JP2003060383A - Electromagnetic wave absorbing sheet - Google Patents
Electromagnetic wave absorbing sheetInfo
- Publication number
- JP2003060383A JP2003060383A JP2001247136A JP2001247136A JP2003060383A JP 2003060383 A JP2003060383 A JP 2003060383A JP 2001247136 A JP2001247136 A JP 2001247136A JP 2001247136 A JP2001247136 A JP 2001247136A JP 2003060383 A JP2003060383 A JP 2003060383A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- sheet
- powder
- wave absorbing
- sheet body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、広い周波数帯域に
わたり優れた吸収特性を有する電磁波吸収シートに関す
る。TECHNICAL FIELD The present invention relates to an electromagnetic wave absorption sheet having excellent absorption characteristics over a wide frequency band.
【0002】[0002]
【従来の技術】従来における広帯域の電波吸収体には、
多数の四角錐体を併設するいわゆる連続ピラミッド型、
フェライト系の吸収体、および積層シート型などがあ
り、電波暗室や無線障害防止用に活用されている。上記
フェライト系の吸収体は、500MHz以下で高い透磁
率を有する反面、十分な吸収特性を得るには厚みが約5
mmとなるため、電子機器内などの狭いスペースでは使
用に適さなかった。また、上記積層シート型は、平均粒
径が数10μmの金属粉末をゴムシートなどに埋設し且
つ係るシートを複数積層したもので、GHzレベルの帯
域では優れた吸収特性を発揮するが、厚みが約3〜5m
mであるため、やはり適用できる範囲が限定されてい
た。2. Description of the Related Art A conventional broadband electromagnetic wave absorber is
A so-called continuous pyramid type with many quadrangular pyramids,
There are ferrite-based absorbers, laminated sheet types, etc., which are used for anechoic chambers and for preventing radio interference. The above ferrite-based absorber has a high magnetic permeability at 500 MHz or less, but has a thickness of about 5 in order to obtain sufficient absorption characteristics.
Since it is mm, it is not suitable for use in a narrow space such as an electronic device. Further, the above-mentioned laminated sheet type is one in which metal powder having an average particle size of several tens of μm is embedded in a rubber sheet or the like and a plurality of such sheets are laminated, and exhibits excellent absorption characteristics in the GHz level band, but has a thickness About 3-5m
Since it is m, the applicable range is also limited.
【0003】[0003]
【発明が解決すべき課題】本発明は、以上に説明した従
来の技術における問題点を解決し、数100MHz〜数
10GHzの広い高周波数帯域で優れた吸収特性を発揮
し且つ薄肉化が容易な電磁波吸収シートを提供する、こ
とを課題とする。尚、本明細書では、当初が電波単体ま
たは磁波単体である場合も含めて電磁波と称する。DISCLOSURE OF THE INVENTION The present invention solves the problems in the prior art described above, exhibits excellent absorption characteristics in a wide high frequency band of several hundred MHz to several tens GHz, and is easily thinned. An object is to provide an electromagnetic wave absorbing sheet. In the present specification, the term "electromagnetic wave" includes a case where the electric wave is initially a single wave or a single magnetic wave.
【0004】[0004]
【課題を解決するための手段】本発明は、上記課題を解
決するため、絶縁材からなるシート本体に埋設する金属
粉末の粒径および埋設量を規定することに着目して成さ
れたものである。即ち、本発明の電磁波吸収シート(請
求項1)は、絶縁材からなるシート本体と、係るシート
本体に25〜40vol%埋設される平均粒径3μm以
下の軟磁性の金属または合金からなる粉末と、を含む、
ことを特徴とする。In order to solve the above-mentioned problems, the present invention has been made by paying attention to defining the particle size and the amount of metal powder to be embedded in a sheet body made of an insulating material. is there. That is, the electromagnetic wave absorbing sheet (claim 1) of the present invention comprises a sheet body made of an insulating material, and a powder made of a soft magnetic metal or alloy having an average particle size of 3 μm or less, which is embedded in the sheet body in an amount of 25 to 40 vol%. ,including,
It is characterized by
【0005】これによれば、平均粒径3μm以下の著し
い微細粉末を用いるため、吸収すべき電磁波により生じ
る渦電流による透磁率の劣化を小さくすることができ
る。この結果、マイクロ波帯(数100MHz〜数10
GHz)の全領域で高い透磁率を維持することができ、
且つ誘電率も低く抑えることができる。従って、厚みが
例えば約0.5〜2mm程度の薄いシートにしても、上
記広いマイクロ波帯において優れた電磁波吸収特性を発
揮できると共に、電子機器内などの狭いスペースにも容
易に適用可能となる。尚、上記粉末のシート本体に対す
る埋設量が25vol%未満では、分布密度が疎らにな
るため吸収特性が低下し、一方、埋設量が45vol%
を越えると、誘電率が高くなり過ぎるため広帯域特性が
得られなくなる。これらを防ぐため、粉末の埋設量を上
記の範囲としたものである。尚また、シート本体を形成
する絶縁材には、各種のゴムまたは合成樹脂が適用され
る。According to this, since the extremely fine powder having the average particle diameter of 3 μm or less is used, the deterioration of the magnetic permeability due to the eddy current generated by the electromagnetic wave to be absorbed can be reduced. As a result, microwave band (several hundred MHz to several tens of MHz)
High magnetic permeability can be maintained in the entire range of (GHz),
Moreover, the dielectric constant can be suppressed low. Therefore, even a thin sheet having a thickness of, for example, about 0.5 to 2 mm can exhibit excellent electromagnetic wave absorption characteristics in the above wide microwave band and can be easily applied to a narrow space such as an electronic device. . If the burying amount of the above powder in the sheet body is less than 25 vol%, the distribution density becomes sparse and the absorption characteristics deteriorate, while the burying amount is 45 vol%.
When it exceeds, the permittivity becomes too high and the broadband characteristics cannot be obtained. In order to prevent these, the burying amount of the powder is within the above range. Further, various rubbers or synthetic resins are applied to the insulating material forming the seat body.
【0006】また、本発明には、前記粉末が長軸および
短軸を有する偏平な形状であり、係る長軸が前記シート
本体の平面方向にほぼ沿って埋設されている、電磁波吸
収シート(請求項2)も含まれる。これによれば、埋設す
る粉末が偏平であるため、球形状の粉末に比べて磁化さ
れ易くなり且つ透磁率が更に高くなる。この結果、特に
低めの周波数域において電磁波吸収特性を一層安定して
発揮することができる。尚、上記偏平な粉末は、ほぼ球
形状の粉末を例えばアトライター中で多数の鋼球と共に
攪拌することにより成形され、係る偏平な粉末における
長軸と短軸との比(アスペクト比)は、約1.1:〜約3
程度である。また、上記「ほぼ沿って」とは、シート本体
の平面方向(厚さ方向と直交する方向)を中心に±20度
以下の傾きの範囲内も含む。Further, according to the present invention, the electromagnetic wave absorbing sheet, wherein the powder has a flat shape having a major axis and a minor axis, and the major axis is embedded substantially along the plane direction of the sheet body (claim Item 2) is also included. According to this, since the powder to be embedded is flat, the powder is more easily magnetized and the magnetic permeability is higher than that of the spherical powder. As a result, the electromagnetic wave absorption characteristics can be exhibited more stably, particularly in a lower frequency range. The flat powder is formed by stirring a substantially spherical powder together with a large number of steel balls in an attritor, and the ratio of the major axis to the minor axis of the flat powder (aspect ratio) is About 1.1: to about 3
It is a degree. The term “almost along” also includes a range of inclination of ± 20 degrees or less centered on the plane direction of the sheet body (direction orthogonal to the thickness direction).
【0007】更に、本発明には、前記シート本体の厚み
が1mm以下である、電磁波吸収シート(請求項3)も含
まれる。これによれば、薄肉で且つ柔軟性も付与される
ため、各種の電子機器内などにおける狭いスペースにも
容易に配置できる。この結果、対象機器に誤動作を招か
ず所要の機能を保証できると共に、容易且つ安価に配置
することが可能となる。尚、本発明の電磁波吸収吸収シ
ートの何れか一方の表面に予め接着層を薄く被覆してお
くことにより、当該シートを所望のサイズに裁断し且つ
シールド対象機器の表面またはその内側面に容易に貼り
付けることも可能である。Further, the present invention also includes an electromagnetic wave absorbing sheet (claim 3) in which the thickness of the sheet body is 1 mm or less. According to this, since it is thin and has flexibility, it can be easily arranged in a narrow space in various electronic devices. As a result, required functions can be guaranteed without causing malfunction in the target device, and the devices can be arranged easily and inexpensively. Incidentally, by thinly coating an adhesive layer on either surface of the electromagnetic wave absorption / absorption sheet of the present invention in advance, the sheet is cut into a desired size and easily attached to the surface of the shielded device or its inner surface. It is also possible to paste it.
【0008】[0008]
【発明の実施の形態】以下において、本発明の実施に好
適な形態を図面と共に説明する。図1(A)は、本発明の
電磁波吸収シート1の断面を示す。係る電磁波吸収シー
ト1は、図1(A)に示すように、例えばポリプロピレン
などの合成樹脂の絶縁材からなるシート本体2と、この
シート本体2に25〜40vol%の割合でほぼ均一に
埋設され平均粒径が3μm以下の軟磁性金属または合金
からなる粉末6とからなる。上記シート本体2は、厚み
tが1mmで表面3と裏面4を有する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 (A) shows a cross section of an electromagnetic wave absorbing sheet 1 of the present invention. As shown in FIG. 1 (A), the electromagnetic wave absorbing sheet 1 has a sheet body 2 made of a synthetic resin insulating material such as polypropylene, and is embedded in the sheet body 2 at a rate of 25 to 40 vol% substantially uniformly. The powder 6 is made of a soft magnetic metal or alloy having an average particle diameter of 3 μm or less. The sheet body 2 has a thickness t of 1 mm and has a front surface 3 and a back surface 4.
【0009】また、粉末6は、軟磁性金属であるFe,
Ni,Coの何れか、あるいはこれらの何れかをベース
とする合金の溶湯を、水アトマイズ法またはガスアトマ
イズ法により粉化し、更に3μm以下のメッシュの篩い
により分級するか、あるいは機械的に粉砕して微細粉化
したもの、更にはカルボニル鉄粉の何れかである。電磁
波吸収シート1は、ポリプロピレンなどの合成樹脂と2
5〜40vol%の前記粉末6とを、図示しない公知の
ニーダー中で混練した後、得られた混合物を図示しない
公知のカレンダーロール中に通して圧延することによ
り、図1(A)に示すように、厚みtが1mmで表・裏面
3,4を有する薄く平坦なシート本体2となり、且つ係
るシート本体2に多数の粉末6がほぼ均一に埋設され
る。The powder 6 is Fe, which is a soft magnetic metal,
Ni, Co, or a melt of an alloy based on any of these is pulverized by a water atomizing method or a gas atomizing method, and further classified by a sieve having a mesh of 3 μm or less, or mechanically pulverized. It is either finely divided powder or carbonyl iron powder. The electromagnetic wave absorbing sheet 1 is made of synthetic resin such as polypropylene and 2
After kneading 5 to 40 vol% of the powder 6 in a known kneader (not shown), the resulting mixture is passed through a known calender roll (not shown) and rolled to obtain a mixture as shown in FIG. 1 (A). In addition, a thin and flat sheet body 2 having a thickness t of 1 mm and having front and back surfaces 3 and 4 is formed, and a large number of powders 6 are substantially uniformly embedded in the sheet body 2.
【0010】以上のような電磁波吸収シート1によれ
ば、対象電磁波により粉末6に生じる渦電流による当該
粉末6の透磁率の劣化が小さくなるため、マイクロ波帯
の全域で高い透磁率を維持することができ、且つ誘電率
も低く抑えることができる。しかも、厚みtが1mm程
度の薄いシート本体2であっても、マイクロ波帯におい
て広い電磁波吸収特性を発揮できるので、電子機器内な
どの狭いスペースにも容易に適用することが可能とな
る。According to the electromagnetic wave absorbing sheet 1 as described above, the deterioration of the magnetic permeability of the powder 6 due to the eddy current generated in the powder 6 by the target electromagnetic wave is reduced, so that the high magnetic permeability is maintained in the entire microwave band. In addition, the dielectric constant can be suppressed to be low. Moreover, even a thin sheet body 2 having a thickness t of about 1 mm can exhibit a wide electromagnetic wave absorption characteristic in the microwave band, and thus can be easily applied to a narrow space such as an electronic device.
【0011】図1(B)は、電磁波吸収シート1の応用形
態である本発明の電磁波吸収シート1aの断面を示す。
図1(B)に示すように、電磁波吸収シート1aも、ポリ
プロピレンなどの絶縁材からなるシート本体2と、この
シート本体2にほぼ均一に埋設された平均粒径が3μm
以下の前記軟磁性金属または合金からなり偏平な形状の
粉末8と、からなる。係る粉末8は、図1(C)に示すよ
うに、前述したアトマイズ粉末を、更に公知の図示しな
いアトライター中で多数の鋼球と共に数時間にわたり攪
拌することで、長軸Lおよび短軸Sを有し且つその比
(アスペクト比)が1.1:〜 3の偏平な形状に成形さ
れたもので、25〜40vol%の割合でシート本体2
に埋設される。FIG. 1B shows a cross section of an electromagnetic wave absorbing sheet 1a of the present invention, which is an applied form of the electromagnetic wave absorbing sheet 1.
As shown in FIG. 1 (B), the electromagnetic wave absorbing sheet 1a also has a sheet body 2 made of an insulating material such as polypropylene, and an average particle diameter of 3 μm embedded in the sheet body 2 almost uniformly.
And a flat-shaped powder 8 made of the following soft magnetic metal or alloy. As shown in FIG. 1 (C), the powder 8 is obtained by stirring the above-mentioned atomized powder together with a large number of steel balls in a known attritor (not shown) for several hours to obtain a long axis L and a short axis S. And the ratio
The sheet body 2 is formed into a flat shape with an (aspect ratio) of 1.1: to 3 at a ratio of 25 to 40 vol%.
Buried in.
【0012】係る長軸Lおよび短軸Sを有する偏平な形
状の粉末8を、前記同様にニーダーで混練した後、カレ
ンダーロールで圧延することにより、図1(B)に示すよ
うに、厚みtが1mmで表・裏面3,4を有する薄く平
坦なシート本体2と、係るシート本体2中にその平面方
向にそれぞれの長軸Lがほぼ沿っており且つほぼ均一に
埋設された多数の粉末8とからなる電磁波吸収シート1
aが得られる。以上のような電磁波吸収シート1aによ
れば、偏平な粉末8が磁化され易く且つ透磁率が更に高
くなるため、特に前記電磁波吸収シート1よりも低めの
周波数帯域において電磁波吸収特性を一層安定して発揮
することができる。The flat-shaped powder 8 having the major axis L and the minor axis S is kneaded in a kneader in the same manner as described above, and then rolled by a calender roll to give a thickness t as shown in FIG. 1 (B). A thin and flat sheet body 2 having front and back surfaces 3 and 4 of 1 mm, and a large number of powders 8 in which the major axes L of the sheet body 2 are substantially along the plane direction thereof and which are substantially uniformly embedded. Electromagnetic wave absorption sheet 1 consisting of
a is obtained. According to the electromagnetic wave absorption sheet 1a as described above, the flat powder 8 is easily magnetized and the magnetic permeability is further increased, so that the electromagnetic wave absorption characteristics are further stabilized particularly in a frequency band lower than that of the electromagnetic wave absorption sheet 1. Can be demonstrated.
【0013】[0013]
【実施例】厚みtが1mmのポリプロピレン(絶縁材)か
らなるシート本体2と、係るシート本体2中に40vo
l%でほぼ均一に埋設され平均粒径が1.6μmのカル
ボニル鉄粉6とからなる実施例1の電磁波吸収シート1
を用意した。また、上記と同じシート本体2と、係るシ
ート本体2中に40vol%でほぼ均一に埋設され平均
粒径が3μmのカルボニル鉄粉6とからなる実施例2の
電磁波吸収シート1を用意した。一方、上記と同じシー
ト本体2と、係るシート本体2中に40vol%でほぼ
均一に埋設され平均粒径が9μmのカルボニル鉄粉6と
からなる比較例1の電磁波吸収シートを用意した。Example: A seat body 2 made of polypropylene (insulating material) having a thickness t of 1 mm, and 40 vo in the seat body 2.
Electromagnetic wave absorption sheet 1 of Example 1 consisting of carbonyl iron powder 6 having an average particle size of 1.6 μm and buried substantially uniformly at 1%
Prepared. Further, an electromagnetic wave absorbing sheet 1 of Example 2 including the same sheet body 2 as described above and the carbonyl iron powder 6 having a mean particle size of 3 μm, which was substantially uniformly embedded in the sheet body 2 at 40 vol%, was prepared. On the other hand, an electromagnetic wave absorbing sheet of Comparative Example 1 was prepared, which was composed of the same sheet body 2 as described above and the carbonyl iron powder 6 having a mean particle size of 9 μm and which was substantially uniformly embedded in the sheet body 2 at 40 vol%.
【0014】更に、上記と同じシート本体2と、係るシ
ート本体2中に40vol%でほぼ均一に埋設され平均
粒径が9μmのFe−13wt%Crの粉末6とからなる
比較例2の電磁波吸収シートを用意した。実施例1,2
の電磁波吸収シート1および比較例1,2の電磁波吸収
シートにおける中央付近を自由空間に配置し、図示しな
いホーンアンテナから各電磁波吸収シート1の表面3に
対し、垂直に0〜20GHzの高周波数の電磁波(平面
波)をそれぞれ個別に入射した。そして、各シート1に
ついて、各周波数ごとにおける反射減衰量を、図示しな
いネットワークアナライザーによって測定した。それら
の測定結果を、図2のグラフに示した。Furthermore, the electromagnetic wave absorption of Comparative Example 2 consisting of the same sheet body 2 as described above and the powder 6 of Fe-13 wt% Cr having an average particle size of 9 μm which is almost uniformly embedded in the sheet body 2 at 40 vol%. I prepared a sheet. Examples 1 and 2
The electromagnetic wave absorbing sheet 1 and the electromagnetic wave absorbing sheets of Comparative Examples 1 and 2 are arranged in the vicinity of the center in a free space, and a high frequency of 0 to 20 GHz is perpendicular to the surface 3 of each electromagnetic wave absorbing sheet 1 from a horn antenna (not shown). Electromagnetic waves (plane waves) were individually incident. Then, the return loss of each sheet 1 at each frequency was measured by a network analyzer (not shown). The measurement results are shown in the graph of FIG.
【0015】図2のグラフによれば、実施例1の電磁波
吸収シート1は、約14GHz付近に減衰ピークを有す
ると共に、約8〜17GHzの帯域において10dB以
上の反射減衰量を示した。また、実施例2の電磁波吸収
シート1は、約11GHz付近に緩やかな減衰ピークを
有すると共に、約8〜14GHzの帯域において10d
B以上の反射減衰量を示した。一方、図2のグラフによ
れば、比較例1,2の電磁波吸収シートは、約10GH
z付近で緩やかな減衰ピークを有していたものの、何れ
も10dB未満の反射減衰量に留まっていた。According to the graph of FIG. 2, the electromagnetic wave absorbing sheet 1 of Example 1 has an attenuation peak in the vicinity of about 14 GHz and exhibits a return loss of 10 dB or more in the band of about 8 to 17 GHz. In addition, the electromagnetic wave absorbing sheet 1 of Example 2 has a gradual attenuation peak near about 11 GHz and 10d in the band of about 8 to 14 GHz.
The return loss was B or more. On the other hand, according to the graph of FIG. 2, the electromagnetic wave absorbing sheets of Comparative Examples 1 and 2 are about 10 GH.
Although there was a gentle attenuation peak near z, the return loss was less than 10 dB in all cases.
【0016】また、同じカルボニル鉄粉6でも、その平
均粒径が1.6μm、3μmの実施例1,2の電磁波吸
収シート1と平均粒径が9μmの比較例1の電磁波吸収
シートとを比較すると、図2のグラフに示すように、平
均粒径が小さいほど減衰量が大きくなり且つ比較的高い
周波数領域で減衰しており、平均粒径が大きくなるに連
れて減衰量が小さくなり且つ比較的低い周波数領域に移
行している。即ち、実施例1,2の電磁波吸収シート1
は、平均粒径が3μm以下の微細なカルボニル鉄粉6を
用いたことにより、吸収すべき電磁波により生じる渦電
流による透磁率の劣化が小さくなり、高い透磁率を維持
でき且つ誘電率も低く抑えられたため、広い周波数帯域
で優れた吸収特性を発揮することができたものである。
以上により本発明(請求項1)の効果が裏付けられたこと
が容易に理解される。Further, even with the same carbonyl iron powder 6, the electromagnetic wave absorbing sheet 1 of Examples 1 and 2 having an average particle diameter of 1.6 μm and 3 μm and the electromagnetic wave absorbing sheet of Comparative Example 1 having an average particle diameter of 9 μm are compared. Then, as shown in the graph of FIG. 2, the smaller the average particle size, the greater the attenuation amount and the attenuation in a relatively high frequency region. The larger the average particle size, the smaller the attenuation amount. It is shifting to the extremely low frequency range. That is, the electromagnetic wave absorbing sheet 1 of Examples 1 and 2
The use of the fine carbonyl iron powder 6 having an average particle diameter of 3 μm or less reduces deterioration of magnetic permeability due to eddy currents generated by electromagnetic waves to be absorbed, maintains high magnetic permeability, and keeps the dielectric constant low. Therefore, it was possible to exhibit excellent absorption characteristics in a wide frequency band.
From the above, it is easily understood that the effect of the present invention (Claim 1) is supported.
【0017】次に、前記実施例1と同じ平均粒径が1.
6μmのカルボニル鉄粉6を、図示しないアトライター
中で多数の鋼球と共に1.5時間、3時間、および6時
間にわたり個別に攪拌することで、3種類の偏平な粉末
8を製作した。係る3種類の偏平な粉末8における長軸
Lと短軸Sとの比(アスペクト比)は、1.5時間の攪拌
では1.2、3時間の攪拌では1.4、6時間の攪拌で
は1.8であった。以上の3種類の偏平な粉末8を、前
記ニーダーによる混練およびロール圧延により、厚みt
が1mmのポリプロピレン(絶縁材)からなるシート本体
2中にそれぞれ40vol%で個別に埋設して実施例3
〜5の電磁波吸収シート1を得た。Next, the same average particle size as in Example 1 was 1.
Three types of flat powders 8 were produced by individually stirring 6 μm carbonyl iron powder 6 together with a large number of steel balls in an attritor (not shown) for 1.5 hours, 3 hours, and 6 hours. The ratio (aspect ratio) of the long axis L and the short axis S in the three types of flat powders 8 is 1.2 for 1.5 hours of stirring, 1.4 for 3 hours of stirring, and 6 hours of stirring for 6 hours. It was 1.8. The above three types of flat powders 8 were kneaded by the kneader and rolled to obtain a thickness t.
Example 3 by individually embedding at 40 vol% in a sheet body 2 made of polypropylene (insulating material) of 1 mm
The electromagnetic wave absorption sheets 1 to 5 were obtained.
【0018】実施例3〜5の電磁波吸収シート1におけ
る中央付近を自由空間に配置し、前記同様のホーンアン
テナから各電磁波吸収シート1の表面3に対して、垂直
に5〜20GHzの高周波数の電磁波(平面波)をそれぞ
れ個別に入射した。そして、各シート1について、各周
波数ごとにおける反射減衰量を、図示しないネットワー
クアナライザーによって測定した。それらの測定結果
を、前記実施例1の測定結果と共に図3のグラフに示し
た。図3のグラフによれば、実施例1に比べ、偏平な粉
末8を用いた実施例3〜5の電磁波吸収シート1は、減
衰ピークが緩やかで且つ比較的低い周波数帯域寄りにシ
フトしていた。また、アトライターによる攪拌時間が長
く且つ長軸Lと短軸Sの比(アスペクト)が大きくなるに
連れて上記の傾向が顕著になった。The vicinity of the center of the electromagnetic wave absorbing sheet 1 of Examples 3 to 5 is arranged in a free space, and a high frequency of 5 to 20 GHz is perpendicular to the surface 3 of each electromagnetic wave absorbing sheet 1 from a horn antenna similar to the above. Electromagnetic waves (plane waves) were individually incident. Then, the return loss of each sheet 1 at each frequency was measured by a network analyzer (not shown). The measurement results are shown in the graph of FIG. 3 together with the measurement results of Example 1 above. According to the graph of FIG. 3, as compared with Example 1, the electromagnetic wave absorbing sheets 1 of Examples 3 to 5 using the flat powder 8 had a gentle attenuation peak and were shifted toward a relatively low frequency band. . Further, the above tendency became remarkable as the stirring time by the attritor was long and the ratio (aspect) of the long axis L and the short axis S was increased.
【0019】また、図3のグラフに示す測定結果によ
り、実施例3の粉末8は偏平であるため、実施例1の球
形状のカルボニル鉄粉6に比べて磁化され易くなり且つ
透磁率が更に高くなったため、10dB以上の減衰量と
なる領域面積が増加した。但し、更に偏平な粉末8を用
いた実施例4,5では、10dB以上の減衰量となる領
域面積が減少し且つ減衰ピークが低めの周波数域に移行
していた。係る結果から、偏平な粉末8は、実施例3に
おける長軸Lと短軸Sとのアスペクト比程度にすること
により、電磁波吸収シート1の電磁波吸収特性を一層安
定して発揮させることが判明し、且つ本発明(請求項2)
の効果も裏付けられた。Further, according to the measurement results shown in the graph of FIG. 3, since the powder 8 of Example 3 is flat, it is more easily magnetized and has a higher magnetic permeability than the spherical carbonyl iron powder 6 of Example 1. Since the height was higher, the area of the region where the attenuation amount was 10 dB or more increased. However, in Examples 4 and 5 in which the flattened powder 8 was used, the area area of the attenuation amount of 10 dB or more was reduced and the attenuation peak was shifted to the lower frequency range. From such a result, it was found that the flat powder 8 more stably exerts the electromagnetic wave absorption characteristics of the electromagnetic wave absorption sheet 1 by setting the aspect ratio of the long axis L and the short axis S in Example 3 to about the same. And the present invention (claim 2)
The effect of was confirmed.
【0020】本発明は、以上において説明した実施の形
態および実施例に限定されない。例えば、前記シート本
体2には、ポリエチレン、ポリアミド、アクリル樹脂、
ポリスチレン、ポリ塩化ビニル、ABS樹脂、フェノー
ル樹脂、不飽和ポリエステル樹脂、耐熱性ポリマーから
なるポリエーテルイミド、ポリアミドイミド、ポリスル
ホン、ポリエーテルケトンなどの合成樹脂を用いても良
い。あるいは、スチレン・ブタジエンゴム(SBR)、イ
ソブチレン・イソプレンゴム(IIR)、ポリブタジエン
ゴム(BR)などの耐熱性を有する合成ゴムも適用可能で
ある。また、シート本体2に埋設する前記軟磁性金属粉
末6,8は、前記鉄粉やFe基合金に限らず、NiやC
o、あるいはこれをベースとする合金も含まれる。更
に、前記シート本体2の表面3および裏面4の少なくと
も一方に接着層を被覆し且つその表面を紙シートで覆っ
ても良い。これにより、係る紙シートを剥がすことによ
り、電子機器中などの狭いスペースや電波暗室の内壁に
容易に貼り付けることが可能となる。The present invention is not limited to the embodiments and examples described above. For example, the seat body 2 includes polyethylene, polyamide, acrylic resin,
Synthetic resins such as polystyrene, polyvinyl chloride, ABS resin, phenol resin, unsaturated polyester resin, and polyetherimide, polyamideimide, polysulfone, polyetherketone made of heat resistant polymer may be used. Alternatively, a heat-resistant synthetic rubber such as styrene / butadiene rubber (SBR), isobutylene / isoprene rubber (IIR), or polybutadiene rubber (BR) is also applicable. Further, the soft magnetic metal powders 6 and 8 embedded in the sheet body 2 are not limited to the iron powders and Fe-based alloys, but may be Ni or C.
o, or alloys based on them. Further, at least one of the front surface 3 and the back surface 4 of the sheet body 2 may be covered with an adhesive layer and the surface thereof may be covered with a paper sheet. Thus, by peeling off the paper sheet, it becomes possible to easily attach it to a narrow space such as in an electronic device or the inner wall of the anechoic chamber.
【0021】[0021]
【発明の効果】以上に説明した本発明の電磁波吸収シー
ト(請求項1)によれば、平均粒径3μm以下の微細粉末
を用いるため、吸収すべき電磁波により生じる渦電流に
よる透磁率の劣化が小さくなり、マイクロ波帯の全領域
で高い透磁率を維持することができ、且つ誘電率も低く
抑えることができる。従って、例えば1mm前後の薄い
シートにした場合にも、広いマイクロ波帯において優れ
た電磁波吸収特性を発揮できると共に、電子機器内など
の狭いスペースにも容易に適用可能となる。According to the electromagnetic wave absorbing sheet of the present invention described above (claim 1), since fine powder having an average particle diameter of 3 μm or less is used, deterioration of magnetic permeability due to eddy current caused by electromagnetic waves to be absorbed. It becomes smaller, high magnetic permeability can be maintained in the entire microwave band, and the dielectric constant can be suppressed low. Therefore, even when a thin sheet having a thickness of, for example, about 1 mm is used, excellent electromagnetic wave absorption characteristics can be exhibited in a wide microwave band, and the sheet can be easily applied to a narrow space such as an electronic device.
【0022】また、請求項2の電磁波吸収シートによれ
ば、埋設する粉末が偏平であるため、球形状に比べて磁
化され易くなり且つ透磁率が更に高くなり、特に低めの
周波数域において電磁波吸収特性を一層安定して発揮す
ることができる。更に、請求項3の電磁波吸収シートに
よれば、薄肉で且つ柔軟性も付与されるため、各種の電
子機器内などにおける狭いスペースにも容易に配置でき
る。従って、シールド対象機器に誤動作を招かず所要の
機能を保証できると共に、容易且つ安価にして配置する
ことが可能となる。Further, according to the electromagnetic wave absorbing sheet of claim 2, since the powder to be embedded is flat, it is more easily magnetized and has a higher magnetic permeability than the spherical shape, and the electromagnetic wave absorbing sheet is absorbed particularly in a lower frequency range. The characteristics can be exhibited more stably. Further, according to the electromagnetic wave absorbing sheet of the third aspect, since it is thin and has flexibility, it can be easily arranged in a narrow space in various electronic devices. Therefore, a desired function can be guaranteed without causing a malfunction in the shield target device, and the shield target device can be arranged easily and inexpensively.
【図1】(A),(B)は本発明の電磁波吸収シートを示す
断面図、(C)は(B)の電磁波吸収シートに用いる粉末の
概略図。1A and 1B are cross-sectional views showing an electromagnetic wave absorbing sheet of the present invention, and FIG. 1C is a schematic view of powder used in the electromagnetic wave absorbing sheet of FIG. 1B.
【図2】実施例および比較例の電磁波吸収シートにおけ
る反射減衰特性を示すグラフ。FIG. 2 is a graph showing return loss characteristics of electromagnetic wave absorbing sheets of Examples and Comparative Examples.
【図3】異なる実施例の電磁波吸収シートにおける反射
減衰特性を示すグラフ。FIG. 3 is a graph showing reflection attenuation characteristics of electromagnetic wave absorbing sheets of different examples.
1,1a…電磁波吸収シート, 2…………シー
ト本体,6,8……粉末, L……
……長軸,S…………短軸, t…
………厚み1, 1a ... Electromagnetic wave absorption sheet, 2 ......... Sheet body, 6, 8 ... Powder, L ...
…… Major axis, S ………… Short axis, t…
……… Thickness
Claims (3)
本体に25〜40vol%埋設される平均粒径3μm以
下の軟磁性の金属または合金からなる粉末と、 を含む、ことを特徴とする電磁波吸収シート。1. An electromagnetic wave comprising: a sheet body made of an insulating material; and a powder made of a soft magnetic metal or alloy having an average particle size of 3 μm or less, which is embedded in the sheet body at 25 to 40 vol%. Absorption sheet.
形状であり、係る長軸が前記シート本体の平面方向にほ
ぼ沿って埋設されている、 ことを特徴とする請求項1に記載の電磁波吸収シート。2. The powder has a flat shape having a major axis and a minor axis, and the major axis is embedded substantially along a plane direction of the sheet body. Electromagnetic wave absorption sheet.
る、 ことを特徴とする請求項1または2に記載の電磁波吸収
シート。3. The electromagnetic wave absorbing sheet according to claim 1, wherein the sheet body has a thickness of 1 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001247136A JP2003060383A (en) | 2001-08-16 | 2001-08-16 | Electromagnetic wave absorbing sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001247136A JP2003060383A (en) | 2001-08-16 | 2001-08-16 | Electromagnetic wave absorbing sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003060383A true JP2003060383A (en) | 2003-02-28 |
Family
ID=19076532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001247136A Withdrawn JP2003060383A (en) | 2001-08-16 | 2001-08-16 | Electromagnetic wave absorbing sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003060383A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1494520A2 (en) * | 2003-06-30 | 2005-01-05 | Daido Tokushuko Kabushiki Kaisha | Electromagnetic wave absorber and a process of producing same |
JP2006093416A (en) * | 2004-09-24 | 2006-04-06 | Shin Etsu Polymer Co Ltd | Electromagnetic wave noise suppression sheet, and its manufacturing method and usage |
WO2006070696A1 (en) | 2004-12-28 | 2006-07-06 | Central Glass Company, Limited | Electromagnetic wave absorbing plate |
JP2011096923A (en) * | 2009-10-30 | 2011-05-12 | Tdk Corp | Composite magnetic material, and antenna and radio communication apparatus using the same |
EP2398110A1 (en) * | 2010-06-18 | 2011-12-21 | Siemens Aktiengesellschaft | Damping layer for reducing the reflection of electromagnetic waves on metallic surfaces |
JP2018073932A (en) * | 2016-10-27 | 2018-05-10 | 株式会社トーキン | Composite magnetic sheet |
-
2001
- 2001-08-16 JP JP2001247136A patent/JP2003060383A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1494520A2 (en) * | 2003-06-30 | 2005-01-05 | Daido Tokushuko Kabushiki Kaisha | Electromagnetic wave absorber and a process of producing same |
US7113123B2 (en) | 2003-06-30 | 2006-09-26 | Daido Tokushuko Kabushiki Kaisha | Electromagnetic wave absorber and a process of producing same |
EP1494520A3 (en) * | 2003-06-30 | 2008-12-10 | Daido Tokushuko Kabushiki Kaisha | Electromagnetic wave absorber and a process of producing same |
JP2006093416A (en) * | 2004-09-24 | 2006-04-06 | Shin Etsu Polymer Co Ltd | Electromagnetic wave noise suppression sheet, and its manufacturing method and usage |
JP4611700B2 (en) * | 2004-09-24 | 2011-01-12 | 信越ポリマー株式会社 | Electromagnetic wave noise suppression sheet and method of using the same |
WO2006070696A1 (en) | 2004-12-28 | 2006-07-06 | Central Glass Company, Limited | Electromagnetic wave absorbing plate |
JP2006186725A (en) * | 2004-12-28 | 2006-07-13 | Central Glass Co Ltd | Electromagnetic wave absorbing board |
US7623058B2 (en) | 2004-12-28 | 2009-11-24 | Central Glass Company, Limited | Electromagnetic wave absorbing plate |
JP2011096923A (en) * | 2009-10-30 | 2011-05-12 | Tdk Corp | Composite magnetic material, and antenna and radio communication apparatus using the same |
EP2398110A1 (en) * | 2010-06-18 | 2011-12-21 | Siemens Aktiengesellschaft | Damping layer for reducing the reflection of electromagnetic waves on metallic surfaces |
JP2018073932A (en) * | 2016-10-27 | 2018-05-10 | 株式会社トーキン | Composite magnetic sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11354972A (en) | Radio wave absorber | |
US20060170583A1 (en) | Electromagnetic radiation absorber based on magnetic microwires | |
JPH10322085A (en) | Shielding sheet and its manufacture | |
KR20010070287A (en) | Radiowave absorbent and manufacturing method thereof | |
JP2003060383A (en) | Electromagnetic wave absorbing sheet | |
JP2002158483A (en) | Radio wave absorber | |
JP2010135567A (en) | Radio wave absorbing material | |
JP2000031686A (en) | Laminated electromagnetic wave absorber and production thereof | |
JP4017032B2 (en) | Magnetic film and method for forming the same | |
JPH0697691A (en) | Electromagnetic shield structure | |
CN117042425B (en) | Electromagnetic shielding structure of wave-absorbing frequency selective surface | |
JP2000244167A (en) | Electromagnetic-wave-disturbance preventive material | |
JPS6312198A (en) | Electric wave absorbing electromagnetic shielding member | |
JPH11269503A (en) | Iron-base nano-crystal magnetic powder, its production, and radio wave noise inhibiting member using the same | |
US11756714B2 (en) | Composite magnetic material and method for manufacturing same | |
JP2007180289A (en) | Electromagnetic wave absorber | |
US7113123B2 (en) | Electromagnetic wave absorber and a process of producing same | |
JPH1027986A (en) | Radio wave absorber | |
JP2003243877A (en) | Magnetic shield composition, magnetic shield sheet, and power cable | |
JP2000223884A (en) | Electromagnetic wave absorber | |
CN109219335B (en) | Broadband wave absorbing plate and manufacturing method thereof | |
JP2007088121A (en) | Composite magnetic film and its manufacturing method | |
JP2000232294A (en) | Electromagnetic wave absorber for high-frequency region | |
JP2001068889A (en) | Electromagnetic shielding material | |
JP2002083704A (en) | Radio wave absorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081104 |