JP2003096229A - Production method of porous (co)polymer film and porous (co)polymer film produced by the method - Google Patents

Production method of porous (co)polymer film and porous (co)polymer film produced by the method

Info

Publication number
JP2003096229A
JP2003096229A JP2001286008A JP2001286008A JP2003096229A JP 2003096229 A JP2003096229 A JP 2003096229A JP 2001286008 A JP2001286008 A JP 2001286008A JP 2001286008 A JP2001286008 A JP 2001286008A JP 2003096229 A JP2003096229 A JP 2003096229A
Authority
JP
Japan
Prior art keywords
porous
polymer
polymer film
molded product
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001286008A
Other languages
Japanese (ja)
Inventor
Shigeo Nishikawa
茂雄 西川
Masahiro Takedate
昌弘 竹立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001286008A priority Critical patent/JP2003096229A/en
Publication of JP2003096229A publication Critical patent/JP2003096229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing porous (co)polymer film which does not require organic solvents in production processes and is clean and not hazardous to the global environments and also provide a porous (co)polymer film having a homogenous pore size and less impurities. SOLUTION: The production method of the porous (co)polymer film comprises (a) a process in which carbon dioxide is dissolved into the (co)polymer molding at 10 deg.C to 400 deg.C under 5 to 50 MPa in a pressure container in the atmosphere of carbon dioxide, (b) a process in which the porous (co)polymer molding is obtained by reducing the pressure by 2 MPa or larger while reducing the pressure in the above process (a) at a rate of 0.02 to 30 MPa/sec. and (c) a process in which the porous (co)polymer molding obtained in the above process (b) is sliced to give the porous (co)polymer film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質(共)重合
体フィルムの製造方法およびそれにより得られる多孔質
(共)重合体フィルムに関し、さらに詳しくは、各種分
離膜、光学用フィルム、低誘電率フィルム、断熱フィル
ム、防振防音フィルム等の用途に用いられる多孔質
(共)重合体フィルムおよびその製造方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a method for producing a porous (co) polymer film and a porous (co) polymer film obtained by the method, more specifically, various separation membranes, optical films, The present invention relates to a porous (co) polymer film used for applications such as a dielectric constant film, a heat insulating film, a vibration and soundproof film, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、多孔質(共)重合体フィルムの製
造方法としては、次の様な方法が知られている。 (1)非相溶性(共)重合体、又は無機微粒子を溶融ブ
レンドして押出成形した後、延伸することにより多孔質
(共)重合体フィルムを得る。(特開昭64−3472
6号公報) (2)高せん断力下で(共)重合体を冷却して結晶構造
を形成し、延伸することにより多孔質(共)重合体フィ
ルムを得る。(特公昭46−40119号公報) (3)抽出可能な有機溶剤(良溶媒)を(共)重合体に
添加してフィルム成形後、別の有機溶剤(貧溶媒)を用
いて良溶媒を抽出することにより多孔質(共)重合体フ
ィルムを得る。(特公昭58−32171号公報、特開
平1−304933号公報、特開平3−80923号公
報、特開平6−240036号公報、特開平7−537
60号公報)
2. Description of the Related Art Conventionally, the following method has been known as a method for producing a porous (co) polymer film. (1) A porous (co) polymer film is obtained by melt-blending incompatible (co) polymers or inorganic fine particles, extrusion-molding, and stretching. (JP-A-64-3472
(6) (2) A (co) polymer is cooled under a high shearing force to form a crystal structure and stretched to obtain a porous (co) polymer film. (Japanese Patent Publication No. 46-40119) (3) Extractable organic solvent (good solvent) is added to the (co) polymer to form a film, and then the good solvent is extracted using another organic solvent (poor solvent). By doing so, a porous (co) polymer film is obtained. (Japanese Patent Publication No. 58-321171, Japanese Patent Laid-Open No. 1-304933, Japanese Patent Laid-Open No. 3-80923, Japanese Patent Laid-Open No. 6-240036, Japanese Patent Laid-Open No. 7-537.
(Publication No. 60)

【0003】上記(1)には、非相溶性(共)重合体お
よび無機微粒子を均一に分散させ、押出すことが比較的
困難であるため、孔径の大きさおよび均一性、フィルム
の厚み精度を制御するのが難しいという問題点があっ
た。また上記(2)には、均一な微孔を得ることはでき
るが、厚み、孔径の範囲が限定されることが問題であっ
た。
In the above (1), since it is relatively difficult to uniformly disperse the incompatible (co) polymer and the inorganic fine particles and to extrude the same, the size and uniformity of the pore diameter and the thickness accuracy of the film are high. There was a problem that it was difficult to control. Further, in the above (2), although uniform fine pores can be obtained, there is a problem that the range of thickness and pore diameter is limited.

【0004】さらに上記(3)では、(共)重合体が溶
媒である複数の有機溶剤に曝されることから、製品中に
これらの低分子化合物が少なからず残存する。この残留
低分子化合物が、諸物性に影響を与えることはもちろん
のこと、有機溶剤を嫌う用途には使用できないため、用
途範囲が限定される。また大量の有機溶剤を使用するた
め、地球環境への負荷も大きい。さらにこの製造方法
は、抽出工程に多くの時間を要し、製造コスト等にも問
題があった。
Further, in the above (3), since the (co) polymer is exposed to a plurality of organic solvents which are solvents, a small amount of these low molecular weight compounds remains in the product. This residual low molecular weight compound affects various physical properties and cannot be used for applications where organic solvents are disliked, so that the range of applications is limited. Moreover, since a large amount of organic solvent is used, the load on the global environment is large. Furthermore, this manufacturing method requires a lot of time for the extraction step, and has a problem in manufacturing cost and the like.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
を解決しようとするものであり、特に、孔径が均一で、
不純物が少なく、低コストの多孔質(共)重合体フィル
ムを提供でき、しかも生産工程がクリーンで簡略化され
た地球環境に優しい製造方法およびそれにより得られる
多孔質(共)重合体フィルム提供することを目的として
いる。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above problems, and in particular, has a uniform pore size,
To provide a low-cost porous (co) polymer film with few impurities, a clean and simplified production process, and a global environment-friendly production method, and a porous (co) polymer film obtained thereby Is intended.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意研究を重ねた結果、特定の条件下
で(共)重合体成形物を二酸化炭素で処理すれば、スラ
イス加工することにより、孔径が均一で、不純物が少な
く、低コストの多孔質(共)重合体フィルムが得られる
ことを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have found that if a (co) polymer molded product is treated with carbon dioxide under specific conditions, it is sliced. The present invention has been completed by finding that a porous (co) polymer film having a uniform pore size, few impurities and low cost can be obtained by processing.

【0007】すなわち、本発明は、以下に記載する事項
により特定される。 (1) (a)二酸化炭素雰囲気下の圧力容器内で、
(共)重合体成形物中に、5〜50MPaの圧力、且つ
10℃〜400℃の温度で二酸化炭素を溶解させる工
程、(b)上記の工程(a)の圧力から、0.02〜3
0MPa/secの減圧速度で2MPa以上減圧して、
多孔質(共)重合体成形物を得る工程、(c)上記の工
程(b)で得られた多孔質(共)重合体成形物を、スラ
イス加工して多孔質(共)重合体フィルムを得る工程か
ら成ることを特徴とする多孔質(共)重合体フィルムの
製造方法。
That is, the present invention is specified by the items described below. (1) (a) In a pressure vessel under a carbon dioxide atmosphere,
A step of dissolving carbon dioxide in the (co) polymer molded article at a pressure of 5 to 50 MPa and a temperature of 10 to 400 ° C., (b) from the pressure of the step (a), 0.02 to 3
Reduce the pressure by 2 MPa or more at a pressure reduction rate of 0 MPa / sec,
A step of obtaining a porous (co) polymer molded product, (c) slicing the porous (co) polymer molded product obtained in the above step (b) to obtain a porous (co) polymer film. A method for producing a porous (co) polymer film, which comprises the steps of:

【0008】(2) 前記多孔質(共)重合体成形物
が、円柱または円筒形であることを特徴とする上記
(1)記載の多孔質(共)重合体フィルムの製造方法。
(2) The method for producing a porous (co) polymer film as described in (1) above, wherein the porous (co) polymer molded product has a columnar shape or a cylindrical shape.

【0009】(3) 前記スライス加工が、スカイビン
グ(かつらむき)加工であることを特徴とする上記
(1)または(2)に記載の多孔質(共)重合体フィル
ムの製造方法。
(3) The method for producing a porous (co) polymer film as described in (1) or (2) above, wherein the slicing is skiving.

【0010】(4) 前記工程(c)の後、延伸工程を
経ることを特徴とする(1)ないし(3)のいずれかに
記載の多孔質(共)重合体フィルムの製造方法。
(4) The method for producing a porous (co) polymer film according to any one of (1) to (3), which comprises a stretching step after the step (c).

【0011】(5) (共)重合体が、超高分子量ポリ
オレフィンであることを特徴とする上記(1)ないし
(4)のいずれかに記載の多孔質(共)重合体フィルム
の製造方法。
(5) The method for producing a porous (co) polymer film according to any one of (1) to (4) above, wherein the (co) polymer is an ultrahigh molecular weight polyolefin.

【0012】(6) 上記(1)ないし(5)のいずれ
かに記載の製造方法で製造され、有機溶剤含有率が80
ppm以下であることを特徴とする多孔質(共)重合体
フィルム。
(6) The organic solvent content is 80, which is produced by the production method described in any one of (1) to (5) above.
A porous (co) polymer film having a content of ppm or less.

【0013】[0013]

【発明の実施の形態】本発明の工程(a)における圧力
条件は、5〜50MPa、好ましくは10〜40MP
a、さらに好ましくは15〜30MPaであり、且つ、
温度条件は10〜400℃、好ましくは30〜350
℃、さらに好ましくは50〜300℃である。
BEST MODE FOR CARRYING OUT THE INVENTION The pressure condition in step (a) of the present invention is 5 to 50 MPa, preferably 10 to 40 MP.
a, more preferably 15 to 30 MPa, and
The temperature condition is 10 to 400 ° C., preferably 30 to 350
C., more preferably 50 to 300.degree.

【0014】上記範囲の圧力条件、温度条件、すなわち
二酸化炭素を高圧気相、高圧液相、または超臨界流体相
にすることにより、比較的速い速度で(共)重合体中に
溶解または拡散させることができ、これにより、二酸化
炭素を容易に(共)重合体中に含有させることができ
る。
Pressure and temperature conditions within the above ranges, that is, carbon dioxide is brought into a high-pressure gas phase, a high-pressure liquid phase or a supercritical fluid phase to dissolve or diffuse in the (co) polymer at a relatively high rate. Therefore, carbon dioxide can be easily contained in the (co) polymer.

【0015】本発明の工程(b)における減圧速度は、
0.02〜30MPa/sec、好ましくは0.05〜
25MPa/sec、さらに好ましくは0.1〜20M
Pa/secの速度であって、且つ、減圧幅は、2MP
a以上、好ましくは3MPa以上、さらに好ましくは5
MPa以上である。
The pressure reduction rate in step (b) of the present invention is
0.02 to 30 MPa / sec, preferably 0.05 to
25 MPa / sec, more preferably 0.1 to 20 M
Pa / sec speed and decompression width is 2MP
a or more, preferably 3 MPa or more, more preferably 5
It is above MPa.

【0016】上記範囲の減圧速度、減圧幅にすることに
より、(共)重合体に含有していた二酸化炭素が過飽和
状態、つまり熱力学的に不安定状態となり、(共)重合
体中に多数の核(気泡が発生する発泡核)を発生させる
ことができる。
By setting the pressure reduction rate and width within the above range, the carbon dioxide contained in the (co) polymer becomes supersaturated, that is, thermodynamically unstable, and a large amount of carbon dioxide is contained in the (co) polymer. Nuclei (foaming nuclei in which bubbles are generated) can be generated.

【0017】本発明に用いられる圧力容器の容量は、特
に限定されないが、通常0.5〜5000Lであり、好
ましくは1〜1000Lである。
The capacity of the pressure vessel used in the present invention is not particularly limited, but is usually 0.5 to 5000 L, preferably 1 to 1000 L.

【0018】上記範囲の圧力容器の容量であれば、商業
生産可能な大きさの多孔質(共)重合体成形物を製造す
ることができ、且つ、上記減圧速度の範囲内で制御がで
きる。
If the volume of the pressure vessel is within the above range, a porous (co) polymer molded product having a size that can be commercially produced can be produced, and the pressure can be controlled within the above-mentioned reduced pressure rate range.

【0019】本発明に用いられる(共)重合体成形物の
形状および多孔質(共)重合体成形物の形状は、特に限
定されないが、円柱または円筒形が好ましい。
The shape of the (co) polymer molded product and the shape of the porous (co) polymer molded product used in the present invention are not particularly limited, but are preferably columnar or cylindrical.

【0020】本発明の工程(c)におけるスライス加工
方法は、公知の方法であれば、特に限定されないが、多
孔質(共)重合体成形物の形状が円柱または円筒形の場
合、スカイビング(かつらむき)加工であることが好ま
しい。スカイビング加工とは、ちょうど大根のかつらむ
きの要領で、円柱または円筒形の(共)重合体成形物の
中心軸を中心に回転させながら、カッター等の切削刃に
よりフィルム状にスライスし、(共)重合体フィルムを
成形する加工方法である。
The slicing method in step (c) of the present invention is not particularly limited as long as it is a known method, but if the shape of the porous (co) polymer molded product is a column or a cylinder, skiving ( It is preferable that it is a wig peeling process. Skiving is just like the radish shaving and peeling, while rotating around the central axis of a cylindrical or cylindrical (co) polymer molded product, sliced into a film with a cutting blade such as a cutter, Co) is a processing method for forming a polymer film.

【0021】円柱または円筒形の多孔質(共)重合体成
形物を用い、スカイビング加工を行うことで、多孔質
(共)重合体フィルムを連続的に生産することが可能と
なり、生産コストも安価となる。
By performing a skiving process using a columnar or cylindrical porous (co) polymer molded product, a porous (co) polymer film can be continuously produced, and the production cost is also increased. It will be cheaper.

【0022】本発明の多孔質(共)重合体フィルムは、
必要に応じて、工程(c)の後、延伸加工することもで
きる。延伸加工方法は、一軸延伸法、二軸延伸法等、公
知の方法であれば、特に限定されない。また、スカイブ
加工する場合は、インラインで延伸工程を設け、スカイ
ブ加工と延伸を連続的に行ってもよいし、別別に行って
もよい。延伸倍率には特に制限はないが、通常1.5〜
30倍であり、好ましくは3〜10倍である。
The porous (co) polymer film of the present invention comprises
If necessary, after the step (c), a stretching process can be performed. The stretching method is not particularly limited as long as it is a known method such as a uniaxial stretching method or a biaxial stretching method. In the case of skiving, an in-line stretching step may be performed so that skiving and stretching may be performed continuously or separately. The stretching ratio is not particularly limited, but usually 1.5 to
It is 30 times, preferably 3 to 10 times.

【0023】延伸加工をすることで、フィルムの強度向
上、フィルムの薄肉化、厚み精度向上等が期待できる。
また、用途に応じて、孔径を大きくする目的でも採用さ
れる。さらに、多孔質(共)重合体フィルムが独立孔体
(独立気泡体)である場合は、延伸加工を行うことで、
孔と孔をつなげて連続孔体(貫通孔体)にもすることが
できる。
Stretching can be expected to improve the strength of the film, reduce the thickness of the film, and improve the accuracy of thickness.
It is also used for the purpose of increasing the pore size depending on the application. Furthermore, when the porous (co) polymer film is a closed-pore body (closed-cell body), by performing a stretching process,
The holes can be connected to each other to form a continuous hole body (through hole body).

【0024】本発明の多孔質(共)重合体フィルムは、
必要に応じて、プレス等の圧縮により、フィルム形状を
整えることもできる。
The porous (co) polymer film of the present invention comprises
If necessary, the film shape can be adjusted by compression with a press or the like.

【0025】本発明に用いられる(共)重合体として
は、特に制限無く使用できる。例えば、低密度ポリエチ
レン、高密度ポリエチレン、直鎖状低密度ポリエチレ
ン、エチレン−プロピレンコポリマー、エチレン−ブテ
ンコポリマー、プロピレン−ブテンコポリマー、エチレ
ン−メタクリル酸コポリマー、エチレン−アクリル酸コ
ポリマー、エチレン−酢酸ビニルコポリマー、エチレン
−アクリル酸エチルコポリマー、アイオノマー樹脂(例
えばエチレン−メタクリル酸コポリマーアイオノマー樹
脂等)、ポリプロピレン、ポリブテン、4−メチルペン
テン−1樹脂、環状ポリオレフィン系樹脂、エチレン−
スチレンコポリマー、超高分子量ポリオレフィン(例え
ば、超高分子量ポリエチレン、超高分子量ポリプロピレ
ン等)、スチレン系樹脂(ポリスチレン、ブタジエン−
スチレンコポリマー(HIPS)、アクリロニトリル−
スチレンコポリマー(AS樹脂)、アクリロニトリル−
ブタジエン−スチレンコポリマー(ABS樹脂)等)、
ポリアクリロニトリル、アクリロニトリル−アクリル酸
メチルコポリマー、ポリ塩化ビニル、ポリ塩化ビニリデ
ン、ポリカーボネート、ポリアセタール、ポリフェニレ
ンオキシド、ポリ酢酸ビニル、ポリビニルアルコール、
ポリメタクリル酸メチル、酢酸セルロース、ポリエステ
ル(例えばポリエチレンテレフタレート、ポリブチレン
テレフタレート、ポリトリメチレンテレフタレート
等)、ポリアミド樹脂、ポリイミド樹脂、フッ素樹脂、
ポリサルフォン、ポリエーテルサルフォン、ポリアリレ
ート、ポリエーテルエーテルケトン、液晶ポリマー、熱
可塑性エラストマー、生分解性ポリマー(例えば、ポリ
乳酸、ポリグリコール酸等のようなヒドロキシカルボン
酸縮合物、ポリブチレンサクシネートのようなジオール
とカルボン酸の縮合物等)、ポリウレタン(熱可塑性ポ
リウレタンも含む)、エポキシ樹脂、フッ素樹脂(例え
ば、ポリテトラフルオロエチレン等)、フェノール樹
脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹
脂等の(共)重合体の1種以上からなる(共)重合体が
挙げられる。
The (co) polymer used in the present invention can be used without particular limitation. For example, low density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-propylene copolymer, ethylene-butene copolymer, propylene-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer, Ethylene-ethyl acrylate copolymer, ionomer resin (for example, ethylene-methacrylic acid copolymer ionomer resin, etc.), polypropylene, polybutene, 4-methylpentene-1 resin, cyclic polyolefin resin, ethylene-
Styrene copolymer, ultra high molecular weight polyolefin (for example, ultra high molecular weight polyethylene, ultra high molecular weight polypropylene, etc.), styrene resin (polystyrene, butadiene-
Styrene copolymer (HIPS), acrylonitrile-
Styrene copolymer (AS resin), acrylonitrile-
Butadiene-styrene copolymer (ABS resin), etc.,
Polyacrylonitrile, acrylonitrile-methyl acrylate copolymer, polyvinyl chloride, polyvinylidene chloride, polycarbonate, polyacetal, polyphenylene oxide, polyvinyl acetate, polyvinyl alcohol,
Polymethyl methacrylate, cellulose acetate, polyester (for example, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, etc.), polyamide resin, polyimide resin, fluororesin,
Polysulfone, polyether sulfone, polyarylate, polyether ether ketone, liquid crystal polymer, thermoplastic elastomer, biodegradable polymer (for example, hydroxycarboxylic acid condensate such as polylactic acid, polyglycolic acid, etc., polybutylene succinate Such as diol and carboxylic acid condensate), polyurethane (including thermoplastic polyurethane), epoxy resin, fluororesin (eg, polytetrafluoroethylene, etc.), phenol resin, urea resin, melamine resin, diallyl phthalate resin, etc. A (co) polymer composed of one or more kinds of (co) polymers may be mentioned.

【0026】これらの中でも超高分子量ポリオレフィ
ン、フッ素樹脂、ポリウレタン、ポリイミド、フェノー
ル樹脂、ユリア樹脂、メラミン樹脂が好ましく、さらに
は超高分子量ポリオレフィンが好ましい。超高分子量ポ
リオレフィンとしては、なかでも超高分子量ポリエチレ
ンが好ましく、特に重量平均分子量(Mw)が30万〜
1000万の超高分子量ポリエチレンが好ましい。
Among these, ultrahigh molecular weight polyolefin, fluororesin, polyurethane, polyimide, phenol resin, urea resin and melamine resin are preferable, and ultrahigh molecular weight polyolefin is more preferable. As the ultra-high molecular weight polyolefin, ultra-high molecular weight polyethylene is preferable, and the weight average molecular weight (Mw) is 300,000 to
10 million ultra high molecular weight polyethylenes are preferred.

【0027】また、本発明においては、目的を損なわな
い範囲で、(共)重合体中に、必要に応じて、顔料、染
料、滑剤、抗酸化剤、充填剤、安定剤、難燃剤、帯電防
止剤、紫外線防止剤、架橋剤、抗菌剤、結晶核剤、収縮
防止剤、発泡核剤、発泡助剤等を添加することができ
る。
Further, in the present invention, a pigment, a dye, a lubricant, an antioxidant, a filler, a stabilizer, a flame retardant, an electrifying agent, if necessary, in the (co) polymer within a range not impairing the purpose. Inhibitors, UV inhibitors, cross-linking agents, antibacterial agents, crystal nucleating agents, shrinkage-preventing agents, foam nucleating agents, foaming assistants and the like can be added.

【0028】本発明の(共)重合体原料の製造方法につ
いては、公知の方法が採用でき、特に限定されない。例
えば、(共)重合体と、必要により別の(共)重合体、
又は添加剤を高速攪拌機等で均一混合した後、十分な混
練能力のある一軸あるいは多軸の押出機、混合ロール、
ニーダー、ブラベンダー等で溶融混練する方法等で製造
できる。また(共)重合体と別の(共)重合体、又は添
加剤を均一混合した状態のまま使用することも差し支え
ない。
As a method for producing the (co) polymer raw material of the present invention, a known method can be adopted and is not particularly limited. For example, a (co) polymer and optionally another (co) polymer,
Alternatively, after uniformly mixing the additives with a high-speed stirrer, etc., a uniaxial or multiaxial extruder having sufficient kneading ability, a mixing roll,
It can be manufactured by a method such as melt-kneading with a kneader or Brabender. Further, the (co) polymer and another (co) polymer, or the additive may be used in a state of being uniformly mixed.

【0029】本発明の(共)重合体成形物の製造方法
は、公知の方法が採用でき、特に限定されない。プレス
成形等の圧縮成形、トランスファー成形、押出成形、ラ
ム押出成形、ペースト押出成形、射出成形、カレンダー
成形等を採用することができる。なかでも圧縮成形、ト
ランスファー成形、押出成形、ラム押出成形が好まし
く、特に圧縮成形が好ましい。
As the method for producing the (co) polymer molded article of the present invention, a known method can be adopted and is not particularly limited. It is possible to employ compression molding such as press molding, transfer molding, extrusion molding, ram extrusion molding, paste extrusion molding, injection molding, calendar molding and the like. Of these, compression molding, transfer molding, extrusion molding, and ram extrusion molding are preferable, and compression molding is particularly preferable.

【0030】本発明の製造方法で得られる多孔質(共)
重合体フィルムの空孔率は、特に限定されないが、好ま
しくは1〜80%、さらに好ましくは3〜70%であ
る。
Porous (co) obtained by the production method of the present invention
The porosity of the polymer film is not particularly limited, but is preferably 1 to 80%, more preferably 3 to 70%.

【0031】本発明の製造方法で得られる多孔質(共)
重合体フィルムの孔の形態は、特に制限はなく、独立孔
(独立気泡)でもよいし、連続孔(貫通孔)(連続気
泡)でもよい。独立孔の場合、平均の孔径は、0.00
1μm〜500μmが好ましく、さらには0.01〜1
00μmが好ましい。連続孔の場合、網目構造を有して
いるものが好ましい。網目構造の孔の幅は、平均で0.
001〜500μmのものが好ましく、さらには0.0
1〜100μmのものが好ましい。
Porous (co) obtained by the production method of the present invention
The form of the pores of the polymer film is not particularly limited, and may be closed pores (closed cells) or continuous holes (through holes) (open cells). In the case of independent pores, the average pore size is 0.00
1 μm to 500 μm is preferable, and further 0.01 to 1
00 μm is preferable. In the case of continuous holes, those having a network structure are preferable. The width of the holes in the mesh structure is 0.
001 to 500 μm is preferable, and further 0.0
It is preferably 1 to 100 μm.

【0032】本発明の製造方法で得られる多孔質(共)
重合体フィルムの厚みは、特に制限されないが、通常1
μm〜1000μmであり、さらには10μm〜500
μmが好ましい。
Porous (co) obtained by the production method of the present invention
The thickness of the polymer film is not particularly limited, but is usually 1
μm to 1000 μm, and further 10 μm to 500
μm is preferred.

【0033】本発明の製造方法で得られる多孔質(共)
重合体フィルムの特徴は有機溶剤含有率が低いことであ
る。該有機溶剤含有率は、80ppm以下であり、50
ppm以下であることが好ましく、さらには20ppm
以下であることが好ましく、特に10ppm以下である
ことが好ましい。
Porous (co) obtained by the production method of the present invention
A characteristic of polymer films is a low organic solvent content. The organic solvent content is 80 ppm or less, 50
It is preferably less than or equal to ppm, and further 20 ppm
It is preferably the following or less, and particularly preferably 10 ppm or less.

【0034】有機溶剤としては、重合体と混和できるも
の、或いは重合体の溶媒になり得るものであれば、特に
限定されるものではないが、例えば、ジシクロヘキシル
フタレート、トリフェニレンフォスフェイト、流動パラ
フィン、パラフィンワックス、キシレン、トルエン、デ
カリン、デカン、ドデカン、ドコサン、トリコサン、テ
トラコサン、トリアコンタン、ベンゼン、ジクロロベン
ゼン、トリクロロベンゼン、トリクロルメタン、トリク
ロルエタン、アセトン、メチルエチルケトン、酢酸エチ
ル、メタノール、プロパノール、ステアリルアルコー
ル、イソプロピルアルコール、トルエン、キシレン、ペ
ンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタ
ン、クロロホルム、塩化メチレン、四塩化炭素、三フッ
化エタン、フタル酸エステル、セバシン酸エステル、ト
リメリット酸エステル、リン酸エステル等が挙げられ
る。
The organic solvent is not particularly limited as long as it is miscible with the polymer or can be a solvent for the polymer, and examples thereof include dicyclohexyl phthalate, triphenylene phosphate, liquid paraffin and paraffin. Wax, xylene, toluene, decalin, decane, dodecane, docosan, tricosane, tetracosane, triacontane, benzene, dichlorobenzene, trichlorobenzene, trichloromethane, trichloroethane, acetone, methyl ethyl ketone, ethyl acetate, methanol, propanol, stearyl alcohol, isopropyl Alcohol, toluene, xylene, pentane, hexane, cyclohexane, heptane, octane, chloroform, methylene chloride, carbon tetrachloride, ethane trifluoride, phthalic acid Ester, sebacic acid esters, trimellitic acid esters, and phosphoric acid esters.

【0035】本発明に係る多孔質(共)重合体フィルム
製造方法の実施態様の一例を図1に基づき説明する
(共)重合体成形物を構成する成分を混合し原料組成物
を調製し、これを圧縮成形法により、円筒形の(共)重
合体成形物(1)を作成する(図示せず)。
An example of an embodiment of the method for producing a porous (co) polymer film according to the present invention will be described with reference to FIG. 1. Components constituting a (co) polymer molded product are mixed to prepare a raw material composition, A cylindrical (co) polymer molded product (1) is prepared from this by compression molding (not shown).

【0036】上記(共)重合体成形物(1)を、圧力容
器(2)中に置き密閉し、圧力容器(2)を所定の温度
まで加熱する。次いで、圧力容器(2)内の空気を真空
ポンプ(7)により抜き、液化二酸化炭素ボンベ(4)
および冷媒循環装置(5)により冷却されるラインにつ
ながった定量ポンプ(3)を用いて二酸化炭素を導入
し、所定の圧力まで昇圧する。圧力容器(2)内の圧力
は、保圧弁(6)により制御する。二酸化炭素を適宜圧
力容器(2)内に導入することにより所定時間圧力を維
持し、二酸化炭素を(共)重合体成形物(1)中に含有
させる。(共)重合体成形物(1)の二酸化炭素含有率
が所定量に達した時点で、圧力容器(2)内の二酸化炭
素を、所定の圧力まで、所定の減圧速度で減圧する。こ
の時、一度に大気圧下まで、減圧しても構わないし、数
度(2回以上)に分けて減圧しても構わない。このよう
にして、多孔質(共)重合体成形物(10)を得ること
ができる。
The above (co) polymer molded product (1) is placed in a pressure vessel (2) and sealed, and the pressure vessel (2) is heated to a predetermined temperature. Then, the air in the pressure vessel (2) is evacuated by the vacuum pump (7), and the liquefied carbon dioxide cylinder (4) is discharged.
Further, carbon dioxide is introduced by using the metering pump (3) connected to the line cooled by the refrigerant circulation device (5) to raise the pressure to a predetermined pressure. The pressure in the pressure vessel (2) is controlled by the pressure holding valve (6). By appropriately introducing carbon dioxide into the pressure vessel (2), the pressure is maintained for a predetermined time, and carbon dioxide is contained in the (co) polymer molded product (1). When the carbon dioxide content of the (co) polymer molded product (1) reaches a predetermined amount, the carbon dioxide in the pressure vessel (2) is decompressed to a predetermined pressure at a predetermined decompression rate. At this time, the pressure may be reduced to atmospheric pressure at once, or may be reduced to several times (twice or more). In this way, the porous (co) polymer molded product (10) can be obtained.

【0037】各条件、すなわち温度、圧力、時間、減圧
速度、減圧方法等は、目的とする多孔質(共)重合体成
形物(10)に応じて、上記範囲内で、適切な条件を選
択すればよい。
Regarding each condition, that is, temperature, pressure, time, decompression rate, decompression method, etc., appropriate conditions are selected within the above range depending on the intended porous (co) polymer molded product (10). do it.

【0038】(共)重合体成形物にモノマー等の低分子
量成分が含有されている場合、上記圧力範囲内で、二酸
化炭素に曝し減圧することで、含有されている低分子量
成分を二酸化炭素により抽出除去する効果も期待でき
る。
When the (co) polymer molded product contains a low molecular weight component such as a monomer, the low molecular weight component contained in the (co) polymer is exposed to carbon dioxide within the above pressure range to reduce the pressure. The effect of extraction and removal can also be expected.

【0039】また、パージした二酸化炭素は、再利用
(リサイクル)することも可能である。
Further, the purged carbon dioxide can be reused (recycled).

【0040】次に、得られた多孔質(共)重合体成形物
(10)をスカイビング加工機にセットする。この時、
必要があれば、所定の大きさの円筒形にカットする。
Next, the obtained porous (co) polymer molded product (10) is set in a skiving machine. This time,
If necessary, cut into a cylindrical shape of a predetermined size.

【0041】円筒形の多孔質(共)重合体成形物(1
0)をスカイビング加工機の駆動軸(11)を中心に回
転させ、切削刃(12)により、周方向に連続的にスラ
イスして、所定の厚みのフィルムを得て、巻取機により
ロールに巻き取る。このようにして、多孔質(共)重合
体フィルム(13)を得ることができる。
Cylindrical porous (co) polymer molding (1
0) is rotated about the drive shaft (11) of the skiving machine, and is continuously sliced in the circumferential direction by the cutting blade (12) to obtain a film having a predetermined thickness, which is then rolled by the winder. Roll it up. In this way, the porous (co) polymer film (13) can be obtained.

【0042】この後、多孔質(共)重合体フィルム(1
3)の目的に応じて、延伸等の加工をほどこすことも可
能である。
After this, the porous (co) polymer film (1
Depending on the purpose of 3), it is possible to perform processing such as stretching.

【0043】上記のような製造方法で得られた多孔質
(共)重合体フィルムは、医療用、工業用の濾過、分離
等に用いられる各種分離膜、電池用、電解コンデンサー
用等のセパレーターフィルム、光反射用、紫外線反射用
等の光学用フィルム、低誘電率フィルム、断熱フィル
ム、防振防音フィルム等の用途に好適に用いられる。
The porous (co) polymer film obtained by the above-mentioned production method is a separator film for various separation membranes used for filtration and separation for medical and industrial purposes, batteries, and electrolytic capacitors. It is preferably used for applications such as optical films for light reflection and ultraviolet reflection, low dielectric constant films, heat insulation films, vibration and soundproof films.

【0044】[0044]

【実施例】次に本発明を実施例および比較例により説明
する。なお、実施例および比較例に記した物性評価は、
次の方法に従って実施した。 1)空孔率 寸法が30mm×30mmの多孔質(共)重合体フィル
ムの密度(D1)、および原料である(共)重合体の密
度(D2)を、電子密度計を用いてそれぞれ測定し、下
記計算式により空孔率を算出した。 (D2−D1)/D2×100
EXAMPLES Next, the present invention will be described with reference to Examples and Comparative Examples. The physical property evaluations described in Examples and Comparative Examples are
It carried out according to the following method. 1) The density (D1) of a porous (co) polymer film having a porosity of 30 mm × 30 mm and the density (D2) of a raw material (co) polymer were measured using an electronic densitometer. The porosity was calculated by the following formula. (D2-D1) / D2 x 100

【0045】2)平均孔径 走査型電子顕微鏡により撮影した多孔質(共)重合体フ
ィルムの断面写真を画像処理し、円相当径を算出し、そ
の値を平均孔径とした。 3)有機溶剤含有率 寸法が2mm×2mmの多孔質(共)重合体フィルム
を、四塩化炭素を用いソックスレー抽出器にて水浴温9
5℃で10時間抽出し、得られた抽出液をエバポレータ
ーにより50mlの溶液に濃縮した。この溶液をガスク
ロマトグラフィー、FT−IR、質量分析により検出同
定した。
2) Average Pore Size The cross-sectional photograph of the porous (co) polymer film photographed with a scanning electron microscope was image-processed to calculate the equivalent circle diameter, and the value was taken as the average pore diameter. 3) A porous (co) polymer film having an organic solvent content rate of 2 mm × 2 mm was used in a Soxhlet extractor using carbon tetrachloride at a water bath temperature of 9
Extraction was performed at 5 ° C for 10 hours, and the obtained extract was concentrated to 50 ml of solution by an evaporator. This solution was detected and identified by gas chromatography, FT-IR, and mass spectrometry.

【0046】(実施例1)(共)重合体として、超高分
子量ポリエチレン(三井化学(株)製ハイゼックスミリ
オン340M(商品名))を用い、圧縮成形法により、
厚み50mmの板状の成形物を成形し、該板状成形物か
ら切削加工により、(共)重合体成形物として直径13
0mmの円筒状超高分子量ポリエチレン成形物を作製し
た。
Example 1 Ultra high molecular weight polyethylene (HIZEX Million 340M (trade name) manufactured by Mitsui Chemicals, Inc.) was used as a (co) polymer by a compression molding method.
A plate-shaped molded product having a thickness of 50 mm was molded, and the plate-shaped molded product was cut to have a diameter of 13 as a (co) polymer molded product.
A 0 mm cylindrical ultra high molecular weight polyethylene molded product was produced.

【0047】上記円筒状超高分子量ポリエチレン成形物
を、容積1000cc(直径140mm、高さ65m
m)の圧力容器((株)AKICO製)中に置き、密閉
し、圧力容器をバンドヒーターにより、170℃の温度
まで加熱した。次いで、圧力容器内の空気を真空ポンプ
により抜き、サイホン式の液化二酸化炭素ボンベおよび
冷媒循環装置により冷却されたラインにつながった定量
ポンプを用いて二酸化炭素を導入、昇圧し、圧力容器内
を20MPaとした。この後6時間、該温度、該圧力条
件(170℃、20MPa)を維持し、二酸化炭素を円
筒状超高分子量ポリエチレン成形物中に含有させた。
The above cylindrical ultra-high molecular weight polyethylene molded product had a volume of 1000 cc (a diameter of 140 mm and a height of 65 m).
m) was placed in a pressure vessel (manufactured by AKICO) and sealed, and the pressure vessel was heated to a temperature of 170 ° C. by a band heater. Next, the air in the pressure vessel is evacuated by a vacuum pump, and carbon dioxide is introduced and pressurized by using a siphon-type liquefied carbon dioxide cylinder and a metering pump connected to a line cooled by a refrigerant circulation device to increase the pressure in the pressure vessel to 20 MPa. And After that, the temperature and the pressure conditions (170 ° C., 20 MPa) were maintained for 6 hours, and carbon dioxide was contained in the cylindrical ultra high molecular weight polyethylene molded product.

【0048】6時間経過後、バンドヒーターの加熱を止
め、パージ弁を開放し、圧力容器中の二酸化炭素を8M
Pa/secの減圧速度でパージし、12MPaの圧力
まで減圧した時点で、パージ弁を閉めた。
After 6 hours, heating of the band heater was stopped, the purge valve was opened, and carbon dioxide in the pressure vessel was adjusted to 8M.
Purging was performed at a pressure reduction rate of Pa / sec, and when the pressure was reduced to 12 MPa, the purge valve was closed.

【0049】次に、圧力容器を覆っている冷却用ジャケ
ットに水を流し、圧力容器内の温度を170℃から40
℃に冷却した。この間の時間は約2時間であった。その
後、圧力容器中の二酸化炭素を0.4MPa/secの
減圧速度でパージし、大気圧下まで完全に減圧し、多孔
質(共)重合体成形物としての多孔質超高分子量ポリエ
チレン成形物を調製した。
Next, water is flowed through the cooling jacket covering the pressure vessel to increase the temperature in the pressure vessel from 170 ° C to 40 ° C.
Cooled to ° C. The time during this period was about 2 hours. Then, the carbon dioxide in the pressure vessel was purged at a decompression rate of 0.4 MPa / sec, and the pressure was completely reduced to atmospheric pressure to obtain a porous ultrahigh molecular weight polyethylene molded product as a porous (co) polymer molded product. Prepared.

【0050】次に、得られた多孔質超高分子量ポリエチ
レン成形物をスカイビング加工機にセット可能な様に、
切削加工により円筒状に形を整え、スカイビング加工機
の駆動軸にセットし、円筒状多孔質超高分子量ポリエチ
レン成形物の軸方向外周部表面に軸方向と平行になるよ
うに切削刃をあてた。次いで、円筒状超高分子量ポリエ
チレン成形物を、駆動軸を中心に回転させて、連続的に
スライスして厚み300μmのフィルムにし、巻取機に
よりロールに巻き取った。このようにして、多孔質超高
分子量ポリエチレンフィルムを得た。得られた多孔質超
高分子量ポリエチレンフィルムは、空孔率が10%、平
均孔径が0.1μmの独立孔で、有機溶剤含有率は0p
pmであった。
Next, the obtained porous ultra high molecular weight polyethylene molded product was set so that it could be set on a skiving machine.
Shape it into a cylindrical shape by cutting, set it on the drive shaft of the skiving machine, and apply a cutting blade to the surface of the cylindrical porous ultra-high molecular weight polyethylene molding in the axial direction so that it is parallel to the axial direction. It was Then, the cylindrical ultra-high molecular weight polyethylene molded product was rotated around a drive shaft, and continuously sliced into a film having a thickness of 300 μm, which was wound into a roll by a winder. Thus, a porous ultra high molecular weight polyethylene film was obtained. The obtained porous ultra-high molecular weight polyethylene film had a porosity of 10%, independent pores with an average pore diameter of 0.1 μm, and an organic solvent content of 0 p.
It was pm.

【0051】(実施例2)(共)重合体として、超高分
子量ポリエチレン(三井化学(株)製ハイゼックスミリ
オン340M(商品名))を用い、圧縮成形法により、
厚み30mmの板状の成形物を成形し、該板状成形物か
ら切削加工により、(共)重合体成形物として直径10
0mmの円筒状超高分子量ポリエチレン成形物を作製し
た。
(Example 2) As a (co) polymer, ultrahigh molecular weight polyethylene (HIZEX Million 340M (trade name) manufactured by Mitsui Chemicals, Inc.) was used, and compression molding was performed.
A plate-shaped molded product having a thickness of 30 mm was molded, and the plate-shaped molded product was cut to obtain a (co) polymer molded product having a diameter of 10
A 0 mm cylindrical ultra high molecular weight polyethylene molded product was produced.

【0052】上記円筒状超高分子量ポリエチレン成形物
を、容積1000cc(直径140mm、高さ65m
m)の圧力容器((株)AKICO製)中に置き、密閉
し、圧力容器をバンドヒーターにより、150℃の温度
まで加熱した。次いで、圧力容器内の空気を真空ポンプ
により抜き、サイホン式の液化二酸化炭素ボンベおよび
冷媒循環装置により冷却されたラインにつながった定量
ポンプを用いて二酸化炭素を導入、昇圧し、圧力容器内
を20MPaとした。この後6時間、該温度、該圧力条
件(150℃、20MPa)を維持し、二酸化炭素を円
筒状超高分子量ポリエチレン成形物中に含有させた。
The above cylindrical ultra-high molecular weight polyethylene molded product had a volume of 1000 cc (diameter 140 mm, height 65 m).
m) was placed in a pressure vessel (manufactured by AKICO) and sealed, and the pressure vessel was heated to a temperature of 150 ° C. by a band heater. Next, the air in the pressure vessel is evacuated by a vacuum pump, and carbon dioxide is introduced and pressurized by using a siphon-type liquefied carbon dioxide cylinder and a metering pump connected to a line cooled by a refrigerant circulation device to increase the pressure in the pressure vessel to 20 MPa. And Thereafter, the temperature and the pressure conditions (150 ° C., 20 MPa) were maintained for 6 hours, and carbon dioxide was contained in the cylindrical ultrahigh molecular weight polyethylene molded product.

【0053】6時間経過後、バンドヒーターの加熱を止
め、パージ弁を開放し、圧力容器中の二酸化炭素を0.
7MPa/secの減圧速度でパージし、大気圧下まで
減圧し、多孔質(共)重合体成形物としての多孔質超高
分子量ポリエチレン成形物を調製した。
After 6 hours, heating of the band heater was stopped, the purge valve was opened, and carbon dioxide in the pressure vessel was reduced to 0.
Purging was performed at a reduced pressure rate of 7 MPa / sec, and the pressure was reduced to atmospheric pressure to prepare a porous ultrahigh molecular weight polyethylene molded product as a porous (co) polymer molded product.

【0054】次に、得られた多孔質超高分子量ポリエチ
レン成形物をスカイビング加工機にセット可能な様に、
切削加工により円筒状に形を整え、スカイビング加工機
の駆動軸にセットし、円筒状多孔質超高分子量ポリエチ
レン成形物の軸方向外周部表面に軸方向と平行になるよ
うに切削刃をあてた。次いで、円筒状超高分子量ポリエ
チレン成形物を、駆動軸を中心に回転させて、連続的に
スライスして、厚み300μmのフィルムにし、巻取機
によりロールに巻き取った。このようにして、多孔質超
高分子量ポリエチレンフィルムを得た。得られた多孔質
超高分子量ポリエチレンフィルムは、空孔率が75%、
平均孔径が100μmの連続孔で、有機溶剤含有率は0
ppmであった。
Next, the obtained porous ultra-high molecular weight polyethylene molded product was set so that it could be set on a skiving machine.
Shape it into a cylindrical shape by cutting, set it on the drive shaft of the skiving machine, and apply a cutting blade to the surface of the cylindrical porous ultra-high molecular weight polyethylene molding in the axial direction so that it is parallel to the axial direction. It was Then, the cylindrical ultra-high molecular weight polyethylene molded product was rotated around a drive shaft and continuously sliced to form a film having a thickness of 300 μm, which was wound into a roll by a winder. Thus, a porous ultra high molecular weight polyethylene film was obtained. The obtained porous ultra high molecular weight polyethylene film has a porosity of 75%,
The average pore size is 100μm, and the organic solvent content is 0.
It was ppm.

【0055】(比較例1)(共)重合体として、超高分
子量ポリエチレン(三井化学(株)製ハイゼックスミリ
オン340M(商品名))を用い、圧縮成形法により、
厚み50mmの板状の成形物を成形し、該板状成形物か
ら切削加工により、(共)重合体成形物として直径13
0mmの円筒状超高分子量ポリエチレン成形物を作製し
た。
(Comparative Example 1) Ultrahigh molecular weight polyethylene (HIZEX Million 340M (trade name) manufactured by Mitsui Chemicals, Inc.) was used as a (co) polymer by a compression molding method.
A plate-shaped molded product having a thickness of 50 mm was molded, and the plate-shaped molded product was cut to have a diameter of 13 as a (co) polymer molded product.
A 0 mm cylindrical ultra high molecular weight polyethylene molded product was produced.

【0056】上記円筒状超高分子量ポリエチレン成形物
を、容積1000cc(直径140mm、高さ65m
m)の圧力容器((株)AKICO製)中に置き、密閉
し、圧力容器をバンドヒーターにより、150℃の温度
まで加熱した。次いで、圧力容器内の空気を真空ポンプ
により抜き、サイホン式の液化二酸化炭素ボンベおよび
冷媒循環装置により冷却されたラインにつながった定量
ポンプを用いて二酸化炭素を導入、昇圧し、圧力容器内
を3MPaとした。この後6時間、該温度、該圧力条件
(150℃、3MPa)を維持し、二酸化炭素を円筒状
超高分子量ポリエチレン成形物中に含有させた。
The above cylindrical ultra-high molecular weight polyethylene molded product had a volume of 1000 cc (diameter 140 mm, height 65 m).
m) was placed in a pressure vessel (manufactured by AKICO) and sealed, and the pressure vessel was heated to a temperature of 150 ° C. by a band heater. Next, the air in the pressure vessel is evacuated by a vacuum pump, and carbon dioxide is introduced and pressurized by using a siphon-type liquefied carbon dioxide cylinder and a metering pump connected to a line cooled by a refrigerant circulation device to increase the pressure in the pressure vessel to 3 MPa. And Thereafter, the temperature and the pressure conditions (150 ° C., 3 MPa) were maintained for 6 hours, and carbon dioxide was contained in the cylindrical ultrahigh molecular weight polyethylene molded product.

【0057】6時間経過後、バンドヒーターの加熱を止
め、パージ弁を開放し、圧力容器中の二酸化炭素を0.
7MPa/secの減圧速度でパージし、大気圧下まで
減圧し、超高分子量ポリエチレン成形物を調製した。
After 6 hours, heating of the band heater was stopped, the purge valve was opened, and carbon dioxide in the pressure vessel was reduced to 0.
Purging was performed at a reduced pressure rate of 7 MPa / sec, and the pressure was reduced to atmospheric pressure to prepare an ultrahigh molecular weight polyethylene molded product.

【0058】次に、得られた超高分子量ポリエチレン成
形物をスカイビング加工機にセット可能な様に、切削加
工により円筒状に形を整え、スカイビング加工機の駆動
軸にセットし、円筒状超高分子量ポリエチレン成形物の
軸方向外周部表面に軸方向と平行になるように切削刃を
あてた。次いで、円筒状超高分子量ポリエチレン成形物
を駆動軸を中心に回転させて、連続的にスライスし、厚
み300μmのフィルムにし、巻取機によりロールに巻
き取った。このようにして、超高分子量ポリエチレンフ
ィルムを得た。得られた超高分子量ポリエチレンフィル
ムは、空孔率が0%の無孔フィルムで、有機溶剤含有率
は0ppmであった。
Next, the obtained ultra-high molecular weight polyethylene molded product was shaped into a cylindrical shape by cutting so that it could be set in a skiving machine, and was set on the drive shaft of the skiving machine to form a cylindrical shape. A cutting blade was placed on the surface of the outer peripheral portion in the axial direction of the ultrahigh molecular weight polyethylene molded product so as to be parallel to the axial direction. Then, the cylindrical ultra-high molecular weight polyethylene molded product was rotated around a drive shaft and continuously sliced into a film having a thickness of 300 μm, which was wound into a roll by a winder. Thus, an ultra high molecular weight polyethylene film was obtained. The obtained ultra-high molecular weight polyethylene film was a non-porous film having a porosity of 0%, and the organic solvent content was 0 ppm.

【0059】(比較例2)圧力容器内の温度を冷却用ジ
ャケットに冷媒を流し、5℃とした以外は実施例1と同
様に実施した。得られた超高分子量ポリエチレンフィル
ムは、空孔率が0%の無孔フィルムで、有機溶剤含有率
は0ppmであった。
(Comparative Example 2) The same procedure as in Example 1 was carried out except that the temperature inside the pressure vessel was set to 5 ° C by flowing the refrigerant through the cooling jacket. The obtained ultra-high molecular weight polyethylene film was a non-porous film having a porosity of 0%, and the organic solvent content was 0 ppm.

【0060】(比較例3)二酸化炭素の減圧速度を0.
01MPa/secとした以外は実施例1と同様に実施
した。得られた超高分子量ポリエチレンフィルムは、空
孔率が0%の無孔フィルムで、有機溶剤含有率は0pp
mであった。
(Comparative Example 3) The pressure reduction rate of carbon dioxide was set to 0.
It carried out like Example 1 except having set it as 01 MPa / sec. The obtained ultra high molecular weight polyethylene film is a non-porous film having a porosity of 0% and an organic solvent content of 0 pp.
It was m.

【0061】(比較例4)重量平均分子量(Mw)が
2.5×106の超高分子量ポリエチレン2重量部と、
重量平均分子量(Mw)3.7×105のポリエチレン
13重量部とを混合したMw/Mn=11の原料樹脂
と、流動パラフィン(64cst/40℃)85重量部
とを混合し、ポリエチレン組成物の溶液を調製した。次
にこのポリエチレン組成物の溶液100重量部に2,6
−ジ−t−ブチル−p−クレゾール0.125重量部と
テトラキス〔メチレン−3−(3,5−ジ−t−ブチル
−4−ヒドロキシルフェニル)−プロピオネート〕メタ
ン0.25重量部とを酸化防止剤として加えて混合し
た。この混合液を攪拌機付きのオートクレーブに充填し
て200℃で90分間攪拌して均一な溶液を得た。
(Comparative Example 4) 2 parts by weight of ultra high molecular weight polyethylene having a weight average molecular weight (Mw) of 2.5 × 10 6
A polyethylene resin composition was prepared by mixing 85 parts by weight of liquid paraffin (64 cst / 40 ° C.) and a raw material resin having Mw / Mn = 11 mixed with 13 parts by weight of polyethylene having a weight average molecular weight (Mw) of 3.7 × 10 5 . Was prepared. Next, 100 parts by weight of a solution of this polyethylene composition was added with 2,6
-Oxidize 0.125 parts by weight of di-t-butyl-p-cresol and 0.25 part by weight of tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxylphenyl) -propionate] methane. Add as inhibitor and mix. This mixed solution was charged into an autoclave equipped with a stirrer and stirred at 200 ° C. for 90 minutes to obtain a uniform solution.

【0062】この溶液を45mm径のスクリューを有す
る押出機により、Tダイから押出し、冷却ロールで引き
取りながらゲル状シートを成形した。続いてこのゲル状
シートを温度115℃、延伸速度0.5m/分で5×5
倍に同時2軸延伸を行った。得られた延伸膜を塩化メチ
レンで洗浄した後、乾燥し、さらに90℃、延伸速度
0.5m/分で、横方向に1.5倍に延伸を行い、多孔
質超高分子量ポリエチレンフィルムを得た。
This solution was extruded from a T-die by an extruder having a screw having a diameter of 45 mm, and a gel-like sheet was formed while taking it out with a cooling roll. Subsequently, this gel-like sheet was subjected to 5 × 5 at a temperature of 115 ° C. and a stretching speed of 0.5 m / min.
Double simultaneous biaxial stretching was performed. The stretched film thus obtained was washed with methylene chloride, dried, and further stretched 1.5 times in the transverse direction at 90 ° C. and a stretching speed of 0.5 m / min to obtain a porous ultra high molecular weight polyethylene film. It was

【0063】得られた多孔質超高分子量ポリエチレンフ
ィルムは、空孔率が55%、平均孔径が0.1μmの連
続孔を有し、有機溶剤含有率は、流動パラフィンが10
0ppmであった。
The obtained porous ultra high molecular weight polyethylene film had continuous pores with a porosity of 55% and an average pore diameter of 0.1 μm, and the organic solvent content was 10% for liquid paraffin.
It was 0 ppm.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【発明の効果】本発明の多孔質(共)重合体フィルムの
製造方法を用いることにより、孔径が均一で、製品中の
不純物が少なく、低コストの多孔質(共)重合体フィル
ムを提供することでき、しかも生産工程がクリーンで簡
略化された地球環境に優しい製造方法を提供することが
できる。
EFFECTS OF THE INVENTION By using the method for producing a porous (co) polymer film of the present invention, a porous (co) polymer film having a uniform pore size, a small amount of impurities in the product and a low cost is provided. In addition, it is possible to provide a global environment-friendly manufacturing method in which the production process is clean and simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多孔質(共)重合体フィルムの製造に
おいて、二酸化炭素を溶解、減圧させて、多孔質(共)
重合体成形物を得る工程(a)および(b)に使用する
製造装置の一例を示す概略構成図である。
FIG. 1 is a plan view of the porous (co) polymer film of the present invention, wherein carbon dioxide is dissolved and decompressed to produce a porous (co) polymer film.
It is a schematic block diagram which shows an example of the manufacturing apparatus used for process (a) and (b) which obtains a polymer molded product.

【図2】本発明の多孔質(共)重合体フィルムの製造に
おいて、多孔質(共)重合体成形物をスライス加工する
工程(c)に使用する製造装置の一例を示す概略構成図
である。
FIG. 2 is a schematic configuration diagram showing an example of a production apparatus used in a step (c) of slicing a porous (co) polymer molded product in the production of the porous (co) polymer film of the present invention. .

【符号の説明】[Explanation of symbols]

(1) (共)重合体成形物 (2) 圧力容器 (3) 定量ポンプ (4) 液化二酸化炭素ボンベ (5) 冷媒循環器(定量ポンプ用) (6) 圧力制御弁 (7) 真空ポンプ (8) 冷却用ジャケット (9) 冷媒循環器(圧力容器用) (10) 多孔質(共)重合体成形物 (11) 駆動軸 (12) 切削刃 (13) 多孔質(共)重合体フィルム (1) (Co) polymer molded product (2) Pressure vessel (3) Metering pump (4) Liquefied carbon dioxide cylinder (5) Refrigerant circulator (for metering pump) (6) Pressure control valve (7) Vacuum pump (8) Cooling jacket (9) Refrigerant circulator (for pressure vessel) (10) Porous (co) polymer molded product (11) Drive shaft (12) Cutting blade (13) Porous (co) polymer film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 7:00 C08L 101:00 C08L 101:00 B29C 67/22 Fターム(参考) 4F074 AA16 AA17 AA97 BA32 CA21 CA24 CA25 CB91 CC04X CC04Y CC04Z CC10X CC32X CC32Y CC34X CC34Y CD20 4F212 AA06 AG01 AG14 AG20 UA09 UB01 UE26 UN11 UW21 UW23 4F213 AA06 AA16 AD05 WA18 WA33 WA53 WA65 WB01 WK01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29L 7:00 C08L 101: 00 C08L 101: 00 B29C 67/22 F term (reference) 4F074 AA16 AA17 AA97 BA32 CA21 CA24 CA25 CB91 CC04X CC04Y CC04Z CC10X CC32X CC32Y CC34X CC34Y CD20 4F212 AA06 AG01 AG14 AG20 UA09 UB01 UE26 UN11 UW21 UW23 4F213 AA06 AA16 AD05 WA18 WA33 WA53 WA65 WB01 WK01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】(a)二酸化炭素雰囲気下の圧力容器内
で、(共)重合体成形物中に、5〜50MPaの圧力、
且つ10℃〜400℃の温度で二酸化炭素を溶解させる
工程、(b)上記の工程(a)の圧力から、0.02〜
30MPa/secの減圧速度で2MPa以上減圧し
て、多孔質(共)重合体成形物を得る工程、(c)上記
の工程(b)で得られた多孔質(共)重合体成形物を、
スライス加工して多孔質(共)重合体フィルムを得る工
程から成ることを特徴とする多孔質(共)重合体フィル
ムの製造方法。
(A) A (co) polymer molded article in a pressure vessel under a carbon dioxide atmosphere, having a pressure of 5 to 50 MPa,
And a step of dissolving carbon dioxide at a temperature of 10 ° C. to 400 ° C., (b) from the pressure of the step (a), 0.02 to
Depressurizing at 2 MPa or more at a depressurizing rate of 30 MPa / sec to obtain a porous (co) polymer molded product, (c) the porous (co) polymer molded product obtained in the above step (b),
A process for producing a porous (co) polymer film, comprising a step of slicing to obtain a porous (co) polymer film.
【請求項2】 前記多孔質(共)重合体成形物が、円柱
または円筒形であることを特徴とする請求項1記載の多
孔質(共)重合体フィルムの製造方法。
2. The method for producing a porous (co) polymer film according to claim 1, wherein the porous (co) polymer molded product has a columnar shape or a cylindrical shape.
【請求項3】 前記スライス加工が、スカイビング(か
つらむき)加工であることを特徴とする請求項1または
2に記載の多孔質(共)重合体フィルムの製造方法。
3. The method for producing a porous (co) polymer film according to claim 1, wherein the slicing process is a skiving process.
【請求項4】 前記工程(c)の後、延伸工程を経るこ
とを特徴とする請求項1ないし3のいずれかに記載の多
孔質(共)重合体フィルムの製造方法。
4. The method for producing a porous (co) polymer film according to claim 1, further comprising a stretching step after the step (c).
【請求項5】 前記(共)重合体が、超高分子量ポリオ
レフィンであることを特徴とする請求項1ないし4のい
ずれかに記載の多孔質(共)重合体フィルムの製造方
法。
5. The method for producing a porous (co) polymer film according to claim 1, wherein the (co) polymer is an ultrahigh molecular weight polyolefin.
【請求項6】 請求項1ないし5のいずれかに記載の製
造方法で製造され、有機溶剤含有率が80ppm以下で
あることを特徴とする多孔質(共)重合体フィルム。
6. A porous (co) polymer film produced by the production method according to claim 1 and having an organic solvent content of 80 ppm or less.
JP2001286008A 2001-09-20 2001-09-20 Production method of porous (co)polymer film and porous (co)polymer film produced by the method Pending JP2003096229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286008A JP2003096229A (en) 2001-09-20 2001-09-20 Production method of porous (co)polymer film and porous (co)polymer film produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286008A JP2003096229A (en) 2001-09-20 2001-09-20 Production method of porous (co)polymer film and porous (co)polymer film produced by the method

Publications (1)

Publication Number Publication Date
JP2003096229A true JP2003096229A (en) 2003-04-03

Family

ID=19109057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286008A Pending JP2003096229A (en) 2001-09-20 2001-09-20 Production method of porous (co)polymer film and porous (co)polymer film produced by the method

Country Status (1)

Country Link
JP (1) JP2003096229A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134697A1 (en) * 2005-06-16 2006-12-21 Nissan Motor Co., Ltd. Article undergoint stimulus-responsive deformation and vehicle part using the same
KR100696621B1 (en) * 2005-05-11 2007-03-19 삼성에스디아이 주식회사 Electrode substrate for fuel cell, method for preparating the same, and membrane-electrode assembly
WO2010047383A1 (en) * 2008-10-23 2010-04-29 日東電工株式会社 Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
JP2010248337A (en) * 2009-04-14 2010-11-04 Kao Corp Method for producing foam
JP2011101878A (en) * 2009-10-16 2011-05-26 Nitto Denko Corp Method for manufacturing composite semipermeable membrane
JP2011518933A (en) * 2008-04-29 2011-06-30 ノファメーア ベスローテン フェンノートシャップ Method for producing high-strength polyethylene film
CN102202871A (en) * 2008-10-23 2011-09-28 株式会社钟化 Process for producing thermoplastic resin foam film and thermoplastic resin foam film
WO2013133156A1 (en) * 2012-03-08 2013-09-12 国立大学法人京都大学 Foam containing modified microfibrillated plant fibers
KR101430717B1 (en) 2014-03-25 2014-08-14 홍순승 Apparatus for manufacturing synthetic resin sheet and method for manufacturing the same
US9504966B2 (en) 2008-09-26 2016-11-29 Nitto Denko Corporation Composite semi-permeable membrane and method for producing same
WO2024190079A1 (en) * 2023-03-15 2024-09-19 古河電気工業株式会社 Cyclic olefin-based polymer resin foamed sheet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696621B1 (en) * 2005-05-11 2007-03-19 삼성에스디아이 주식회사 Electrode substrate for fuel cell, method for preparating the same, and membrane-electrode assembly
US7553580B2 (en) 2005-05-11 2009-06-30 Samsung Sdi Co., Ltd. Electrode substrate for a fuel cell, a method for preparing the same, and a membrane-electrode assembly comprising the same
WO2006134697A1 (en) * 2005-06-16 2006-12-21 Nissan Motor Co., Ltd. Article undergoint stimulus-responsive deformation and vehicle part using the same
US8673439B2 (en) 2005-06-16 2014-03-18 Nissan Motor Co., Ltd. Article undergoing stimulus-responsive deformation and vehicle part using the same
JP5157443B2 (en) * 2005-06-16 2013-03-06 日産自動車株式会社 Stimulus deformation body using liquid crystal
US8137799B2 (en) 2005-06-16 2012-03-20 Nissan Motor Co., Ltd. Article undergoing stimulus-responsive deformation and vehicle part using the same
JP2011518933A (en) * 2008-04-29 2011-06-30 ノファメーア ベスローテン フェンノートシャップ Method for producing high-strength polyethylene film
US9504966B2 (en) 2008-09-26 2016-11-29 Nitto Denko Corporation Composite semi-permeable membrane and method for producing same
CN102202871A (en) * 2008-10-23 2011-09-28 株式会社钟化 Process for producing thermoplastic resin foam film and thermoplastic resin foam film
KR101361873B1 (en) * 2008-10-23 2014-02-12 닛토덴코 가부시키가이샤 Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
JP2010121122A (en) * 2008-10-23 2010-06-03 Nitto Denko Corp Method for producing thermosetting resin porous sheet, thermosetting resin porous sheet, and composite semipermeable membrane using the same
US9186633B2 (en) 2008-10-23 2015-11-17 Nitto Denko Corporation Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
WO2010047383A1 (en) * 2008-10-23 2010-04-29 日東電工株式会社 Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
JP2010248337A (en) * 2009-04-14 2010-11-04 Kao Corp Method for producing foam
JP2011101878A (en) * 2009-10-16 2011-05-26 Nitto Denko Corp Method for manufacturing composite semipermeable membrane
WO2013133156A1 (en) * 2012-03-08 2013-09-12 国立大学法人京都大学 Foam containing modified microfibrillated plant fibers
JP2013185085A (en) * 2012-03-08 2013-09-19 Kyoto City Foam containing modified microfibrillated plant fibers
KR101430717B1 (en) 2014-03-25 2014-08-14 홍순승 Apparatus for manufacturing synthetic resin sheet and method for manufacturing the same
WO2024190079A1 (en) * 2023-03-15 2024-09-19 古河電気工業株式会社 Cyclic olefin-based polymer resin foamed sheet

Similar Documents

Publication Publication Date Title
JP5630827B2 (en) POLYOLEFIN POROUS MEMBRANE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE
EP3098256B1 (en) Polyolefin microporous membrane and method for producing same
WO2013105526A1 (en) Process for producing microporous polyolefin film
JP2003096229A (en) Production method of porous (co)polymer film and porous (co)polymer film produced by the method
EP1300436B1 (en) Method for producing thermoplastic resin micro-porous film
JP2004161899A (en) Film with minute pore and its manufacturing method and use
JP6100022B2 (en) Method for producing polyolefin microporous membrane
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP2004149637A (en) Microporous membrane, method for producing the same and use thereof
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JP2001200081A (en) Polyethylene microporous membrane and its manufacturing method
JP2004083866A (en) Method for producing of polyolefin micro-porous film
JP2001200082A (en) Polyethylene microporous membrane and its manufacturing method
JP4634192B2 (en) Method for producing porous membrane
JP6596329B2 (en) Method for producing polyolefin microporous membrane
JP4646199B2 (en) Method for producing porous membrane
JP2003082151A (en) Process for producing thermoplastic resin molded product and fine porous membrane composed of its thermoplastic resin molded product
JP3967421B2 (en) Method for producing polyolefin microporous membrane
JP4562074B2 (en) Battery separator manufacturing method
Chandavasu et al. Preparation of microporous films from immiscible blends via melt processing
JP2003253026A (en) Method for producing microporous polyolefin membrane and membrane obtained thereby
JP4925238B2 (en) Method for producing polyolefin microporous membrane
JPH11106533A (en) Polyolefin porous membrane
JP5083927B2 (en) Method for producing polyolefin microporous membrane