硬化物
は透明であったが、変形させると割れてしまった。実施
例の各半硬化物は、透明で、反りが無く、収縮も少な
く、また柔軟性に富むため、プリント基板用プリプレグ
など電気絶縁用半硬化物として有用である。As is clear from Table 1, each of Examples 1 and 2
In each of Comparative Examples 1 and 2, a transparent semi-cured product was obtained. However, the semi-cured product obtained in Comparative Example 3 was whitened due to phase separation between the epoxy resin and silica, and was extremely brittle. The semi-cured product obtained in Comparative Example 4 was transparent, but cracked when deformed. Each of the semi-cured products of the examples is transparent, has no warpage, has little shrinkage, and is highly flexible, and is useful as a semi-cured product for electrical insulation such as a prepreg for a printed circuit board.
【0074】実施例3、4および比較例5〜8(電子材
料用絶縁材料の作製及び評価)先に得られた半硬化物を
さらに200℃で1時間加熱することによってエポキシ
硬化させ、完全硬化物を得た。得られた完全硬化物の状
態(外観、収縮、発泡、半硬化物からの重量変化)を以
下の基準で評価した。結果を表2に示す。Examples 3 and 4 and Comparative Examples 5 to 8 (Preparation and Evaluation of Insulating Material for Electronic Material) The semi-cured product obtained above was further cured by heating at 200 ° C. for 1 hour to epoxy-cure it and completely cure it. I got a thing. The state (appearance, shrinkage, foaming, weight change from semi-cured product) of the obtained completely cured product was evaluated according to the following criteria. The results are shown in Table 2.
【0075】(外観の評価) ○:透明。 △:曇りがある。 ×:白化している。(Evaluation of appearance) ○: Transparent. Δ: There is cloudiness. X: Whitened.
【0076】(収縮の評価) ○:硬化物にクラック、そりがない。 △:硬化物にそりが存在する。 ×:硬化物にクラックがある。(Evaluation of shrinkage) ◯: The cured product has no cracks or warpage. B: Warp exists in the cured product. X: The cured product has cracks.
【0077】(発泡の評価) ○:硬化物中に気泡がない。 △:硬化物中に気泡が5つ未満存在する。 ×:硬化物中に気泡が5つ以上存在する。(Evaluation of foaming) ◯: There are no bubbles in the cured product. Δ: There are less than 5 bubbles in the cured product. X: Five or more bubbles are present in the cured product.
【0078】[0078]
【表2】 [Table 2]
【0079】実施例3、4及び比較例5、6、8では、
いずれも透明な完全硬化物が得られた。比較例7で得ら
れた完全硬化物にはエポキシ樹脂とシリカの相分離によ
ってムラ、発泡、クラックがあり、非常に脆いものであ
ったIn Examples 3 and 4 and Comparative Examples 5, 6 and 8,
In each case, a transparent completely cured product was obtained. The completely cured product obtained in Comparative Example 7 had unevenness, foaming, and cracks due to phase separation of the epoxy resin and silica, and was extremely brittle.
【0080】(耐熱性)実施例3、4および比較例6、8
で得られた硬化フィルムを5mm×20mmにカット
し、粘弾性測定器(レオロジ社製、商品名「DVE−V
4」、測定条件:振幅0.5μm、振動数10Hz、ス
ロープ3℃/分)を用いて動的貯蔵弾性率を測定して、
耐熱性を評価した。測定結果を図1に示す。(Heat Resistance) Examples 3 and 4 and Comparative Examples 6 and 8
The cured film obtained in Step 5 was cut into 5 mm × 20 mm, and a viscoelasticity measuring instrument (Rheology Co., Ltd., trade name “DVE-V” was used.
4 ”, measurement conditions: amplitude 0.5 μm, frequency 10 Hz, slope 3 ° C./min) to measure the dynamic storage elastic modulus,
The heat resistance was evaluated. The measurement results are shown in FIG.
【0081】図1から明らかなように、実施例3、4お
よび比較例8では、比較例6に比べ、硬化フィルムのガ
ラス転移点は上昇しており、また、高温でも弾性率の低
下が少なく、耐熱性に優れている。As is clear from FIG. 1, in Examples 3 and 4 and Comparative Example 8, the glass transition point of the cured film is higher than that of Comparative Example 6, and the elastic modulus is less decreased even at high temperatures. It has excellent heat resistance.
【0082】(線膨張性)実施例3、4および比較例6
で得られた硬化フィルムを使って、熱応力歪測定装置
(セイコー電子工業(株)製、商品名 TMA120
C)で、40〜100℃の線膨張率を測定した。結果を
表3に示す。(Linear Expansion) Examples 3 and 4 and Comparative Example 6
Using the cured film obtained in step 1, a thermal stress strain measuring device (manufactured by Seiko Electronics Co., Ltd., trade name TMA120
In C), the coefficient of linear expansion of 40 to 100 ° C. was measured. The results are shown in Table 3.
【0083】[0083]
【表3】 [Table 3]
【0084】表3から明らかなように、実施例3、4は
比較例6に比べて線膨張率が低く、信頼性が高いアンダ
ーフィル樹脂硬化物層とすることができる。As is clear from Table 3, Examples 3 and 4 are lower in the coefficient of linear expansion than Comparative Example 6 and can be highly reliable underfill resin cured material layers.
【0085】(電気特性)実施例3、4および比較例
5、6、8で得られた硬化フィルムを用いて、周波数1
MHzで誘電率及び誘電損失を測定した。結果を表4に
示す。(Electrical Properties) Using the cured films obtained in Examples 3 and 4 and Comparative Examples 5, 6 and 8, frequency 1 was used.
Dielectric constant and dielectric loss were measured at MHz. The results are shown in Table 4.
【0086】[0086]
【表4】 [Table 4]
【0087】表4から明らかなように、実施例3、4は
比較例5、6、8と対比して、絶縁性に優れること、お
よび誘電損失には差がないことが認められた。各実施例
は耐熱性が高く、線膨張率が低く、誘電率が低い為、プ
リント基板用プリプレグ、プリント基板用銅張り積層
板、プリント配線基板、インターポーザー、ビルドアッ
ププリント基板用層間絶縁材料、半導体の層間絶縁膜、
電子部品用封止剤、半導体チップ用封止剤、アンダーフ
ィル樹脂硬化物、レジストインキ硬化物、導電ペースト
硬化物、電子部品収納用成形物および異方性導電膜とし
て有用である。As is clear from Table 4, it was confirmed that Examples 3 and 4 were superior to Comparative Examples 5, 6 and 8 in insulating property and there was no difference in dielectric loss. Each of the examples has high heat resistance, a low linear expansion coefficient, and a low dielectric constant. Therefore, a prepreg for a printed circuit board, a copper clad laminate for a printed circuit board, a printed wiring board, an interposer, an interlayer insulating material for a buildup printed circuit board, Semiconductor interlayer insulating film,
It is useful as a sealant for electronic parts, a sealant for semiconductor chips, a cured product of underfill resin, a cured product of resist ink, a cured product of conductive paste, a molded product for housing electronic components, and an anisotropic conductive film.
【0088】実施例5(プレプリグおよび銅張り積層板
用エポキシ樹脂組成物の作製)
製造例1で得られた樹脂をメチルエチルケトンで希釈
し、実施例1と同じ50%フェノール樹脂メチルエチル
ケトン溶液をフェノール樹脂の水酸基の当量/樹脂溶液
中のエポキシ基の当量=0.8になるように加え、更に
オクチル酸錫を樹脂分当り2%とメチルイミダゾール
0.1%とメチルエチルケトンを加えて、硬化樹脂分6
0%のエポキシ樹脂組成物を調製した。エポキシ樹脂組
成物を厚さ0.18mmのガラス織布に樹脂分約40%に
なる様に含浸させた後、130℃で15分間、乾燥、ゾ
ル−ゲル硬化し、プリプレグを作製した。このプリプレ
グ3枚とその両面に18μm厚の銅箔を重ね、170
℃、10MPaで120分間加熱加圧して両面銅張り積
層板を作製した。Example 5 (Preparation of prepreg and epoxy resin composition for copper-clad laminate) The resin obtained in Production Example 1 was diluted with methyl ethyl ketone, and the same 50% phenol resin methyl ethyl ketone solution as in Example 1 was added to the phenol resin. Hydroxyl equivalents / epoxy group equivalents in resin solution = 0.8, tin octylate was added at 2% per resin, methyl imidazole at 0.1% and methyl ethyl ketone to give a cured resin content of 6
A 0% epoxy resin composition was prepared. A 0.18 mm-thick glass woven fabric was impregnated with the epoxy resin composition so that the resin content was about 40%, followed by drying at 130 ° C. for 15 minutes and sol-gel curing to prepare a prepreg. Three pieces of this prepreg and 18 μm thick copper foil on both sides
A double-sided copper-clad laminate was produced by heating and pressurizing at 10 ° C. and 10 MPa for 120 minutes.
【0089】実施例6
製造例2で得られた樹脂を用いた以外は、実施例5と同
様の操作を行い、プリプレグ及び両面銅張り積層板を得
た。Example 6 A prepreg and a double-sided copper-clad laminate were obtained in the same manner as in Example 5, except that the resin obtained in Production Example 2 was used.
【0090】比較例9
ノボラック型エポキシ樹脂(東都化成(株)製、商品名
「エポトートYDPN−638P」)を70%になる様
にメチルエチルケトンに溶解したものをアルコキシ基含
有シラン変性エポキシ樹脂の代わりに用いた以外は実施
例5と同様の操作を行い、両面銅張り積層板を作製し
た。Comparative Example 9 A novolac type epoxy resin (manufactured by Tohto Kasei Co., Ltd., trade name “Epototo YDPN-638P”) dissolved in methyl ethyl ketone to 70% was used instead of the alkoxy group-containing silane-modified epoxy resin. The same operation as in Example 5 was carried out except that the double-sided copper-clad laminate was prepared.
【0091】(耐熱性)ガラス転移温度:銅張り積層板
を6mm×25mmにカットし、粘弾性測定器(レオロ
ジ社製、商品名「DVE−V4」、測定条件振幅1μ
m、振動数10Hz、スロープ3℃/分)を用いてガラ
ス転移点を測定して、耐熱性を評価した。(Heat resistance) Glass transition temperature: A copper-clad laminate was cut into 6 mm × 25 mm, and a viscoelasticity measuring instrument (Rheology Co., trade name “DVE-V4”, measuring condition amplitude 1 μm)
m, frequency 10 Hz, slope 3 ° C./min), the glass transition point was measured to evaluate heat resistance.
【0092】(銅箔の剥離強度)JIS C−6481
に準拠して測定した。(Peeling strength of copper foil) JIS C-6481
It was measured according to.
【0093】[0093]
【表5】 [Table 5]
【0094】表5から明らかなように、本発明の銅張り
積層板は耐熱性、密着性に優れており、通常のプリント
配線板はもちろん、多層プリント配線板の製造に最適で
あることが分かる。As is clear from Table 5, the copper-clad laminate of the present invention is excellent in heat resistance and adhesion, and is suitable for the production of not only ordinary printed wiring boards but also multilayer printed wiring boards. .
【0095】実施例7(ビルドアップ基板用コーティン
グ剤、両面プリント基板、ビルドアップ基板用層間絶縁
膜(コーティング)、ビルドアップ基板の作製の作製)
製造例1で得られた樹脂に、70%フェノールノボラッ
ク樹脂(商品名「タマノル759」)カルビトールアセ
テート溶液を、フェノールノボラック樹脂の水酸基の当
量/樹脂溶液中のエポキシ基の当量=0.8になる様に
混合したもの100gに対し、2−メチルイミダゾー
ル、硫酸バリウム(堺化学工業(株)製、商品名「BA
RIFINE BF−10」)10g、フタロシアニン
グリーン1gを配合し、分散した後、三本ロールで混練
した。また、スクリーン印刷ができる範囲まで、カルビ
トールアセテートを用いて希釈し、ビルドアップ基板用
コーティング剤を得た。実施例5の両面銅張り積層板の
銅箔の面を一般的なブラシにより機械的な整面処理と酸
洗いによる化学的整面処理を行った。つぎに、銅箔の面
にスクリーン印刷によりエッチングレジストによる回路
を形成させた後、その面をエッチングして導体パターン
を形成させ、両面プリント配線板を得た。この両面プリ
ント配線板をコア基板として、その両面に対して、同様
の機械的整面処理と化学的整面処理を行った後、導体パ
ターンを覆うように両面の全体に上記のビルドアップ基
板用コーティング剤を硬化後の膜厚が30μmになる様
にスクリーン印刷法によって塗布し、120℃で15
分、170℃で1時間硬化させて層間絶縁膜を有するプ
リント配線基板を作製した。次いで、プリント配線板を
アルカリ性過マンガン酸カリウム溶液により60〜80
℃で電気絶縁塗膜を表面粗化し、無電解銅メッキを行
い、0.3μm厚の薄い銅メッキを施した。次いで、無
電解銅メッキを施したプリント配線板を銅電解メッキ浴
の入ったメッキ槽に置き、18μm厚の電解銅メッキを
施し、目的とするビルドアップ基板を作製した。Example 7 (Production of coating agent for build-up substrate, double-sided printed circuit board, interlayer insulating film (coating) for build-up substrate, build-up substrate) 70% phenol was added to the resin obtained in Production Example 1. Novolak resin (trade name "Tamanor 759") carbitol acetate solution was mixed in such a manner that the hydroxyl group equivalent of phenol novolac resin / the epoxy group equivalent of the resin solution = 0.8, and 100 g of 2-methyl Imidazole, barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd., trade name "BA
10 g of RIFINE BF-10 ") and 1 g of phthalocyanine green were mixed and dispersed, and then kneaded with a three-roll mill. Further, it was diluted with carbitol acetate to the extent that screen printing was possible to obtain a coating agent for build-up substrate. The surface of the copper foil of the double-sided copper-clad laminate of Example 5 was mechanically surface-treated with a general brush and chemically surface-treated by pickling. Next, after forming a circuit by etching resist on the surface of the copper foil by screen printing, the surface was etched to form a conductor pattern to obtain a double-sided printed wiring board. This double-sided printed wiring board is used as a core substrate, and both surfaces are subjected to similar mechanical surface conditioning and chemical surface conditioning, and then the entire surface of both sides is covered with the above-mentioned build-up board so as to cover the conductor pattern. Apply the coating agent by screen printing so that the film thickness after curing will be 30 μm, and apply at 120 ° C. for 15
Min, and cured at 170 ° C. for 1 hour to produce a printed wiring board having an interlayer insulating film. Then, the printed wiring board is treated with an alkaline potassium permanganate solution at 60-80.
The surface of the electrically insulating coating film was roughened at 0 ° C., electroless copper plating was performed, and thin copper plating with a thickness of 0.3 μm was applied. Then, the electroless copper-plated printed wiring board was placed in a plating tank containing a copper electrolytic plating bath, and electrolytic copper plating with a thickness of 18 μm was performed to produce a target build-up substrate.
【0096】実施例8(ビルドアップ基板用コーティン
グ剤、両面プリント基板、ビルドアップ基板用層間絶縁
膜(コーティング方法による)、ビルドアップ基板の作
製)
製造例2で得られた樹脂と実施例6の両面銅張り積層板
を用いた以外は、実施例7と同様の操作を行い、ビルド
アップ基板を作製した。Example 8 (Preparation of coating agent for build-up board, double-sided printed board, interlayer insulating film for build-up board (by coating method), build-up board) Resin obtained in Production Example 2 and Example 6 A build-up substrate was prepared in the same manner as in Example 7, except that the double-sided copper-clad laminate was used.
【0097】実施例9(ビルドアップ基板用層間絶縁膜
(半硬化フィルムを用いる方法による)、ビルドアップ
基板の作製)
実施例7と同様の洗浄した両面プリント配線板の導体パ
ターンを覆うように両面の全体に実施例5で使用したエ
ポキシ樹脂組成物を硬化後の膜厚が40μmになる様に
スクリーン印刷法によって塗布し、100℃で10分、
乾燥、硬化させ、半硬化樹脂を敷いたプリント配線基板
を作製した。このプリント配線基板の半硬化樹脂の上
に、更に18μm厚の銅箔を乗せ、170℃、6MPa
で120分間加熱加圧して、層間絶縁膜を有するビルド
アップ基板を作製した。Example 9 (Preparation of Interlayer Insulating Film for Buildup Substrate (by Method Using Semi-Cured Film), Buildup Substrate) Double-sided so as to cover the conductor pattern of the double-sided printed wiring board washed as in Example 7. Was coated with the epoxy resin composition used in Example 5 by screen printing so that the film thickness after curing was 40 μm, and the temperature was 100 ° C. for 10 minutes.
A printed wiring board was prepared which was dried and cured and laid with a semi-cured resin. A copper foil with a thickness of 18 μm is further placed on the semi-cured resin of this printed wiring board, and 170 ° C., 6 MPa
Was heated and pressed for 120 minutes to prepare a build-up substrate having an interlayer insulating film.
【0098】実施例10(ビルドアップ基板用層間絶縁
膜(樹脂付き銅箔を用いる方法による)、ビルドアップ
基板の作製)
18μm厚の銅箔上に、実施例5のエポキシ樹脂組成物
を硬化後の厚みが40μmとなるようにローラーコータ
ーにて塗布、乾燥して100℃で15分、乾燥、硬化さ
せ、半硬化樹脂付き銅箔を作製した。次に同様の実施例
7と同様の洗浄した両面プリント配線板の導体パターン
を覆うように両面の全体に前記の樹脂付き銅箔を樹脂面
が回路面と接触する様に重ね合わせ、170℃、6MP
aで120分間加熱加圧して、層間絶縁膜を有するビル
ドアップ基板を作製した。Example 10 (Preparation of interlayer insulating film for build-up substrate (by using resin-coated copper foil), build-up substrate) After curing the epoxy resin composition of Example 5 on a copper foil having a thickness of 18 μm Was coated with a roller coater to a thickness of 40 μm, dried, and dried and cured at 100 ° C. for 15 minutes to prepare a copper foil with a semi-cured resin. Next, the same copper foil with resin as described above was placed on the entire both surfaces so as to cover the conductor pattern of the same double-sided printed wiring board as in Example 7, so that the resin surface was in contact with the circuit surface. 6MP
It was heated and pressed for 120 minutes at a to produce a build-up substrate having an interlayer insulating film.
【0099】比較例10
比較例9で使用したエポキシ樹脂組成物を用い、半硬化
条件を150℃で15分とした以外は、実施例7と同様
の操作を行い、ビルドアップ基板を作製した。Comparative Example 10 A build-up substrate was prepared in the same manner as in Example 7, except that the epoxy resin composition used in Comparative Example 9 was used and the semi-curing condition was 150 ° C. for 15 minutes.
【0100】実施例7〜10、および比較例10で得ら
れたビルドアップ基板につき、下記の方法で性能評価し
た。結果を表6に示す。The performance of the build-up substrates obtained in Examples 7 to 10 and Comparative Example 10 was evaluated by the following method. The results are shown in Table 6.
【0101】(吸湿半田耐熱試験)
吸湿条件:プレッシャークッカー処理、125℃、23
0kPa、30分間
試験条件:n=5で、全ての試験片が280℃、120
秒間で膨れが無かった場合を○とし、膨れが生じたもの
を×とした。(Hygroscopic solder heat resistance test) Moisture absorption conditions: Pressure cooker treatment, 125 ° C., 23
0 kPa, 30 minutes test condition: n = 5, all test pieces at 280 ° C., 120
When there was no swelling in a second, the result was ◯, and when swelling occurred, the result was x.
【0102】(剥離強度)JIS C−6481に準じ
て、銅と絶縁基板との剥離強度を測定した。(Peeling Strength) The peeling strength between copper and the insulating substrate was measured according to JIS C-6481.
【0103】[0103]
【表6】 [Table 6]
【0104】表6から明らかなように、本発明のビルド
アップ基板用層間絶縁膜は半田耐熱性、密着性に優れて
いることが分かる。As is clear from Table 6, the interlayer insulating film for build-up substrate of the present invention is excellent in solder heat resistance and adhesion.
【0105】実施例11(半導体層間絶縁用樹脂組成物
および半導体層間絶縁膜の作製)
製造例3で得た樹脂をジメチルジエチレングリコールで
30%に希釈し、2−メチル−4−エチルイミダゾー
ル、アミノ基の当量/樹脂溶液中のエポキシ基の当量=
0.2になる様に均一に混合し、10分間静置後、半導
体層間絶縁用樹脂組成物を得た。この樹脂組成物をスピ
ンコーティングにより塗布し、100℃で30分加熱
し、更に150℃で1時間加熱硬化させ、シリコン基板
上に10μmの絶縁膜を作製した。Example 11 (Preparation of Resin Composition for Semiconductor Interlayer Insulation and Semiconductor Interlayer Insulation Film) The resin obtained in Production Example 3 was diluted to 30% with dimethyldiethylene glycol to prepare 2-methyl-4-ethylimidazole, amino group. Equivalent weight / equivalent weight of epoxy group in resin solution =
The mixture was uniformly mixed so as to have a ratio of 0.2, and allowed to stand for 10 minutes to obtain a resin composition for semiconductor interlayer insulation. This resin composition was applied by spin coating, heated at 100 ° C. for 30 minutes, and then heat-cured at 150 ° C. for 1 hour to form an insulating film of 10 μm on a silicon substrate.
【0106】比較例11
ノボラック型エポキシ樹脂(東都化成(株)製、商品名
「エポトートYDPN−638P」)を用いた以外は、
実施例11と同様の操作を行い、半導体層間絶縁用樹脂
組成物および半導体層間絶縁膜を得た。Comparative Example 11 A novolac type epoxy resin (trade name "Epototo YDPN-638P" manufactured by Tohto Kasei Co., Ltd.) was used, except that
The same operation as in Example 11 was performed to obtain a resin composition for semiconductor interlayer insulation and a semiconductor interlayer insulation film.
【0107】実施例11および比較例11で得られた半
導体層間絶縁用樹脂組成物および半導体層間絶縁膜につ
き、以下のようにして性能を評価した。結果は表7に示
す。The performances of the resin compositions for semiconductor interlayer insulation and the semiconductor interlayer insulation films obtained in Example 11 and Comparative Example 11 were evaluated as follows. The results are shown in Table 7.
【0108】(半田耐熱試験)シリコン基板と一緒に短
冊状に切り出して280℃のハンダ浴に30秒間浸した
後、当該表面の剥がれの有無を観察した。
〇:剥がれがない ×:剥がれがある(Soldering Heat Resistance Test) Strips were cut out together with a silicon substrate and immersed in a solder bath at 280 ° C. for 30 seconds, and then the presence or absence of peeling of the surface was observed. ◯: There is no peeling ×: There is peeling
【0109】(線膨張性)実施例11及び比較例11で
得られた各樹脂組成物を、アルミホイルにスピンコート
し、150℃で30分加熱し、更に200℃で1時間加
熱硬化させる操作を約10回程度繰り返し、アルミホイ
ルから剥がして、厚さ約400μmの試験片を得た。こ
うして得られた硬化物(5mm角)の40〜100℃の
線膨張率を、熱応力歪測定装置(セイコー電子工業
(株)製、商品名 TMA120C)により測定した。(Linear Expansion) Each of the resin compositions obtained in Example 11 and Comparative Example 11 was spin-coated on aluminum foil, heated at 150 ° C. for 30 minutes, and then heat-cured at 200 ° C. for 1 hour. Was repeated about 10 times and peeled from the aluminum foil to obtain a test piece having a thickness of about 400 μm. The coefficient of linear expansion of the thus obtained cured product (5 mm square) at 40 to 100 ° C. was measured by a thermal stress strain measuring device (Seiko Denshi Kogyo KK, trade name TMA120C).
【0110】(電気特性)実施例11及び比較例11で
得られた各樹脂組成物を、フッ素樹脂コーティングされ
た容器(縦×横×深さ=10cm×10cm×1.5c
m)に注ぎ、150℃で30分加熱し、更に200℃で
1時間加熱硬化させて試験片を得た。こうして得られた
硬化フィルムを用いて、周波数1MHzで誘電率及び誘
電損失を測定した。(Electrical Properties) Each resin composition obtained in Example 11 and Comparative Example 11 was coated with a fluororesin-coated container (length × width × depth = 10 cm × 10 cm × 1.5 c).
m), heated at 150 ° C. for 30 minutes, and further heat-cured at 200 ° C. for 1 hour to obtain a test piece. Using the cured film thus obtained, the dielectric constant and the dielectric loss were measured at a frequency of 1 MHz.
【0111】[0111]
【表7】 [Table 7]
【0112】表7から明らかなように、本発明の半導体
層間絶縁用樹脂組成物は線膨張率が低く、かつ誘電率も
低いため、半導体層間絶縁膜として有用である。As is clear from Table 7, the resin composition for semiconductor interlayer insulation of the present invention has a low linear expansion coefficient and a low dielectric constant, and is therefore useful as a semiconductor interlayer insulation film.
【0113】実施例12(ゾル−ゲル硬化物、封止剤用
樹脂組成物および封止剤の作製)
製造例1で得た樹脂100gをに、溶融したオルソクレ
ゾールノボラックエポキシ樹脂(日本化薬(株)製、商
品名「EOCN1020」、エポキシ当量200g/e
q)を40g、オクチル酸錫を固形残分当り2%加え
て、80℃で30分攪拌し、混合後、テフロン(登録商
標)製のシート上にキャストし、150℃で30分間硬
化させることにより、厚さ200μmのゾル−ゲル硬化
物を得た。このゾル-ゲル硬化物を、粉砕機を用いて、
50μm以下の粒子に粉砕後、ゾル−ゲル硬化物100
gに対して、フェノールノボラック樹脂(商品名「タマ
ノル759」)24g、2−メチルイミダゾール0.3
gおよびスチレン15gを加え、100℃にした3本ロ
ールで混練りして封止剤用エポキシ樹脂樹脂組成物を得
た。このエポキシ樹脂組成物をキャストし、180℃
で、2時間硬化させ、300μm厚の封止剤用硬化物を
作製した。Example 12 (Preparation of sol-gel cured product, resin composition for encapsulant and encapsulant) 100 g of the resin obtained in Production Example 1 was melted with orthocresol novolac epoxy resin (Nippon Kayaku Ltd., trade name "EOCN1020", epoxy equivalent 200g / e
40 g of q) and 2% of tin octylate per solid residue are added, stirred at 80 ° C. for 30 minutes, mixed, cast on a Teflon (registered trademark) sheet, and cured at 150 ° C. for 30 minutes. Thus, a sol-gel cured product having a thickness of 200 μm was obtained. This sol-gel cured product, using a crusher,
After crushing to particles of 50 μm or less, sol-gel cured product 100
To g, 24 g of phenol novolac resin (trade name "Tamanor 759"), 0.3 of 2-methylimidazole
g and 15 g of styrene were added, and the mixture was kneaded with a three-roll mill at 100 ° C. to obtain an epoxy resin resin composition for a sealant. This epoxy resin composition is cast, 180 ° C
Then, it was cured for 2 hours to prepare a cured product for a sealing agent having a thickness of 300 μm.
【0114】比較例12
オルソクレゾールノボラックエポキシ樹脂(商品名「E
OCN1020」)100gおよびフェノールノボラッ
ク樹脂(商品名「タマノル759」)43.2gを溶融
混合した後、更に2−メチルイミダゾール0.3g、ス
チレン15gを混合し、実施例12と同様の操作を行っ
て、封止剤用エポキシ樹脂組成物および300μm厚の
封止剤用硬化物を作製した。Comparative Example 12 Orthocresol novolac epoxy resin (trade name "E
OCN1020 ") and phenol novolac resin (trade name" Tamanor 759 ") 43.2 g were melt-mixed, and then 2-methylimidazole 0.3 g and styrene 15 g were further mixed, and the same operation as in Example 12 was performed. An epoxy resin composition for a sealant and a cured product for a sealant having a thickness of 300 μm were prepared.
【0115】実施例12および比較例12で得られた封
止剤用硬化物につき、以下の方法により性能評価した。
結果を表8に示す。The performance of the cured products for sealants obtained in Example 12 and Comparative Example 12 was evaluated by the following methods.
The results are shown in Table 8.
【0116】(耐熱性)ガラス転移温度:封止剤用硬化
物を6mm×25mmにカットし、粘弾性測定器(レオ
ロジ社製、商品名「DVE−V4」、測定条件振幅1μ
m、振動数10Hz、スロープ3℃/分)を用いてガラ
ス転移点を測定して、耐熱性を評価した。(Heat resistance) Glass transition temperature: A cured product for a sealant was cut into 6 mm × 25 mm, and a viscoelasticity measuring instrument (Rheology Co., trade name “DVE-V4”, measurement condition amplitude 1 μm)
m, frequency 10 Hz, slope 3 ° C./min), the glass transition point was measured to evaluate heat resistance.
【0117】(吸水性)硬化物を100℃の水中で24
時間煮沸した後、増加重量を測定して吸水率を求めた。The (water-absorbing) cured product was dried in water at 100 ° C. for 24 hours.
After boiling for a period of time, the increased weight was measured to determine the water absorption.
【0118】[0118]
【表8】 [Table 8]
【0119】表8の結果から明らかなように、本発明の
封止剤用樹脂組成物は、耐熱性および耐水性が良好であ
るため、当該組成物で封止された半導体素子を長寿命化
できる。As is clear from the results in Table 8, the resin composition for encapsulant of the present invention has good heat resistance and water resistance, so that the semiconductor element encapsulated with the composition has a long life. it can.
【0120】実施例13(アンダーフィル樹脂組成物お
よびアンダーフィル樹脂硬化物の作製)
片面プリント配線基板上に、370μm厚、1cm角の
シリコンチップをフィリップチップ実装した(ギャップ
50μm)。次に、製造例1で得た樹脂に、4−メチル
ヘキサヒドロ無水フタル酸(新日本理化(株)製、商品
名「リカシッドMH−700」)を、カルボン酸基の当
量/樹脂溶液中のエポキシ基の当量=0.8、オクチル
酸錫を固形残分当り2%になる様に混合し、アンダーフ
ィル用樹脂組成物とした。更にこのアンダーフィル用樹
脂組成物をキャピラリーフロー法によって、シリコンチ
ップ−プリント基板間に注入し、100℃で2時間、1
70℃で4時間硬化させ、アンダーフィル樹脂硬化物層
を作製した。Example 13 (Preparation of Underfill Resin Composition and Underfill Resin Cured Product) A 370 μm thick, 1 cm square silicon chip was mounted on a single-sided printed wiring board by a Philip chip (gap 50 μm). Next, 4-methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., trade name "Rikacid MH-700") was added to the resin obtained in Production Example 1 in the equivalent of carboxylic acid group / resin solution. Epoxy group equivalent = 0.8 and tin octylate were mixed so as to be 2% based on the solid residue to obtain a resin composition for underfill. Furthermore, this underfill resin composition was injected between the silicon chip and the printed circuit board by a capillary flow method, and the mixture was kept at 100 ° C. for 2 hours for 1 hour.
It was cured at 70 ° C. for 4 hours to prepare a cured underfill resin layer.
【0121】実施例14(アンダーフィル樹脂、アンダ
ーフィル樹脂硬化物の作製−コンプレッションフロー
法)
製造例1で得た樹脂に、4−メチルヘキサヒドロ無水フ
タル酸、オクチル酸錫を実施例16と同様に混合し、ア
ンダーフィル用樹脂組成物とした。更に、フィリップチ
ップ実装対応の片面プリント配線基板の上に、このアン
ダーフィル用樹脂組成物を厚さ60μmになる様に1c
m角に塗布し、100℃で10分乾燥、硬化後、半硬化
樹脂付きガラス基板を作製した。この半硬化樹脂付きプ
リント基板を110℃に加熱したオーブンに10分入れ
た後、同じ温度で、370μm厚、1cm角のシリコン
チップを半硬化樹脂上に乗せ、300gの荷重を加えて
基板のバンプとチップの電極を接触させた後、180℃
で1時間完全硬化させアンダーフィル樹脂硬化物層を作
製した。Example 14 (Preparation of underfill resin, cured product of underfill resin-compression flow method) The resin obtained in Production Example 1 was mixed with 4-methylhexahydrophthalic anhydride and tin octylate in the same manner as in Example 16. To obtain a resin composition for underfill. Further, 1c of the resin composition for underfill having a thickness of 60 μm is formed on a single-sided printed wiring board for mounting a Philip chip.
After being applied to the m-square, dried at 100 ° C. for 10 minutes and cured, a semi-cured resin-coated glass substrate was produced. After placing this printed circuit board with semi-cured resin in an oven heated to 110 ° C. for 10 minutes, a 370 μm thick, 1 cm square silicon chip was placed on the semi-cured resin at the same temperature, and a load of 300 g was applied to bump the board. After making contact with the electrode of the chip, 180 ℃
Was completely cured for 1 hour to prepare a cured underfill resin layer.
【0122】実施例15(ソルダーレジスト用樹脂組成
物及びソルダーレジスト硬化膜の作製)
実施例7のビルドアップ基板用コーティング剤(エポキ
シ樹脂組成物)に更にシリカ10gを加え、三本ロール
を使用して均一に分散させ、ソルダーレジストインキを
調製した。カルビトールアセテートでスクリーン印刷に
適した粘度まで希釈後、前記ソルダーレジストインキを
片面プリント基板に15μmの厚さに印刷し、180
℃、30分間熱硬化させ、ソルダーレジスト硬化膜を得
た。Example 15 (Preparation of resin composition for solder resist and cured solder resist film) 10 g of silica was further added to the coating agent for build-up substrate (epoxy resin composition) of Example 7, and three rolls were used. And uniformly dispersed to prepare a solder resist ink. After diluting with carbitol acetate to a viscosity suitable for screen printing, the solder resist ink is printed on a single-sided printed circuit board to a thickness of 15 μm,
C. and heat cured for 30 minutes to obtain a solder resist cured film.
【0123】実施例16
実施例8の樹脂組成物を用いた以外は実施例15と同様
の操作で、ソルダーレジスト用樹脂組成物及びソルダー
レジスト硬化膜を得た。Example 16 A resin composition for solder resist and a cured solder resist film were obtained by the same procedure as in Example 15 except that the resin composition of Example 8 was used.
【0124】比較例13
比較例9のエポキシ樹脂組成物を用いた以外は、実施例
15と同様の操作を行い、ソルダーレジスト用樹脂組成
物及びソルダーレジスト硬化膜を得た。Comparative Example 13 The same procedure as in Example 15 was carried out except that the epoxy resin composition of Comparative Example 9 was used to obtain a solder resist resin composition and a solder resist cured film.
【0125】実施例15、16および比較例13で得ら
れた硬化膜につき以下の方法で性能評価した。結果を表
9に示す。The cured films obtained in Examples 15 and 16 and Comparative Example 13 were evaluated for performance by the following method. The results are shown in Table 9.
【0126】(半田耐熱性)上記試験基板に形成された
硬化膜と、ロジン系フラックスを塗布して260℃の溶
融半田に10秒間、3回フローした後の硬化膜を、JI
S K−5400に準じて、ゴバン目セロハンテープ剥
離試験を行い、密着性を以下の基準で評価した。
◎:100/100、 ○:99〜95/100、
△:94〜70/100、 ×:69〜0/100(Solder Heat Resistance) The cured film formed on the test substrate and the cured film after the rosin-based flux was applied and flowed on the molten solder at 260 ° C. for 10 seconds three times were used as JI.
According to SK-5400, a cellophane tape peeling test for goggle was performed, and the adhesion was evaluated according to the following criteria. ⊚: 100/100, ∘: 99 to 95/100,
Δ: 94 to 70/100, ×: 69 to 0/100
【0127】[0127]
【表9】 [Table 9]
【0128】表9から明らかなように、本発明のソルダ
ーレジスト硬化膜は密着性、半田耐熱性に優れている。As is clear from Table 9, the solder resist cured film of the present invention has excellent adhesion and solder heat resistance.
【図面の簡単な説明】[Brief description of drawings]
【図1】 実施例3、4および比較例6、8で得られた
硬化フィルムの耐熱性の評価結果である。FIG. 1 shows the evaluation results of heat resistance of the cured films obtained in Examples 3 and 4 and Comparative Examples 6 and 8.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 63:00 C08L 63:00 Z Fターム(参考) 4F072 AA04 AA07 AB09 AB28 AD35 AG03 AG19 AL13 4J036 AF06 AF08 AF09 AF19 BA04 CA07 CA08 CA13 CA18 CA19 CA22 CA25 CB04 CC02 CC03 CD16 DA10 DB15 DC28 DC31 DC41 FB07 HA12 HA13 JA08 5G305 AA06 AA14 AB01 AB24 AB34 AB36 BA09 CA17 CA55 CD01 CD04 CD06 CD09 CD12 CD13 CD17 CD20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C08L 63:00 C08L 63:00 ZF term (reference) 4F072 AA04 AA07 AB09 AB28 AD35 AG03 AG19 AL13 4J036 AF06 AF08 AF09 AF19 BA04 CA07 CA08 CA13 CA18 CA19 CA22 CA25 CB04 CC02 CC03 CD16 DA10 DB15 DC28 DC31 DC41 FB07 HA12 HA13 JA08 5G305 AA06 AA14 AB01 AB24 AB34 AB36 BA09 CA17 CA55 CD01 CD04 CD06 CD09 CD12 CD13 CD17 CD20
Claims (18)
の一部を開環変性して得られる水酸基含有エポキシ樹脂
(1)とメトキシシラン部分縮合物(2)とを脱メタノ
ール縮合反応させて得られるメトキシ基含有シラン変性
ノボラック型エポキシ樹脂を含有することを特徴とする
電気絶縁用樹脂組成物。1. A methoxy compound obtained by subjecting a hydroxyl group-containing epoxy resin (1) obtained by ring-opening modification of a part of an epoxy group of a novolac type epoxy resin and a methoxysilane partial condensate (2) to a methanol-free condensation reaction. A resin composition for electrical insulation comprising a group-containing silane-modified novolac type epoxy resin.
の一部を開環変性して得られる水酸基含有エポキシ樹脂
(1)、メトキシシラン部分縮合物(2)、および1分
子中に1つの水酸基を有するエポキシ化合物(3)を脱
メタノール縮合反応させて得られるメトキシ基含有シラ
ン変性ノボラック型エポキシ樹脂を含有することを特徴
とする電気絶縁用樹脂組成物。2. A hydroxyl group-containing epoxy resin (1) obtained by ring-opening modification of a part of epoxy groups of a novolac type epoxy resin, a methoxysilane partial condensate (2), and one hydroxyl group in one molecule. A resin composition for electrical insulation comprising a methoxy group-containing silane-modified novolac type epoxy resin obtained by subjecting an epoxy compound (3) to a demethanol condensation reaction.
ノボラック型エポキシ樹脂である請求項1または2記載
の電気絶縁用樹脂組成物。3. The electrical insulating resin composition according to claim 1, wherein the novolac type epoxy resin is a phenol novolac type epoxy resin.
ック型エポキシ樹脂をフェノール類で開環変性したもの
である請求項1〜3のいずれかに記載の電気絶縁用樹脂
組成物。4. The resin composition for electrical insulation according to claim 1, wherein the hydroxyl group-containing epoxy resin (1) is a novolac type epoxy resin modified by ring-opening with a phenol.
請求項4記載の電気絶縁用樹脂組成物。5. The resin composition for electrical insulation according to claim 4, wherein the phenols are bisphenols.
ック型エポキシ樹脂の有するエポキシ基のうち0.2〜
3個を開環変性したものである請求項1〜5のいずれか
に記載の電気絶縁用樹脂組成物。6. The hydroxyl group-containing epoxy resin (1) has 0.2 to 10% of the epoxy groups contained in the novolac type epoxy resin.
The resin composition for electrical insulation according to any one of claims 1 to 5, which is obtained by ring-opening modification of three pieces.
ラメトキシシランの部分縮合物および/またはメチルト
リメトキシシランの部分縮合物である請求項1〜6のい
ずれかに記載の電気絶縁用樹脂組成物。7. The resin composition for electrical insulation according to claim 1, wherein the methoxysilane partial condensate (2) is a tetramethoxysilane partial condensate and / or methyltrimethoxysilane partial condensate. object.
基の当量)/(メトキシシラン部分縮合物(2)のメト
キシ基の当量)(当量比)が、0.02〜0.6である
請求項1〜7のいずれかに記載の電気絶縁用樹脂組成
物。8. The (hydroxyl group equivalent of the hydroxyl group-containing epoxy resin (1)) / (methoxy group equivalent of the methoxysilane partial condensate (2)) (equivalent ratio) is 0.02 to 0.6. Item 7. A resin composition for electrical insulation according to any one of items 1 to 7.
なる請求項1〜8のいずれかに記載の電気絶縁用樹脂組
成物。9. The resin composition for electrical insulation according to claim 1, which contains a latent epoxy resin curing agent.
ック樹脂系硬化剤、イミダゾール系硬化剤からなる群よ
り選ばれる少なくとも1種である請求項9に記載の電気
絶縁用樹脂組成物。10. The electrical insulating resin composition according to claim 9, wherein the latent epoxy resin curing agent is at least one selected from the group consisting of novolac resin curing agents and imidazole curing agents.
気絶縁用樹脂組成物を硬化させてなることを特徴とする
電子材料用絶縁材料。11. An insulating material for electronic materials, which is obtained by curing the resin composition for electrical insulation according to any one of claims 1 to 10.
気絶縁用樹脂組成物を室温〜250℃で硬化させてなる
電子材料用絶縁材料の製造方法。12. A method for producing an insulating material for electronic materials, comprising curing the resin composition for electrical insulation according to claim 1 at room temperature to 250 ° C.
気絶縁用樹脂組成物を50〜120℃でゾル−ゲル硬化
させて半硬化物を得た後、当該半硬化物を成形加工し、
ついで150〜250℃で完全硬化させる電子材料用絶
縁材料の製造方法。13. A semi-cured product is obtained by sol-gel curing the resin composition for electrical insulation according to claim 1 at 50 to 120 ° C., and then the semi-cured product is molded and processed. ,
Then, a method for producing an insulating material for electronic materials, which is completely cured at 150 to 250 ° C.
絶縁用樹脂組成物であってエポキシ樹脂硬化剤を含まな
いものでゾル−ゲル硬化させることを特徴とする電子材
料用絶縁材料の製造方法。14. A resin composition for electrical insulation according to claim 1, wherein the resin composition does not contain an epoxy resin curing agent and is sol-gel cured. Production method.
とエポキシ樹脂硬化剤を含有することを特徴とする電気
絶縁用樹脂組成物の製造方法。15. A method for producing a resin composition for electrical insulation, which comprises the insulating material for electronic materials according to claim 14 and an epoxy resin curing agent.
物を更に硬化させてなることを特徴とする電子材料用絶
縁材料の製造方法。16. A method for producing an insulating material for electronic materials, which is obtained by further curing the resin composition for electrical insulation according to claim 15.
物、プリント基板用銅張り積層板用樹脂組成物、ビルド
アッププリント基板の層間絶縁材料用コーティング剤、
半導体の層間絶縁膜用樹脂組成物、電子部品の封止剤用
樹脂組成物、半導体チップの封止剤用樹脂組成物、アン
ダーフィル用樹脂硬化物、レジストインキ、導電ペース
ト、電子部品収納用成形物用樹脂組成物および異方性導
電膜用組成物からなる群から選択される少なくとも1つ
の用途に用いられる請求項1〜10のいずれかに記載の
電気絶縁用樹脂組成物。17. A resin composition for a prepreg for a printed circuit board, a resin composition for a copper-clad laminate for a printed circuit board, a coating agent for an interlayer insulating material of a buildup printed circuit board,
Semiconductor interlayer insulating film resin composition, electronic component sealant resin composition, semiconductor chip sealant resin composition, underfill resin cured product, resist ink, conductive paste, electronic component storage molding The resin composition for electrical insulation according to any one of claims 1 to 10, which is used for at least one application selected from the group consisting of a resin composition for materials and a composition for anisotropic conductive films.
基板用銅張り積層板、プリント配線基板、インターポー
ザー、ビルドアッププリント基板用層間絶縁材料、半導
体の層間絶縁膜、電子部品用封止剤、半導体チップ用封
止剤、アンダーフィル樹脂硬化物、レジストインキ硬化
物、導電ペースト硬化物、電子部品収納用成形物および
異方性導電膜からなる群から選択される少なくとも1つ
の用途に用いられる請求項11に記載の電子材料用絶縁
材料。18. A prepreg for a printed circuit board, a copper clad laminate for a printed circuit board, a printed wiring board, an interposer, an interlayer insulating material for build-up printed circuit boards, a semiconductor interlayer insulating film, a sealant for electronic parts, and a semiconductor chip. Use for at least one application selected from the group consisting of a sealant, a cured product of an underfill resin, a cured product of a resist ink, a cured product of a conductive paste, a molded product for housing electronic parts, and an anisotropic conductive film. An insulating material for electronic materials as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002225269A JP3726963B2 (en) | 2001-08-16 | 2002-08-01 | Resin composition for electrical insulation, insulation material for electronic material and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-246996 | 2001-08-16 | ||
JP2001246996 | 2001-08-16 | ||
JP2002225269A JP3726963B2 (en) | 2001-08-16 | 2002-08-01 | Resin composition for electrical insulation, insulation material for electronic material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003141933A true JP2003141933A (en) | 2003-05-16 |
JP3726963B2 JP3726963B2 (en) | 2005-12-14 |
Family
ID=26620577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002225269A Expired - Fee Related JP3726963B2 (en) | 2001-08-16 | 2002-08-01 | Resin composition for electrical insulation, insulation material for electronic material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3726963B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004238449A (en) * | 2003-02-05 | 2004-08-26 | Konishi Co Ltd | Method for forming epoxy resin-based coating film |
JP2006008884A (en) * | 2004-06-28 | 2006-01-12 | Dainippon Ink & Chem Inc | Epoxy resin composition and cured material of the same |
JP2006036900A (en) * | 2004-07-27 | 2006-02-09 | Arakawa Chem Ind Co Ltd | Resin composition for protective coat and colorless and transparent protective film |
JP2006083289A (en) * | 2004-09-16 | 2006-03-30 | Dainippon Ink & Chem Inc | Epoxy resin, epoxy resin composition and alkali-development type photosensitive resin composition |
JP2006143789A (en) * | 2004-11-17 | 2006-06-08 | Arakawa Chem Ind Co Ltd | Methoxy group-containing silane-modified epoxy resin, methoxy group-containing silane-modified epoxy resin composition, cured resin article, resin composition for electric insulation and coating composition |
JP2006213876A (en) * | 2005-02-07 | 2006-08-17 | Arakawa Chem Ind Co Ltd | Resin composition for printed wiring board, insulation material for printed wiring board and method for producing insulation material for printed wiring board |
JP2007284621A (en) * | 2006-04-19 | 2007-11-01 | Murata Mfg Co Ltd | Epoxy resin composition, method for producing the same and cured epoxy resin |
JP2008011648A (en) * | 2006-06-29 | 2008-01-17 | Nippon Steel Corp | Method for applying insulating coating on surface of laminated motor core |
JP2010021297A (en) * | 2008-07-10 | 2010-01-28 | Compeq Manufacturing Co Ltd | Rigid flex circuit board comprising peelable protective layer and manufacturing method thereof |
KR101132370B1 (en) * | 2011-05-02 | 2012-04-02 | 진도화성공업 주식회사 | Resin composition for filling the temperature sensor |
JP2013082782A (en) * | 2011-10-06 | 2013-05-09 | Hitachi Chemical Co Ltd | Selection method and production method of liquid epoxy resin composition, and electronic part device and production method thereof |
KR101314846B1 (en) | 2012-03-26 | 2013-10-04 | 진도화성공업 주식회사 | Resin composition for filling the temperature sensor |
JP2014101431A (en) * | 2012-11-19 | 2014-06-05 | Nitto Denko Corp | Resin sheet |
US20140179836A1 (en) * | 2011-08-25 | 2014-06-26 | Korea Institute Of Industrial Technology | Epoxy compound having alkoxysilyl group, method of preparing the same, composition and cured product comprising the same, and uses thereof |
JP2015232146A (en) * | 2015-09-10 | 2015-12-24 | 日立化成株式会社 | Selection method and production method of liquid epoxy resin composition, and electronic part device and production method of the same |
US9534075B2 (en) | 2011-11-01 | 2017-01-03 | Korea Institute Of Industrial Technology | Isocyanurate epoxy compound having alkoxysilyl group, method of preparing same, composition including same, cured product of the composition, and use of the composition |
JP2017048345A (en) * | 2015-09-04 | 2017-03-09 | Jsr株式会社 | Liquid curable composition |
US9670309B2 (en) | 2012-07-06 | 2017-06-06 | Korea Institute Of Industrial Technology | Novolac-based epoxy compound, production method for same, composition and cured article comprising same, and use for same |
US9902803B2 (en) | 2012-03-14 | 2018-02-27 | Korea Institute Of Industrial Technology | Epoxy compound having alkoxy silyl group, composition comprising same, cured product, use thereof and method for preparing epoxy compound having alkoxy silyl group |
US10689482B2 (en) | 2012-04-02 | 2020-06-23 | Korea Institute Of Industrial Technology | Epoxy compound having alkoxysilyl group, composition and hardened material comprising same, use for same, and production method for epoxy compound having alkoxysilyl group |
JP2023070062A (en) * | 2021-11-05 | 2023-05-18 | コリア インスティチュート オブ インダストリアル テクノロジー | Epoxy resin, method for producing the same, epoxy composition containing the same, and application of the same |
US11840601B2 (en) | 2019-11-15 | 2023-12-12 | Korea Institute Of Industrial Technology | Composition of alkoxysilyl-functionalized epoxy resin and composite thereof |
-
2002
- 2002-08-01 JP JP2002225269A patent/JP3726963B2/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004238449A (en) * | 2003-02-05 | 2004-08-26 | Konishi Co Ltd | Method for forming epoxy resin-based coating film |
JP4670269B2 (en) * | 2004-06-28 | 2011-04-13 | Dic株式会社 | Epoxy resin composition and cured product thereof |
JP2006008884A (en) * | 2004-06-28 | 2006-01-12 | Dainippon Ink & Chem Inc | Epoxy resin composition and cured material of the same |
JP2006036900A (en) * | 2004-07-27 | 2006-02-09 | Arakawa Chem Ind Co Ltd | Resin composition for protective coat and colorless and transparent protective film |
JP2006083289A (en) * | 2004-09-16 | 2006-03-30 | Dainippon Ink & Chem Inc | Epoxy resin, epoxy resin composition and alkali-development type photosensitive resin composition |
JP2006143789A (en) * | 2004-11-17 | 2006-06-08 | Arakawa Chem Ind Co Ltd | Methoxy group-containing silane-modified epoxy resin, methoxy group-containing silane-modified epoxy resin composition, cured resin article, resin composition for electric insulation and coating composition |
JP2006213876A (en) * | 2005-02-07 | 2006-08-17 | Arakawa Chem Ind Co Ltd | Resin composition for printed wiring board, insulation material for printed wiring board and method for producing insulation material for printed wiring board |
JP2007284621A (en) * | 2006-04-19 | 2007-11-01 | Murata Mfg Co Ltd | Epoxy resin composition, method for producing the same and cured epoxy resin |
JP2008011648A (en) * | 2006-06-29 | 2008-01-17 | Nippon Steel Corp | Method for applying insulating coating on surface of laminated motor core |
JP2010021297A (en) * | 2008-07-10 | 2010-01-28 | Compeq Manufacturing Co Ltd | Rigid flex circuit board comprising peelable protective layer and manufacturing method thereof |
KR101132370B1 (en) * | 2011-05-02 | 2012-04-02 | 진도화성공업 주식회사 | Resin composition for filling the temperature sensor |
US20140179836A1 (en) * | 2011-08-25 | 2014-06-26 | Korea Institute Of Industrial Technology | Epoxy compound having alkoxysilyl group, method of preparing the same, composition and cured product comprising the same, and uses thereof |
US9150686B2 (en) * | 2011-08-25 | 2015-10-06 | Korea Institute Of Industrial Technology | Epoxy compound having alkoxysilyl group, method of preparing the same, composition and cured product comprising the same, and uses thereof |
JP2013082782A (en) * | 2011-10-06 | 2013-05-09 | Hitachi Chemical Co Ltd | Selection method and production method of liquid epoxy resin composition, and electronic part device and production method thereof |
US9534075B2 (en) | 2011-11-01 | 2017-01-03 | Korea Institute Of Industrial Technology | Isocyanurate epoxy compound having alkoxysilyl group, method of preparing same, composition including same, cured product of the composition, and use of the composition |
US9902803B2 (en) | 2012-03-14 | 2018-02-27 | Korea Institute Of Industrial Technology | Epoxy compound having alkoxy silyl group, composition comprising same, cured product, use thereof and method for preparing epoxy compound having alkoxy silyl group |
KR101314846B1 (en) | 2012-03-26 | 2013-10-04 | 진도화성공업 주식회사 | Resin composition for filling the temperature sensor |
US10689482B2 (en) | 2012-04-02 | 2020-06-23 | Korea Institute Of Industrial Technology | Epoxy compound having alkoxysilyl group, composition and hardened material comprising same, use for same, and production method for epoxy compound having alkoxysilyl group |
US9670309B2 (en) | 2012-07-06 | 2017-06-06 | Korea Institute Of Industrial Technology | Novolac-based epoxy compound, production method for same, composition and cured article comprising same, and use for same |
JP2014101431A (en) * | 2012-11-19 | 2014-06-05 | Nitto Denko Corp | Resin sheet |
JP2017048345A (en) * | 2015-09-04 | 2017-03-09 | Jsr株式会社 | Liquid curable composition |
JP2015232146A (en) * | 2015-09-10 | 2015-12-24 | 日立化成株式会社 | Selection method and production method of liquid epoxy resin composition, and electronic part device and production method of the same |
US11840601B2 (en) | 2019-11-15 | 2023-12-12 | Korea Institute Of Industrial Technology | Composition of alkoxysilyl-functionalized epoxy resin and composite thereof |
JP2023070062A (en) * | 2021-11-05 | 2023-05-18 | コリア インスティチュート オブ インダストリアル テクノロジー | Epoxy resin, method for producing the same, epoxy composition containing the same, and application of the same |
JP7465926B2 (en) | 2021-11-05 | 2024-04-11 | コリア インスティチュート オブ インダストリアル テクノロジー | Epoxy resin, its manufacturing method, epoxy composition containing same, and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3726963B2 (en) | 2005-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3726963B2 (en) | Resin composition for electrical insulation, insulation material for electronic material and method for producing the same | |
JP4013118B2 (en) | Epoxy resin composition, resin composition for electronic material, resin for electronic material, coating agent, and method for producing coating agent cured film | |
WO2011138865A1 (en) | Epoxy resin composition for circuit boards, prepreg, laminate, resin sheet, laminate for printed wiring boards, printed wiring boards, and semiconductor devices | |
WO2006090662A1 (en) | Epoxy resin, hardenable resin composition containing the same and use thereof | |
KR102316144B1 (en) | Epoxy resin composition, resin sheet, and prepreg, and metal-clad laminate board, printed circuit board, and semiconductor device | |
JP2003055435A (en) | Electrical insulating resin composition, insulating material for electronic material and process for producing it | |
JP3539633B2 (en) | Alkoxy-containing silane-modified polyamic acid resin composition and polyimide-silica hybrid cured product | |
JP2002212262A (en) | Resin composition for electric insulation, insulating material and manufacturing method thereof | |
JP3823828B2 (en) | Solvent-free thermosetting resin composition, production method and product thereof | |
JP2001288244A (en) | Thermosetting resin composition, production method thereof, and product produced by using the same | |
JP2006169368A (en) | Resin composition, cured product and method for producing the same | |
JP2001261776A (en) | Electrical insulating material for printed circuit board | |
JP2002226770A (en) | Coating agent composition, cured film of coating agent and its manufacturing method | |
TWI397570B (en) | Adhesive composition and transparent laminate | |
JP6785125B2 (en) | Epoxy resin composition, cured product, semiconductor device, resin sheet, prepreg and carbon fiber reinforced composite material | |
JP2002275445A (en) | Adhesive for printed circuit | |
JP4706955B2 (en) | Methoxy group-containing silane-modified fluorine-containing epoxy resin, epoxy resin composition, cured product, and method for producing the same | |
JP2002040663A (en) | Solder resist composition and its hardened product | |
JP2006143789A (en) | Methoxy group-containing silane-modified epoxy resin, methoxy group-containing silane-modified epoxy resin composition, cured resin article, resin composition for electric insulation and coating composition | |
JP4639439B2 (en) | Epoxy resin composition, prepreg, and copper-clad laminate using the same | |
KR20140118800A (en) | Process for producing polyhydroxypolyether resin, polyhydroxypolyether resin, polyhydroxypolyether resin composition, and cured product thereof | |
JP3722027B2 (en) | Methoxy group-containing silane-modified novolak-type epoxy resin, and semi-cured product and cured product obtained from the resin composition | |
JP2000239489A (en) | Liquid epoxy resin composition for sealing material and cured product thereof | |
JP4337204B2 (en) | Interlayer insulation adhesive for multilayer printed wiring boards | |
JP2003048955A (en) | Resin composition for printed circuit board, prepreg for printed circuit board, printed circuit board and interlayer insulation film for buildup board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3726963 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081007 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131007 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |