JP2003025114A - Aluminium oxide coated cutting tool - Google Patents

Aluminium oxide coated cutting tool

Info

Publication number
JP2003025114A
JP2003025114A JP2001214733A JP2001214733A JP2003025114A JP 2003025114 A JP2003025114 A JP 2003025114A JP 2001214733 A JP2001214733 A JP 2001214733A JP 2001214733 A JP2001214733 A JP 2001214733A JP 2003025114 A JP2003025114 A JP 2003025114A
Authority
JP
Japan
Prior art keywords
film
aluminum oxide
coated
cutting
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001214733A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kodama
浩亨 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2001214733A priority Critical patent/JP2003025114A/en
Publication of JP2003025114A publication Critical patent/JP2003025114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminium oxide coated cutting tool which improves its service life to cope with such tendency that intermittent cutting under a sever condition is forced to meet such requirement as shortening the time for a cutting process and to make up for the insufficient chipping resistantance of the cutting edge of a conventional cutting tool coated with a film including aluminium oxide, and provide an abrasion resistant cutting tool, which is used typically for cutting a mold coated with a composite hard film including an aluminium oxide film, and improves its service life to improve productivity. SOLUTION: The aluminium oxide coated cutting tool whose 012 crystal face made of α type aluminium oxide has the highest X-ray diffraction strength and a coefficient for aggregation structure of TC (012) of 2.5 or more provides a tool property excellent in chipping resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は超硬合金基材また
はサーメット基材の表面に物理蒸着法および/または化
学蒸着法により形成された金属化合物のいずれか一種の
単層膜または二種以上からなる多層膜であって、少なく
とも一層のα型酸化アルミニウムを主とする酸化膜から
なる被膜を被覆した耐欠損性に優れた酸化アルミニウム
被覆工具に関する。
TECHNICAL FIELD The present invention relates to a single-layer film or two or more kinds of metal compounds formed on a surface of a cemented carbide substrate or a cermet substrate by a physical vapor deposition method and / or a chemical vapor deposition method. The present invention relates to an aluminum oxide-coated tool excellent in fracture resistance, which is a multi-layered film formed of at least one layer of an oxide film mainly containing α-type aluminum oxide.

【0002】[0002]

【従来の技術】被覆工具のなかでも酸化アルミニウム被
覆切削工具は広く実用されている。高速、高送りで切削
する領域では超硬合金を基材に用い、下層にチタン化合
物膜を被覆し、上層に酸化アルミニウム被膜を被覆した
被覆切削工具が使用されてきた。近年、鋳鉄切削に対し
てκ型酸化アルミニウム被覆切削工具よりもα型酸化ア
ルミニウム被覆切削工具が耐摩耗性に優れることが明ら
かになった。α型酸化アルミニウム被覆切削工具の切削
性能向上を目的に特開平6−316758、特開平7−
216549、特表平9−507528が開示されてい
る。
2. Description of the Related Art Among the coated tools, aluminum oxide coated cutting tools are widely used. In the region of cutting at high speed and high feed, a coated cutting tool has been used in which a cemented carbide is used as a substrate, a lower layer is coated with a titanium compound film, and an upper layer is coated with an aluminum oxide film. In recent years, it has been revealed that α-type aluminum oxide-coated cutting tools are superior in wear resistance to κ-type aluminum oxide-coated cutting tools for cutting cast iron. For the purpose of improving the cutting performance of an α-type aluminum oxide-coated cutting tool, JP-A-6-316758 and JP-A-7-
216549 and Japanese Patent Publication No. 9-507528 are disclosed.

【0003】[0003]

【発明が解決しようとする課題】特開平6−31675
8には、α型酸化アルミニウム層が1.3より大きな集
合組織化係数TC(012)を呈することを特徴とする
被覆物体が開示され、その実施例にTC(012)が
2.1であるα型酸化アルミニウム膜を示している。特
開平7−216549にはクーリングクラックが存在し
ないα型酸化アルミニウム層であり、その層が1.5よ
り大きな集合組織化係数TC(110)を呈することを
特徴とする被覆硬質物品が開示されている。特表平9−
507528には結晶粒径Sが0.5μm<S<4μmの
α型酸化アルミニウム層であり、その層が1.5より大
きな集合組織化係数TC(104)を呈することを特徴
とする耐火物層被覆ボディーが開示されている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
No. 8 discloses a coated article characterized in that the α-type aluminum oxide layer exhibits a textured coefficient TC (012) of greater than 1.3, in which example TC (012) is 2.1. The α-type aluminum oxide film is shown. Japanese Unexamined Patent Publication (Kokai) No. 7-216549 discloses a coated hard article which is an α-type aluminum oxide layer having no cooling cracks, and the layer exhibits a texture organization coefficient TC (110) of more than 1.5. There is. Special table flat 9-
Reference numeral 507528 is a refractory layer characterized by being an α-type aluminum oxide layer having a crystal grain size S of 0.5 μm <S <4 μm, and the layer exhibits a texture organization coefficient TC (104) of greater than 1.5. A coated body is disclosed.

【0004】近年、切削工程の短縮化に対する要求が強
く、これに伴い過酷な条件下での断続切削が強いられる
傾向にある。以上のような従来の酸化アルミニウム被膜
を含む被膜が被覆された切削工具はこれら過酷な条件下
では切れ刃の耐欠損性が不十分であり、さらに寿命増加
が望まれるようになった。また酸化アルミニウム被膜を
含む複合硬質膜が被覆された金型に代表される耐摩耗工
具についても生産性向上のため寿命増加が望まれるよう
になった。本発明は酸化アルミニウム被覆工具の耐欠損
性向上と寿命増加を目的とする。
In recent years, there has been a strong demand for shortening the cutting process, and along with this, there is a tendency for intermittent cutting under severe conditions to be forced. Under the severe conditions, the cutting tool coated with the coating including the conventional aluminum oxide coating as described above has insufficient fracture resistance of the cutting edge, and it has been desired to further increase the life. Further, wear resistance tools represented by molds coated with a composite hard film containing an aluminum oxide film are also required to have a longer life in order to improve productivity. The present invention aims to improve the fracture resistance and increase the life of an aluminum oxide coated tool.

【0005】[0005]

【課題を解決するための手段】酸化アルミニウム被覆部
材の研究において、α型酸化アルミニウムの(012)
結晶面が最強のX線回折強度であり、(012)面の集
合組織化係数TC(012)が、2.5以上、好ましく
は3.0以上を呈すると耐欠損性が向上するという知見
を得た。α型酸化アルミニウムのTC(012)が高い
被膜は(012)面が優先成長したことを示している。
(012)面に優先成長した被膜は組織が柱状を示すよ
うになり被膜自身にクラックが入りやすいことが分かっ
た。コーティング時の基材と被膜の熱膨張率の差によっ
て被膜には残留応力が生じるが、被膜にクラックが入る
ことによって被膜の引張残留応力が解放される。そのた
めクラックが入りやすい被膜を持つ被覆部材は入りにく
い被膜を持つ被覆部材に比べて引張残留応力が低減する
ため耐欠損性に優れる。クラックの入りやすさは結晶粒
界接合強度が低いことを示すと考えられる。発明者は
(012)面に優先成長した被膜は結晶粒界の接合強度
が低い柱状晶からなる組織を持つため被膜自身にクラッ
クが入りやすいことを見出した。TC(012)が本発
明よりも低くなると被膜にクラックが入りにくくなり、
この被膜を被覆した部材は耐欠損性が低下した。まとめ
ると酸化アルミニウム被膜のTC(012)と耐欠損性
が関係し、α型酸化アルミニウムのTC(012)が
2.5以上になると耐欠損性が向上するという知見を得
た。
[Means for Solving the Problems] In the research of aluminum oxide coated members, α-type aluminum oxide (012)
It has been found that the crystal plane has the strongest X-ray diffraction intensity and the texture resistance coefficient TC (012) of the (012) plane is 2.5 or more, preferably 3.0 or more, to improve the fracture resistance. Obtained. The film of α-type aluminum oxide having a high TC (012) shows that the (012) plane was preferentially grown.
It was found that the preferentially grown coating on the (012) plane became columnar in structure and cracked easily in the coating itself. Residual stress is generated in the coating due to the difference in the coefficient of thermal expansion between the base material and the coating during coating, but the tensile residual stress of the coating is released by cracking the coating. Therefore, a coated member having a coating film that is prone to cracking has a lower tensile residual stress than a coated member having a coating film that is hard to enter, and thus is excellent in fracture resistance. The ease with which cracks are formed is considered to indicate that the grain boundary bonding strength is low. The inventor has found that the film preferentially grown on the (012) plane has a structure composed of columnar crystals with low bonding strength of crystal grain boundaries, and thus the film itself is apt to be cracked. When TC (012) is lower than that of the present invention, the coating is less likely to crack,
The fracture resistance of the member coated with this coating was lowered. In summary, it was found that the TC (012) of the aluminum oxide film is related to the fracture resistance, and that the TC (012) of α-type aluminum oxide is 2.5 or more, the fracture resistance is improved.

【0006】[0006]

【発明の実施の態様】酸化アルミニウムを被覆する方法
として物理蒸着法(以後PVD法と表示する)、化学蒸
着法(以後CVD法と表示する)を用いることができる
が、特に高温で被覆するCVD法によって作製された酸
化アルミニウムについて効果が高い。用途としてはスロ
ーアウェイチップに代表される切削工具や金型に代表さ
れる耐摩耗工具が挙げられる。こうした応力がかかりや
すい工具に今回発明した酸化アルミニウム被膜を応用す
ると効果が高く、例えば切削工具の場合、初期欠損が減
少し、耐摩耗工具に応用すると寿命が増加する。
BEST MODE FOR CARRYING OUT THE INVENTION Physical vapor deposition (hereinafter referred to as PVD method) and chemical vapor deposition (hereinafter referred to as CVD method) can be used as a method for coating aluminum oxide, but CVD for coating at a particularly high temperature can be used. The effect is high for aluminum oxide produced by the method. Applications include cutting tools typified by throw-away tips and wear-resistant tools typified by dies. Applying the aluminum oxide coating of the present invention to such a tool that is likely to be stressed is highly effective. For example, in the case of a cutting tool, the initial damage is reduced, and when it is applied to a wear resistant tool, the life is increased.

【0007】酸化アルミニウム被覆工具に用いられる基
材としては硬さと靱性を兼ね備えた部材、セラミック
ス、合金鋼、超硬合金、サーメットがある。その中でも
超硬合金、サーメットが好ましい。超硬合金、サーメッ
トはTi、Zr、Hf、V、Nb、Ta、Cr、Mo、
W、Al、Siの炭化物、窒化物、炭窒化物、酸化物、
炭酸化物、窒酸化物、炭窒酸化物、ホウ化物を含む硬質
相とCo,Ni,Feを含む結合相と不可避不純物から
なる部材である。基材として用いられる超硬合金は靱性
を持たせるため表面近傍に(W,Ti)C,(W,T
i,Ta)Cなどのβ相が消失した層を設けることは好
ましい。これらの部材に対して工具形状の精密さを持た
せるため、湿式研削加工、乾式研削加工、ブラスト加工
に代表される機械的加工や電解研磨に代表される化学的
加工をすることは好ましい。超硬合金、サーメットなど
の基材に対して、直接酸化膜を被覆しても良いが、基材
側に金属化合物を被覆した後、酸化膜を被覆しても良
い。前記金属化合物としてはTi、Zr、Hf、V、N
b、Ta、Cr、Mo、W、Al、Siの一種または二
種以上の炭化物、窒化物、炭窒化物、酸化物、炭酸化
物、窒酸化物、炭窒酸化物、ホウ化物が挙げられる。超
硬合金、サーメットなどの基材に前記金属化合物を下層
膜として被覆する場合、基材から下層膜中に結合相の成
分、例えばW、C、Co、Mo、Cr、Vが拡散する場
合もあるが、この場合でも本発明のα型酸化アルミニウ
ム被膜の本質的な効果は変わらない。なお、酸化アルミ
ニウム被膜の上には耐凝着性改善のため前記金属化合物
を被覆することもよい。
Substrates used for aluminum oxide coated tools include members having both hardness and toughness, ceramics, alloy steel, cemented carbide and cermet. Of these, cemented carbide and cermet are preferable. For cemented carbide and cermet, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
W, Al, Si carbides, nitrides, carbonitrides, oxides,
It is a member composed of a hard phase containing carbon dioxide, oxynitride, oxycarbonitride, and boride, a binding phase containing Co, Ni, and Fe, and inevitable impurities. The cemented carbide used as the base material has (W, Ti) C, (W, T) near the surface in order to have toughness.
It is preferable to provide a layer in which the β phase such as i, Ta) C has disappeared. In order to provide these members with precision in tool shape, it is preferable to perform mechanical processing represented by wet grinding, dry grinding, blasting, or chemical processing represented by electrolytic polishing. The base material such as cemented carbide or cermet may be directly coated with an oxide film, but the base material side may be coated with a metal compound and then coated with an oxide film. Examples of the metal compound include Ti, Zr, Hf, V and N.
Examples thereof include carbides, nitrides, carbonitrides, oxides, carbonates, oxynitrides, oxycarbonitrides, and borides of one or more of b, Ta, Cr, Mo, W, Al, and Si. When a base material such as cemented carbide or cermet is coated with the metal compound as an underlayer film, components of a binder phase such as W, C, Co, Mo, Cr, V may diffuse from the substrate into the underlayer film. However, even in this case, the essential effect of the α-type aluminum oxide coating of the present invention does not change. The aluminum oxide coating may be coated with the metal compound to improve the adhesion resistance.

【0008】本発明においてα型酸化アルミニウムを主
とする酸化膜とは、α型酸化アルミニウムを主とする酸
化膜のX線回折強度の総計の50%以上が前記α型酸化
アルミニウムのX線回折強度からなり、残りがAl,S
i,Zr,Cr,Ti、Yの一種または二種以上からな
る酸化物と1at%以下の微量添加物と1at%以下の
不可避不純物によって構成される酸化膜をいう。α型酸
化アルミニウムを主とする酸化膜は単層膜あるいは複層
膜にする場合でもよく他の元素を含む被膜と複層膜にし
た場合も同様の効果がある。酸化膜はα型酸化アルミニ
ウムに限るものではなく他の結晶型酸化アルミニウム、
例えばκ型酸化アルミニウム、γ型酸化アルミニウム、
θ型酸化アルミニウム、δ型酸化アルミニウム、χ型酸
化アルミニウム等やアモルファスの酸化アルミニウムを
含有してもよく、酸化アルミニウム以外の酸化膜、例え
ば酸化シリコン、酸化ジルコニウム、酸化クロム、酸化
チタン、酸化イットリウムとの混合膜でも同様な効果が
得られる。また酸化アルミニウムの20at%以下が、
シリコン原子、ジルコニウム原子、クロム原子、チタン
原子、イットリア原子に置換された固溶体からなる被膜
でも同様な効果が得られ、α型酸化アルミニウムを主と
する酸化膜には1at%以下の微量添加物として炭素、
炭化物、窒化物、ホウ化物を含んでもよく、1at%以
下の不可避不純物として硫黄、硫化物、セレン、テル
ル、チタン、塩素を含んでも良い。
In the present invention, the oxide film mainly composed of α-type aluminum oxide means that 50% or more of the total X-ray diffraction intensity of the oxide film mainly composed of α-type aluminum oxide is X-ray diffraction of the α-type aluminum oxide. Strength, the rest is Al, S
An oxide film composed of an oxide composed of one or more of i, Zr, Cr, Ti, and Y, a trace additive of 1 at% or less, and an unavoidable impurity of 1 at% or less. The oxide film mainly composed of α-type aluminum oxide may be a single layer film or a multilayer film, and the same effect can be obtained when it is formed as a film containing other elements and a multilayer film. The oxide film is not limited to α-type aluminum oxide, but other crystalline aluminum oxide,
For example, κ-type aluminum oxide, γ-type aluminum oxide,
It may contain θ-type aluminum oxide, δ-type aluminum oxide, χ-type aluminum oxide or the like and amorphous aluminum oxide, and oxide films other than aluminum oxide, such as silicon oxide, zirconium oxide, chromium oxide, titanium oxide and yttrium oxide. The same effect can be obtained with the mixed film of. 20 at% or less of aluminum oxide is
A similar effect can be obtained with a film made of a solid solution substituted with silicon atoms, zirconium atoms, chromium atoms, titanium atoms, and yttria atoms. As a trace additive of 1 at% or less for an oxide film mainly containing α-type aluminum oxide, carbon,
Carbides, nitrides and borides may be contained, and sulfur, sulfide, selenium, tellurium, titanium and chlorine may be contained as inevitable impurities of 1 at% or less.

【0009】α型酸化アルミニウム被膜のX線回折強度
を測定するため、通常のCu管球を装備したX線回折装
置を用いた。測定範囲は20度〜60度であり、Kα1
によるX線回折強度を測定した。測定した面は(01
2)面から(116)面であった。表1はα型酸化アル
ミニウムの結晶面に対する面間隔d、2θ値、標準X線
回折強度I0をまとめたものである。面間隔と標準X線
回折強度I0はJCPDSカードのNo.10−173
から転記し、2θ値はCuのKα1線を用いた時に測定
される値を面間隔dから計算により求めたものである。
In order to measure the X-ray diffraction intensity of the α-type aluminum oxide coating, an X-ray diffractometer equipped with a usual Cu tube was used. The measurement range is 20 to 60 degrees, and Kα1
X-ray diffraction intensity was measured. The measured surface is (01
It was from (2) plane to (116) plane. Table 1 summarizes the interplanar spacing d, 2θ value, and standard X-ray diffraction intensity I 0 with respect to the crystal plane of α-type aluminum oxide. The plane spacing and the standard X-ray diffraction intensity I 0 are the same as those of the JCPDS card No. 10-173
The 2θ value is obtained by calculating the value measured when the Cu Kα1 ray is used from the interplanar spacing d.

【表1】 [Table 1]

【0010】得られたα型酸化アルミニウムの(01
2)面から(116)面までのX線回折強度から1式で
定義される(012)面の集合組織化係数TC(01
2)を求めた。このとき、1式のI(hkl)は(hk
l)面を測定したX線回折強度を表し、I0(hkl)
はJCPDSカード番号10−173の標準X線回折強
度を表す。
The obtained α-type aluminum oxide (01
From the X-ray diffraction intensities from the (2) plane to the (116) plane, the texture organization coefficient TC (01
2) was calculated. At this time, I (hkl) of the equation 1 is (hk
l) represents the X-ray diffraction intensity measured on the plane, I 0 (hkl)
Represents the standard X-ray diffraction intensity of JCPDS card number 10-173.

【1式】 [1 set]

【0011】α型酸化アルミニウム被膜の(012)面
のX線回折強度が最強であり、集合組織化係数TC(0
12)が2.5以上では耐欠損性が向上する。このよう
なTC(012)を示すα型酸化アルミニウム被膜の組
織は柱状晶を示した。この場合の柱状晶とは基材表面に
対して平行な方向で測定した粒径より基材表面に対して
垂直な方向で測定した粒径の方が長い結晶のことをい
う。今回の発明品を切削工具に用いた場合、応力が集中
するエッジ部の初期欠損が生じにくく、耐摩耗工具に用
いた場合エッジ付近の欠けが生じにくくなった。
The X-ray diffraction intensity of the (012) plane of the α-type aluminum oxide film is the strongest, and the texture organization coefficient TC (0
When 12) is 2.5 or more, fracture resistance is improved. The structure of the α-type aluminum oxide film exhibiting such TC (012) showed columnar crystals. The columnar crystal in this case means a crystal in which the grain size measured in the direction perpendicular to the substrate surface is longer than the grain size measured in the direction parallel to the substrate surface. When the invention product of this time was used for a cutting tool, initial damage of the edge portion where stress was concentrated was less likely to occur, and when used for a wear resistant tool, chipping near the edge was less likely to occur.

【0012】通常のCVD法で原料ガスAlCl3−C
2−CO−H2−HCl系を用いた場合、本発明品はコ
ーティング温度を上げるほどまたはHCl分圧を上げる
ほど得られやすい。なお、原料ガスAlCl3−CO2
CO−H2−HCl系に成膜速度を上げるためH2S,S
2などの硫化物やセレン、テルルを加えてもよく、添
加物としてCH4、N2、TiCl4を加えてもよい。A
23合成にCO2のほかにNO2を使用してもよい。し
かしながら、PVD法、CVD法とも被膜の生成は使用
する炉の大きさや炉内でのガスの流れ方、ガス純度など
各種要因によって微妙に影響を受けるため、炉に応じて
各種パラメーターを調整する。
Raw material gas AlCl 3 --C by the usual CVD method
When the O 2 —CO—H 2 —HCl system is used, the product of the present invention is more likely to be obtained as the coating temperature is raised or the HCl partial pressure is raised. The source gas AlCl 3 --CO 2-
CO-H 2 -HCl system H 2 for increasing the deposition rate to S, S
Sulfides such as O 2 and selenium and tellurium may be added, and CH 4 , N 2 and TiCl 4 may be added as additives. A
In addition to CO 2 , NO 2 may be used in the synthesis of l 2 O 3 . However, in both the PVD method and the CVD method, the formation of the coating film is slightly affected by various factors such as the size of the furnace used, the flow of gas in the furnace, and the gas purity, so various parameters are adjusted according to the furnace.

【0013】被覆部材の被膜に存在するクラックは高倍
率のSEM観察でも観察できるが、被膜表面を鏡面研磨
したのちフッ化水素と硝酸を含んだ水溶液で数分間腐食
するとクラックが広がり観察しやすくなる。今回の発明
は被膜に応力がかかった場合にその効果が明確になるた
め、切削試験前後のクラック間隔を調べた。
Although cracks existing in the coating film of the coating member can be observed by SEM observation at high magnification, if the surface of the coating film is mirror-polished and then corroded with an aqueous solution containing hydrogen fluoride and nitric acid for several minutes, the cracks spread and become easy to observe. . Since the effect of the present invention becomes clear when stress is applied to the coating, the crack spacing before and after the cutting test was examined.

【0014】[0014]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【実施試験1】基材超硬合金としては89.3WC−
2.2TiC−3.1TaC−0.3NbC−5.1C
o合金(重量%)、その形状としてJIS規格CNMG
120408を用意した。基材表面を洗浄後、外熱式C
VD装置内に担時し、原料ガスは純度99.5vol%
以上の高純度ガスを使用し、従来から用いられているC
VD法で基材表面に下層膜として0.6μmの厚さのT
iNと8.0μmの厚さのTiCNをコーティング温度
890℃で被覆し、0.5μmの厚さのTiAlCOを
コーティング温度1000℃で被覆した。次いで下層膜
の表面に表2に示したガス条件、温度、圧力および流量
で酸化膜を被覆した。次いで酸化膜の表面には0.5μ
mの厚さのTiNをコーティング温度1015℃で被覆
して発明品1〜9、比較品1〜3を作製した。酸化膜を
X線回折したところ、α型酸化アルミニウム被膜であっ
た。
[Practical test 1] 89.3 WC- as a base cemented carbide
2.2TiC-3.1TaC-0.3NbC-5.1C
o alloy (wt%), its shape is JIS standard CNMG
120408 was prepared. After cleaning the surface of the base material, external heat C
Carried in the VD equipment, the raw material gas has a purity of 99.5 vol%
Using the above high-purity gases, C that has been used conventionally
As a lower layer film on the substrate surface by the VD method, T having a thickness of 0.6 μm
iN and 8.0 μm thick TiCN were coated at a coating temperature of 890 ° C. and 0.5 μm thick TiAlCO at a coating temperature of 1000 ° C. Next, the surface of the lower layer film was coated with an oxide film under the gas conditions, temperature, pressure and flow rate shown in Table 2. Then 0.5μ on the surface of the oxide film
Inventive products 1 to 9 and comparative products 1 to 3 were produced by coating TiN having a thickness of m at a coating temperature of 1015 ° C. When the oxide film was subjected to X-ray diffraction, it was an α-type aluminum oxide film.

【0015】[0015]

【表2】 [Table 2]

【0016】表3にα型酸化アルミニウム被膜につい
て、最強のX線回折強度を示す結晶面、集合組織化係数
TC(012)、膜厚、切削試験前の刃先部クラック間
隔をそれぞれ記載した。発明品1〜9および比較品1〜
3を、円筒形にV型の4本の溝を入れたFCD600
(249HB)を被削材に用いて、切削速度:V=14
0m/min、切り込み:d=2mm、送り:f=0.
3mm/rev.、水溶性切削油使用という切削条件で
断続試験を行い、切削試験後の刃先部のクラック間隔と
コーナー摩耗が0.4mmに達するとき、または刃先部
分が欠損に至るまでの切削パス数の5回の平均値を表3
に記載した。α型酸化アルミニウム被膜のTC(01
2)と耐欠損性は非常によく対応していることが分か
る。切削試験結果と試験前のクラック間隔の相関はあま
り高くないが、切削試験後のクラック間隔およびTC
(012)と試験結果は相関が高い。
Table 3 shows the crystal plane showing the strongest X-ray diffraction intensity, the texture coefficient TC (012), the film thickness, and the crack interval between the cutting edges before the cutting test for the α-type aluminum oxide film. Invention products 1-9 and comparative products 1-
3 is an FCD600 with four V-shaped grooves in a cylindrical shape
Using (249HB) as the work material, cutting speed: V = 14
0 m / min, depth of cut: d = 2 mm, feed: f = 0.
3 mm / rev. Performing an intermittent test under cutting conditions using water-soluble cutting oil, and when the crack interval and corner wear of the cutting edge after the cutting test reach 0.4 mm, or the number of cutting passes until the cutting edge becomes defective, 5 times Table 3 shows the average value of
Described in. TC (01 of α-type aluminum oxide film
It can be seen that 2) and the fracture resistance correspond very well. Although the correlation between the cutting test result and the crack interval before the test is not so high, the crack interval and TC after the cutting test are not so high.
The correlation between (012) and the test result is high.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【実施試験2】基材超硬合金としては89.1WC−
2.5TiC−2.6TaC−0.3NbC−Co合金
(重量%)、その形状としてJIS規格CNMG120
408を用意した。基材表面を洗浄後、外熱式CVD装
置内に担時し、原料ガスは純度99.5vol%以上の
高純度ガスを使用し、従来から用いられているCVD法
で基材表面に下層膜として0.5μmの厚さのTiNと
6.5μmの厚さのTiCNをコーティング温度910
℃で被覆し、0.5μmの厚さのTiAlCOをコーテ
ィング温度990℃で被覆した。次いで下層膜の表面に
コーティング温度を990℃、炉内圧力12.0kP
a、ガス流量25 l/min、原料ガス成分のAlC
3を2〜5mol%、CO2とCOを混合したガスを3
〜30mol%、HClを1〜6mol%、H2Sを0
〜1mol%、H2を94〜58mol%の範囲で変え
てα型酸化アルミニウム被膜を被覆した。α型酸化アル
ミニウム被膜表面には0.5μmの厚さのTiNをコー
ティング温度990℃で被覆して発明品10〜14、比
較品4〜10を作製した。
[Practical test 2] As a base cemented carbide, 89.1 WC-
2.5TiC-2.6TaC-0.3NbC-Co alloy (wt%), its shape is JIS standard CNMG120
408 was prepared. After cleaning the surface of the substrate, the substrate is carried in an external heating type CVD device, a high-purity gas having a purity of 99.5 vol% or more is used as a raw material gas, and a lower layer film is formed on the substrate surface by a conventionally used CVD method. As a coating temperature 910, a TiN layer having a thickness of 0.5 μm and a TiCN layer having a thickness of 6.5 μm are used.
C. and 0.5 .mu.m thick TiAlCO was coated at a coating temperature of 990.degree. Next, the coating temperature on the surface of the lower layer film is 990 ° C., the furnace pressure is 12.0 kP
a, gas flow rate 25 l / min, source gas component AlC
2 to 5 mol% of L 3 and 3 to a mixed gas of CO 2 and CO
-30 mol%, HCl 1-6 mol%, H 2 S 0
To 1 mol%, it was coated with α-type aluminum oxide film by changing of H 2 in the range of 94~58mol%. The surface of the α-type aluminum oxide coating film was coated with TiN having a thickness of 0.5 μm at a coating temperature of 990 ° C. to produce invention products 10 to 14 and comparative products 4 to 10.

【0019】表4にα型酸化アルミニウム被膜につい
て、最強のX線回折強度を示す結晶面、集合組織化係数
TC(012)、膜厚、切削試験前の刃先部クラック間
隔をそれぞれ記載した。発明品10〜14および比較品
4〜10を、円筒形にV型の4本の溝を入れたS45C
(239HB)を被削材に用いて、切削速度:V=13
0m/min、切り込み:d=2mm、送り:f=0.
3mm/rev.、水溶性切削油使用という切削条件で
断続試験を行い、切削試験後の刃先部のクラック間隔と
コーナー摩耗が0.4mmに達するとき、または刃先部
分が欠損に至るまでの切削パス数の5回の平均値を表4
に記載した。α型酸化アルミニウム被膜のTC(01
2)と耐欠損性は非常によく対応していることが分か
る。切削試験結果と試験前のクラック間隔の相関はあま
り高くないが、切削試験後のクラック間隔およびTC
(012)と試験結果は相関が高い。
Table 4 shows the crystal plane showing the strongest X-ray diffraction intensity, the texture coefficient TC (012), the film thickness, and the crack interval between the cutting edges before the cutting test for the α-type aluminum oxide coating. Inventive products 10 to 14 and comparative products 4 to 10 are S45C in which four V-shaped grooves are cylindrically formed.
Using (239HB) as the work material, cutting speed: V = 13
0 m / min, depth of cut: d = 2 mm, feed: f = 0.
3 mm / rev. Performing an intermittent test under cutting conditions using water-soluble cutting oil, and when the crack interval and corner wear of the cutting edge after the cutting test reach 0.4 mm, or the number of cutting passes until the cutting edge becomes defective, 5 times Table 4 shows the average value of
Described in. TC (01 of α-type aluminum oxide film
It can be seen that 2) and the fracture resistance correspond very well. Although the correlation between the cutting test result and the crack interval before the test is not so high, the crack interval and TC after the cutting test are not so high.
The correlation between (012) and the test result is high.

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【発明の効果】本発明の集合組織化係数TC(012)
が2.5以上であるα型酸化アルミニウム被膜を含む被
膜は被膜自身にクラックが入りやすく基材と被膜の熱膨
張率の差によって被膜に生じた残留応力が減少しやすい
という効果を有する。本発明のα型酸化アルミニウム被
覆工具を切削工具として用いた場合耐欠損性が向上し、
耐摩耗工具として用いた場合寿命が増加する。
EFFECTS OF THE INVENTION The texture organization coefficient TC (012) of the present invention
A film containing an α-type aluminum oxide film having a ratio of 2.5 or more has the effect that the film itself is prone to cracking and the residual stress generated in the film is likely to decrease due to the difference in the coefficient of thermal expansion between the substrate and the film. When the α-type aluminum oxide coated tool of the present invention is used as a cutting tool, the fracture resistance is improved,
When it is used as a wear resistant tool, the life is increased.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基材表面に単層膜または多層膜の被膜が被
覆された被覆工具において、該被膜は、少なくとも一層
がα型酸化アルミニウム(六方晶構造)を主とする酸化
膜からなり、該酸化膜をX線回折したときにおけるα型
酸化アルミニウムの結晶面は、(012)結晶面が最強
のX線回折強度であり、1式で定義される(012)結
晶面の集合組織化係数TC(012)が2.5以上を呈
する酸化アルミニウム被覆工具。 【1式】 ただし、1式において、I(hkl)は(hkl)結晶
面を測定したX線回折強度を表し、I0(hkl)はJ
CPDSカード番号10−173の標準X線回折強度を
表す。
1. A coated tool in which a single-layer film or a multi-layer film is coated on the surface of a base material, and the coating has at least one layer made of an oxide film mainly composed of α-type aluminum oxide (hexagonal structure), The crystal plane of α-type aluminum oxide when the oxide film is subjected to X-ray diffraction has the strongest X-ray diffraction intensity in the (012) crystal plane, and the texture organization coefficient of the (012) crystal plane defined by the formula 1 An aluminum oxide coated tool having a TC (012) of 2.5 or more. [1 set] However, in Formula 1, I (hkl) represents the X-ray diffraction intensity measured on the (hkl) crystal plane, and I 0 (hkl) is J
The standard X-ray diffraction intensity of CPDS card number 10-173 is shown.
【請求項2】前記被膜の少なくとも一層は柱状晶である
ことを特徴とする請求項1記載の酸化アルミニウム被覆
工具。
2. The aluminum oxide coated tool according to claim 1, wherein at least one layer of the coating is columnar crystals.
【請求項3】前記基材は超硬合金、サーメットでなるこ
とを特徴とする請求項1または2記載の酸化アルミニウ
ム被覆工具。
3. The aluminum oxide coated tool according to claim 1, wherein the base material is made of cemented carbide or cermet.
【請求項4】前記被膜はTi、Zr、Hf、V、Nb、
Ta、Cr、Mo、W、Al、Siの一種または二種以
上からなる炭化物、窒化物、炭窒化物、酸化物、炭酸化
物、窒酸化物、炭窒酸化物、ホウ化物のいずれかによっ
て構成される一種の単層膜または二種以上の多層膜が含
まれている請求項1〜3のいずれか記載の酸化アルミニ
ウム被覆工具。
4. The coating comprises Ti, Zr, Hf, V, Nb,
Consists of any one of carbides, nitrides, carbonitrides, oxides, carbonates, oxynitrides, oxycarbonitrides, and borides made of one or more of Ta, Cr, Mo, W, Al, and Si. The aluminum oxide coated tool according to any one of claims 1 to 3, which comprises one kind of single-layer film or two or more kinds of multilayer film.
【請求項5】前記被膜は、Tiの炭化物、窒化物、炭窒
化物、AlとTiを含む窒化物、炭窒化物、炭酸化物、
窒酸化物、炭窒酸化物の中の少なくとも一種の下層膜を
含み、該下層膜が前記基材と前記酸化膜との間に介在さ
れている請求項1〜4のいずれか記載の酸化アルミニウ
ム被覆工具。
5. The coating film comprises Ti carbide, nitride, carbonitride, nitride containing Al and Ti, carbonitride, carbonate,
The aluminum oxide according to any one of claims 1 to 4, comprising an underlayer film of at least one of oxynitride and oxycarbonitride, the underlayer film being interposed between the base material and the oxide film. Coated tool.
【請求項6】前記被膜は前記下層膜と前記酸化膜の他
に、Tiの窒化物、炭窒化物、窒酸化物、炭酸化物、炭
窒酸化物の中の少なくとも一層でなる最外層を含み、該
酸化膜の表面に該最外層が被覆されている請求項1〜5
のいずれか記載の酸化アルミニウム被覆工具。
6. The coating film includes, in addition to the lower layer film and the oxide film, an outermost layer of at least one layer of Ti nitride, carbonitride, nitrous oxide, carbonic oxide, and oxycarbonitride. The outermost layer is coated on the surface of the oxide film.
The aluminum oxide coated tool according to any one of 1.
【請求項7】前記酸化膜は柱状晶であることを特徴とす
る請求項1〜6のいずれか記載の酸化アルミニウム被覆
工具。
7. The aluminum oxide coated tool according to claim 1, wherein the oxide film is a columnar crystal.
【請求項8】前記酸化アルミニウム被覆工具が切削工具
に用いられることを特徴とする請求項1〜7のいずれか
記載の酸化アルミニウム被覆工具。
8. The aluminum oxide coated tool according to claim 1, wherein the aluminum oxide coated tool is used as a cutting tool.
JP2001214733A 2001-07-16 2001-07-16 Aluminium oxide coated cutting tool Pending JP2003025114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214733A JP2003025114A (en) 2001-07-16 2001-07-16 Aluminium oxide coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214733A JP2003025114A (en) 2001-07-16 2001-07-16 Aluminium oxide coated cutting tool

Publications (1)

Publication Number Publication Date
JP2003025114A true JP2003025114A (en) 2003-01-29

Family

ID=19049498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214733A Pending JP2003025114A (en) 2001-07-16 2001-07-16 Aluminium oxide coated cutting tool

Country Status (1)

Country Link
JP (1) JP2003025114A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205301A (en) * 2005-01-27 2006-08-10 Kyocera Corp Surface-coated member and cutting tool
JP2007528941A (en) * 2004-03-12 2007-10-18 ケンナメタル インコーポレイテッド Coated body and method for coating substrate
JP2007283478A (en) * 2006-03-24 2007-11-01 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2008044050A (en) * 2006-08-11 2008-02-28 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy duty cutting
JP2008521628A (en) * 2005-01-31 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cemented carbide inserts for short hole drilling that require wear resistance
WO2009107648A1 (en) * 2008-02-27 2009-09-03 京セラ株式会社 Surface coated member and cutting tool
JP2010207952A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chipping resistance in high-speed continuous cutting of hard alloy steel
JP2010207953A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP2011083877A (en) * 2009-10-19 2011-04-28 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
US8007929B2 (en) 2004-07-29 2011-08-30 Kyocera Corporation Surface coated cutting tool
JP2011224768A (en) * 2010-03-31 2011-11-10 Hitachi Tool Engineering Ltd Hard film-coated tool and method of manufacturing the same
US20110311805A1 (en) * 2009-03-19 2011-12-22 Walter Ag Cutting tool
CN102528130A (en) * 2010-11-12 2012-07-04 三菱综合材料株式会社 Surface coated drill with excellent wear resistance and chip discharging property
US8318293B2 (en) * 2005-06-17 2012-11-27 Sandvik Intellectual Property Ab Coated cutting tool insert
EP2570510A1 (en) * 2011-09-16 2013-03-20 Walter AG Sulfur containing alpha-alumina coated cutting tool
US8747990B2 (en) 2009-11-06 2014-06-10 Tungaloy Corporation Coated tool
WO2015030073A1 (en) 2013-08-27 2015-03-05 京セラ株式会社 Coated tool
WO2015093530A1 (en) 2013-12-17 2015-06-25 京セラ株式会社 Coated tool
US20160263659A1 (en) * 2013-11-08 2016-09-15 Tungaloy Corporation Coated cutting tool
KR20170036028A (en) 2014-08-28 2017-03-31 쿄세라 코포레이션 Coated tool
KR20170042323A (en) 2014-09-24 2017-04-18 쿄세라 코포레이션 Coated tool
US10570509B2 (en) * 2014-12-19 2020-02-25 Sandvik Intellectual Property Ab CVD coated cutting tool
US10744568B2 (en) 2015-01-28 2020-08-18 Kyocera Corporation Coated tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295517A (en) * 1992-04-17 1993-11-09 Toshiba Tungaloy Co Ltd Multilayer-coated sintered alloy with crystal orientation
JP2000044370A (en) * 1998-07-27 2000-02-15 Sumitomo Electric Ind Ltd Cubic bn-based sintered product cutting tool coated with alumina
JP2000218410A (en) * 1999-02-03 2000-08-08 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having good tenacity of aluminum oxide layer forming hard coated layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295517A (en) * 1992-04-17 1993-11-09 Toshiba Tungaloy Co Ltd Multilayer-coated sintered alloy with crystal orientation
JP2000044370A (en) * 1998-07-27 2000-02-15 Sumitomo Electric Ind Ltd Cubic bn-based sintered product cutting tool coated with alumina
JP2000218410A (en) * 1999-02-03 2000-08-08 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having good tenacity of aluminum oxide layer forming hard coated layer

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528941A (en) * 2004-03-12 2007-10-18 ケンナメタル インコーポレイテッド Coated body and method for coating substrate
US8007929B2 (en) 2004-07-29 2011-08-30 Kyocera Corporation Surface coated cutting tool
JP2006205301A (en) * 2005-01-27 2006-08-10 Kyocera Corp Surface-coated member and cutting tool
JP4711691B2 (en) * 2005-01-27 2011-06-29 京セラ株式会社 Surface covering member and cutting tool
JP2008521628A (en) * 2005-01-31 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cemented carbide inserts for short hole drilling that require wear resistance
US8318293B2 (en) * 2005-06-17 2012-11-27 Sandvik Intellectual Property Ab Coated cutting tool insert
JP2007283478A (en) * 2006-03-24 2007-11-01 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP2008044050A (en) * 2006-08-11 2008-02-28 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy duty cutting
US8449992B2 (en) 2008-02-27 2013-05-28 Kyocera Corporation Surface-coated member and cutting tool
WO2009107648A1 (en) * 2008-02-27 2009-09-03 京セラ株式会社 Surface coated member and cutting tool
JP2010207952A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chipping resistance in high-speed continuous cutting of hard alloy steel
JP2010207953A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
US20110311805A1 (en) * 2009-03-19 2011-12-22 Walter Ag Cutting tool
US8691378B2 (en) * 2009-03-19 2014-04-08 Walter Ag Cutting tool
JP2011083877A (en) * 2009-10-19 2011-04-28 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
US8747990B2 (en) 2009-11-06 2014-06-10 Tungaloy Corporation Coated tool
JP2013163263A (en) * 2010-03-31 2013-08-22 Hitachi Tool Engineering Ltd Hard film-coated tool
JP2011224768A (en) * 2010-03-31 2011-11-10 Hitachi Tool Engineering Ltd Hard film-coated tool and method of manufacturing the same
CN102528130A (en) * 2010-11-12 2012-07-04 三菱综合材料株式会社 Surface coated drill with excellent wear resistance and chip discharging property
WO2013037998A3 (en) * 2011-09-16 2013-05-10 Walter Ag Sulfur containing alpha-alumina coated cutting tool
EP2570510A1 (en) * 2011-09-16 2013-03-20 Walter AG Sulfur containing alpha-alumina coated cutting tool
US20140173996A1 (en) * 2011-09-16 2014-06-26 Walter Ag Sulfur Containing Alpha-Alumina Coated Cutting Tool
US9970104B2 (en) 2013-08-27 2018-05-15 Kyocera Corporation Coated tool
WO2015030073A1 (en) 2013-08-27 2015-03-05 京セラ株式会社 Coated tool
US20160263659A1 (en) * 2013-11-08 2016-09-15 Tungaloy Corporation Coated cutting tool
US9993878B2 (en) * 2013-11-08 2018-06-12 Tungaloy Corporation Coated cutting tool
CN105828991A (en) * 2013-12-17 2016-08-03 京瓷株式会社 Coated tool
WO2015093530A1 (en) 2013-12-17 2015-06-25 京セラ株式会社 Coated tool
KR20160088351A (en) 2013-12-17 2016-07-25 쿄세라 코포레이션 Coated tool
US10174421B2 (en) 2013-12-17 2019-01-08 Kyocera Corporation Coated tool
KR20170036028A (en) 2014-08-28 2017-03-31 쿄세라 코포레이션 Coated tool
US10369632B2 (en) 2014-08-28 2019-08-06 Kyocera Corporation Coated tool
KR20170042323A (en) 2014-09-24 2017-04-18 쿄세라 코포레이션 Coated tool
US10370758B2 (en) 2014-09-24 2019-08-06 Kyocera Corporation Coated tool
US10570509B2 (en) * 2014-12-19 2020-02-25 Sandvik Intellectual Property Ab CVD coated cutting tool
US10744568B2 (en) 2015-01-28 2020-08-18 Kyocera Corporation Coated tool

Similar Documents

Publication Publication Date Title
JP2003025114A (en) Aluminium oxide coated cutting tool
JP5715570B2 (en) Coated tool
KR102033188B1 (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
JP3678924B2 (en) Aluminum oxide coated tool
KR101260694B1 (en) Oxide coated cutting tool
JP5884138B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP4832108B2 (en) Surface coated cutting tool
JP2009095907A (en) Blade edge replaceable cutting chip
WO2013031915A1 (en) Cutting tool
US9044811B2 (en) Surface coated cutting tool
KR100587965B1 (en) Coating materials for a cutting tool/an abrasion resistance tool
JPH11131235A (en) Coated cemented carbide
KR100832868B1 (en) Coating materials for a cutting tool/an abrasion resistance tool
JP3901477B2 (en) Aluminum oxide coated tool
JP2002370105A (en) Aluminum oxide coated-tool
JP4761335B2 (en) Method for producing TiZr carbonitride coated tool
JP3910881B2 (en) Oxide coating tool
US20060003186A1 (en) Surface-coated hard material for cutting tools or wear-resistant tools
CN114289745A (en) Cutting tool
JP2002273607A (en) Multilayer coat tool
JP2004148503A (en) Aluminum oxide coated tool
JP4029529B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP2022134543A (en) Surface covering cutting tool
JP2002205204A (en) Multilayer covering tool
JP2022138563A (en) Surface-coated machining tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129