JP2003057180A - Fluorescent image measuring apparatus - Google Patents
Fluorescent image measuring apparatusInfo
- Publication number
- JP2003057180A JP2003057180A JP2001241863A JP2001241863A JP2003057180A JP 2003057180 A JP2003057180 A JP 2003057180A JP 2001241863 A JP2001241863 A JP 2001241863A JP 2001241863 A JP2001241863 A JP 2001241863A JP 2003057180 A JP2003057180 A JP 2003057180A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- light
- fluorescence image
- fluorescence
- image measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6452—Individual samples arranged in a regular 2D-array, e.g. multiwell plates
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Image Analysis (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Microscoopes, Condenser (AREA)
- Image Input (AREA)
- Image Processing (AREA)
- Facsimile Heads (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、DNAやRNA、
蛋白等のバイオチップを計測する蛍光画像計測装置に関
し、特にサンプルの位置決めに関するものである。TECHNICAL FIELD The present invention relates to DNA, RNA,
The present invention relates to a fluorescence image measuring device for measuring a biochip such as a protein, and particularly to positioning of a sample.
【0002】[0002]
【従来の技術】従来より、例えば落射型共焦点レーザ顕
微鏡を利用して蛍光画像を計測するいわゆる蛍光画像計
測装置はよく知られている。その落射型共焦点レーザ顕
微鏡としては例えば本願出願人が出願した特開平5−6
0980号に記載の「共焦点用光スキャナ」がある。2. Description of the Related Art Conventionally, a so-called fluorescence image measuring device for measuring a fluorescence image by using, for example, an epi-illumination type confocal laser microscope is well known. As the epi-illumination type confocal laser microscope, for example, JP-A-5-6 filed by the applicant of the present application
There is an "optical scanner for confocal point" described in No. 0980.
【0003】このような装置でサンプルの位置決めを行
なうには専用の位置決め手段が必要である。上記の共焦
点用光スキャナにはそのような位置決め手段は示されて
いないが、例えば学際企画(株)発行の「共焦点レーザ
顕微鏡の医学・生物学への応用」(平成7年3月28日
発行)の第10〜11頁に記載されたような透過照明に
よる位置決め方式を適用すれば実現することができる。In order to position the sample with such an apparatus, a dedicated positioning means is required. Although such a positioning means is not shown in the above-mentioned confocal optical scanner, for example, "Application of confocal laser microscope to medicine and biology" published by Interdisciplinary Planning Co., Ltd. (March 28, 1995) This can be realized by applying a positioning method using transillumination as described on pages 10 to 11 of Japanese publication).
【0004】図4はその一具体例である。レーザ光(励
起光)は、集光ディスク1に形成された複数個のマイク
ロレンズ2によりそれぞれ絞られ、ピンホールディスク
4のピンホール上に集光する。この集光ディスク1とピ
ンホールディスク4とは、複数のマイクロレンズの焦点
位置にピンホールがそれぞれ配置されるようにドラム5
を介して連結され、一体に回転する。FIG. 4 is a specific example thereof. The laser light (excitation light) is focused by a plurality of microlenses 2 formed on the light-condensing disk 1 and focused on the pinhole of the pinhole disk 4. The condensing disc 1 and the pinhole disc 4 are arranged so that the pinholes are arranged at the focal positions of the plurality of microlenses.
Are connected through and rotate integrally.
【0005】ピンホールから出射した励起光はレンズ6
で平行光となり、その後対物レンズ8によりサンプル9
上に集光する。サンプル9に付着された蛍光物質が励起
光で照射されると蛍光が発生する。その蛍光は対物レン
ズ8およびレンズ6を通ってピンホールディスク4のピ
ンホール上に集光し、ここにサンプル面の蛍光像が結像
される。The excitation light emitted from the pinhole is the lens 6
Then, the light becomes parallel light, and then the objective lens 8
Focus on top. When the fluorescent substance attached to the sample 9 is irradiated with the excitation light, fluorescence is generated. The fluorescent light passes through the objective lens 8 and the lens 6 and is condensed on the pinhole of the pinhole disk 4, and a fluorescent image of the sample surface is formed here.
【0006】ピンホールを通過した蛍光は集光ディスク
1とピンホールディスク4の間に配置されたダイクロイ
ックミラー3で反射し、レンズ11およびバリアフィル
タ12を通ってカメラ13の受光面に結像する。バリア
フィルタ12は、蛍光は通すがそれ以外の波長の背景光
は除去するフィルタである。なお、ビームスプリッタ7
は、蛍光測定の際には光路から外される。The fluorescence passing through the pinhole is reflected by the dichroic mirror 3 arranged between the condensing disc 1 and the pinhole disc 4, passes through the lens 11 and the barrier filter 12, and forms an image on the light receiving surface of the camera 13. The barrier filter 12 is a filter that allows fluorescence to pass but removes background light of other wavelengths. The beam splitter 7
Are removed from the optical path during fluorescence measurement.
【0007】このような構成によれば、レーザ光(マル
チビーム)で光走査し、サンプル9面の蛍光像をカメラ
13で撮影することができる。このとき、観察に先立っ
て行なうサンプル9の水平方向(光軸に直角な方向:以
下XY方向という)および垂直方向(光軸方向:以下Z
方向という)の位置合わせ(位置決め)は次のように行
われる。According to such a structure, it is possible to optically scan with the laser beam (multi-beam) and photograph the fluorescence image of the surface of the sample 9 with the camera 13. At this time, the sample 9 is observed prior to observation in the horizontal direction (direction perpendicular to the optical axis: hereinafter referred to as XY direction) and the vertical direction (optical axis direction: hereinafter referred to as Z).
Positioning (positioning) is performed as follows.
【0008】ビームスプリッタ7を光路に挿入した状態
で、サンプル9の下面側に配置された照明系からサンプ
ル9に光スポットを当て、サンプル9上面のスポット像
を観察系を通して目視で確認する。照明系としては、図
示のように照明光源14からの光をレンズ15で平行光
にした後、ケーラー照明としてサンプル9を照明する。With the beam splitter 7 inserted in the optical path, a light spot is applied to the sample 9 from an illumination system arranged on the lower surface side of the sample 9, and the spot image on the upper surface of the sample 9 is visually confirmed through an observation system. As the illumination system, the light from the illumination light source 14 is collimated by the lens 15 as shown in the figure, and then the sample 9 is illuminated as Koehler illumination.
【0009】サンプル9の試料により吸収や散乱された
光はサンプル面から上側に出て対物レンズ8に入り、ビ
ームスプリッタ7で反射した後レンズ10に導かれる。
これにより、レンズ10を通してサンプル上の像を目視
により観察することができる。The light absorbed or scattered by the sample 9 is emitted from the sample surface to the upper side, enters the objective lens 8, is reflected by the beam splitter 7, and is then guided to the lens 10.
Thereby, the image on the sample can be visually observed through the lens 10.
【0010】サンプル9のXY方向の位置合わせ時は、
移動機構によりサンプル9をXY方向に移動させて、サ
ンプルの観測部分を位置決めする。なお、移動機構は周
知のものが利用できるためその構成についての説明およ
び図示は省略してある。細胞内の特定の蛋白の移動など
を蛍光で観測する用途が多いが、この場合、蛍光だけで
は細胞全体を観察できない。本方式では透過像で細胞全
体を観察できるため、細胞を画面中央に移動させること
も容易である。When aligning the sample 9 in the XY directions,
The moving mechanism moves the sample 9 in the X and Y directions to position the observation portion of the sample. Since a well-known moving mechanism can be used, description and illustration of its configuration are omitted. Although there are many applications in which the movement of a specific protein in a cell is observed by fluorescence, in this case, the whole cell cannot be observed only by fluorescence. In this method, the entire cell can be observed in a transmission image, and therefore it is easy to move the cell to the center of the screen.
【0011】また、サンプル9のZ方向の位置合わせを
行なう場合は、サンプル9をZ方向に移動させて(移動
機構は図示せず)、観測される像がもっとも鮮明となる
位置に合わせる。When the sample 9 is to be aligned in the Z direction, the sample 9 is moved in the Z direction (the moving mechanism is not shown) to align the observed image with the sharpest position.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、このよ
うな位置決め機構は、操作性が悪いばかりでなく、構成
が大型化し高価にもなり、加えてビームスプリッタの光
路からの除去や挿入という手間もかかるという課題があ
った。However, such a positioning mechanism is not only poor in operability but also large in size and expensive, and in addition, it takes time and effort to remove and insert the beam splitter from the optical path. There was a problem.
【0013】本発明の目的は、上記の課題を解決するも
ので、簡単で安価な構成であって、サンプルの位置決め
を容易に行なうことのできる蛍光画像計測装置を実現す
ることにある。An object of the present invention is to solve the above problems, and to realize a fluorescence image measuring device having a simple and inexpensive structure and capable of easily positioning a sample.
【0014】[0014]
【課題を解決するための手段】このような目的を達成す
るために、請求項1の発明では、2次元状に広がるサン
プルに励起光を照射しサンプルに付着した蛍光物質から
発生する蛍光を計測することによりサンプルを検出する
ようにした蛍光画像計測装置において、サンプルを通過
またはサンプル表面で反射した励起光を受光する2次元
状の受光素子と、この受光素子による観察像に基づいて
サンプルの位置を移動させる移動手段を具備したことを
特徴とする。In order to achieve such an object, the invention of claim 1 irradiates excitation light to a two-dimensionally spread sample and measures fluorescence generated from a fluorescent substance attached to the sample. In a fluorescence image measuring device configured to detect a sample by doing so, a two-dimensional light receiving element that receives the excitation light that has passed through the sample or reflected on the sample surface, and the position of the sample based on the observation image by this light receiving element It is characterized by comprising a moving means for moving the.
【0015】このような構成によれば、従来利用してい
なかった、サンプルを通過またはサンプル表面で反射し
た励起光を巧みに利用してサンプルの位置決めを行なう
ことができる。According to this structure, the sample can be positioned by skillfully utilizing the excitation light which has not been used conventionally and which has passed through the sample or reflected on the sample surface.
【0016】この場合のサンプルの光軸方向への移動
は、請求項2のように、オートフォーカス機構を用いて
行えるようにすれば、サンプルの光軸方向への位置決め
が自動化され操作性が良くなる。In this case, if the sample can be moved in the optical axis direction by using the autofocus mechanism, the positioning of the sample in the optical axis direction can be automated and the operability is good. Become.
【0017】また、サンプルを照射する励起光は、請求
項3のように、マイクロレンズによるマルチビーム化さ
れた励起光である。そして、マルチビームでの照射は、
請求項4のように共焦点光スキャナでの光走査、あるい
は請求項5のようにマルチビームにより同時にサンプル
を照射する非走査型のいずれでも良い。マルチビームで
走査する場合は、光源としてレーザ光を用いてもカメラ
の観察像にスペックルが生じないという利点もある。Further, the excitation light for irradiating the sample is the excitation light multi-beamed by the microlens. And irradiation with multi-beam,
Either optical scanning with a confocal optical scanner as in claim 4 or non-scanning type in which a sample is simultaneously irradiated with multiple beams as in claim 5 may be employed. When scanning with multiple beams, there is also an advantage that speckles do not occur in the observation image of the camera even if laser light is used as the light source.
【0018】[0018]
【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明に係る蛍光画像計測装置の一実
施例を示す構成図である。図において図4と同等部分に
は同一符号を付し、その部分の説明は省略する。図1に
おいて、図4と異なるところは、照明光源14、レンズ
15,16からなる照明系部分と、ビームスプリッタ7
およびレンズ10からなる光スポット観察系部分を除去
し、それに代わって、レンズ21と、2次元の受光素子
を持つカメラ22を用いた点である。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a fluorescence image measuring device according to the present invention. In the figure, the same parts as those of FIG. 1 is different from FIG. 4 in that an illumination system portion including an illumination light source 14 and lenses 15 and 16 and a beam splitter 7 are provided.
The light spot observation system portion consisting of the lens 10 and the lens 10 is removed, and a lens 21 and a camera 22 having a two-dimensional light receiving element are used in place of it.
【0019】レンズ21はサンプル9を透過した励起光
をカメラ22の受光面に集光する。これにより、2次元
状に広がるサンプルが励起光のマルチビームでそれぞれ
照射され、そのサンプル像をカメラ22で観察すること
ができる。この場合、サンプル9のスライスではない全
体像を観察することもできる。The lens 21 focuses the excitation light transmitted through the sample 9 on the light receiving surface of the camera 22. As a result, the two-dimensionally spread samples are respectively irradiated with the multi-beams of the excitation light, and the sample images can be observed by the camera 22. In this case, it is possible to observe the whole image of the sample 9 which is not a slice.
【0020】なお、マルチビームでサンプル9を走査す
るため、光源にレーザを用いてもカメラ22の観察像に
はスペックルは生じない。従来の共焦点蛍光顕微鏡では
サンプル9を透過した励起光は利用しないが、本発明で
はこれを活用してサンプル9の位置合わせを行なってお
り、その点が本発明の特徴である。Since the sample 9 is scanned by the multi-beam, speckle does not occur in the observation image of the camera 22 even if the laser is used as the light source. The conventional confocal fluorescence microscope does not use the excitation light transmitted through the sample 9, but the present invention utilizes this to align the sample 9, which is a feature of the present invention.
【0021】サンプル9のXY方向の位置合わせはカメ
ラ22による観察像を確認して行なう。また、Z方向の
位置合わせはオートフォーカス機構(図示せず)により
行なうことができる。なお、XYZ方向の移動はサンプ
ルばかりでなく、対物レンズ8をXYZ方向に動かすこ
とで励起光側を移動するようにしてもよい。The alignment of the sample 9 in the XY directions is performed by checking the observation image from the camera 22. Further, the alignment in the Z direction can be performed by an autofocus mechanism (not shown). The movement in the XYZ directions is not limited to the sample, and the excitation light side may be moved by moving the objective lens 8 in the XYZ directions.
【0022】オートフォーカス機構としては、例えば最
大コントラスト法による場合は、カメラ22の観察像に
おいて像の明暗の振幅が最大となるようにサンプルのZ
方向の移動を自動制御する機構が適用できる。As the autofocus mechanism, for example, in the case of the maximum contrast method, the Z of the sample is adjusted so that the amplitude of light and dark of the image in the observation image of the camera 22 becomes maximum.
A mechanism for automatically controlling the movement in the direction can be applied.
【0023】図2は本発明の他の実施例図である。図1
が光走査型(スキャン型)の共焦点顕微鏡であるのに対
し、図2は非光走査型(スキャンレス型)の顕微鏡の場
合である。図2において図1と同等部分には同一符号を
付し、その部分の説明は省略する。FIG. 2 shows another embodiment of the present invention. Figure 1
2 is an optical scanning type (scan type) confocal microscope, whereas FIG. 2 shows a case of a non-optical scanning type (scanless type) microscope. 2, parts that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof will be omitted.
【0024】図2において、21は透明な基板に複数の
マイクロレンズ22が配置された集光基板である。23
はサンプルであり、例えば2次元状に試料が配列された
DNAチップあるいはDNAマイクロアレイ等が適用可
能である。この場合、マイクロレンズ22とサンプル2
3のサイトとは一対一に対応した位置関係で配置されて
いる。In FIG. 2, reference numeral 21 is a light collecting substrate in which a plurality of microlenses 22 are arranged on a transparent substrate. 23
Is a sample, and for example, a DNA chip or a DNA microarray in which samples are arranged two-dimensionally can be applied. In this case, the microlens 22 and the sample 2
The three sites are arranged in a one-to-one correspondence with each other.
【0025】このような構成においては、集光基板21
の上方から入射されるレーザ光(励起光)は各マイクロ
レンズ22によりそれぞれ集光され、この集光ビームで
サンプル23の各サイトがそれぞれ照射される。その後
は図1の場合と同様であって、サンプル23から発生す
る蛍光はダイクロイックミラー3で反射され、レンズ1
1に入射して集光され、バリアフィルタ12を通過して
カメラ13の受光素子上に結像する。In such a structure, the light collecting substrate 21
Laser light (excitation light) incident from above is condensed by each microlens 22, and each site of the sample 23 is irradiated with this condensed beam. After that, as in the case of FIG. 1, the fluorescence emitted from the sample 23 is reflected by the dichroic mirror 3, and the lens 1
The light is incident on the light source 1, is condensed, passes through the barrier filter 12, and forms an image on the light receiving element of the camera 13.
【0026】他方、サンプル23を透過した励起光はレ
ンズ24によりカメラ25の受光素子面に集光する。こ
の受光素子面の観察像をもとにサンプル23の位置合わ
せが行われる。サンプルの位置合わせは図1の場合と同
様であって、XY方向についてはカメラ25の観察像を
確認しながら行ない、Z方向については観察像に基づい
て作動するオートフォーカス機構により自動的に位置が
決定される。On the other hand, the excitation light transmitted through the sample 23 is condensed by the lens 24 on the light receiving element surface of the camera 25. The sample 23 is aligned based on the observed image of the light receiving element surface. The alignment of the sample is the same as in the case of FIG. 1, and is performed while checking the observation image of the camera 25 in the XY directions, and the position is automatically adjusted in the Z direction by an autofocus mechanism that operates based on the observation image. It is determined.
【0027】このようなスキャンレス型の蛍光顕微鏡で
は、ビームとサイトの位置関係が一致している必要があ
り、図2のこのような構成による位置合わせは極めて有
用である。なお、サンプル23側にXYZ位置決め用マ
ーカを用意して、このマーカを基準にしてXYZ方向の
位置合わせを行なうようにしてもよい。In such a scanless type fluorescence microscope, it is necessary that the beam and the site have the same positional relationship, and the alignment by such a configuration in FIG. 2 is extremely useful. It should be noted that an XYZ positioning marker may be prepared on the sample 23 side and alignment in the XYZ directions may be performed using this marker as a reference.
【0028】図3は本発明に係るさらに他の実施例図で
ある。図2がスキャンレスの反射型蛍光顕微鏡であるの
に対し、図3はスキャンレスの透過型蛍光顕微鏡であ
る。図において、図2と同等部分には同一符号を付して
ある。FIG. 3 is a diagram showing still another embodiment according to the present invention. 2 shows a scanless reflection type fluorescence microscope, while FIG. 3 shows a scanless transmission type fluorescence microscope. In the figure, the same parts as those in FIG. 2 are designated by the same reference numerals.
【0029】サンプル23で発生した蛍光はサンプル2
3を透過してレンズ31に入り平行光となってレンズ3
2に入射する。途中、レンズ31と32の間に挿入され
たバリアフィルタ12により蛍光以外の波長の光(背景
光という)は除去される。背景光の除去された蛍光はレ
ンズ32により集光され、カメラ13の受光素子面に結
像する。The fluorescence generated in sample 23 is
The light passes through the lens 3 and enters the lens 31 to become parallel light.
Incident on 2. On the way, light having a wavelength other than fluorescence (referred to as background light) is removed by the barrier filter 12 inserted between the lenses 31 and 32. The fluorescence from which the background light has been removed is condensed by the lens 32 and forms an image on the light receiving element surface of the camera 13.
【0030】サンプルの位置合わせに利用する、サンプ
ル23からの反射光(励起光)は、ビームスプリッタ7
で反射してレンズ11に入射し、このレンズ11で絞ら
れてカメラ13の受光素子面に集光する。The reflected light (excitation light) from the sample 23, which is used for aligning the sample, is reflected by the beam splitter 7.
Is reflected by the lens 11 and is incident on the lens 11 and is focused by the lens 11 and condensed on the light receiving element surface of the camera 13.
【0031】このような構成によれば、サンプルの位置
合わせは、受光素子上に結像したサンプル面の観察像に
基づき図2の場合と同様にして行なうことができる。According to such a configuration, the alignment of the sample can be performed in the same manner as in the case of FIG. 2 based on the observation image of the sample surface formed on the light receiving element.
【0032】[0032]
【発明の効果】以上説明したように本発明によれば次の
ような効果がある。
(1)従来利用されなかったサンプルを透過した励起光
またはサンプル表面で反射した励起光を利用してサンプ
ルの位置合わせを容易に行なうことができる。
(2)サンプルの位置合わせ用の構成が従来よりも簡単
でしかも安価であり、また操作性に優れた蛍光画像計測
装置を容易に実現できる。
(3)本発明は、スキャン型またはスキャンレス型、さ
らに透過型または反射型のいずれの方式の蛍光顕微鏡に
も適用でき、実用に供してその効果は大である。As described above, the present invention has the following effects. (1) The position of the sample can be easily aligned by using the excitation light that has not been used conventionally and that has been transmitted through the sample or the excitation light reflected by the sample surface. (2) The configuration for aligning the sample is simpler and cheaper than the conventional one, and the fluorescence image measuring device excellent in operability can be easily realized. (3) The present invention can be applied to any of a scanning type or a scanless type, and also a transmission type or a reflection type fluorescent microscope, and the effect thereof is great in practical use.
【図1】本発明に係る蛍光画像計測装置の一実施例を示
す構成図である。FIG. 1 is a configuration diagram showing an embodiment of a fluorescence image measuring device according to the present invention.
【図2】本発明の他の実施例を示す構成図である。FIG. 2 is a configuration diagram showing another embodiment of the present invention.
【図3】本発明のさらに他の実施例を示す構成図であ
る。FIG. 3 is a configuration diagram showing still another embodiment of the present invention.
【図4】従来装置の組み合わせで実現できる蛍光画像計
測装置の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a fluorescence image measuring device that can be realized by combining conventional devices.
1 集光ディスク 2,22 マイクロレンズ 3 ダイクロイックミラー 4 ピンホールディスク 5 ドラム 6,11,24,31,32 レンズ 7 ビームスプリッタ 8 対物レンズ 9,23 サンプル 12 バリアフィルタ 13,22,25 カメラ 21 集光基板 1 Focusing disc 2,22 micro lens 3 dichroic mirror 4 pinhole disc 5 drums 6,11,24,31,32 lens 7 Beam splitter 8 Objective lens 9,23 samples 12 Barrier filter 13,22,25 camera 21 Light collecting substrate
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 1/04 H04N 1/04 106Z 5C072 106 E Fターム(参考) 2G043 AA03 BA16 CA09 EA01 FA01 FA02 GA07 GB01 HA01 HA09 JA02 KA02 KA09 LA03 2H052 AA07 AA08 AA09 AC04 AC05 AC15 AC27 AC34 5B047 AA15 AA17 BB04 BC05 BC11 BC16 CA12 CB23 5B057 AA10 BA02 CA12 CD02 DA07 5C051 AA01 BA02 DA06 DB01 DB22 DB23 DB30 DC03 DC04 DC07 DE09 5C072 AA01 BA20 CA06 DA02 DA09 DA21 DA30 EA08 HA02 HA06 HA10 RA04 VA01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H04N 1/04 H04N 1/04 106Z 5C072 106 EF term (reference) 2G043 AA03 BA16 CA09 EA01 FA01 FA02 GA07 GB01 HA01 HA09 JA02 KA02 KA09 LA03 2H052 AA07 AA08 AA09 AC04 AC05 AC15 AC27 AC34 5B047 AA15 AA17 BB04 BC05 BC11 BC16 CA12 CB23 5B057 AA10 BA02 CA12 CD02 DA07 5C051 DA20 DB02 DA30 DA02 DB02 DB30 DA02 DC30 DC03 DC02 DC01 DC02 DC02 DB30 DB03 DC07 DC02 DC01 DC02 DC07 DC01 HA02 HA06 HA10 RA04 VA01
Claims (6)
しサンプルに付着した蛍光物質から発生する蛍光を計測
することによりサンプルを検出するようにした蛍光画像
計測装置において、 サンプルを通過またはサンプル表面で反射した励起光を
受光する2次元状の受光素子と、 この受光素子による観察像に基づいてサンプルの位置を
移動させる移動手段を具備したことを特徴とする蛍光画
像計測装置。1. A fluorescence image measuring device configured to detect a sample by irradiating a two-dimensionally spread sample with excitation light and measuring fluorescence generated from a fluorescent substance adhering to the sample. A fluorescence image measuring device comprising: a two-dimensional light receiving element that receives the excitation light reflected on the surface; and a moving unit that moves the position of the sample based on an observation image by the light receiving element.
りサンプルを光軸方向に移動させることができるように
構成されたことを特徴とする請求項1記載の蛍光画像計
測装置。2. The fluorescence image measuring apparatus according to claim 1, wherein the moving means is configured to move the sample in the optical axis direction by an autofocus mechanism.
ルチビーム化された励起光が照射されるように構成され
たことを特徴とする請求項1記載の蛍光画像計測装置。3. The fluorescence image measuring device according to claim 1, wherein the sample is irradiated with excitation light that is converted into multi-beams by a microlens.
光スキャナで光走査されるように構成されたことを特徴
とする請求項3記載の蛍光画像計測装置。4. The fluorescence image measuring device according to claim 3, wherein the sample is configured to be optically scanned by a multi-beam confocal optical scanner.
照射されるように構成されたことを特徴とする請求項3
記載の蛍光画像計測装置。5. The sample is configured to be simultaneously illuminated by multiple beams.
The fluorescence image measurement device described.
のマーカが設けられ、このマーカを基準にしてXYZ方
向の位置合わせを行なうようにしたことを特徴とする請
求項1〜5記載の蛍光画像計測装置。6. The fluorescence image according to claim 1, wherein the sample is provided with a marker for positioning in the XYZ directions, and the alignment in the XYZ directions is performed with reference to the marker. Measuring device.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001241863A JP3968629B2 (en) | 2001-08-09 | 2001-08-09 | Fluorescence image measuring device |
US10/198,174 US20030031596A1 (en) | 2001-08-09 | 2002-07-19 | Biochip reader and fluorometric imaging apparatus |
EP02016363A EP1283416A3 (en) | 2001-08-09 | 2002-07-25 | Biochip reader and fluorometric imaging apparatus |
EP05111237A EP1635165A3 (en) | 2001-08-09 | 2002-07-25 | Fluorometric imaging apparatus |
US11/249,333 US20060029523A1 (en) | 2001-08-09 | 2005-10-14 | Biochip reader and fluorometric imaging apparatus |
US12/232,704 US20090032736A1 (en) | 2001-08-09 | 2008-09-23 | Biochip reader and fluorometric imaging apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001241863A JP3968629B2 (en) | 2001-08-09 | 2001-08-09 | Fluorescence image measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003057180A true JP2003057180A (en) | 2003-02-26 |
JP3968629B2 JP3968629B2 (en) | 2007-08-29 |
Family
ID=19072227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001241863A Expired - Fee Related JP3968629B2 (en) | 2001-08-09 | 2001-08-09 | Fluorescence image measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3968629B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005233802A (en) * | 2004-02-20 | 2005-09-02 | Yokogawa Electric Corp | Physical quantity measuring instrument and physical quantity calibration method using it |
JP2006003747A (en) * | 2004-06-18 | 2006-01-05 | Olympus Corp | Optical scanning type observation apparatus |
JP2006275576A (en) * | 2005-03-28 | 2006-10-12 | Casio Comput Co Ltd | Bio-polymer analyzer |
JP2007172612A (en) * | 2005-12-15 | 2007-07-05 | General Electric Co <Ge> | Computed radiography system and method of use |
JP2008045982A (en) * | 2006-08-15 | 2008-02-28 | Yokogawa Electric Corp | Screening apparatus for drug discovery |
JP2009192763A (en) * | 2008-02-14 | 2009-08-27 | Yokogawa Electric Corp | Drug discovery screening device |
JP2010117712A (en) * | 2008-10-14 | 2010-05-27 | Nsk Ltd | Centrifugal microscope |
CN116026806A (en) * | 2023-03-30 | 2023-04-28 | 山东德渡生物技术有限公司 | Fluorescence microscopy system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0560980A (en) * | 1991-05-29 | 1993-03-12 | Yokogawa Electric Corp | Confocal optical scanner |
JPH08304284A (en) * | 1995-05-09 | 1996-11-22 | Suzuki Motor Corp | System for deciding antinuclear antibody reaction |
JPH09230246A (en) * | 1996-02-22 | 1997-09-05 | Olympus Optical Co Ltd | Scanning optical microscope |
JPH11160029A (en) * | 1997-08-29 | 1999-06-18 | Becton Dickinson & Co | Equipment for measuring thickness of optical specimen |
JPH11304715A (en) * | 1998-04-16 | 1999-11-05 | Lasertec Corp | Pattern flaw inspection apparatus and laser microscope |
JP2001074658A (en) * | 1999-09-09 | 2001-03-23 | Fuji Photo Film Co Ltd | Photometric method and apparatus |
JP2001108684A (en) * | 1999-10-05 | 2001-04-20 | Hitachi Ltd | Dna testing method and device |
-
2001
- 2001-08-09 JP JP2001241863A patent/JP3968629B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0560980A (en) * | 1991-05-29 | 1993-03-12 | Yokogawa Electric Corp | Confocal optical scanner |
JPH08304284A (en) * | 1995-05-09 | 1996-11-22 | Suzuki Motor Corp | System for deciding antinuclear antibody reaction |
JPH09230246A (en) * | 1996-02-22 | 1997-09-05 | Olympus Optical Co Ltd | Scanning optical microscope |
JPH11160029A (en) * | 1997-08-29 | 1999-06-18 | Becton Dickinson & Co | Equipment for measuring thickness of optical specimen |
JPH11304715A (en) * | 1998-04-16 | 1999-11-05 | Lasertec Corp | Pattern flaw inspection apparatus and laser microscope |
JP2001074658A (en) * | 1999-09-09 | 2001-03-23 | Fuji Photo Film Co Ltd | Photometric method and apparatus |
JP2001108684A (en) * | 1999-10-05 | 2001-04-20 | Hitachi Ltd | Dna testing method and device |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005233802A (en) * | 2004-02-20 | 2005-09-02 | Yokogawa Electric Corp | Physical quantity measuring instrument and physical quantity calibration method using it |
JP2006003747A (en) * | 2004-06-18 | 2006-01-05 | Olympus Corp | Optical scanning type observation apparatus |
JP2006275576A (en) * | 2005-03-28 | 2006-10-12 | Casio Comput Co Ltd | Bio-polymer analyzer |
JP4701781B2 (en) * | 2005-03-28 | 2011-06-15 | カシオ計算機株式会社 | Biopolymer analyzer and biopolymer analysis method |
JP2007172612A (en) * | 2005-12-15 | 2007-07-05 | General Electric Co <Ge> | Computed radiography system and method of use |
JP2008045982A (en) * | 2006-08-15 | 2008-02-28 | Yokogawa Electric Corp | Screening apparatus for drug discovery |
JP4678601B2 (en) * | 2006-08-15 | 2011-04-27 | 横河電機株式会社 | Drug discovery screening device |
JP2009192763A (en) * | 2008-02-14 | 2009-08-27 | Yokogawa Electric Corp | Drug discovery screening device |
JP2010117712A (en) * | 2008-10-14 | 2010-05-27 | Nsk Ltd | Centrifugal microscope |
JP2013214102A (en) * | 2008-10-14 | 2013-10-17 | Nsk Ltd | Centrifugal microscope |
CN116026806A (en) * | 2023-03-30 | 2023-04-28 | 山东德渡生物技术有限公司 | Fluorescence microscopy system |
Also Published As
Publication number | Publication date |
---|---|
JP3968629B2 (en) | 2007-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090032736A1 (en) | Biochip reader and fluorometric imaging apparatus | |
US7400446B2 (en) | Confocal microscope | |
US6355934B1 (en) | Imaging system for an optical scanner | |
US6388809B1 (en) | Methods and apparatus for improved depth resolution use of out-of-focus information in microscopy | |
US7015444B2 (en) | Optical-scanning examination apparatus | |
US6211989B1 (en) | Light-scanning device | |
JP3794703B2 (en) | Fluorescence imaging system using macro scanning objective lens | |
US7598502B2 (en) | Confocal laser scanning microscope | |
US8254020B2 (en) | Objective-coupled selective plane illumination microscopy | |
US7706584B2 (en) | Random access high-speed confocal microscope | |
JP2001108684A (en) | Dna testing method and device | |
WO2004036284A1 (en) | Cofocal microscope, fluorescence measuring method and polarized light measuring metod using cofocal microscope | |
JP2000509850A (en) | Optical scanning device | |
JP2009053398A (en) | Microscope and three-dimensional information acquisition method | |
JP2005121796A (en) | Laser microscope | |
JP2002207007A (en) | Biochip reader | |
JP2006171024A (en) | Multi-point fluorescence spectrophotometry microscope and multi-point fluorescence spectrophotometry method | |
US5978095A (en) | Confocal microscopic equipment | |
JP2009282112A (en) | Confocal microscope | |
JP2003057180A (en) | Fluorescent image measuring apparatus | |
US20100264294A1 (en) | Multi-focal spot generator and multi-focal multi-spot scanning microscope | |
CN103299231A (en) | Light-scanning systems | |
JP2003307681A (en) | Confocal scanning optical microscope | |
JP2006003747A (en) | Optical scanning type observation apparatus | |
JP2006235250A (en) | Measuring microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070523 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140615 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |