JP2003098340A - Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film - Google Patents
Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference filmInfo
- Publication number
- JP2003098340A JP2003098340A JP2001289218A JP2001289218A JP2003098340A JP 2003098340 A JP2003098340 A JP 2003098340A JP 2001289218 A JP2001289218 A JP 2001289218A JP 2001289218 A JP2001289218 A JP 2001289218A JP 2003098340 A JP2003098340 A JP 2003098340A
- Authority
- JP
- Japan
- Prior art keywords
- film
- multilayer interference
- optical multilayer
- refractive index
- interference film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Filters (AREA)
- Surface Treatment Of Glass (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光学多層干渉膜と
その製造方法および光学多層干渉膜を用いたフィルター
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical multilayer interference film, a method for manufacturing the same, and a filter using the optical multilayer interference film.
【0002】[0002]
【従来の方法】光学多層干渉膜の基本的な構成は、透明
な高屈折率膜と透明な低屈折率膜とが交互に積層された
構成である。従来、反射防止膜などの数層の積層膜や、
ダイクロイックフィルターなどの数十層の積層膜が知ら
れ、成膜方法としては真空蒸着法が主流であった。とこ
ろが、最近になって、光通信用の狭帯域バンドパスフィ
ルターや、ゲインフラットニングフィルターなどの百層
以上の積層膜が要求されてきており、これまでは問題に
されなかった層内の欠陥や粒界による散乱や微小な光吸
収といった点が問題となってきた。2. Description of the Related Art The basic structure of an optical multilayer interference film is a structure in which transparent high refractive index films and transparent low refractive index films are alternately laminated. Conventionally, several layers of laminated film such as antireflection film,
A laminated film of several tens layers such as a dichroic filter is known, and a vacuum deposition method has been the mainstream as a film forming method. However, recently, there has been a demand for a laminated film of 100 layers or more such as a narrow band bandpass filter for optical communication and a gain flattening filter. Problems such as scattering by grain boundaries and minute light absorption have become problems.
【0003】これらの問題を解決するためには薄膜が透
明で均質なアモルファス膜であることが望ましい。これ
に応えて、成膜プロセスとして、イオンアシスト蒸着法
や、イオンビームスパッタ法といった新しい成膜手法が
開発され、実用化されている。しかし、いずれの方法
も、成膜分布の長期的な安定性に問題があるため、光学
モニターを用いて基板を直接モニターしても最終的な性
能を満たすのは、成膜した基板の面積の百分の一以下程
度であった。In order to solve these problems, it is desirable that the thin film is a transparent and homogeneous amorphous film. In response to this, as a film forming process, new film forming methods such as an ion assisted vapor deposition method and an ion beam sputtering method have been developed and put into practical use. However, both methods have a problem in the long-term stability of the film formation distribution. Therefore, even if the substrate is directly monitored using an optical monitor, the final performance is satisfied only by the area of the formed substrate. It was about one-hundredth or less.
【0004】これに対し、通常の反応性DC(直流)ス
パッタ法では、膜厚分布の安定性には優れるものの、薄
膜が多結晶状態で成長する場合が多く、特に高屈折率材
料である酸化チタンでその傾向が顕著である。薄膜が多
結晶状態になると、光散乱や光吸収による光学的なロス
があり、所望の光学特性を有する光学多層膜が得られ
ず、特に、百層以上に及ぶ光学多層干渉膜に用いるうえ
では不適当とされていた。なお、低屈折率材料としては
シリカ膜が多用されるが、シリカ膜は最近開発されたパ
ルス化DCマグネトロンスパッタ法やACマグネトロン
スパッタ法で安定的にアモルファス膜が得られやすく、
構造的な問題は少ない。また、ダイクロイックフィルタ
ーなどにおいても、従来、高屈折率膜を高速で安定に成
膜することが困難であるがゆえにスパッタ法の適用は困
難とされてきた。On the other hand, in the usual reactive DC (direct current) sputtering method, although the stability of the film thickness distribution is excellent, the thin film often grows in a polycrystalline state, and in particular, oxidation, which is a high refractive index material, is performed. The tendency is remarkable for titanium. When the thin film is in a polycrystalline state, there is an optical loss due to light scattering and light absorption, and an optical multilayer film having desired optical characteristics cannot be obtained, and especially when used in an optical multilayer interference film having 100 or more layers. It was considered inappropriate. Although a silica film is often used as a low refractive index material, it is easy to obtain a stable amorphous film by the recently developed pulsed DC magnetron sputtering method or AC magnetron sputtering method.
There are few structural problems. Further, in dichroic filters and the like, it has been conventionally difficult to apply the sputtering method because it is difficult to form a high refractive index film stably at high speed.
【0005】[0005]
【発明が解決しようとする課題】本発明は、生産性に優
れ、光散乱や光吸収による光学的なロスが少なく所望の
光学特性を発現する光学多層干渉膜とその製造方法およ
び該光学多層干渉膜を用いたフィルターを提供すること
を目的とする。DISCLOSURE OF THE INVENTION The present invention provides an optical multilayer interference film having excellent productivity, exhibiting desired optical characteristics with little optical loss due to light scattering and light absorption, a method for producing the same, and the optical multilayer interference. It is intended to provide a filter using a membrane.
【0006】[0006]
【課題を解決するための手段】本発明は、透明基体上
に、少なくとも低屈折率膜と高屈折率膜とが交互に積層
された光学多層干渉膜であって、該高屈折率膜の少なく
とも一層が還元型酸化物ターゲットを原料としてスパッ
タ成膜されたアモルファス構造を有する高屈折率酸化物
膜であることを特徴とする光学多層干渉膜とその製造方
法を提供する。SUMMARY OF THE INVENTION The present invention is an optical multilayer interference film in which at least a low refractive index film and a high refractive index film are alternately laminated on a transparent substrate, and at least the high refractive index film is provided. Provided is an optical multilayer interference film, wherein one layer is a high-refractive-index oxide film having an amorphous structure formed by sputtering using a reduced oxide target as a raw material, and a method for producing the same.
【0007】本発明における高屈折率酸化物膜として
は、1)還元型酸化チタンターゲットを出発原料として
スパッタ成膜された酸化チタン膜、2)還元型酸化タン
タルターゲットを出発原料としてスパッタ成膜された酸
化タンタル膜、3)還元型酸化ニオブターゲットを出発
原料としてスパッタ成膜された酸化ニオブ膜、および
4)還元型酸化ジルコニウムターゲットを出発原料とし
てスパッタ成膜された酸化ジルコニウム膜、からなる群
から選ばれる1種以上が好ましい例として挙げられる。As the high refractive index oxide film in the present invention, 1) a titanium oxide film sputter-deposited using a reduced titanium oxide target as a starting material, and 2) a sputter film formed using a reduced tantalum oxide target as a starting material. A tantalum oxide film, 3) a niobium oxide film sputter-deposited with a reduced niobium oxide target as a starting material, and 4) a zirconium oxide film sputter-deposited with a reduced zirconium oxide target as a starting material. One or more selected from the list are preferable examples.
【0008】本発明においては、前記高屈折率膜が複数
ある場合それらは同一でも異なっていてもよいが、前記
高屈折率膜のすべてが、還元型酸化物ターゲットを原料
としてスパッタ成膜されたアモルファス構造を有する高
屈折率酸化物膜であると、総合的な光ロスを少なくでき
るため、本発明の効果が顕著である。In the present invention, when there are a plurality of high refractive index films, they may be the same or different, but all of the high refractive index films were formed by sputtering using a reduced oxide target as a raw material. A high-refractive-index oxide film having an amorphous structure can reduce the total optical loss, so that the effect of the present invention is remarkable.
【0009】また、還元型酸化物ターゲットを用いる
と、通常の反応性DCスパッタに比べ、数倍から十数倍
の成膜速度が安定的に得られるため好ましく、全ての光
屈折率膜が還元型酸化物ターゲットを原料としてスパッ
タ成膜された場合に本発明の効果が顕著である。Further, the use of a reduction type oxide target is preferable because a film formation rate several times to ten and several times higher than that of ordinary reactive DC sputtering can be stably obtained, and all photorefractive index films are reduced. The effect of the present invention is remarkable when a film-type oxide target is used as a raw material to form a film by sputtering.
【0010】一方、前記低屈折率膜が複数ある場合、そ
れらは同一でも異なっていてもよい。また、光学的特性
を調節するために酸化アルミニウムなどの中屈折率材料
からなる膜を本発明の光学多層干渉膜中に含んでもよ
い。On the other hand, when there are plural low refractive index films, they may be the same or different. Further, a film made of a medium refractive index material such as aluminum oxide may be included in the optical multilayer interference film of the present invention in order to adjust the optical characteristics.
【0011】本発明において用いる透明基体としては、
ガラス基体やプラスチック基体が挙げられる。特に、
1)光通信用の光ファイバーと光アンプとの間に挿入さ
れて使用されるフィルター(例えば、狭帯域バンドパス
フィルターやゲインフラットニングフィルター)に用い
られるガラス基板や、2)ダイクロイックフィルターや
IRカットフィルターに用いられるガラス基板、を用い
ると本発明の効果が顕著である。The transparent substrate used in the present invention is
Examples include glass substrates and plastic substrates. In particular,
1) A glass substrate used for a filter (for example, a narrow bandpass filter or a gain flattening filter) inserted between an optical fiber for optical communication and an optical amplifier, and 2) a dichroic filter or an IR cut filter. When the glass substrate used for is used, the effect of the present invention is remarkable.
【0012】本発明における高屈折率酸化物膜として
は、可視域において2.0以上の屈折率を有し、かつ吸
収係数が小さい膜、具体的には、酸化チタン膜、酸化タ
ンタル膜、酸化ニオブ膜、酸化ジルコニウム膜が好まし
い。これら高屈折率酸化物膜には、屈折率や吸収係数を
大きく変化させない程度に少量の不純物が混入されてい
てもよい。The high-refractive-index oxide film in the present invention is a film having a refractive index of 2.0 or more in the visible region and a small absorption coefficient, specifically, a titanium oxide film, a tantalum oxide film, an oxide film. Niobium film and zirconium oxide film are preferable. These high-refractive-index oxide films may be mixed with a small amount of impurities to the extent that the refractive index and absorption coefficient are not significantly changed.
【0013】通常の金属ターゲットからの反応性DCス
パッタを用いた多層膜では、低屈折率膜と高屈折率膜と
の合計層数が10以上(特に25以上)積層された多層
膜である場合、または、低屈折率膜と高屈折率膜との総
膜厚が2ミクロン以上である場合、高屈折率層の結晶粒
の成長の影響が顕著となり、光学的なロスが増加する。
したがって、低屈折率膜と高屈折率膜との合計層数が1
0以上(特に25以上)積層された多層膜である場合、
または、低屈折率膜と高屈折率膜との総膜厚が2ミクロ
ン以上である場合、に本発明を適用するとその優位性が
顕著にあらわれる。本発明における低屈折率膜として
は、シリカ膜が好ましい例として挙げられる。In the case of a multilayer film using reactive DC sputtering from an ordinary metal target, the total number of low refractive index films and high refractive index films is 10 or more (especially 25 or more). Or, when the total film thickness of the low refractive index film and the high refractive index film is 2 μm or more, the influence of the growth of the crystal grains of the high refractive index layer becomes remarkable, and the optical loss increases.
Therefore, the total number of layers of the low refractive index film and the high refractive index film is 1
In the case of a multilayer film in which 0 or more (especially 25 or more) are laminated,
Alternatively, when the total film thickness of the low-refractive index film and the high-refractive index film is 2 μm or more, when the present invention is applied, its superiority appears remarkably. As the low refractive index film in the present invention, a silica film is mentioned as a preferable example.
【0014】本発明における光学多層干渉膜は、ダイク
ロイックフィルター、IRカットフィルター、UV(紫
外線)カットフィルター、バンドパスフィルター(例え
ば、波長多重分割(WDM)用の狭帯域バンドパスフィ
ルター)、エッジフィルター、ゲインフラットニングフ
ィルターなどに利用可能である。これらはいずれも数十
層以上の薄膜の積層体であり、高屈折率膜の粒成長や表
面凹凸などが最終的な製品の特性に大きな影響を与える
ものである。これらの欠陥により、光の吸収や散乱によ
るロスが増えたり、光学特性の経時変化を引き起こした
りする。The optical multilayer interference film in the present invention includes a dichroic filter, an IR cut filter, a UV (ultraviolet) cut filter, a band pass filter (for example, a narrow band band pass filter for wavelength division multiplexing (WDM)), an edge filter, It can be used as a gain flattening filter. Each of these is a laminate of thin films of several tens or more layers, and the grain growth and surface irregularities of the high refractive index film have a great influence on the characteristics of the final product. Due to these defects, loss due to absorption or scattering of light is increased, or the optical characteristics are changed over time.
【0015】本発明における還元型酸化物ターゲットの
製造方法はWO97/08358号などに記載されてお
り、例えば還元型酸化チタン(TiO2−x)ターゲッ
トの作製方法の一例は次のようなものである。チタンの
酸化物粉末を、プラズマ溶射装置を用いて半溶融状態に
し基体上に付着させ、ターゲットとなるチタンの酸化物
層を形成する。このようにして得られるターゲットの物
性値の例としては、(2−x)が1.930、比抵抗が
0.3Ω・cm、理論密度に対する相対密度が98%、
などが挙げられる。The method for producing a reduced oxide target in the present invention is described in WO97 / 08358 and the like. For example, an example of a method for producing a reduced titanium oxide (TiO 2−x ) target is as follows. is there. Titanium oxide powder is made into a semi-molten state by using a plasma spraying device and adhered onto a substrate to form a titanium oxide layer as a target. Examples of the physical properties of the target thus obtained are (2-x) of 1.930, specific resistance of 0.3 Ω · cm, relative density of 98% to theoretical density,
And so on.
【0016】本発明におけるアモルファス構造を有する
高屈折率酸化物膜は、還元型の酸化物ターゲットを用い
て、酸素を添加した反応性スパッタリング法によって形
成されるものであり、得られる高屈折率酸化物膜の構造
と成膜条件との関係を詳細に調査することで本発明をな
すに至った。The high-refractive-index oxide film having an amorphous structure in the present invention is formed by a reactive sputtering method in which oxygen is added using a reduction-type oxide target. The present invention has been accomplished by conducting a detailed investigation of the relationship between the structure of the material film and the film forming conditions.
【0017】本発明における高屈折率酸化物膜はアモル
ファス構造をとるため、膜構造が均質で、粒界がなく、
表面も滑らかである。このため、光学多層膜の構成要素
として用いられた場合にしばしば問題とされる、膜内部
の欠陥による光吸収、内部及び界面における光散乱など
が多結晶膜に比べて大幅に減少する。また、粒界への水
分の浸透による光学定数の経時変化、ひいては光学特性
の経時変化などがないため、長期間にわたって安定した
光学特性を維持することができる。Since the high-refractive-index oxide film of the present invention has an amorphous structure, the film structure is uniform and has no grain boundaries.
The surface is also smooth. For this reason, light absorption due to defects inside the film, light scattering at the inside and at the interface, which are often problems when used as a constituent element of an optical multilayer film, are greatly reduced as compared with the polycrystalline film. Further, since there is no change over time in the optical constant due to the permeation of water into the grain boundaries, and in turn, there is no change over time in the optical characteristics, it is possible to maintain stable optical characteristics for a long period of time.
【0018】[0018]
【実施例】例1は参考例、例2は実施例、例3および例
4は比較例である。EXAMPLES Example 1 is a reference example, Example 2 is an example, and Examples 3 and 4 are comparative examples.
【0019】(例1)スパッタ装置内に、上記のように
して作製した還元型溶射酸化チタン(TiO 2−x:x
=1.930)ターゲットとフロートガラス基板(厚み
2mm)とを設置し、真空排気した。チャンバー内の圧
力が8×10−4Paから1.3×10−3Paの範囲
に入るのを待って、次のようにして酸化チタン膜をコー
トした。ターゲットの寸法は200mm×70mmであ
る。(Example 1) In the sputtering apparatus, as described above,
Produced by reduction sprayed titanium oxide (TiO 2 2-x: X
= 1.930) Target and float glass substrate (thickness
2 mm) was installed and vacuum exhausted. Pressure in chamber
Power is 8 × 10-41.3 × 10 from Pa-3Range of Pa
Wait until it enters and coat the titanium oxide film as follows.
I got it. The size of the target is 200mm x 70mm
It
【0020】チャンバー内にアルゴンと酸素の混合ガス
(酸素は全体の3体積%)を導入し圧力を2.7×10
−1Paとした後、TiO2−xターゲットに1.0k
Wの電力を投入し、DCスパッタリングにより、基板上
に酸化チタン膜(TiO2膜)を180nmの膜厚で成
膜した。なお、電力投入にあたっては、電源として、A
dvanced Energy社製「MDX−5K」を
用い、直流波をパルス状にするモジュール(Advan
ced Energy社製「SPARCLE−V」)を
介して、ターゲットに印加した。得られた酸化チタン膜
付きガラス基板をチャンバーから取り出し、サンプル1
とした。A mixed gas of argon and oxygen (oxygen is 3% by volume of the whole) is introduced into the chamber and the pressure is 2.7 × 10.
-1 Pa, then 1.0k on the TiO2 -x target
A titanium oxide film (TiO 2 film) having a film thickness of 180 nm was formed on the substrate by applying DC power and DC sputtering. In addition, when power is turned on, A
A module for making a DC wave into a pulse by using "MDX-5K" manufactured by Advanced Energy (Advan
Ced Energy Co., Ltd. "SPARCLE-V") was applied to the target. The obtained glass substrate with a titanium oxide film was taken out of the chamber and sample 1
And
【0021】(例2)スパッタ装置内に、還元型溶射酸
化チタン(TiO2−x:x=1.930)のターゲッ
トと溶射シリコン(Si)ターゲットとフロートガラス
基板(厚み2mm)とを設置し、真空排気した。ターゲ
ットの寸法はいずれも200mm×70mmである。チ
ャンバー内の圧力が8×10−4Paから1.3×10
−3Paの範囲に入るのを待って、次のようにして酸化
チタン膜(TiO2膜)とシリカ膜(SiO2膜)とが
交互に合計で26層積層された光学多層干渉膜をガラス
基板上に成膜し、図1に示すようなIRカットフィルタ
ーを得た。図1において、1は高屈折率膜(本例ではT
iO2膜)、2は低屈折率膜(本例ではSiO2膜)、
10は透明基体(本例ではフロートガラス基板)、11
は光学多層干渉膜を示す。各層の膜厚を表1に示す。層
No.は空気側からの順序を示す。(Example 2) A target of reduced-type sprayed titanium oxide (TiO 2-x : x = 1.930), a sprayed silicon (Si) target, and a float glass substrate (thickness 2 mm) were installed in a sputtering apparatus. , Evacuated. The size of each target is 200 mm × 70 mm. The pressure in the chamber is 8 × 10 −4 Pa to 1.3 × 10
After waiting until the pressure falls within the range of −3 Pa, the optical multilayer interference film in which the titanium oxide film (TiO 2 film) and the silica film (SiO 2 film) are alternately laminated in total of 26 layers is formed as follows. A film was formed on the substrate to obtain an IR cut filter as shown in FIG. In FIG. 1, 1 is a high refractive index film (T in this example).
iO 2 film), 2 is a low refractive index film (SiO 2 film in this example),
10 is a transparent substrate (a float glass substrate in this example), 11
Indicates an optical multilayer interference film. The film thickness of each layer is shown in Table 1. Layer No. Indicates the order from the air side.
【0022】まず、ガラス基板上に、膜厚を12.4n
m(表1の第26層目の膜厚)に変更した以外は例1と
同様の方法で酸化チタン膜を成膜した(工程1)。次
に、チャンバー内にアルゴンと酸素の混合ガス(酸素は
全体の30体積%)を導入し、圧力を2.7×10−1
Paとした後、溶射Siターゲットに0.5kWの電力
を投入し、DCスパッタリングにより、酸化チタン膜の
上にシリカ膜を表1の48.1nm(表1の第25層目
の膜厚)で形成した(工程2)。なお、電力投入にあた
っては、例1同様の電源と直流波をパルス状にするモジ
ュールとを用いてターゲットに印加した。次に、前記の
工程1、工程2をこの順に交互に繰り返し、各層の膜厚
を表1に示されている値を狙い全部で26層(総膜厚は
2792nm)の光学干渉多層膜をガラス基板上に形成
し、IRカットフィルターを得た。得られたIRカット
フィルターをチャンバーから取り出し、サンプル2とし
た。First, a film thickness of 12.4n is formed on a glass substrate.
A titanium oxide film was formed by the same method as in Example 1 except that the thickness was changed to m (thickness of the 26th layer in Table 1) (step 1). Next, a mixed gas of argon and oxygen (oxygen is 30% by volume of the whole) was introduced into the chamber, and the pressure was 2.7 × 10 −1.
After setting Pa, 0.5 kW of electric power was applied to the sprayed Si target and DC sputtering was performed to form a silica film on the titanium oxide film at 48.1 nm in Table 1 (25th layer thickness in Table 1). Formed (step 2). When power was turned on, the same power source as in Example 1 and a module for pulsing a DC wave were applied to the target. Next, the above steps 1 and 2 are alternately repeated in this order, and a total of 26 layers (total film thickness is 2792 nm) of optical interference multilayer film are formed into glass by aiming at the film thickness of each layer shown in Table 1. It was formed on a substrate to obtain an IR cut filter. The obtained IR cut filter was taken out of the chamber and designated as Sample 2.
【0023】[0023]
【表1】 [Table 1]
【0024】(例3(比較例))例1で用いたTiO
2−xターゲットを金属チタン(Ti)ターゲット(寸
法は200mm×70mm)に変更し、導入ガスを酸素
ガスに変更した以外は例1と同様の方法で180nmの
酸化チタン膜(TiO2膜)を成膜した。得られた酸化
チタン膜付きガラス基板をチャンバーから取り出し、サ
ンプル3とした。Example 3 (Comparative Example) TiO used in Example 1
A 180 nm titanium oxide film (TiO 2 film) was prepared in the same manner as in Example 1 except that the 2-x target was changed to a metal titanium (Ti) target (dimensions were 200 mm × 70 mm) and the introduced gas was changed to oxygen gas. A film was formed. The obtained glass substrate with a titanium oxide film was taken out of the chamber and used as Sample 3.
【0025】(例4(比較例))例2における工程1で
用いたTiO2−xターゲットを金属チタン(Ti)タ
ーゲット(寸法は200mm×70mm)に変更し、導
入ガスを酸素ガスに変更した以外は例2と同様の方法で
全部で26層(総膜厚は2792nm)の光学干渉多層
膜をガラス基板上に形成し、IRカットフィルターを得
た。得られたIRカットフィルターをチャンバーから取
り出し、サンプル4とした。Example 4 (Comparative Example) The TiO 2 -x target used in step 1 in Example 2 was changed to a metallic titanium (Ti) target (dimensions were 200 mm × 70 mm), and the introduced gas was changed to oxygen gas. An optical interference multilayer film having a total of 26 layers (total film thickness: 2792 nm) was formed on a glass substrate in the same manner as in Example 2 except for the above, to obtain an IR cut filter. The obtained IR cut filter was taken out of the chamber and designated as Sample 4.
【0026】サンプル1〜4の光学特性を表2に示す。
表2中の「ヘーズ」は可視光線透過率におけるヘーズ値
を示し、「XRD」はサンプル1と3のX線回折のロッ
キングカーブから求めた膜構造を、「カットオフ波長の
ずれ」は得られたサンプル2と4を80℃95%RHの
雰囲気に48時間暴露した前後のIRカット波長(透過
率が50%を切る波長、作製直後は710nm)の変化
量を示す。Table 2 shows the optical characteristics of Samples 1 to 4.
In Table 2, "haze" indicates a haze value in visible light transmittance, "XRD" indicates a film structure obtained from rocking curves of X-ray diffraction of Samples 1 and 3, and "shift of cutoff wavelength" is obtained. The amount of change in IR cut wavelength (wavelength at which transmittance falls below 50%, 710 nm immediately after fabrication) before and after exposing Samples 2 and 4 to an atmosphere of 80 ° C. and 95% RH for 48 hours is shown.
【0027】[0027]
【表2】 [Table 2]
【0028】サンプル2とサンプル4を比べると、サン
プル2ではヘーズが観測されないのに対し、サンプル4
ではヘーズが0.3%観測された。この差の原因を調べ
るため、サンプル1とサンプル3をX線回折装置(XR
D)で測定した結果、サンプル1では回折線のピークが
観測されないのに対し、サンプル3ではアナターゼ相と
ルチル相のピークが観測された。すなわち、サンプル1
はX線的にアモルファスであるのに対し、サンプル3で
は多結晶となっていることが分かった。Comparing sample 2 and sample 4, no haze is observed in sample 2, whereas sample 4
In that case, 0.3% of haze was observed. In order to investigate the cause of this difference, Sample 1 and Sample 3 were analyzed by an X-ray diffractometer (XR
As a result of measurement in D), the peak of the diffraction line was not observed in Sample 1, while the peaks of the anatase phase and the rutile phase were observed in Sample 3. That is, sample 1
X-ray is amorphous, while Sample 3 is polycrystal.
【0029】また、サンプル2とサンプル4の表面形状
をAFM(原子間力顕微鏡)で観測した結果、サンプル
4の方が表面凹凸が大きく、これがヘーズの原因である
と推定された。また、耐久性試験(80℃、95%R
H、48時間)前後でのカットオフ波長のずれはサンプ
ル4の方が明らかに大きく、サンプル2ではほとんど観
測されなかった。これは、サンプル4ではTiO2膜の
結晶粒界や空孔中に水が浸入し、見かけ上屈折率が増加
したためと思われる。As a result of observing the surface shapes of Samples 2 and 4 with an AFM (Atomic Force Microscope), it was estimated that Sample 4 had larger surface irregularities, which was the cause of haze. Also, durability test (80 ° C, 95% R
The deviation of the cutoff wavelength before and after (H, 48 hours) was obviously larger in Sample 4, and was hardly observed in Sample 2. This is considered to be because in Sample 4, water penetrated into the crystal grain boundaries and pores of the TiO 2 film and the refractive index was apparently increased.
【0030】[0030]
【発明の効果】本発明の光学多層干渉膜は、光散乱や光
吸収による光学的なロスが少なく、所望の光学特性を発
現する。また、本発明の光学多層干渉膜における高屈折
率膜は還元型酸化物ターゲットを原料としてスパッタで
成膜されるため生産性にも優れている。The optical multilayer interference film of the present invention exhibits desired optical characteristics with little optical loss due to light scattering and light absorption. In addition, the high refractive index film in the optical multilayer interference film of the present invention is excellent in productivity because it is formed by sputtering using a reduced oxide target as a raw material.
【0031】また、本発明によれば、還元型酸化物ター
ゲットを原料としてスパッタで成膜するため生産性よく
前記光学多層干渉膜を得ることができる。特にDCスパ
ッタを用いた場合はその効果が顕著である。また、本発
明の光学多層干渉膜を用いたフィルターは、生産性に優
れ、光散乱または光吸収による光学的なロスが少なく所
望の光学特性を発現するとともに、光学特性の経時変化
が少なく、長期間にわたって安定した光学特性を維持す
る。Further, according to the present invention, the optical multi-layer interference film can be obtained with good productivity because the film is formed by sputtering using the reduced oxide target as a raw material. The effect is particularly remarkable when DC sputtering is used. Further, the filter using the optical multilayer interference film of the present invention is excellent in productivity, exhibits little optical loss due to light scattering or light absorption, and exhibits desired optical characteristics, and has little change in optical characteristics with time, Maintains stable optical properties over a period of time.
【図1】本発明の1例の模式的断面図FIG. 1 is a schematic sectional view of an example of the present invention.
1:高屈折率膜 2:低屈折率膜 10:透明基体 11:光学多層干渉膜 1: High refractive index film 2: Low refractive index film 10: Transparent substrate 11: Optical multilayer interference film
フロントページの続き Fターム(参考) 2H048 GA04 GA13 GA33 GA54 GA60 GA62 4G059 AA01 AA08 AA11 AC07 EA01 EA04 EA05 GA02 GA04 GA12 4K029 AA09 BA46 BA48 BB02 BC08 BD00 CA04 EA01 Continued front page F-term (reference) 2H048 GA04 GA13 GA33 GA54 GA60 GA62 4G059 AA01 AA08 AA11 AC07 EA01 EA04 EA05 GA02 GA04 GA12 4K029 AA09 BA46 BA48 BB02 BC08 BD00 CA04 EA01
Claims (8)
屈折率膜とが交互に積層された光学多層干渉膜であっ
て、該高屈折率膜の少なくとも一層が還元型酸化物ター
ゲットを原料としてスパッタ成膜されたアモルファス構
造を有する高屈折率酸化物膜であることを特徴とする光
学多層干渉膜。1. An optical multilayer interference film in which at least a low refractive index film and a high refractive index film are alternately laminated on a transparent substrate, and at least one layer of the high refractive index film is a reduction type oxide target. An optical multilayer interference film, which is a high-refractive-index oxide film having an amorphous structure formed by sputtering as a raw material.
化物膜が還元型酸化チタンターゲット、還元型酸化タン
タルターゲット、還元型酸化ニオブターゲットまたは還
元型酸化ジルコニウムターゲットを出発原料としてスパ
ッタ成膜された酸化物膜であることを特徴とする請求項
1に記載の光学多層干渉膜。2. A high-refractive-index oxide film having an amorphous structure formed by sputtering using a reduced titanium oxide target, a reduced tantalum oxide target, a reduced niobium oxide target, or a reduced zirconium oxide target as a starting material. The optical multilayer interference film according to claim 1, wherein the optical multilayer interference film is a physical film.
化物膜が還元型酸化チタンターゲットを出発原料として
スパッタ成膜された酸化チタン膜であることを特徴とす
る請求項1に記載の光学多層干渉膜。3. The optical multilayer interference according to claim 1, wherein the high-refractive-index oxide film having an amorphous structure is a titanium oxide film sputter-deposited using a reduced titanium oxide target as a starting material. film.
徴とする請求項1〜3に記載の光学多層干渉膜。4. The optical multilayer interference film according to claim 1, wherein the low refractive index film is a silica film.
とを特徴とする請求項1〜4に記載の光学多層干渉膜。5. The optical multilayer interference film according to claim 1, wherein the number of layers of the optical multilayer interference film is 10 or more.
ることを特徴とする請求項1〜5のいずれかに記載の光
学多層干渉膜。6. The optical multilayer interference film according to claim 1, wherein the total thickness of the optical multilayer interference film is 2 μm or more.
屈折率膜とが交互に積層された光学多層干渉膜の製造方
法であって、該高屈折率膜の少なくとも一層を還元型酸
化物ターゲットを原料としてスパッタ成膜することを特
徴とする光学多層干渉膜の製造方法。7. A method for producing an optical multilayer interference film, wherein at least a low refractive index film and a high refractive index film are alternately laminated on a transparent substrate, wherein at least one layer of the high refractive index film is a reduction type oxidation film. A method for producing an optical multilayer interference film, which comprises subjecting a target material as a raw material to sputter film formation.
載の光学多層干渉膜が形成されてなるフィルター。8. A filter comprising an optical multilayer interference film according to claim 1 formed on a transparent substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001289218A JP2003098340A (en) | 2001-09-21 | 2001-09-21 | Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001289218A JP2003098340A (en) | 2001-09-21 | 2001-09-21 | Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003098340A true JP2003098340A (en) | 2003-04-03 |
Family
ID=19111743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001289218A Pending JP2003098340A (en) | 2001-09-21 | 2001-09-21 | Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003098340A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005248276A (en) * | 2004-03-05 | 2005-09-15 | Asahi Glass Co Ltd | Method for manufacturing optical multilayer film |
JP2008065014A (en) * | 2006-09-07 | 2008-03-21 | Nippon Electric Glass Co Ltd | Optical multilayer film and its manufacturing method |
JP2009075324A (en) * | 2007-09-20 | 2009-04-09 | Toppan Printing Co Ltd | Optical thin film laminated body |
US7771850B2 (en) | 2003-08-25 | 2010-08-10 | Asahi Glass Company, Limited | Electromagnetic wave shielding laminate and display device employing it |
JP2013061645A (en) * | 2011-09-09 | 2013-04-04 | Samsung Electronics Co Ltd | Photonic crystal structure, method of manufacturing the photonic crystal structure, reflective color filter and display apparatus employing the photonic crystal structure |
JP2013252993A (en) * | 2012-06-07 | 2013-12-19 | Nippon Electric Glass Co Ltd | Method for producing glass plate with film and glass plate with film |
JP2013252992A (en) * | 2012-06-07 | 2013-12-19 | Nippon Electric Glass Co Ltd | Dielectric multilayer film, glass plate with dielectric multilayer film and method for producing glass plate with dielectric multilayer film |
JP2014194072A (en) * | 2013-02-26 | 2014-10-09 | Mitsubishi Materials Corp | Niobium oxide sputtering target, production method thereof and niobium oxide film |
JP2017149645A (en) * | 2017-04-13 | 2017-08-31 | 日本電気硝子株式会社 | Method for manufacturing glass plate with film and glass plate with film |
CN111180104A (en) * | 2020-01-20 | 2020-05-19 | 韶关学院 | Transparent conductive film and preparation method thereof |
CN112230325A (en) * | 2020-10-29 | 2021-01-15 | 沈阳仪表科学研究院有限公司 | Periodic symmetric structure high-order secondary reflection inhibiting short wave pass film system optical filter |
-
2001
- 2001-09-21 JP JP2001289218A patent/JP2003098340A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7771850B2 (en) | 2003-08-25 | 2010-08-10 | Asahi Glass Company, Limited | Electromagnetic wave shielding laminate and display device employing it |
JP4595354B2 (en) * | 2004-03-05 | 2010-12-08 | 旭硝子株式会社 | Method for producing optical multilayer film |
JP2005248276A (en) * | 2004-03-05 | 2005-09-15 | Asahi Glass Co Ltd | Method for manufacturing optical multilayer film |
JP2008065014A (en) * | 2006-09-07 | 2008-03-21 | Nippon Electric Glass Co Ltd | Optical multilayer film and its manufacturing method |
JP2009075324A (en) * | 2007-09-20 | 2009-04-09 | Toppan Printing Co Ltd | Optical thin film laminated body |
US10302818B2 (en) | 2011-09-09 | 2019-05-28 | Samsung Electronics Co., Ltd. | Photonic crystal structure, method of manufacturing the photonic crystal structure, reflective color filter, and display apparatus employing the photonic crystal structure |
JP2013061645A (en) * | 2011-09-09 | 2013-04-04 | Samsung Electronics Co Ltd | Photonic crystal structure, method of manufacturing the photonic crystal structure, reflective color filter and display apparatus employing the photonic crystal structure |
JP2013252993A (en) * | 2012-06-07 | 2013-12-19 | Nippon Electric Glass Co Ltd | Method for producing glass plate with film and glass plate with film |
JP2013252992A (en) * | 2012-06-07 | 2013-12-19 | Nippon Electric Glass Co Ltd | Dielectric multilayer film, glass plate with dielectric multilayer film and method for producing glass plate with dielectric multilayer film |
JP2014194072A (en) * | 2013-02-26 | 2014-10-09 | Mitsubishi Materials Corp | Niobium oxide sputtering target, production method thereof and niobium oxide film |
JP2017149645A (en) * | 2017-04-13 | 2017-08-31 | 日本電気硝子株式会社 | Method for manufacturing glass plate with film and glass plate with film |
CN111180104A (en) * | 2020-01-20 | 2020-05-19 | 韶关学院 | Transparent conductive film and preparation method thereof |
CN112230325A (en) * | 2020-10-29 | 2021-01-15 | 沈阳仪表科学研究院有限公司 | Periodic symmetric structure high-order secondary reflection inhibiting short wave pass film system optical filter |
CN112230325B (en) * | 2020-10-29 | 2022-11-04 | 沈阳仪表科学研究院有限公司 | Periodic symmetric structure optical filter for inhibiting advanced sub-reflection short wave pass filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6764532B2 (en) | Method for manufacturing high refractive index silicon hydride thin film | |
JP6814853B2 (en) | Optical filter and its forming method | |
JP4033286B2 (en) | High refractive index dielectric film and manufacturing method thereof | |
US7842168B2 (en) | Method for producing silicon oxide film and method for producing optical multilayer film | |
JP5265547B2 (en) | Method for producing a smooth and dense optical film | |
JP2003098340A (en) | Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film | |
EP0266214A2 (en) | Interference film filters, optical waveguides and methods for producing them | |
JP4623349B2 (en) | Thin film type ND filter and manufacturing method thereof | |
WO2001071394A1 (en) | Antireflection product and production method therefor | |
CN211375107U (en) | Low-haze laminated optical filter film | |
WO2022124030A1 (en) | Optical filter | |
JP4595354B2 (en) | Method for producing optical multilayer film | |
JP4929842B2 (en) | ND filter and method of manufacturing ND filter | |
JP2019066600A (en) | Plastic lens and manufacturing method for the same | |
RO135754A2 (en) | Process for experimental preparation of ag/sio2 multilayer | |
JP6989289B2 (en) | Lens with hydrophilic antireflection film and its manufacturing method | |
CN113109898B (en) | Preparation method of hydrogenated compound film and optical filter | |
JPH03233501A (en) | Optical multilayered film filter element and production thereof | |
JP2008065014A (en) | Optical multilayer film and its manufacturing method | |
JP2002040236A (en) | Multilayered optical thin film | |
JP2006171645A (en) | Optical multilayer film and optical element | |
JP2929109B2 (en) | Optical thin film and method for manufacturing the same | |
JP2008070490A (en) | Optical multilayer film and its production method | |
Wang et al. | Design and Synthesis of a 33-Layer Narrow Bandpass Filter with Graded Refractive Index Profiles | |
Zhao et al. | Fabrication of Nanoscale Multilayer Device by Filtered Cathodic Vacuum Arc for Optical Application |