JP2003002605A - Method for operating and stopping steam reformer - Google Patents

Method for operating and stopping steam reformer

Info

Publication number
JP2003002605A
JP2003002605A JP2001191880A JP2001191880A JP2003002605A JP 2003002605 A JP2003002605 A JP 2003002605A JP 2001191880 A JP2001191880 A JP 2001191880A JP 2001191880 A JP2001191880 A JP 2001191880A JP 2003002605 A JP2003002605 A JP 2003002605A
Authority
JP
Japan
Prior art keywords
reformer
steam reformer
steam
remover
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001191880A
Other languages
Japanese (ja)
Inventor
Jun Komiya
純 小宮
Hiroshi Fujiki
広志 藤木
Naohiko Fujiwara
直彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001191880A priority Critical patent/JP2003002605A/en
Publication of JP2003002605A publication Critical patent/JP2003002605A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the oxidation of a reforming catalyst for preventing its deterioration when starting to operate and stopping an apparatus for producing hydrogen. SOLUTION: This method for operating and stopping a steam reformer is that by using either one of reformer systems consisting of a reformer system (A) comprising a steam reformer and a carbon monoxide converter, a reformer system (B) comprising the steam reformer, the carbon monoxide converter and a carbon monoxide removal apparatus, and a reformer system (C) comprising the steam reformer and the carbon monoxide removal apparatus, and when the steam reformer is operated, the operation is started while preventing the oxidation of the reforming catalyst by setting the amount of air introduced into a combustion zone of the steam reformer less than the amount of air capable of completely burning a fuel gas and feeding a partially burning gas containing hydrogen and carbon monoxide produced by incomplete combustion of the fuel gas in the combustion zone into a reforming zone in the steam reformer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素やアルコ
ール類の水蒸気改質法による改質器の起動方法及び停止
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting and stopping a reformer by a steam reforming method for hydrocarbons and alcohols.

【0002】[0002]

【従来の技術】水素は各種用途に用いられる基礎原料で
あり、リン酸形燃料電池(PAEC)や固体高分子形燃
料電池(PEFC)などの燃料としても用いられる。水
素の製造法の一つとして水蒸気改質法がある。水蒸気改
質法は、メタン、エタン、プロパン、ブタン、都市ガ
ス、LPガス、天然ガス、その他の炭化水素ガス(2種
以上の炭化水素の混合ガスを含む)やメタノール、エタ
ノール等のアルコール類を水蒸気により改質して水素リ
ッチな改質ガスを生成させる方法である。水蒸気改質法
では改質器、すなわち水蒸気改質器中での接触反応によ
りそれら炭化水素やアルコール類が水素リッチな改質ガ
スへ変えられる。
2. Description of the Related Art Hydrogen is a basic raw material used for various purposes and is also used as a fuel for phosphoric acid fuel cells (PAEC) and polymer electrolyte fuel cells (PEFC). A steam reforming method is one of the methods for producing hydrogen. The steam reforming method uses methane, ethane, propane, butane, city gas, LP gas, natural gas, other hydrocarbon gas (including mixed gas of two or more kinds of hydrocarbons) and alcohols such as methanol and ethanol. This is a method of reforming with steam to generate a hydrogen-rich reformed gas. In the steam reforming method, those hydrocarbons and alcohols are converted into hydrogen-rich reformed gas by a catalytic reaction in a reformer, that is, a steam reformer.

【0003】図1は水蒸気改質器を模式的に示す図であ
る。概略、バーナあるいは燃焼触媒を配置した燃焼部
(加熱部)と改質触媒を配置した改質部とにより構成さ
れる。改質部では炭化水素やアルコール類が水蒸気と反
応して水素リッチな改質ガスが生成される。改質部で起
こる反応は大きな吸熱を伴うので、反応の進行のために
外部から熱が供給される。炭化水素を原料とする場合に
は600℃程度以上の温度が必要であり、アルコール類
を原料とする場合には250〜400℃程度の温度が必
要である。このため燃焼部における燃料ガスの空気(燃
焼空気)による燃焼により発生した燃焼熱(ΔH)が改
質部に供給される。燃焼触媒としては例えば白金等の貴
金属触媒が用いられ、改質触媒としては例えばNi系、
Ru系等の触媒が用いられる。
FIG. 1 is a diagram schematically showing a steam reformer. In general, it is composed of a combustion section (heating section) in which a burner or a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. In the reforming section, hydrocarbons and alcohols react with steam to produce hydrogen-rich reformed gas. Since the reaction that takes place in the reforming section is accompanied by a large amount of heat absorption, heat is supplied from the outside for the progress of the reaction. When hydrocarbon is used as a raw material, a temperature of about 600 ° C. or higher is required, and when alcohol is used as a raw material, a temperature of about 250 to 400 ° C. is required. Therefore, the combustion heat (ΔH) generated by the combustion of the fuel gas in the combustion section by the air (combustion air) is supplied to the reforming section. A precious metal catalyst such as platinum is used as the combustion catalyst, and a Ni-based catalyst is used as the reforming catalyst.
A Ru-based catalyst or the like is used.

【0004】図2は、上記のような水蒸気改質器を用
い、炭化水素(原料ガス)からPEFCに至るまでの態
様例を示す図である。都市ガスやLPガスにはメルカプ
タン類、サルファイド類、あるいはチオフェンなどの付
臭剤が添加されている。改質触媒は、これら硫黄化合物
により被毒し性能劣化を来たすので、それらの硫黄化合
物を除去するために脱硫器へ導入される。次いで、別途
設けられた水蒸気発生器からの水蒸気を添加、混合して
水蒸気改質器の改質部へ導入し、改質部中での原料ガス
の水蒸気による改質反応により水素リッチな改質ガスが
生成される。
FIG. 2 is a diagram showing a mode example from hydrocarbon (raw material gas) to PEFC using the steam reformer as described above. Odorants such as mercaptans, sulfides, and thiophene are added to city gas and LP gas. Since the reforming catalyst is poisoned by these sulfur compounds and deteriorates in performance, they are introduced into the desulfurizer in order to remove the sulfur compounds. Next, steam from a separately provided steam generator is added, mixed and introduced into the reforming section of the steam reformer, and the hydrogen-rich reforming is performed by the reforming reaction of the raw material gas with steam in the reforming section. Gas is produced.

【0005】原料ガスがメタンである場合の改質反応は
「CH4+2H2O→CO2+4H2」で示される。生成す
る改質ガス中には未反応のメタン、未反応の水蒸気、生
成炭酸ガスのほか、一酸化炭素(CO)が副生して8〜
15%(容量%、以下同じ)程度含まれている。このた
め改質ガスは、副生COを二酸化炭素(CO2)と水素
へ変えて除去するためにCO変成器にかけられる。CO
変成器では例えば銅ー亜鉛系や白金触媒等の触媒が用い
られる。CO変成器中での反応「CO+H2O→CO2
2」で必要な水蒸気としては改質部において未反応の
残留水蒸気が利用される。
The reforming reaction when the source gas is methane is represented by "CH 4 + 2H 2 O → CO 2 + 4H 2 ". In the reformed gas produced, unreacted methane, unreacted water vapor, carbon dioxide produced, and carbon monoxide (CO) as a by-product are produced.
About 15% (volume%, the same applies below) is included. For this reason, the reformed gas is applied to a CO shift converter in order to remove by-product CO by converting it into carbon dioxide (CO 2 ) and hydrogen. CO
In the shift converter, a catalyst such as a copper-zinc system or a platinum catalyst is used. Reaction in CO shifter "CO + H 2 O → CO 2 +
The unreacted residual steam in the reforming section is used as the steam necessary for "H 2 ".

【0006】CO変成器から出る改質ガスは、未反応の
メタンと余剰水蒸気を除けば、水素と炭酸ガスとからな
っている。このうち水素が目的とする成分であるが、C
O変成器を経て得られる改質ガスについても、COは完
全には除去されず、1%程度以下ではあるが、なお微量
のCOが含まれている。例えば、PAFCでの燃料水素
中のCOの許容濃度は1%程度であるので、CO変成器
を経た改質ガスはそのままPAFC用の燃料水素として
使用することができる。
The reformed gas discharged from the CO shift converter is composed of hydrogen and carbon dioxide except for unreacted methane and surplus steam. Of these, hydrogen is the target component, but C
Also in the reformed gas obtained through the O-transformer, CO is not completely removed, but a slight amount of CO is still contained, although it is about 1% or less. For example, since the permissible concentration of CO in fuel hydrogen in PAFC is about 1%, the reformed gas that has passed through the CO shift converter can be used as it is as fuel hydrogen for PAFC.

【0007】一方、PEFCに供給する燃料水素中のC
Oの許容濃度は100ppm(容量ppm、以下同じ)
程度(その燃料極等の構成材料の如何によっては10p
pm程度)であり、これを越えると電池性能が著しく劣
化するので、CO成分はPEFCへ導入する前にできる
限り除去する必要がある。このため、改質ガスはCO変
成器によりCO濃度を1%程度以下まで低下させた後、
CO除去器(=CO選択酸化反応器)にかけられる。C
O除去器では空気などの酸化剤が添加され、COの酸化
反応(CO+1/2O2=CO2)によりCOをCO2
変えることでCOを除去し、CO濃度を100ppm以
下、10ppm以下、あるいは5ppm以下というよう
に低減させる。
On the other hand, C in fuel hydrogen supplied to PEFC
Allowable concentration of O is 100ppm (volume ppm, the same applies below)
Degree (10p depending on the constituent material of the fuel electrode, etc.)
pm), and if it exceeds this value, the battery performance will be significantly deteriorated, so the CO component must be removed as much as possible before being introduced into the PEFC. Therefore, after the CO concentration of the reformed gas is reduced to about 1% or less by the CO shifter,
It is applied to a CO remover (= CO selective oxidation reactor). C
In the O remover, an oxidizing agent such as air is added, and CO is removed by changing CO to CO 2 by the oxidation reaction of CO (CO + 1 / 2O 2 = CO 2 ), and the CO concentration is 100 ppm or less, 10 ppm or less, or Reduce it to 5 ppm or less.

【0008】また、アルコール類を原料とする場合に
は、水蒸気改質器で得られる改質ガス中のCO濃度は1
%程度以下であるので、この改質ガスをPAFC用の燃
料水素として利用する場合にはそのまま使用できる。し
かし、この改質ガスをPEFC用の燃料水素として利用
する場合には、上記と同様にCO除去器にかけ、CO濃
度を100ppm以下、10ppm以下、あるいは5p
pm以下というように低減させた後に供給される。
When alcohol is used as the raw material, the CO concentration in the reformed gas obtained by the steam reformer is 1
Since it is about 10% or less, when the reformed gas is used as fuel hydrogen for PAFC, it can be used as it is. However, when this reformed gas is used as fuel hydrogen for PEFC, it is applied to a CO remover in the same manner as above, and the CO concentration is 100 ppm or less, 10 ppm or less, or 5 p
It is supplied after being reduced to pm or less.

【0009】ところで、水蒸気改質器は、得られる改質
ガスの需要に応じて起動させ、停止させることが必要で
ある。これに伴い、水蒸気改質器に連なるCO変成器の
起動、停止を行う必要があり、CO変成器に続きCO除
去器を配置する場合には、CO変成器及びCO除去器の
起動、停止を行う必要がある。また、水蒸気改質器でア
ルコール類を原料とし、これにCO除去器を連結する場
合には、CO除去器の起動、停止を行う必要がある。
By the way, it is necessary to start and stop the steam reformer according to the demand of the obtained reformed gas. Along with this, it is necessary to start and stop the CO shifter connected to the steam reformer. When arranging the CO remover subsequent to the CO shifter, start and stop the CO shifter and the CO remover. There is a need to do. Further, when alcohol is used as a raw material in the steam reformer and the CO remover is connected to this, it is necessary to start and stop the CO remover.

【0010】なお、本明細書中、水蒸気改質器とCO変
成器を含む水素製造装置、水蒸気改質器とCO変成器と
CO除去器を含む水素製造装置、水蒸気改質器とCO除
去器を含む水素製造装置をそれぞれ、適宜、改質器系
(A)、改質器系(B)、改質器系(C)と指称する。
これら改質器系には水蒸気発生器なども含まれる場合が
ある。また、燃焼部、改質部とは、それぞれ、水蒸気改
質器における燃焼部、改質部の意味である。燃焼部へは
燃焼用のガスが供給され、改質部へは水蒸気で改質され
る炭化水素やアルコール類が供給されるが、両者を区別
して、燃焼部へ供給する燃焼用のガスを燃焼ガスとし、
改質部へ供給される炭化水素やアルコール類を原料ガス
と称している。
In the present specification, a hydrogen production apparatus including a steam reformer and a CO shifter, a hydrogen production apparatus including a steam reformer, a CO shifter and a CO remover, a steam reformer and a CO remover. The hydrogen producing apparatus including the above will be referred to as a reformer system (A), a reformer system (B), and a reformer system (C), as appropriate.
These reformer systems may include a steam generator and the like. The combustion section and the reforming section mean the combustion section and the reforming section in the steam reformer, respectively. Combustion gas is supplied to the combustion section, and hydrocarbons and alcohols that are reformed by steam are supplied to the reforming section.The two are distinguished, and the combustion gas supplied to the combustion section is burned. As gas,
Hydrocarbons and alcohols supplied to the reforming section are called raw material gases.

【0011】例えば、改質器系を備えたPEFCでは、
従来、その停止時に、改質器系内に可燃性ガスを残存さ
せず、またPEFCの燃料極側、空気極側のガス圧バラ
ンスを維持して保護するために、改質器系内を窒素など
の不活性ガスを用いてパージしている。一方、その起動
時には、改質器系を作動温度に昇温する必要があるが、
そのために電気ヒータを付設する場合を除いて、窒素な
どの不活性ガスや水蒸気(スチーム)を熱媒体として昇
温している。図2はこの態様を示す図である。
For example, in a PEFC equipped with a reformer system,
Conventionally, at the time of the shutdown, in order to prevent the flammable gas from remaining in the reformer system and to maintain and protect the gas pressure balance on the fuel electrode side and the air electrode side of PEFC, the inside of the reformer system is protected with nitrogen. Purging using an inert gas such as. On the other hand, at the time of startup, it is necessary to raise the temperature of the reformer system to the operating temperature.
Therefore, the temperature is raised using an inert gas such as nitrogen or steam (steam) as a heat medium, except when an electric heater is attached. FIG. 2 is a diagram showing this aspect.

【0012】しかし、一般家庭向けなどに用いられるP
EFCにおいては、不活性ガスを用いることができな
い。すなわち、不活性ガスを用いるには、別途そのため
の設備が必要となり、不活性ガスの残量管理も必要とな
る。したがって、起動時の熱媒体としては水蒸気のみを
使用せざるを得ないが、水蒸気を使用して昇温すると、
400℃付近から改質触媒の一部が酸化され始める。改
質触媒が酸化されると、水素による還元処理が必要にな
るばかりか、酸化還元を繰り返すことになって改質触媒
の劣化が促進されることになり、頻繁な再生や交換が必
要となる。
However, P used for general households
No inert gas can be used in EFC. That is, in order to use the inert gas, a separate facility for that purpose is required, and it is also necessary to manage the residual amount of the inert gas. Therefore, although it is unavoidable to use only steam as the heat medium at startup, when steam is used to raise the temperature,
A part of the reforming catalyst begins to be oxidized at around 400 ° C. When the reforming catalyst is oxidized, not only reduction treatment with hydrogen is required, but also redox is repeated to accelerate deterioration of the reforming catalyst, and frequent regeneration and replacement are required. .

【0013】このほか、水蒸気改質器の燃焼部での燃焼
排ガスを用いてCO変成器の昇温を行うことも考えられ
る。図3はこの態様を示す図である。ところが、水蒸気
改質器の起動時に、該燃焼排ガスを熱媒体として昇温す
る場合、燃焼排ガス中の酸素により改質触媒の酸化が起
こる。このため、水素による還元処理が必要となるばか
りでなく、酸化、還元を繰り返すことにより改質触媒の
劣化が促進される。
In addition to this, it is also conceivable to raise the temperature of the CO shift converter by using the combustion exhaust gas in the combustion section of the steam reformer. FIG. 3 is a diagram showing this aspect. However, when the temperature of the combustion exhaust gas is increased as a heat medium when the steam reformer is started, oxygen in the combustion exhaust gas causes oxidation of the reforming catalyst. Therefore, not only reduction treatment with hydrogen is required, but also deterioration of the reforming catalyst is promoted by repeating oxidation and reduction.

【0014】[0014]

【発明が解決しようとする課題】本発明者等は、水蒸気
改質器の停止時及び起動時における以上のような問題を
解決するため多方面から検討、研究を続けているが、そ
の起動時及び停止時に、水蒸気改質器の燃焼部の燃焼ガ
スを用い、その際、燃焼部へ供給する燃料ガス量に対す
る燃焼用空気(燃焼空気)の量を制御することにより、
改質触媒の酸化を防止できることを見い出した。本発明
は、この事実を利用して、その起動及び停止に際して、
改質部中の改質触媒の酸化を回避し、その劣化を防止す
るようにしてなる水蒸気改質器の起動方法及び停止方法
を提供することを目的とする。
The inventors of the present invention have been studying and researching from various aspects in order to solve the above problems at the time of stopping and starting the steam reformer. And, at the time of stoppage, the combustion gas of the combustion part of the steam reformer is used, and at that time, by controlling the amount of combustion air (combustion air) relative to the amount of fuel gas supplied to the combustion part,
It has been found that oxidation of the reforming catalyst can be prevented. The present invention utilizes this fact to start and stop the
It is an object of the present invention to provide a starting method and a stopping method of a steam reformer which avoids oxidation of a reforming catalyst in a reforming section and prevents its deterioration.

【0015】[0015]

【課題を解決するための手段】本発明は、水蒸気改質器
とCO変成器を含む改質器系(A)、水蒸気改質器とC
O変成器とCO除去器を含む改質器系(B)、水蒸気改
質器とCO除去器を含む改質器系(C)のいずれかの改
質器系における水蒸気改質器の起動方法であって、その
起動時に、水蒸気改質器の燃焼部に導入する空気量を燃
料ガスを完全燃焼させる空気量より少なく設定し、燃焼
部で燃料ガスを不完全燃焼させて生成した水素と一酸化
炭素が含まれた部分燃焼ガスを水蒸気改質器の改質部に
供給することにより、改質触媒の酸化を防止しながら起
動することを特徴とする水蒸気改質器の起動方法を提供
する。
The present invention is directed to a reformer system (A) including a steam reformer and a CO shifter, a steam reformer and a C.
Method of starting steam reformer in reformer system (B) including O shifter and CO remover, or reformer system (C) including steam reformer and CO remover At the time of startup, the amount of air introduced into the combustion section of the steam reformer is set to be smaller than the amount of air that completely burns the fuel gas, and the amount of air and hydrogen generated by incomplete combustion of the fuel gas in the combustion section are set equal to each other. Provided is a method for starting a steam reformer, which is characterized in that a partial combustion gas containing carbon oxide is supplied to a reforming section of a steam reformer to start while preventing oxidation of a reforming catalyst. .

【0016】本発明は、水蒸気改質器とCO変成器を含
む改質器系(A)、水蒸気改質器とCO変成器とCO除
去器を含む改質器系(B)、水蒸気改質器とCO除去器
を含む改質器系(C)のいずれかの改質器系における水
蒸気改質器の起動方法であって、その起動時に、水蒸気
改質器の燃焼部に導入する燃料ガスと空気の比率(空気
比λ)を1.0〜2.0の範囲に設定して燃焼部で燃焼
させて水蒸気改質器の改質部を400℃まで加熱した
後、水蒸気改質器の燃焼部に導入する空気量を燃料ガス
を完全燃焼させる空気量より少なく設定し、燃焼部で燃
料ガスを不完全燃焼させて生成した水素と一酸化炭素が
含まれた部分燃焼ガスを水蒸気改質器の改質部に供給す
ることにより、改質触媒の酸化を防止しながら起動する
ことを特徴とする水蒸気改質器の起動方法を提供する。
The present invention relates to a reformer system (A) including a steam reformer and a CO shifter, a reformer system (B) including a steam reformer, a CO shifter and a CO remover, and a steam reformer. A method for starting a steam reformer in any one of the reformer systems (C) including a reformer system and a CO remover, the fuel gas being introduced into the combustion part of the steam reformer at the time of starting. After the ratio of air and air (air ratio λ) is set in the range of 1.0 to 2.0 and burned in the combustor to heat the reformer of the steam reformer to 400 ° C., the steam reformer is heated. The amount of air introduced into the combustion part is set to be less than the amount of air that completely burns the fuel gas, and the partial combustion gas containing hydrogen and carbon monoxide produced by incomplete combustion of the fuel gas in the combustion part is steam reformed. By supplying to the reforming section of the reactor, the water is characterized by starting while preventing the oxidation of the reforming catalyst. It provides a method of starting Kiaratame reformer.

【0017】本発明は、水蒸気改質器とCO変成器を含
む改質器系(A)、水蒸気改質器とCO変成器とCO除
去器を含む改質器系(B)、水蒸気改質器とCO除去器
を含む改質器系(C)のいずれかの改質器系における水
蒸気改質器の停止方法であって、その停止時に、水蒸気
改質器の燃焼部に導入する空気量を燃料ガスを完全燃焼
させる空気量より少なく設定し、燃焼部で燃料ガスを不
完全燃焼させて生成した水素と一酸化炭素が含まれた部
分燃焼ガスを水蒸気改質器の改質部に供給することによ
り、改質器系内の可燃性ガスと水蒸気をパージすること
を特徴とする水蒸気改質器の停止方法を提供する。
The present invention relates to a reformer system (A) including a steam reformer and a CO shifter, a reformer system (B) including a steam reformer, a CO shifter and a CO remover, and a steam reformer. A method for stopping a steam reformer in any one of the reformer systems (C) including a reformer system and a CO remover, wherein the amount of air introduced into the combustion section of the steam reformer at the time of the stop Is set to less than the amount of air that completely burns the fuel gas, and the partial combustion gas containing hydrogen and carbon monoxide generated by incomplete combustion of the fuel gas in the combustion unit is supplied to the reforming unit of the steam reformer. By doing so, a method for stopping the steam reformer is provided, which comprises purging the combustible gas and steam in the reformer system.

【0018】[0018]

【発明の実施の形態】水蒸気改質器は基本的にバーナあ
るいは燃焼触媒を配置した燃焼部と改質触媒を配置した
改質部とにより構成されるが、本発明においてはそのよ
うに構成された水蒸気改質器が用いられる。改質触媒と
しては例えばNi系(例えばアルミナにNiを担持した
触媒)やRu系(例えばアルミナにRuを担持した触
媒)等の改質触媒が用いられる。燃焼部に燃焼触媒を配
置する場合には、例えば白金等の貴金属触媒やアルミナ
ヘキサネート等の燃焼触媒が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The steam reformer is basically composed of a burner or a combustion section in which a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. A steam reformer is used. As the reforming catalyst, for example, a Ni-based (for example, a catalyst in which Ni is supported on alumina) or a Ru-based (for example, a catalyst in which Ru is supported on alumina) or the like is used. When arranging the combustion catalyst in the combustion section, for example, a noble metal catalyst such as platinum or a combustion catalyst such as alumina hexanate is used.

【0019】CO変成器においては、例えば白金系触媒
(白金触媒)や銅ー亜鉛系等のシフト触媒(CO変成触
媒)が用いられる。また、Fe、Crを主成分とする高
温CO変成触媒とCu、Znを主成分とする低温CO変
成触媒の二段の触媒層により構成することもできる。こ
のうちFe、Crを主成分とする高温CO変成触媒は、
それのみでも機能するので、該低温CO変成触媒と併用
せずに用いてもよい。CO除去器においては例えば白
金、ルテニウム等の貴金属触媒が用いられる。
In the CO shift converter, for example, a platinum catalyst (platinum catalyst) or a copper-zinc shift catalyst (CO shift catalyst) is used. Alternatively, the catalyst layer may be composed of two stages of a high temperature CO shift catalyst containing Fe and Cr as main components and a low temperature CO shift catalyst containing Cu and Zn as main components. Among these, the high temperature CO shift catalyst containing Fe and Cr as main components is
Since it functions by itself, it may be used without being used in combination with the low temperature CO shift catalyst. Noble metal catalysts such as platinum and ruthenium are used in the CO remover.

【0020】ここで、改質器系(A)における水蒸気改
質器とCO変成器、改質器系(B)における水蒸気改質
器とCO変成器とCO除去器、改質器系(C)における
水蒸気改質器とCO除去器は、それら水蒸気改質器、C
O変成器、CO除去器をそれぞれ別個に配置した形式で
構成する場合のほか、それら水蒸気改質器、CO変成
器、CO除去器を一体にした形式で構成する場合もある
が、本発明はそれらいずれの改質器系についても適用さ
れる。また、水蒸気改質器には、水蒸気発生器を別個に
配置した形式のほか、水蒸気発生器を一体に構成した形
式のものもあるが、本発明はそれらいずれの水蒸気改質
器についても適用される。
Here, the steam reformer and CO shifter in the reformer system (A), the steam reformer and CO shifter and CO remover in the reformer system (B), and the reformer system (C ), The steam reformer and the CO remover are those steam reformer, C
In addition to the case where the O-transformer and the CO remover are separately arranged, the steam reformer, the CO shifter, and the CO remover may be integrally formed. The same applies to any of these reformer systems. Further, the steam reformer includes a type in which a steam generator is separately arranged and a type in which a steam generator is integrally configured. However, the present invention is applied to any of these steam reformers. It

【0021】《起動時の実施の形態》本発明は、改質器
系(A)〜(C)において、その起動時に、まず(1)
水蒸気改質器の燃焼部で燃料ガスを空気(燃焼用空気)
で燃焼させて水蒸気改質器の改質部を間接的に加熱する
ことにより、改質部中の改質触媒を400℃以下まで予
熱する。ここでの燃料ガスの燃焼は、下記(2)の空気
量(空気比)による燃焼でもよく、空気比λ=1.0〜
2.0の範囲に設定した燃焼でもよい。
<< Embodiment at Startup >> In the reformer systems (A) to (C), the present invention first (1)
Fuel gas in the combustion section of the steam reformer is air (combustion air)
To indirectly heat the reforming section of the steam reformer to preheat the reforming catalyst in the reforming section to 400 ° C. or lower. The combustion of the fuel gas here may be combustion according to the air amount (air ratio) of (2) below, and the air ratio λ = 1.0 to
The combustion may be set in the range of 2.0.

【0022】次いで、(2)水蒸気改質器の改質部中の
改質触媒への熱搬入媒体として、水蒸気改質器の燃焼部
に導入する空気量を燃料ガスを完全燃焼させる空気量よ
り少なく設定し、燃焼部で燃料ガスを不完全燃焼させて
生成した水素と一酸化炭素が含まれた還元性の部分燃焼
ガスを水蒸気改質器の改質部に供給する。これにより改
質触媒の酸化を防止し、且つ、部分燃焼ガスを熱媒体と
して利用することで改質器系を急速に起動させることが
できる。
Next, (2) the amount of air introduced into the combustion section of the steam reformer as a heat transfer medium to the reforming catalyst in the reforming section of the steam reformer is determined from the amount of air that completely burns the fuel gas. A small partial combustion gas containing hydrogen and carbon monoxide generated by incompletely combusting the fuel gas in the combustion section is supplied to the reforming section of the steam reformer. Thus, the reforming catalyst can be prevented from oxidizing, and the partial combustion gas can be used as a heat medium to rapidly start the reformer system.

【0023】上記(2)のように、本発明においては、
燃料ガスを完全燃焼させる空気量より少なく設定するこ
とが重要である。その空気量としては、好ましくは、水
蒸気改質器の燃焼部での空気比λ(=燃料ガスを完全燃
焼させる上で理論的に必要な最小限の空気量に対する実
際に供給した乾き空気の量の比)で0.8から1.0未
満の範囲として、十分に混合することが必要である。
As described in (2) above, in the present invention,
It is important to set less than the amount of air that completely burns the fuel gas. The amount of air is preferably the air ratio λ (= the amount of dry air actually supplied to the theoretically minimum amount of air required to completely burn the fuel gas in the combustion section of the steam reformer). Ratio) of 0.8 to less than 1.0, and sufficient mixing is required.

【0024】また、十分昇温していない状況で水蒸気改
質器の燃焼部で不完全燃焼を開始すると部分燃焼ガス中
に煤が発生する場合がある。また、燃焼部が高温になる
ことにより、サーマルNOxが発生する場合がある。そ
のような、煤を含む部分燃焼ガスを改質部に流通させる
と、改質触媒に煤が析出(付着)する等して、改質触媒
を劣化させる場合がある。この場合には、水蒸気改質器
に付設された改質用の水蒸気発生器から発生させた水蒸
気を燃焼部に添加、あるいは直接給水を燃焼部に滴下す
ることにより、部分燃焼ガス中の煤の抑制と、燃焼温度
が低減されることによるサーマルNOxの低減を図るこ
とができる。また、燃料と空気を200℃以上に予熱し
ていれば、空気比を0.8〜1.0未満に設定した部分
燃焼ガスからは煤の生成を抑制することができる。
If incomplete combustion is started in the combustion section of the steam reformer while the temperature is not sufficiently raised, soot may be generated in the partial combustion gas. Further, thermal NOx may be generated due to the high temperature of the combustion part. When such a partial combustion gas containing soot is circulated to the reforming section, soot may be deposited (adhered) on the reforming catalyst to deteriorate the reforming catalyst. In this case, the steam generated from the steam generator for reforming attached to the steam reformer is added to the combustion section, or the feed water is dropped directly into the combustion section to remove the soot in the partial combustion gas. Suppression and reduction of thermal NOx due to reduction of combustion temperature can be achieved. Further, if the fuel and the air are preheated to 200 ° C. or higher, the generation of soot can be suppressed from the partial combustion gas having the air ratio set to 0.8 to less than 1.0.

【0025】本発明においては、その起動時における以
上(1)〜(2)の基本構成に加え、以下(3)〜
(9)のような各種態様をとることができる。 (3)水蒸気改質器とCO変成器とCO除去器を含む改
質器系(B)及び水蒸気改質器とCO除去器を含む改質
器系(C)では、該部分燃焼ガス中に含まれる還元性ガ
スのうちCOは、CO除去器に導入される酸化剤と選択
的に反応して不活性な成分(CO2)となるので、改質
器系外に排出してもよい。また、改質器系にPEFCを
連結する場合には、PEFCに流通させてから排出して
もよく、部分燃焼ガス中の水素を燃料として発電しても
よい。なお、上記酸化剤としては空気、酸素富化空気、
酸素などが用いられる。
In the present invention, in addition to the above basic configurations (1) and (2) at the time of startup, the following (3) to
Various modes such as (9) can be adopted. (3) In the reformer system (B) including the steam reformer, the CO shifter, and the CO remover, and the reformer system (C) including the steam reformer and the CO remover, the partial combustion gas contains Of the reducing gas contained, CO selectively reacts with the oxidant introduced into the CO remover to become an inactive component (CO 2 ), and thus may be discharged outside the reformer system. Further, when the PEFC is connected to the reformer system, the PEFC may be discharged after being circulated in the PEFC, or hydrogen in the partial combustion gas may be used as a fuel for power generation. The oxidizing agent is air, oxygen-enriched air,
Oxygen or the like is used.

【0026】(4)上記CO除去器を経た部分燃焼ガス
中の水素を燃料として発電する態様では、改質器系の水
蒸気発生器からの水蒸気と原料ガスを改質部に導入して
改質反応を起こさせることにより、より多くの改質ガス
をPEFCに導入して発電することができる。この場
合、水蒸気を多く導入することにより、改質触媒上での
炭素(煤)の析出を抑制できる。加えて、CO変成反応
(CO+H2O→H2+CO2)が促進され、また水蒸気
が未反応のメタンと改質反応をするため、改質ガス中の
水素量をより多くすることができる。
(4) In the mode in which hydrogen in the partial combustion gas that has passed through the CO remover is used as fuel for power generation, the steam and the raw material gas from the steam generator of the reformer system are introduced into the reforming section for reforming. By causing the reaction, more reformed gas can be introduced into the PEFC to generate power. In this case, by introducing a large amount of water vapor, the precipitation of carbon (soot) on the reforming catalyst can be suppressed. In addition, the CO conversion reaction (CO + H 2 O → H 2 + CO 2 ) is promoted, and the steam reacts with the unreacted methane to reform, so that the amount of hydrogen in the reformed gas can be increased.

【0027】水蒸気改質器の燃焼部で部分燃焼させた燃
焼ガスには、少量の燃え残りの酸素が含まれている場合
がある。そのように酸素を含む部分燃焼ガスを改質部を
経てCO変成器に通すと、そこに充填されたシフト触媒
が酸化され、劣化することがある。この場合には、
(5)水蒸気改質器の改質部内の改質触媒層の後段に燃
焼触媒層を配置し、これによりその燃え残り酸素を部分
燃焼ガス中の水素やCOと反応させて除去し、CO変成
器内に充填されているCO変成触媒の酸化を防止しなが
ら起動することができる。また、(6)水蒸気改質器の
改質部からCO変成器へのライン(導管)にバイパス経
路を設け、改質部に流通させた前記部分燃焼ガスをバイ
パス経路に流通させて放出することもでき、該バイパス
経路を経てCO除去器に流通させることもできる。図4
はこの態様を示す図である。
The combustion gas partially combusted in the combustion section of the steam reformer may contain a small amount of unburned oxygen. When the partial combustion gas containing oxygen is passed through the reforming section to the CO shift converter, the shift catalyst filled therein may be oxidized and deteriorated. In this case,
(5) A combustion catalyst layer is arranged after the reforming catalyst layer in the reforming section of the steam reformer, whereby unburned oxygen is reacted with hydrogen and CO in the partial combustion gas to be removed, and CO conversion is performed. It is possible to start while preventing oxidation of the CO shift catalyst filled in the vessel. (6) A bypass path is provided in a line (conduit) from the reforming section of the steam reformer to the CO shift converter, and the partial combustion gas flowing through the reforming section is discharged through the bypass path. It can also be made to flow through the bypass path to the CO remover. Figure 4
[Fig. 3] is a diagram showing this aspect.

【0028】さらに、(7)水蒸気改質器の改質部に前
記部分燃焼ガスを流通させた後、排出されるガスを別に
設置した処理装置で空気により酸化処理することもでき
る。この場合、酸化処理することにより発生した熱は、
水と熱交換して、温水タンクに温水として貯えること
もでき、水蒸気発生器へ供給する水の加熱に利用する
などプロセスで必要な水の加熱に利用することもでき
る。なお、酸化処理するに際して、単に空気と混合し
て燃焼させても、条件如何によっては、燃焼範囲から外
れることもあるが、この場合には別途サポート用の燃料
を加えて燃焼させてもよく、燃焼触媒を用いてもよい。
燃焼触媒を用いると燃焼可能範囲の問題はクリアされ
る。
Further, (7) after the partial combustion gas is circulated in the reforming section of the steam reformer, the discharged gas may be oxidized by air in a separately installed processing device. In this case, the heat generated by the oxidation treatment is
It can be heat-exchanged with water and stored as hot water in a hot water tank, or can be used for heating water required for a process such as heating water supplied to a steam generator. In addition, in the oxidation treatment, even if it is simply mixed with air and burned, it may be out of the burning range depending on the conditions, but in this case, fuel for support may be added separately and burned, A combustion catalyst may be used.
The problem of combustible range is cleared by using a combustion catalyst.

【0029】(8)水蒸気改質器の燃焼部で部分燃焼さ
せると、燃料ガスと空気の混合が不均一になることによ
り、燃え残りの燃料が発生する場合がある。そのよう
な、燃料(炭化水素系の燃料)を含む部分燃焼ガスを改
質部に流通させると、改質触媒に煤が析出(付着)する
場合がある。この場合には、水蒸気改質器に付設された
改質用の水蒸気発生器から水蒸気を発生させ、これを部
分燃焼ガスとともに改質部へ導入することによりその析
出を防止することができる。
(8) When partial combustion is performed in the combustion section of the steam reformer, the unburned fuel may be generated due to non-uniform mixing of fuel gas and air. When such a partial combustion gas containing fuel (hydrocarbon-based fuel) is circulated in the reforming section, soot may be deposited (adhered) to the reforming catalyst. In this case, it is possible to prevent the precipitation by generating steam from a steam generator for reforming attached to the steam reformer and introducing the steam into the reforming section together with the partial combustion gas.

【0030】(9)水蒸気改質器の起動に際して、水蒸
気改質器の燃焼部に導入する燃料を予め脱硫器に流通さ
せ、燃料に含まれる硫黄成分(硫黄化合物)を除去する
ことにより、起動時に部分燃焼ガスに含まれる硫黄成分
によって改質触媒が被毒を受けるのを防止することがで
きる。この点は以下で述べる水蒸気改質器の停止に際し
ても同様にして適用される。
(9) At the time of starting the steam reformer, the fuel introduced into the combustion part of the steam reformer is circulated in the desulfurizer in advance, and the sulfur component (sulfur compound) contained in the fuel is removed to start the steam reformer. At times, it is possible to prevent the reforming catalyst from being poisoned by the sulfur component contained in the partial combustion gas. This point is similarly applied when stopping the steam reformer described below.

【0031】《停止時の実施の形態》本発明において
は、水蒸気改質器の停止時における改質器系のパージに
水蒸気改質器の燃焼部からの燃焼ガスを用いる。この場
合にも、水蒸気改質器の燃焼部に導入する空気量を燃料
ガスを完全燃焼させる空気量より少なく設定することが
重要である。その空気量としては、好ましくは、水蒸気
改質器の燃焼部での空気比λで0.8から1.0未満の
範囲とする。燃焼部で生成される部分燃焼ガスは、水素
や一酸化炭素を含む還元性のガスであるので、これを改
質部に供給することにより、改質触媒の酸化による劣化
を防止ながら、改質器系内に残存するメタン、水素、一
酸化炭素等の可燃ガスや二酸化炭素や水、水蒸気をパー
ジして停止させることができる。
<< Embodiment at the time of stop >> In the present invention, the combustion gas from the combustion part of the steam reformer is used for purging the reformer system when the steam reformer is stopped. Also in this case, it is important to set the amount of air introduced into the combustion section of the steam reformer to be smaller than the amount of air that completely burns the fuel gas. The amount of air is preferably in the range of 0.8 to less than 1.0 in terms of the air ratio λ in the combustion section of the steam reformer. The partial combustion gas generated in the combustion section is a reducing gas containing hydrogen and carbon monoxide, so by supplying this to the reforming section, the reforming catalyst can be prevented from being deteriorated by oxidation while reforming. Combustible gases such as methane, hydrogen and carbon monoxide, carbon dioxide, water and water vapor remaining in the system can be purged and stopped.

【0032】燃焼部に導入する空気量を燃料ガスを完全
燃焼させる空気量より少なく、例えば空気比λで0.8
から1.0未満の範囲とした場合、生成する部分燃焼ガ
ス中の水分の露点は50〜60℃程度であるので、部分
燃焼ガスの流通停止後、触媒が結露雰囲気にならないよ
うに水蒸気改質器の改質部を保温する必要がある。改質
器系にPEFCを連結する場合には、その電池冷却水の
温度は60〜80℃程度であるので、この電池冷却水を
上記保温を含む改質器系内の温度維持のために利用する
ことができる。
The amount of air introduced into the combustion section is smaller than the amount of air which completely burns the fuel gas, for example 0.8 at an air ratio λ.
In the range of 1.0 to less than 1.0, the dew point of water in the partial combustion gas to be generated is about 50 to 60 ° C. Therefore, after the partial combustion gas is stopped flowing, steam reforming is performed so that the catalyst does not become a dew condensation atmosphere. It is necessary to keep the reforming section of the vessel warm. When the PEFC is connected to the reformer system, the temperature of the battery cooling water is about 60 to 80 ° C., and thus the battery cooling water is used for maintaining the temperature in the reformer system including the heat retention. can do.

【0033】また、水蒸気改質器の停止が比較的長い時
間の場合には、温水タンクからの温水などを利用するこ
ともできる。図5(a)〜(c)はこれらの態様例を示
す図である。図5(a)は温水、例えばPEFC等の電
池冷却水の配管を水蒸気改質器に卷くことで保温する
例、図5(b)は水蒸気改質器を卷いた配管に温水タン
クからの温水を流通させることで保温する例、図5
(c)は温水タンク中に水蒸気改質器を配置し、一体化
して保温する例である。温水としては前記(7)ので
得た温水を用いることもできる。さらに、加熱器で改質
部を時々加熱することにより、改質器系内部の温度が低
下して、水分が凝縮しない温度に保つ制御を行うことも
できる。
When the steam reformer is stopped for a relatively long time, hot water from the hot water tank can be used. FIG. 5A to FIG. 5C are diagrams showing examples of these modes. FIG. 5 (a) shows an example in which hot water, for example, a battery cooling water pipe such as PEFC, is kept warm by winding it in a steam reformer, and FIG. 5 (b) shows a pipe in which the steam reformer is wound from a hot water tank An example of keeping warm by circulating hot water, FIG.
(C) is an example in which a steam reformer is arranged in a hot water tank to integrally keep the temperature. The warm water obtained in the above (7) can also be used as the warm water. Furthermore, by heating the reforming section with a heater from time to time, it is possible to control the temperature inside the reformer system to be kept at a temperature at which water does not condense.

【0034】[0034]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。原料ガス及び燃料ガスとして都市ガ
ス(13A)を用い、CO除去器へ供給する酸化剤とし
て空気を用いた。
The present invention will be described in more detail based on the following examples, but it goes without saying that the present invention is not limited to these examples. City gas (13A) was used as the raw material gas and the fuel gas, and air was used as the oxidant supplied to the CO remover.

【0035】図6〜10は、本発明を水蒸気改質器とC
O変成器とCO除去器を含む改質器系(B)に適用した
例である。改質器系にPEFCを連結している。水蒸気
改質器の燃焼部としてはバーナを用い、改質部にはアル
ミナにNiを担持した触媒を用い、CO変成器では銅ー
亜鉛系触媒(Cu/Zn系触媒)を用い、CO除去器で
はアルミナにPtを担持した触媒を用いた。改質器系に
は常法に従い温度センサーを配置した。図6〜9中、矢
印を符している実線のライン(配管)は対応するガスが
流れていることを示し、矢印を符していない点線及び矢
印を符していない実線のラインは対応するガスが流れて
いないことを示している。
6 to 10 show a steam reformer and a C according to the present invention.
It is an example applied to a reformer system (B) including an O shifter and a CO remover. PEFC is connected to the reformer system. A burner is used as the combustion section of the steam reformer, a catalyst in which Ni is supported on alumina is used in the reforming section, a copper-zinc catalyst (Cu / Zn catalyst) is used in the CO shift converter, and a CO remover is used. Then, a catalyst in which Pt was supported on alumina was used. A temperature sensor was arranged in the reformer system according to a conventional method. In FIGS. 6 to 9, solid lines (pipes) marked with arrows indicate that the corresponding gas is flowing, and dotted lines without arrows and solid lines without arrows correspond. It shows that no gas is flowing.

【0036】〈運転開始=起動から通常運転状態〉その
起動時に、まず水蒸気改質器の燃焼部において燃料ガス
を空気で燃焼させて(空気比λ=1.1)改質部を間接
的に加熱し、改質部中の改質触媒を400℃まで予熱し
た。水蒸気雰囲気などの酸化雰囲気でも400℃までな
ら、改質触媒はほとんど酸化しない。図6はこの状態を
示している。
<Starting operation = starting operation to normal operation state> At the time of starting, the fuel gas is first burned with air in the combustion section of the steam reformer (air ratio λ = 1.1), and the reforming section is indirectly operated. By heating, the reforming catalyst in the reforming section was preheated to 400 ° C. Even in an oxidizing atmosphere such as a steam atmosphere, the reforming catalyst hardly oxidizes up to 400 ° C. FIG. 6 shows this state.

【0037】その後、水蒸気改質器の燃焼部での空気比
λを0.95に変更し、ここで生成した部分燃焼ガスを
改質部中に導入した。この部分燃焼ガスは、熱搬入媒体
として、改質触媒、CO変成触媒、CO選択酸化触媒
(CO除去器中)、改質器系の炉材、隔壁等を加熱する
ためのもので、水蒸気改質器の改質部、CO変成器及び
CO除去器を経て放出、すなわちパージさせた。化学平
衡上、空気比λ=0.8から1.0未満の部分燃焼ガス
からは煤は発生しない。
After that, the air ratio λ in the combustion section of the steam reformer was changed to 0.95, and the partial combustion gas generated here was introduced into the reforming section. This partial combustion gas is used to heat the reforming catalyst, the CO shift catalyst, the CO selective oxidation catalyst (in the CO remover), the reformer system furnace material, the partition wall, etc. as a heat transfer medium. It was discharged, that is, purged through the reforming section of the quality control device, the CO shift converter, and the CO remover. Due to chemical equilibrium, soot is not generated from the partial combustion gas having an air ratio λ = 0.8 to less than 1.0.

【0038】また、部分燃焼ガス中のCOや水素はCO
除去器で空気と反応させて処理される。この時発生する
熱によりCO選択酸化触媒はより速く加熱される。図7
はこの状態を示している。なお、上記パージガスは、そ
のまま放出させてもよいが、空気で酸化処理することに
より、発生した熱を水と熱交換して温水として貯えるこ
ともでき、また水蒸気発生器へ供給する水の加熱に利用
するなどプロセスで必要な水の加熱に利用することもで
きる。
CO and hydrogen in the partial combustion gas are CO
It is treated by reacting with air in the remover. The CO selective oxidation catalyst is heated faster by the heat generated at this time. Figure 7
Indicates this state. The purge gas may be discharged as it is, but by oxidizing it with air, it is possible to exchange the generated heat with water to store it as warm water, and to heat the water supplied to the steam generator. It can also be used to heat water required in the process such as by using it.

【0039】こうして、CO変成触媒(Cu/Zn系触
媒:低温CO変成触媒)の活性が現れる温度(CO変成
器入口温度200〜350℃)まで昇温し、CO変成触
媒が十分に加熱された時点で水蒸気発生器に水を導入し
て水蒸気を発生させた。同時に、水蒸気改質器の燃焼部
からの部分燃焼ガスの改質部への供給を止め、空気比λ
を通常燃焼時の値(空気比λ=1.1)に変更し、原料
ガスを改質部に導入して水蒸気改質させ、CO変成器、
CO除去器を経た水素リッチな改質ガスをPEFCに導
入して発電を開始した。PEFCで余った改質ガスはア
ノードオフガスとして水蒸気改質器の燃焼部で利用し
た。こうして通常運転状態とした。図8はこの状態を示
している。
In this way, the temperature of the CO shift catalyst (Cu / Zn catalyst: low temperature CO shift catalyst) at which the activity appears (CO shift inlet temperature 200 to 350 ° C.), the CO shift catalyst was heated sufficiently. At that time, water was introduced into the steam generator to generate steam. At the same time, the supply of partial combustion gas from the combustion section of the steam reformer to the reforming section is stopped, and the air ratio λ
Is changed to a value during normal combustion (air ratio λ = 1.1), the raw material gas is introduced into the reforming section for steam reforming, and a CO converter,
The hydrogen-rich reformed gas that passed through the CO remover was introduced into PEFC to start power generation. The reformed gas remaining in the PEFC was used as the anode off gas in the combustion section of the steam reformer. Thus, the normal operation state was set. FIG. 8 shows this state.

【0040】〈運転停止〉上記通常運転後、水蒸気改質
器の燃焼部からの部分燃焼ガスを用いて改質器系をパー
ジし、改質器系を停止させた。すなわち、その運転停止
時に、燃焼部での空気比λを0.95と低い範囲に設定
し、生成した部分燃焼ガスを改質部に導入して改質器系
中の残留ガスのパージが確認された後、燃焼部の燃焼を
止め、自然冷却により降温した。図9〜10はこの状態
を示している。
<Operation Stop> After the above-mentioned normal operation, the reformer system was purged by using the partial combustion gas from the combustion part of the steam reformer, and the reformer system was stopped. That is, when the operation was stopped, the air ratio λ in the combustion section was set to a low range of 0.95 and the generated partial combustion gas was introduced into the reforming section to confirm the purging of the residual gas in the reformer system. Then, the combustion in the combustion section was stopped, and the temperature was lowered by natural cooling. 9 to 10 show this state.

【0041】以上の起動、通常運転、停止を30回繰り
返した。この際、運転停止時に用いた部分燃焼ガス中の
水分の露点は50〜60℃程度であるので、部分燃焼ガ
スの流通停止後の自然冷却で改質触媒の温度がその温度
を下回らない温度で再起動させた。その結果、通常運転
時にCO除去器から得られる改質ガスの組成に変化はな
く、改質触媒に性能劣化はないことが確認された。
The above startup, normal operation, and stop were repeated 30 times. At this time, the dew point of water in the partial combustion gas used when the operation was stopped is about 50 to 60 ° C., so that the temperature of the reforming catalyst does not fall below that temperature by natural cooling after the flow of the partial combustion gas is stopped. I rebooted. As a result, it was confirmed that there was no change in the composition of the reformed gas obtained from the CO remover during normal operation, and there was no performance deterioration of the reforming catalyst.

【0042】なお、停止時から再起動時までの間、すな
わち運転停止中は、PEFCの電池冷却水や温水タンク
からの温水などで保温する(図5参照)。長時間の停止
状態により改質器系内の温度が60℃を下回る場合に
は、原料ガスで改質器系内をパージしてもよく、あるい
は改質器系の運転時に改質ガスをタンク等に貯蔵してお
き、この改質ガスを改質器系内のパージに用いることも
できる。
During the period from the stop to the restart, that is, during the stop of operation, the PEFC battery cooling water or hot water from the hot water tank is used to keep the temperature (see FIG. 5). When the temperature in the reformer system falls below 60 ° C. due to a long stoppage, the inside of the reformer system may be purged with a raw material gas, or the reformed gas may be stored in a tank during operation of the reformer system. It is also possible to store the reformed gas in the reformer system for purging.

【0043】[0043]

【発明の効果】本発明によれば、水蒸気改質器とCO変
成器を含む改質器系、水蒸気改質器とCO変成器とCO
除去器を含む改質器系及び水蒸気改質器とCO除去器を
含む改質器系のいずれかの改質器系において、その起動
時及び停止時に、改質触媒の酸化を防止し、その劣化を
防止することができる。
According to the present invention, a reformer system including a steam reformer and a CO shifter, a steam reformer, a CO shifter, and a CO shifter are provided.
In the reformer system including the reformer system including the remover and the reformer system including the steam reformer and the CO remover, the oxidation of the reforming catalyst is prevented at the time of starting and stopping, It is possible to prevent deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】水蒸気改質器を模式的に示す図FIG. 1 is a diagram schematically showing a steam reformer.

【図2】従来における改質器系の起動方法の態様例を示
す図
FIG. 2 is a diagram showing an example of a conventional method for starting a reformer system.

【図3】従来考えられる他の改質器系の起動、停止方法
の態様例を示す図
FIG. 3 is a diagram showing an example of a method of starting and stopping another reformer system that is conventionally conceivable.

【図4】本発明の態様を示す図FIG. 4 is a diagram showing an embodiment of the present invention.

【図5】本発明の態様を示す図FIG. 5 is a diagram showing an embodiment of the present invention.

【図6】本発明の実施例を示す図(起動)FIG. 6 is a diagram showing an embodiment of the present invention (startup).

【図7】本発明の実施例を示す図(起動)FIG. 7 is a diagram showing an embodiment of the present invention (startup).

【図8】本発明の実施例を示す図(通常運転状態)FIG. 8 is a diagram showing an embodiment of the present invention (normal operation state).

【図9】本発明の実施例を示す図(停止)FIG. 9 is a diagram showing an embodiment of the present invention (stop).

【図10】本発明の実施例を示す図(停止)FIG. 10 is a diagram showing an embodiment of the present invention (stop)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/04 H01M 8/04 Y 8/06 8/06 G 8/10 8/10 (72)発明者 藤原 直彦 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 Fターム(参考) 4G040 EA02 EA03 EA06 EB01 EB12 EB31 EB32 EB42 EB43 EC03 5H026 AA04 AA06 5H027 AA04 AA06 BA01 BA17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/04 H01M 8/04 Y 8/06 8/06 G 8/10 8/10 (72) Inventor Naohiko Fujiwara 1-5-20 Kaigan, Minato-ku, Tokyo F-term in Tokyo Gas Co., Ltd. (reference) 4G040 EA02 EA03 EA06 EB01 EB12 EB31 EB32 EB42 EB43 EC03 5H026 AA04 AA06 5H027 AA04 AA06 BA01 BA17

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】水蒸気改質器とCO変成器を含む改質器系
(A)、水蒸気改質器とCO変成器とCO除去器を含む
改質器系(B)、水蒸気改質器とCO除去器を含む改質
器系(C)のいずれかの改質器系における水蒸気改質器
の起動方法であって、その起動時に、水蒸気改質器の燃
焼部に導入する空気量を燃料ガスを完全燃焼させる空気
量より少なく設定し、燃焼部で燃料ガスを不完全燃焼さ
せて生成した水素と一酸化炭素が含まれた部分燃焼ガス
を水蒸気改質器の改質部に供給することにより、改質触
媒の酸化を防止しながら起動することを特徴とする水蒸
気改質器の起動方法。
1. A reformer system (A) including a steam reformer and a CO shifter, a reformer system (B) including a steam reformer, a CO shifter and a CO remover, and a steam reformer. A method for starting a steam reformer in any reformer system of a reformer system (C) including a CO remover, wherein the amount of air introduced into a combustion part of the steam reformer is set as fuel when starting the steam reformer system. Supplying a partial combustion gas containing hydrogen and carbon monoxide generated by incomplete combustion of fuel gas in the combustion section to the reforming section of the steam reformer by setting the amount of air less than the amount of air that completely burns the gas. The method for starting a steam reformer is characterized by starting the reforming catalyst while preventing oxidation of the reforming catalyst.
【請求項2】水蒸気改質器とCO変成器を含む改質器系
(A)、水蒸気改質器とCO変成器とCO除去器を含む
改質器系(B)、水蒸気改質器とCO除去器を含む改質
器系(C)のいずれかの改質器系における水蒸気改質器
の起動方法であって、その起動時に、水蒸気改質器の燃
焼部に導入する燃料ガスと空気の比率(空気比λ)を
1.0〜2.0の範囲に設定して燃焼部で燃焼させて水
蒸気改質器の改質部を400℃まで加熱した後、水蒸気
改質器の燃焼部に導入する空気量を燃料ガスを完全燃焼
させる空気量より少なく設定し、燃焼部で燃料ガスを不
完全燃焼させて生成した水素と一酸化炭素が含まれた部
分燃焼ガスを水蒸気改質器の改質部に供給することによ
り、改質触媒の酸化を防止しながら起動することを特徴
とする水蒸気改質器の起動方法。
2. A reformer system (A) including a steam reformer and a CO shifter, a reformer system (B) including a steam reformer, a CO shifter and a CO remover, and a steam reformer. A method for starting a steam reformer in any reformer system of a reformer system (C) including a CO remover, the fuel gas and air being introduced into a combustion part of the steam reformer at the time of starting. Ratio (air ratio λ) is set in the range of 1.0 to 2.0 and burned in the combustion section to heat the reforming section of the steam reformer to 400 ° C., and then the combustion section of the steam reformer. The amount of air introduced into the steam reformer is set to be less than the amount of air that completely burns the fuel gas, and the partial combustion gas containing hydrogen and carbon monoxide generated by incomplete combustion of the fuel gas in the combustion section is fed to the steam reformer. Steam reformer characterized by starting while preventing oxidation of the reforming catalyst by supplying to the reforming section How to start.
【請求項3】請求項1又は2に記載の水蒸気改質器の起
動方法において、改質器系が水蒸気改質器とCO変成器
を含む改質器系(A)、水蒸気改質器とCO変成器とC
O除去器を含む改質器系(B)のいずれかの改質器系で
あり、水蒸気改質器の改質部内の後段に燃焼触媒層を配
置し、改質部に流通させた前記部分燃焼ガスを該燃焼触
媒層に流通させた後、これに続くCO変成器に通すこと
によりCO変成器内に充填されているCO変成触媒の酸
化を防止しながら起動することを特徴とする水蒸気改質
器の起動方法。
3. The method for starting a steam reformer according to claim 1, wherein the reformer system includes a steam reformer and a CO shifter, and a steam reformer system (A). CO transformer and C
The reformer system of any one of the reformer system (B) including the O remover, wherein the combustion catalyst layer is arranged at a subsequent stage in the reforming section of the steam reformer, and is passed through the reforming section. The steam reforming is characterized in that after the combustion gas is passed through the combustion catalyst layer, it is passed through a CO shifter subsequent thereto to start while preventing the oxidation of the CO shift catalyst filled in the CO shifter. How to start the pawn.
【請求項4】請求項1又は2に記載の水蒸気改質器の起
動方法において、改質器系が水蒸気改質器とCO変成器
を含む改質器系(A)、水蒸気改質器とCO変成器とC
O除去器を含む改質器系(B)のいずれかの改質器系で
あり、水蒸気改質器の改質部の後段に配置されたCO変
成器が白金系の触媒層により構成され、水蒸気改質器の
改質部及びCO変成器に前記部分燃焼ガスを流通させる
ことにより起動することを特徴とする水蒸気改質器の起
動方法。
4. The method for starting a steam reformer according to claim 1, wherein the reformer system includes a steam reformer and a CO shifter, and a steam reformer system (A). CO transformer and C
A reformer system of any one of the reformer system (B) including an O remover, wherein a CO shifter arranged at a subsequent stage of the reforming section of the steam reformer is composed of a platinum-based catalyst layer, A method for starting a steam reformer, which is started by causing the partial combustion gas to flow through a reforming section of the steam reformer and a CO shift converter.
【請求項5】請求項1又は2に記載の水蒸気改質器の起
動方法において、改質器系が水蒸気改質器とCO変成器
を含む改質器系(A)、水蒸気改質器とCO変成器とC
O除去器を含む改質器系(B)のいずれかの改質器系で
あり、水蒸気改質器の改質部の後段に配置されたCO変
成器がFe、Crを主成分とする高温CO変成触媒とC
u、Znを主成分とする低温CO変成触媒の二段の触媒
層により構成され、水蒸気改質器の改質部及びCO変成
器に前記部分燃焼ガスを流通させることによりCO変成
器内に充填されているCO変成触媒の酸化を防止しなが
ら起動することを特徴とする水蒸気改質器の起動方法。
5. The method for starting a steam reformer according to claim 1, wherein the reformer system includes a steam reformer and a CO shifter, and a steam reformer system (A). CO transformer and C
It is one of the reformer systems of the reformer system (B) including the O remover, and the CO shifter arranged in the latter stage of the reforming section of the steam reformer has a high temperature mainly composed of Fe and Cr. CO shift catalyst and C
A low-temperature CO shift catalyst containing u and Zn as main components is constituted by two stages of catalyst layers, and the partial combustion gas is circulated through the reforming section of the steam reformer and the CO shifter to fill the CO shift converter. A method for starting a steam reformer, which is started while preventing oxidation of the existing CO shift catalyst.
【請求項6】請求項1又は2に記載の水蒸気改質器の起
動方法において、改質器系が水蒸気改質器とCO変成器
を含む改質器系(A)、水蒸気改質器とCO変成器とC
O除去器を含む改質器系(B)のいずれかの改質器系で
あり、水蒸気改質器の改質部からCO変成器へのライン
にバイパス経路を設け、改質部に流通させた前記部分燃
焼ガスをバイパス経路に流通させて放出することにより
起動することを特徴とする水蒸気改質器の起動方法。
6. The method for starting a steam reformer according to claim 1 or 2, wherein the reformer system includes a steam reformer and a CO shifter, and a steam reformer system (A). CO transformer and C
A reformer system of any one of the reformer system (B) including an O remover, wherein a bypass path is provided in a line from the reforming section of the steam reformer to the CO shift converter, and the bypass section is circulated to the reforming section. A method for starting a steam reformer, characterized in that the partial combustion gas is started by circulating the partial combustion gas in a bypass path and releasing the partial combustion gas.
【請求項7】請求項1又は2に記載の水蒸気改質器の起
動方法において、改質器系が水蒸気改質器とCO変成器
とCO除去器を含む改質器系(B)であり、水蒸気改質
器の改質部からCO変成器へのラインにバイパス経路を
設け、改質部に流通させた前記部分燃焼ガスをバイパス
経路を経てCO除去器に流通させることを特徴とする水
蒸気改質器の起動方法。
7. The method for starting a steam reformer according to claim 1 or 2, wherein the reformer system is a reformer system (B) including a steam reformer, a CO shift converter, and a CO remover. A steam is characterized in that a bypass path is provided in a line from the reforming section of the steam reformer to the CO shift converter, and the partial combustion gas flowing through the reforming section is passed through the bypass path to the CO remover. How to start the reformer.
【請求項8】請求項1又は2に記載の水蒸気改質器の起
動方法において、改質器系が水蒸気改質器とCO変成器
とCO除去器を含む改質器系(B)、水蒸気改質器とC
O除去器を含む改質器系(C)のいずれかの改質器系で
あり、水蒸気改質器の改質部に流通させた前記部分燃焼
ガスをCO除去器に流通させると同時に、CO除去器に
酸化剤を導入し、部分燃焼ガスに含まれる一酸化炭素を
酸素と反応させて除去することを特徴とする水蒸気改質
器の起動方法。
8. The method for starting a steam reformer according to claim 1, wherein the reformer system includes a steam reformer, a CO shifter, and a CO remover, and a steam reformer system (B). Reformer and C
A reformer system of any one of the reformer systems (C) including an O remover, wherein the partial combustion gas that has been made to flow to the reforming section of the steam reformer is made to flow to the CO remover and at the same time CO A method for starting a steam reformer, which comprises introducing an oxidizer into a remover and reacting carbon monoxide contained in a partial combustion gas with oxygen to remove the carbon monoxide.
【請求項9】請求項1〜8のいずれかに記載の水蒸気改
質器の起動方法において、水蒸気改質器の改質部に、前
記部分燃焼ガスを流通させるのと同時に、改質器系の水
蒸気発生器で生成した水蒸気を流通させることを特徴と
する水蒸気改質器の起動方法。
9. The method for starting a steam reformer according to claim 1, wherein the partial combustion gas is passed through the reforming section of the steam reformer, and at the same time, the reformer system is provided. A method for starting a steam reformer, characterized in that the steam generated by the steam generator is circulated.
【請求項10】請求項8又は9に記載の水蒸気改質器の
起動方法において、改質器系が水蒸気改質器とCO変成
器とCO除去器を含む改質器系(B)、水蒸気改質器と
CO除去器を含む改質器系(C)のいずれかの改質器系
であり、CO除去器の後段に燃料電池が連結されてお
り、CO除去器で一酸化炭素を燃料電池における許容値
以下まで除去した部分燃焼ガスを燃料電池に供給して発
電を行わせることを特徴とする水蒸気改質器の起動方
法。
10. The method for starting a steam reformer according to claim 8 or 9, wherein the reformer system includes a steam reformer, a CO shifter, and a CO remover, and a steam reformer system (B). A reformer system (C) that includes a reformer and a CO remover, in which a fuel cell is connected to a subsequent stage of the CO remover, and carbon monoxide is used as a fuel in the CO remover. A method for starting a steam reformer, comprising supplying a partial combustion gas, which has been removed to an allowable value or less in a battery, to a fuel cell to generate power.
【請求項11】水蒸気改質器とCO変成器を含む改質器
系(A)、水蒸気改質器とCO変成器とCO除去器を含
む改質器系(B)、水蒸気改質器とCO除去器を含む改
質器系(C)のいずれかの改質器系における水蒸気改質
器の停止方法であって、その停止時に、水蒸気改質器の
燃焼部に導入する空気量を燃料ガスを完全燃焼させる空
気量より少なく設定し、燃焼部で燃料ガスを不完全燃焼
させて生成した水素と一酸化炭素が含まれた部分燃焼ガ
スを水蒸気改質器の改質部に供給することにより、改質
器系内の可燃性ガスと水蒸気をパージすることを特徴と
する水蒸気改質器の停止方法。
11. A reformer system (A) including a steam reformer and a CO shifter, a reformer system (B) including a steam reformer, a CO shifter and a CO remover, and a steam reformer. A method for stopping a steam reformer in any reformer system of a reformer system (C) including a CO remover, the method comprising: Supplying a partial combustion gas containing hydrogen and carbon monoxide generated by incomplete combustion of fuel gas in the combustion section to the reforming section of the steam reformer by setting the amount of air less than the amount of air that completely burns the gas. The method for shutting down a steam reformer is characterized by purging combustible gas and steam in the reformer system.
【請求項12】請求項11に記載の水蒸気改質器の停止
方法において、改質器系が水蒸気改質器とCO変成器と
CO除去器を含む改質器系(B)、水蒸気改質器とCO
除去器を含む改質器系(C)のいずれかの改質器系であ
り、その停止時に、水蒸気改質器の改質部に流通させた
前記部分燃焼ガスをCO除去器に流通させると同時に、
CO除去器に酸化剤を導入し、部分燃焼ガスに含まれる
一酸化炭素を酸素と反応させて除去することを特徴とす
る水蒸気改質器の停止方法。
12. The method for stopping a steam reformer according to claim 11, wherein the reformer system includes a steam reformer, a CO shifter and a CO remover, and a steam reformer. Vessel and CO
A reformer system of any one of the reformer system (C) including a remover, and when the partial combustion gas which has been made to flow to the reforming section of the steam reformer is made to flow to the CO remover when the reformer system is stopped. at the same time,
A method for stopping a steam reformer, which comprises introducing an oxidant into a CO remover and reacting carbon monoxide contained in a partial combustion gas with oxygen to remove the carbon monoxide.
【請求項13】請求項12に記載の水蒸気改質器の停止
方法において、改質器系が水蒸気改質器とCO変成器と
CO除去器を含む改質器系(B)、水蒸気改質器とCO
除去器を含む改質器系(C)のいずれかの改質器系であ
り、CO除去器の後段に燃料電池が連結されており、そ
の停止時に、CO除去器からの一酸化炭素を除去した部
分燃焼ガスにより燃料電池内の可燃性ガスをパージする
ことを特徴とする水蒸気改質器の停止方法。
13. The method for stopping a steam reformer according to claim 12, wherein the reformer system includes a steam reformer, a CO shifter, and a CO remover, and a steam reformer. Vessel and CO
A reformer system (C) including a remover, wherein a fuel cell is connected to a subsequent stage of the CO remover, and when the fuel cell is stopped, carbon monoxide is removed from the CO remover. A method for stopping a steam reformer, which comprises purging combustible gas in a fuel cell with the partially burned gas.
【請求項14】請求項11〜13のいずれかに記載の水
蒸気改質器の停止方法において、その停止後、水蒸気改
質器の改質触媒の温度を部分燃焼ガスの露点温度以上に
保つことにより、改質部内に含まれている部分燃焼ガス
中の水蒸気が凝縮することを防ぐことを特徴とする水蒸
気改質器の停止方法。
14. A method for stopping a steam reformer according to claim 11, wherein after the stop, the temperature of the reforming catalyst of the steam reformer is maintained at a dew point temperature of the partial combustion gas or higher. The method for stopping a steam reformer is characterized by preventing the steam in the partial combustion gas contained in the reforming section from condensing.
【請求項15】請求項14に記載の水蒸気改質器の停止
方法において、改質器系が水蒸気改質器とCO変成器と
CO除去器を含む改質器系(B)、水蒸気改質器とCO
除去器を含む改質器系(C)のいずれかの改質器系であ
り、CO除去器の後段に燃料電池が連結されており、そ
の停止後再起動時まで、燃料電池から出る温水で水蒸気
改質器の改質部内の改質触媒の温度を部分燃焼ガスの露
点温度以上に保つことを特徴とする水蒸気改質器の停止
方法。
15. The method for stopping a steam reformer according to claim 14, wherein the reformer system includes a steam reformer, a CO shifter and a CO remover, and a steam reformer. Vessel and CO
A reformer system (C) that includes a eliminator, and a fuel cell is connected to the latter stage of the CO eliminator. A method for stopping a steam reformer, characterized in that the temperature of a reforming catalyst in a reforming section of a steam reformer is maintained at a dew point temperature of a partial combustion gas or higher.
【請求項16】請求項11〜13のいずれかに記載の水
蒸気改質器の停止方法において、その停止後、再起動時
まで、水蒸気改質器の改質部内の触媒の温度が部分燃焼
ガスの露点温度以下にならないように改質部を加熱器で
加熱することを特徴とする水蒸気改質器の停止方法。
16. The method for stopping a steam reformer according to claim 11, wherein the temperature of the catalyst in the reforming section of the steam reformer is a partial combustion gas after the stop until restarting. A method for stopping a steam reformer, characterized in that the reformer is heated by a heater so that the temperature does not drop below the dew point temperature.
【請求項17】請求項1〜16のいずれかに記載の水蒸
気改質器の起動方法又は停止方法において、改質部に配
置される改質触媒がNi系又はRu系の改質触媒である
ことを特徴とする方法。
17. The method for starting or stopping the steam reformer according to claim 1, wherein the reforming catalyst arranged in the reforming section is a Ni-based or Ru-based reforming catalyst. A method characterized by the following.
【請求項18】請求項1〜17のいずれかに記載の水蒸
気改質器の起動方法又は停止方法において、水蒸気改質
器の燃焼部に導入する燃料を予め脱硫器に流通させ、燃
料に含まれる硫黄成分を除去することを特徴とする方
法。
18. The method for starting or stopping the steam reformer according to claim 1, wherein the fuel introduced into the combustion section of the steam reformer is preliminarily circulated to the desulfurizer and contained in the fuel. The method is characterized by removing the sulfur component that is generated.
【請求項19】請求項1〜18のいずれかに記載の水蒸
気改質器の起動方法又は停止方法において、水蒸気改質
器の改質部に部分燃焼ガスを流通させた後、排出される
ガスを別に設置した処理装置で空気により酸化処理する
ことを特徴とする方法。
19. The method for starting or stopping the steam reformer according to claim 1, wherein the partial combustion gas is circulated through the reforming section of the steam reformer and then discharged. A method in which the oxidation treatment is performed with air in a treatment device separately installed.
JP2001191880A 2001-06-25 2001-06-25 Method for operating and stopping steam reformer Pending JP2003002605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191880A JP2003002605A (en) 2001-06-25 2001-06-25 Method for operating and stopping steam reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001191880A JP2003002605A (en) 2001-06-25 2001-06-25 Method for operating and stopping steam reformer

Publications (1)

Publication Number Publication Date
JP2003002605A true JP2003002605A (en) 2003-01-08

Family

ID=19030429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191880A Pending JP2003002605A (en) 2001-06-25 2001-06-25 Method for operating and stopping steam reformer

Country Status (1)

Country Link
JP (1) JP2003002605A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100772A (en) * 2003-09-24 2005-04-14 Nissan Motor Co Ltd Fuel reformer
JP2005179082A (en) * 2003-12-16 2005-07-07 Nippon Oil Corp Hydrogen producing apparatus, fuel cell system and method for driving the same
JP2006008418A (en) * 2004-06-22 2006-01-12 Idemitsu Kosan Co Ltd Apparatus for producing hydrogen and fuel cell system
JP2006342004A (en) * 2005-06-07 2006-12-21 T Rad Co Ltd Method for reducing reforming catalyst
JP2007022861A (en) * 2005-07-19 2007-02-01 Honda Motor Co Ltd Reformer of fuel cell
JP2008081326A (en) * 2006-09-25 2008-04-10 Idemitsu Kosan Co Ltd Co converting apparatus and method, and fuel cell system and method for controlling the same
JP2008234994A (en) * 2007-03-20 2008-10-02 Osaka Gas Co Ltd Fuel cell system
JP2010150119A (en) * 2008-11-20 2010-07-08 Panasonic Corp Hydrogen generation apparatus and fuel cell system having the same
JP2010524826A (en) * 2007-04-25 2010-07-22 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Reformer with secondary inflow passage
US8747498B2 (en) 2008-11-20 2014-06-10 Panasonic Corporation Hydrogen generator and fuel cell system comprising the same
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
KR101514258B1 (en) * 2013-10-28 2015-04-22 세종공업 주식회사 Fuel cell system considering a restart, and its control method
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes
AT521855A1 (en) * 2018-11-12 2020-05-15 Avl List Gmbh Method for detecting an ignition and / or a combustion in a burner of a fuel cell system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655464B2 (en) * 2003-09-24 2011-03-23 日産自動車株式会社 Fuel reformer
JP2005100772A (en) * 2003-09-24 2005-04-14 Nissan Motor Co Ltd Fuel reformer
JP2005179082A (en) * 2003-12-16 2005-07-07 Nippon Oil Corp Hydrogen producing apparatus, fuel cell system and method for driving the same
JP2006008418A (en) * 2004-06-22 2006-01-12 Idemitsu Kosan Co Ltd Apparatus for producing hydrogen and fuel cell system
JP2006342004A (en) * 2005-06-07 2006-12-21 T Rad Co Ltd Method for reducing reforming catalyst
JP4676819B2 (en) * 2005-06-07 2011-04-27 株式会社ティラド Method for reducing reforming catalyst
JP2007022861A (en) * 2005-07-19 2007-02-01 Honda Motor Co Ltd Reformer of fuel cell
JP2008081326A (en) * 2006-09-25 2008-04-10 Idemitsu Kosan Co Ltd Co converting apparatus and method, and fuel cell system and method for controlling the same
JP2008234994A (en) * 2007-03-20 2008-10-02 Osaka Gas Co Ltd Fuel cell system
JP2010524826A (en) * 2007-04-25 2010-07-22 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Reformer with secondary inflow passage
JP2010150119A (en) * 2008-11-20 2010-07-08 Panasonic Corp Hydrogen generation apparatus and fuel cell system having the same
US8747498B2 (en) 2008-11-20 2014-06-10 Panasonic Corporation Hydrogen generator and fuel cell system comprising the same
US8916304B2 (en) 2008-11-20 2014-12-23 Panasonic Corporation Hydrogen generator and fuel cell system including same
US9083014B2 (en) 2008-11-20 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system for performing normal and abnormal shut-down processes
KR101514258B1 (en) * 2013-10-28 2015-04-22 세종공업 주식회사 Fuel cell system considering a restart, and its control method
AT521855A1 (en) * 2018-11-12 2020-05-15 Avl List Gmbh Method for detecting an ignition and / or a combustion in a burner of a fuel cell system
AT521855B1 (en) * 2018-11-12 2020-10-15 Avl List Gmbh Method for detecting ignition and / or combustion in a burner of a fuel cell system

Similar Documents

Publication Publication Date Title
JP4741231B2 (en) Operation method of fuel cell
JP2007254251A (en) Operation stopping method of reforming device
US20060143983A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
CN101888969A (en) Fuel cell system and method for starting the same
JP2003002605A (en) Method for operating and stopping steam reformer
JP2003282114A (en) Stopping method of fuel cell power generating device
JP2002093447A (en) Method for starting and stopping reformer for solid high polymer type fuel cell
JP4024470B2 (en) Method for stopping reformer for polymer electrolyte fuel cell
JP3857022B2 (en) Method for starting and stopping a polymer electrolyte fuel cell
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP2006008458A (en) Hydrogen production apparatus and fuel cell system
JP3886789B2 (en) Reforming apparatus and operation method thereof
JP2001085039A (en) Fuel cell system
JP2005294207A (en) Fuel cell system
JPH11149931A (en) Starting method of reforming equipment for fuel cell
JP2002020103A (en) Method for starting and method for stopping hydrogen producing device
JP4847759B2 (en) Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus
JP2007284265A (en) Method for stopping reforming system
JP4490717B2 (en) Reformer
JP4145573B2 (en) Start-up method of reformer
JP2001155747A (en) Fuel cell system
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP2006342003A (en) Hydrogen production apparatus and method for stopping the same
JP2003303610A (en) Fuel cell system and its operating method and auto- thermal reforming device
JP2008074657A (en) Method for starting self-heating reforming reaction at a low temperature