JP2002367552A - Charged-particle beam device - Google Patents
Charged-particle beam deviceInfo
- Publication number
- JP2002367552A JP2002367552A JP2001176477A JP2001176477A JP2002367552A JP 2002367552 A JP2002367552 A JP 2002367552A JP 2001176477 A JP2001176477 A JP 2001176477A JP 2001176477 A JP2001176477 A JP 2001176477A JP 2002367552 A JP2002367552 A JP 2002367552A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- charged particle
- particle beam
- objective lens
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 32
- 238000010894 electron beam technology Methods 0.000 claims abstract description 30
- 230000004075 alteration Effects 0.000 claims abstract description 21
- 230000005684 electric field Effects 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 abstract description 23
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000012937 correction Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000007689 inspection Methods 0.000 description 11
- 230000000979 retarding effect Effects 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、走査型荷電粒子顕
微鏡およびその類似装置に係り、特に低加速領域で高分
解能かつ二次電子の検出効率の優れた荷電粒子光学系に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning charged particle microscope and similar devices, and more particularly, to a charged particle optical system having high resolution in a low acceleration region and excellent secondary electron detection efficiency.
【0002】[0002]
【従来の技術】走査型電子顕微鏡の分解能を向上させる
ために、一次電子線が試料を照射する直前まで高加速電
圧とし、試料照射時に低加速電圧化する光学系が提案さ
れている。この光学系では、電子線の照射により試料で
発生した二次電子が、一次電子の減速電界により光軸方
向に加速されるので、電界(E)と磁界(B)を直交さ
せたいわゆるE×B形フィルタを用いて、光軸外に配置
された二次電子検出器に入射させる構成が特開平2−1
42045号に記載されている。このE×B形フィルタ
は一次電子線に対してはフィルタ内を直進させ、二次電
子に対しては、検出器方向に偏向させる作用をもつ。ま
た、特開平2−142045号ではこの二次電子を偏向
させる第一のE×B形フィルタで発生した色収差による
一次電子線への影響をこの第一のE×B形フィルタより
電子源側に配置された第二のE×B形フィルタにより補
正する構成が記載されている。2. Description of the Related Art In order to improve the resolution of a scanning electron microscope, there has been proposed an optical system in which a high accelerating voltage is applied just before a primary electron beam irradiates a sample, and a low accelerating voltage is applied when irradiating the sample. In this optical system, the secondary electrons generated in the sample by the irradiation of the electron beam are accelerated in the optical axis direction by the deceleration electric field of the primary electrons, so that the electric field (E) and the magnetic field (B) are orthogonal to each other. A configuration in which a B-type filter is used to make incident on a secondary electron detector arranged off the optical axis is disclosed in
No. 42045. The E × B filter has a function of causing a primary electron beam to go straight in the filter and deflecting a secondary electron toward the detector. In Japanese Patent Application Laid-Open No. 2-142045, the influence on the primary electron beam due to the chromatic aberration generated by the first E × B filter for deflecting the secondary electrons is shifted to the electron source side from the first E × B filter. A configuration is described in which correction is performed by using a second E × B filter arranged.
【0003】[0003]
【発明が解決しようとする課題】上記の構成では、図4
に示すように、対物レンズ13と対物レンズの物面との
間に第一のE×B形フィルタ17および第二のE×B形
フィルタ18を配置するので、コンデンサレンズ12と
対物レンズ13の間の距離を大きくとる必要があり、電
子光学系の全長が長くなってしまうという問題があっ
た。さらに、収差補正にはそれぞれのE×B形フィルタ
の強度を対物レンズの物面までの距離の逆比で設定する
必要があるので、対物レンズの物面に近い第二のE×B
形フィルタには大きな強度で設定する必要があった。こ
れを回避するために、対物レンズ13の前段のコンデン
サレンズ12で一次電子線を平行にしてやれば、それぞ
れのE×B形フィルタを同じ強度で設定することが可能
となるが、光学系全体の倍率を縮小系で用いるためには
さらに光学系寸法を長くしなければならないという問題
があった。In the above configuration, FIG.
As shown in (1), the first E × B-type filter 17 and the second E × B-type filter 18 are arranged between the objective lens 13 and the object surface of the objective lens. It is necessary to increase the distance between them, and there is a problem that the entire length of the electron optical system becomes long. Further, since the intensity of each E × B filter needs to be set in the inverse ratio of the distance to the object surface of the objective lens for aberration correction, the second E × B filter close to the object surface of the objective lens is required.
The shape filter had to be set with a large strength. If the primary electron beam is made parallel by the condenser lens 12 in front of the objective lens 13 in order to avoid this, it is possible to set each E × B filter with the same intensity. In order to use the magnification in a reduction system, there is a problem that the size of the optical system must be further increased.
【0004】[0004]
【課題を解決するための手段】本発明は、第一のE×B
形フィルタ17と第二のE×B形フィルタ18の配置関
係が、同一レンズの物面あるいは像面までの間の位置に
配置しなくても収差を補正でき、且つ第二のE×B形フ
ィルタ17の強度を大きく設定しなくても収差を補正で
きる装置を実現することにある。図5に示すように、E
×B形フィルタ51が長さLdの空間内で作用すると
し、E×B形フィルタ内の電界強度Eは一定で、E×B形
フィルタ内で電界強度Eと直角に作用する磁束Bとの間
にウィーン条件E=vB(v:電子線の速度)が成り立
つとすると、E×B形フィルタ51がレンズの物面とレ
ンズの間に配置する場合の像面上での偏向色収差dca
は、LaをE×B形フィルタと物面との間の距離、Mを
レンズ倍率、V0をE×B形フィルタを通過する一次電
子線の加速電圧、ΔVを一次電子線のエネルギー幅に相
当する電圧揺らぎとして、次式で表わされる。The present invention provides a first E × B
The arrangement relationship between the shape filter 17 and the second E × B-type filter 18 is such that aberrations can be corrected without disposing them at a position between the object surface or the image surface of the same lens, and the second E × B-type filter can be used. An object of the present invention is to realize a device capable of correcting aberrations without setting the intensity of the filter 17 large. As shown in FIG.
It is assumed that the × B-type filter 51 acts in the space of the length Ld, the electric field strength E in the E × B-type filter is constant, Assuming that the Wien condition E = vB (v: velocity of electron beam) is satisfied, the deflection chromatic aberration d ca on the image plane when the E × B filter 51 is disposed between the lens object surface and the lens.
Is the distance between the E × B filter and the object surface, M is the lens magnification, V 0 is the acceleration voltage of the primary electron beam passing through the E × B filter, and ΔV is the energy width of the primary electron beam. The corresponding voltage fluctuation is expressed by the following equation.
【0005】[0005]
【数1】 (Equation 1)
【0006】また、長さLdのE×B形フィルタがレン
ズの像面とレンズの間に配置する場合の像面上での偏向
色収差dcbは、LbをE×B形フィルタと像面との距
離と置くと、次式で表わされる。When an E × B filter having a length Ld is disposed between the image plane of the lens and the lens, the deflection chromatic aberration dcb on the image plane is determined by dividing Lb between the E × B filter and the image plane. Is given by the following equation.
【0007】[0007]
【数2】 (Equation 2)
【0008】そこで、図6に示すように、長さLd2の
第二のE×B形フィルタ18をコンデンサレンズ12の
像面位置とコンデンサレンズ12の間に配置すれば、第
二のE×B形フィルタ18が対物レンズ13の像面で発
生させる偏向色収差dc2は、(数2)でE2を第二のE
×B形フィルタ内の電界強度、Lcbを第二のE×B形
フィルタ18とコンデンサレンズ13の像面との距離、
Moを対物レンズ倍率と置くと、次式で表わされる。Therefore, as shown in FIG. 6, by disposing a second E × B filter 18 having a length Ld 2 between the image plane position of the condenser lens 12 and the condenser lens 12, The chromatic chromatic aberration dc2 generated by the shape filter 18 on the image plane of the objective lens 13 is expressed by the following equation ( Equation 2).
The electric field strength in the × B-type filter, Lcb, is the distance between the second E × B-type filter 18 and the image plane of the condenser lens 13,
When Mo is set as the objective lens magnification, it is expressed by the following equation.
【0009】[0009]
【数3】 (Equation 3)
【0010】一方、対物レンズ13の物面と対物レンズ
13の間に配置される長さLd1の第一のE×B形フィ
ルタ17が対物レンズ13の像面で発生させる偏向色収
差dc 1は(数1)でE1を第一のE×B形フィルタ17
内の電界強度、第一のE×B形フィルタ17と対物レン
ズ13の物面との距離をLoaと置くと、次式で表わさ
れるOn the other hand, object plane and deflection chromatic aberration d c 1 of the first E × B-type filter 17 of length Ld1 being arranged to generate the image plane of the objective lens 13 between the objective lens 13 of the objective lens 13 In Equation 1, E1 is converted to the first E × B type filter 17
When the distance between the first E × B-type filter 17 and the object surface of the objective lens 13 is set to Loa, the electric field strength in the inside is expressed by the following equation.
【0011】[0011]
【数4】 (Equation 4)
【0012】(数3)と(数4)から第一の第二のE×B形
フィルタに対する強度比をFrom the equations (3) and (4), the intensity ratio for the first second E × B filter is
【0013】[0013]
【数5】 (Equation 5)
【0014】とし、試料面上で互いに逆方向に作用する
ように向きを設定すれば、試料面上での色収差を補正す
ることができることがわかる。このように、第二のE×
B形フィルタ18をコンデンサレンズ12の像面位置と
コンデンサレンズ12の間に配置することにより、コン
デンサレンズ12と対物レンズ13の間の距離を短くす
ることが可能となり電子光学系の全長を短くすることが
できる。また、Ld1=Ld2とし、Loa=Lcbの
関係が成り立つ位置に第一および第二のE×B形フィル
タを配置すれば、第一および第二のE×B形フィルタの
強度をほぼ等しく設定することができるので、従来例の
ように第二のE×B形フィルタの強度を大きく設定する
ことなしに収差補正をすることができる。さらに、図7
に示すように、第二のE×B形フィルタ18をコンデン
サレンズ12より電子源側に配置すれば、コンデンサレ
ンズの倍率をさらに小さくすることができるので、電子
光学系の全長をさらに小さくすることができる。すなわ
ち、第二のE×B形フィルタ18がコンデンサレンズ1
2とコンデンサレンズ12の物面の間に配置されるとす
ると、第二のE×B形フィルタ18が対物レンズ13の
像面で発生させる偏向色収差dcbは、第二のE×B形
フィルタ18とコンデンサレンズ12の像面との距離を
Lca、コンデンサレンズ倍率をMcと置くと、次式で
表わされる。It can be seen that chromatic aberration on the sample surface can be corrected by setting the directions so that they act in opposite directions on the sample surface. Thus, the second Ex
By disposing the B-type filter 18 between the image plane position of the condenser lens 12 and the condenser lens 12, the distance between the condenser lens 12 and the objective lens 13 can be shortened, and the overall length of the electron optical system is shortened. be able to. Further, if Ld1 = Ld2 and the first and second E × B filters are arranged at positions where the relationship of Loa = Lcb holds, the intensities of the first and second E × B filters are set substantially equal. Therefore, the aberration can be corrected without setting the intensity of the second E × B filter large as in the conventional example. Further, FIG.
If the second E × B-type filter 18 is disposed closer to the electron source than the condenser lens 12 as shown in (2), the magnification of the condenser lens can be further reduced, so that the overall length of the electron optical system can be further reduced. Can be. That is, the second E × B type filter 18 is
If the second E × B-type filter 18 is disposed between the second E × B-type filter 18 and the object surface of the condenser lens 12, the deflection chromatic aberration dcb generated by the second E × B-type filter 18 on the image plane of the objective lens 13 is equal to the second E × B-type filter. Assuming that the distance between the lens 18 and the image plane of the condenser lens 12 is Lca, and the magnification of the condenser lens is Mc, it is expressed by the following equation.
【0015】[0015]
【数6】 (Equation 6)
【0016】(数4)と(数6)から第一の第二のE×B形
フィルタに対する強度比をFrom the equations (4) and (6), the intensity ratio for the first second E × B filter is
【0017】[0017]
【数7】 (Equation 7)
【0018】とし、試料面上で互いに逆方向に作用する
ように向きを設定すれば、試料面上での色収差を補正す
ることができる。しかし、コンデンサレンズ12が磁界
型レンズの場合、一次電子線に対し集束レンズ作用に加
えて、回転作用が発生する。すなわち、磁界レンズの光
軸方向をz軸として、光軸上の磁束密度をB(z)と置く
と、磁界レンズにより生ずる回転角φは、If the directions are set so as to act in opposite directions on the sample surface, chromatic aberration on the sample surface can be corrected. However, when the condenser lens 12 is a magnetic field type lens, a rotating action occurs on the primary electron beam in addition to the focusing lens action. That is, when the optical axis direction of the magnetic lens is the z-axis and the magnetic flux density on the optical axis is B (z), the rotation angle φ generated by the magnetic lens is
【0019】[0019]
【数8】 (Equation 8)
【0020】で表わされる。ここではeは素電荷、mは
電子の質量である。そこで、第二のE×B形フィルタ1
8には第一のE×B形フィルタに対して任意の方向に磁
界および電界を発生させて、磁界レンズによる回転角を
補正して試料上の偏向方向が反対方向になるように設定
すれば、収差を補正することができる。## EQU1 ## Here, e is the elementary charge, and m is the mass of the electron. Therefore, the second E × B filter 1
8 is to generate a magnetic field and an electric field in any direction with respect to the first E × B-type filter, correct the rotation angle of the magnetic lens, and set the deflection direction on the sample in the opposite direction. And aberrations can be corrected.
【0021】[0021]
【発明の実施の形態】以下に、本発明の実施の形態につ
き、実施例を挙げて詳細に説明する。本発明の第一実施
例を図1により説明する。図1は電子光学系を横からみ
た図である。電子光学系101は電界放出電子源10、
電子銃レンズ11、コンデンサレンズ12、対物レンズ
13、偏向器15、第一のE×B形フィルタ17および
第二のE×B形フィルタ18により構成されている。電
子源10から放出された一次電子線102は、コンデン
サレンズ12、対物レンズ13により集束レンズ作用を
うけて試料1上を集束照射される。試料1はリターディ
ング電圧Vrに設定され、一次電子線はアース電位に設定
された電極14と試料1の間で急激に減速される。試料
1から反射した反射電子あるいは試料1内で二次的に発
生した二次電子は電子線光軸の方向へ加速された後に、
第一のE×B形フィルタ17により検出器16方向に偏
向を受けて直接検出器16で検出される。電子線の偏向
走査は制御部40により、偏向増幅器29を介して送ら
れる走査信号を偏向器15に供給することによって電子
線を制御することによって行われる。同時に表示装置4
1には電子線走査と同期した偏向信号が制御部40から
供給され、試料走査像が表示装置41に供給される。以
上が電子光学系の基本構成である。第一のE×B形フィ
ルタ17および第二のE×B形フィルタ18は図2に示
すような八極形状である。電極は磁性体をコイルで同方
向に巻いた構成であり、電極が磁極をも兼ねている。ま
た、第一のE×B形フィルタ17および第二のE×B形
フィルタ18の周囲をそれぞれアース電位の磁性体19
および20で囲むことにより、E×B形フィルタ内で発
生する電界および磁界をE×B形フィルタ近傍に留める
構成としている。第一のE×B形フィルタ17の各コイ
ルには第一のE×B形フィルタ用コイル供給電源27か
らコイル電流が、各電極には第一のE×B形フィルタ用
電極印加電源28から電極電圧が供給される。各電極、
各コイルへの電圧および電流の配分は、図2に示すよう
な電流Ix、IyおよびVx,Vyの関数として配分される。そ
れぞれの強度比をVy/Vx=Iy/Ix=tanθに設定すれば、二
次電子に対して図中のx軸からθ方向に偏向作用を与え
ることができる。ここで図中のDESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below in detail with reference to examples. A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a side view of the electron optical system. The electron optical system 101 includes a field emission electron source 10,
It comprises an electron gun lens 11, a condenser lens 12, an objective lens 13, a deflector 15, a first E × B filter 17 and a second E × B filter 18. The primary electron beam 102 emitted from the electron source 10 is focused and irradiated on the sample 1 by the condenser lens 12 and the objective lens 13 through the action of a focusing lens. The sample 1 is set to the retarding voltage Vr, and the primary electron beam is rapidly decelerated between the sample 1 and the electrode 14 set to the ground potential. The reflected electrons reflected from the sample 1 or secondary electrons generated secondarily in the sample 1 are accelerated in the direction of the electron beam optical axis.
The light is deflected by the first E × B filter 17 in the direction of the detector 16 and is directly detected by the detector 16. The deflection scanning of the electron beam is performed by the control unit 40 controlling the electron beam by supplying a scanning signal sent via the deflection amplifier 29 to the deflector 15. Display device 4 at the same time
To 1, a deflection signal synchronized with electron beam scanning is supplied from the control unit 40, and a sample scan image is supplied to the display device 41. The above is the basic configuration of the electron optical system. The first E × B filter 17 and the second E × B filter 18 have an octupole shape as shown in FIG. The electrode has a configuration in which a magnetic material is wound in the same direction by a coil, and the electrode also serves as a magnetic pole. Around the first E × B-type filter 17 and the second E × B-type filter 18, a magnetic substance 19 having a ground potential is provided.
By enclosing them in and, the electric field and the magnetic field generated in the E × B filter are kept close to the E × B filter. Each coil of the first E × B filter 17 receives a coil current from the first E × B filter coil supply power supply 27, and each electrode receives a coil current from the first E × B filter electrode application power supply 28. An electrode voltage is provided. Each electrode,
The distribution of voltage and current to each coil is distributed as a function of the currents Ix, Iy and Vx, Vy as shown in FIG. If the respective intensity ratios are set to Vy / Vx = Iy / Ix = tan θ, a deflecting action can be given to the secondary electrons in the θ direction from the x-axis in the figure. Here in the figure
【0022】[0022]
【数9】 (Equation 9)
【0023】と置けば、高次の偏向収差が少ない条件が
得られる。第一のE×B形フィルタ17の強度および方
向は検出器方向に二次電子が偏向されるように定められ
る。検出器の方向が図2のx方向とすると、図中のVyと
Iyをほぼ0にすれば、二次電子は検出器方向に偏向され
る。Vxと二次電子の偏向角との関係は二次電子がE×B
形フィルタ17に入射するエネルギー、すなわち試料に
印加するリターディング電圧Vrに依存するので、あらか
じめ電子線の軌道計算結果や実験から求めた所望の偏向
角に対するリターディング電圧VrとVxの関係が制御部4
0にインプットされている。IxとVxの関係は、電子線の
軌道計算結果から求めた値があらかじめ制御部40にイ
ンプットされているか、表示装置41の画像上で試料上
の偏向量が完全にキャンセルするようにマニュアルある
いは自動的に設定される。第二のE×B形フィルタ18
の強度は、(数4)より求められる。ここで、一次電子線
102のコンデンサレンズ12への物面位置すなわち電
子銃レンズ11の像面位置は、電子銃レンズの動作条
件、すなわち、所望のエミッション電流を得るための引
き出し電圧VEと一次電子線の加速電圧V0から、一義的に
求められる。制御部40にはあらかじめ実験あるいはレ
ンズ計算により求められた電子銃レンズの像面位置とVE
およびV0との関係のデータがインプットされている。対
物レンズの物面位置すなわちコンデンサレンズの像面位
置のデータもあらかじめ加速電圧V0、リターディング電
圧Vr、コンデンサレンズ12の強度および対物レンズ1
3の強度などの情報から求められるようになっており、
例えば対物レンズの強度、加速電圧V0およびリターディ
ング電圧Vrと対物レンズ物面位置との関係のデータが制
御部40にインプットされている。第二のE×B形フィ
ルタ18の動作方向はコンデンサレンズの強度に依存す
る。この角度は(数8)より計算で求めるか、表示装置の
画像上で求められる。画像上では、第一のE×B形フィ
ルタ17を電界だけ印加した条件で第二のE×B形フィ
ルタ18も電界だけ印加して、互いに逆な方向に作用す
るように第二のE×B形フィルタ18の各電極および各
コイルの配分を定めればよい。例えば、第一と第二のフ
ィルタの作用する方向がθだけ回転しているとすると、
VxとVyの強度比Vy/Vx=tanθに設定してやれば良い。以
上より、加速電圧V0、リターディング電圧Vrから第一の
E×B形フィルタ17の強度が制御部40から第一のE
×B形フィルタコイル供給電源27および第一のE×B
形フィルタ電極印加電源28を介して設定される。さら
に引き出し電圧VE、コンデンサレンズ12の強度および
対物レンズ13の強度から第二のE×B形フィルタ18
の強度が制御部40から第二のエネルギーフィルタコイ
ル供給電源23、第二のE×B形フィルタ電極印加電源
24を介して設定される。以上の動作により、二次電子
を検出器方向に偏向する際に発生する第一のE×B形フ
ィルタの収差を、第二のE×B形フィルタにより補正す
ることができる。本発明の第二の実施例は本発明を半導
体パターンの回路検査に適用したもので、図3により説
明する。検出器16は対物レンズ13の上方にあり、検
出器16の出力信号はプリアンプ26で増幅されAD変
換器32によりデジタルデータとなり、画像処理部47
へ入力される。検査装置各部の動作命令及び動作条件は
制御部48から入出力される。電子源10には電界放出
電子源を用いるが、特にパターンの回路検査には拡散補
給型の熱電界放出電子源を用いたほうが望ましい。これ
により明るさ変動の少ない比較検査画像が得られ、且つ
電子線電流を大きくすることが可能なことから、高速な
検査が可能となる。試料1にはリターディング用高圧電
源31により負の電圧を印可できるようになっている。
このリターディング用高圧電源31の電圧を調節するこ
とにより、試料1への電子線照射エネルギーを最適な値
に調節することが容易になる。試料1の画像を取得する
ためには、細く絞った電子線を試料1に照射し、二次電
子103を発生させ、一次電子線102の走査及びステ
ージの移動と同期して検出することで試料表面の画像を
得る。試料1は負電位に設定され、一次電子線は試料1
の直前で急激に減速される。試料1から反射した反射電
子あるいは試料1内で二次的に発生した二次電子は電子
線光軸の方向へ加速され、対物レンズを通過した後に第
一のE×B形フィルタ17により検出器16方向に偏向
を受けて反射板33に入射し、反射板から発生した三次
電子104が検出器16で検出される。光軸近傍に配置
された反射板33からの三次電子104を検出すること
で、かつ二次電子の偏向角が小さい条件でも検出するこ
とができるとともに、検出器を光軸近傍に近づけなくて
もよくなるので検出器の光軸方向のスペースを小さくす
ることも可能となる。第二のE×B形フィルタ18はコ
ンデンサレンズ12とコンデンサレンズ12の像面位置
の間に配置される。対物レンズの物面位置すなわちコン
デンサレンズの像面位置のデータはあらかじめ加速電圧
V0、リターディング電圧Vr、コンデンサレンズ12の強
度および対物レンズ13の強度などの情報から求められ
るようになっており、例えば対物レンズの強度、加速電
圧V0、リターディング電圧Vrの情報から、制御部40は
対物レンズ物面位置を決定し、(数5)より第二のE×B
形フィルタ18と第一のE×B形フィルタ17の強度比
を決定して、設定する。また、この実施例では2つのE
×B形フィルタの間に磁界レンズが配置されていないの
で、第二のE×B形フィルタ18の動作方向は第一のE
×B形フィルタ17の動作方向とほぼ等しく設定され
る。本発明で述べるような自動検査には検査速度が速い
ことが必須となる。このような検査装置で、検査速度を
決定するのは検出画像のSNであり、本実施例で高効率
な二次電子検出が達成できれば、検査速度の向上を達成
することができる。本実施例では通常のSEMに比べ約
100倍以上の例えば100nAの大電流電子線の一回
のみあるいは数回の走査によりSNの良好な画像を形成
することができた。例えば、一枚の画像を1000x1
000画素で10msecで取り込んだ場合、SN比2
0以上の画像を得ることができる。画像信号には一画像
分の遅延をかけて次の画像の取り込みと同期させて画像
比較評価を行い、回路基板上の欠陥探索を行う構成とし
ている。すなわち、画像処理系47では、画像記憶部4
2aに記憶された画像と遅延回路43より一画像分の遅
延をかけて画像記憶部42bに記憶された画像との比較
評価を行う。演算部45は例えば両画像の差を演算する
機能を持ち、両画像の差がある閾値を越えた画像のアド
レスPを欠陥判定部46に記憶することにより、欠陥検
査を行う構成としている。本発明では第一のE×B形フ
ィルタ17を対物レンズ13と対物レンズ物面の間に配
置したが、第一のE×B形フィルタ17を例えば対物レ
ンズ13と対物レンズ像面の間に配置しても、第二のE
×B形フィルタ18を例えば対物レンズ13と対物レン
ズ物面の間に配置して、(数1)と(数2)で与えられる強
度比で設定すれば第一のE×B形フィルタ17の収差を
補正することができる。すなわち、第一のE×B形フィ
ルタ17が配置される集束レンズとその集束レンズの像
面あるいは物面位置との間の空間以外のどのような位置
に第二のE×B形フィルタ18を配置しても、収差を補
正することができる。本発明は電子線装置について述べ
たが、これに限ることなくイオン線のような荷電粒子線
装置に適用できることは言うまでもない。ただし、正の
電荷をもっている荷電粒子線の場合には、減速電圧は正
の値にする必要がある。With the above condition, a condition in which high-order deflection aberration is small can be obtained. The intensity and direction of the first E × B filter 17 are determined so that the secondary electrons are deflected in the direction of the detector. Assuming that the direction of the detector is the x direction in FIG.
If Iy is approximately zero, the secondary electrons are deflected in the direction of the detector. The relationship between Vx and the deflection angle of the secondary electrons is as follows:
The relationship between the retarding voltage Vr and Vx with respect to the electron beam trajectory calculation result or the desired deflection angle obtained in advance by experiments depends on the energy incident on the filter 17, that is, the retarding voltage Vr applied to the sample. 4
Input to 0. The relationship between Ix and Vx can be determined manually or automatically so that the value obtained from the electron beam trajectory calculation result is input to the control unit 40 in advance or the deflection amount on the sample is completely canceled on the image of the display device 41. Is set. Second E × B filter 18
Is obtained from (Equation 4). Here, the object plane position of the primary electron beam 102 on the condenser lens 12, that is, the image plane position of the electron gun lens 11, depends on the operating conditions of the electron gun lens, that is, the extraction voltage VE for obtaining a desired emission current and the primary electron beam. It can be uniquely obtained from the acceleration voltage V0 of the line. The control unit 40 has the image plane position of the electron gun lens and the VE calculated in advance by experiment or lens calculation.
And data on the relationship with V0 are input. The data of the object plane position of the objective lens, that is, the data of the image plane position of the condenser lens, are also determined in advance by the acceleration voltage V0, the retarding voltage Vr, the intensity of the condenser lens 12, and the
It is required from information such as strength of 3,
For example, data on the relationship between the intensity of the objective lens, the acceleration voltage V0, the retarding voltage Vr, and the object lens surface position is input to the control unit 40. The operating direction of the second E × B filter 18 depends on the strength of the condenser lens. This angle can be obtained by calculation from (Equation 8) or on an image of the display device. On the image, under the condition that only the first E × B filter 17 is applied, only the electric field is applied to the second E × B filter 18, and the second E × B filter 18 is actuated in the opposite directions. The distribution of each electrode and each coil of the B-type filter 18 may be determined. For example, if the direction in which the first and second filters act is rotated by θ,
What is necessary is just to set the intensity ratio Vy / Vx = tanθ between Vx and Vy. As described above, the control unit 40 determines the intensity of the first E × B filter 17 from the acceleration voltage V0 and the retarding voltage Vr.
× B type filter coil power supply 27 and first ExB
It is set via the filter electrode application power supply 28. Further, based on the extraction voltage VE, the strength of the condenser lens 12 and the strength of the objective lens 13, the second E × B filter 18
Is set from the control unit 40 via the second energy filter coil supply power supply 23 and the second E × B filter electrode application power supply 24. According to the above operation, the aberration of the first E × B filter generated when the secondary electrons are deflected in the detector direction can be corrected by the second E × B filter. A second embodiment of the present invention is an application of the present invention to a circuit inspection of a semiconductor pattern, which will be described with reference to FIG. The detector 16 is located above the objective lens 13, and the output signal of the detector 16 is amplified by the preamplifier 26, converted into digital data by the AD converter 32,
Is input to Operation commands and operation conditions of each part of the inspection apparatus are input and output from the control unit 48. Although a field emission electron source is used as the electron source 10, it is preferable to use a diffusion-supply type thermal field emission electron source especially for circuit inspection of a pattern. As a result, it is possible to obtain a comparative inspection image with a small change in brightness and to increase the electron beam current, thereby enabling a high-speed inspection. A negative voltage can be applied to the sample 1 by the high voltage power supply 31 for retarding.
By adjusting the voltage of the high voltage power supply 31 for retarding, it becomes easy to adjust the electron beam irradiation energy to the sample 1 to an optimum value. In order to obtain an image of the sample 1, the sample 1 is irradiated with a finely squeezed electron beam to generate secondary electrons 103, which are detected in synchronization with the scanning of the primary electron beam 102 and the movement of the stage. Obtain an image of the surface. Sample 1 was set to a negative potential, and the primary electron beam was
Suddenly decelerates immediately before The reflected electrons reflected from the sample 1 or secondary electrons generated secondary in the sample 1 are accelerated in the direction of the electron beam optical axis, and after passing through the objective lens, are detected by the first E × B filter 17. The light is deflected in 16 directions and is incident on the reflecting plate 33. Tertiary electrons 104 generated from the reflecting plate are detected by the detector 16. By detecting the tertiary electrons 104 from the reflector 33 disposed near the optical axis, it is possible to detect the secondary electrons even under the condition where the deflection angle of the secondary electrons is small, and it is not necessary to bring the detector close to the optical axis. As a result, the space in the optical axis direction of the detector can be reduced. The second E × B filter 18 is arranged between the condenser lens 12 and the image plane position of the condenser lens 12. The data of the object plane position of the objective lens, that is, the image plane position of the condenser lens, must be
V0, retarding voltage Vr, the strength of the condenser lens 12, the strength of the objective lens 13, and the like. For example, the control unit can calculate the strength of the objective lens, the acceleration voltage V0, and the retarding voltage Vr. 40 determines the position of the object surface of the objective lens.
The intensity ratio between the shape filter 18 and the first E × B filter 17 is determined and set. In this embodiment, two Es
Since no magnetic lens is arranged between the × B filters, the operating direction of the second E × B filter 18 is the first E × B filter 18.
It is set substantially equal to the operation direction of the × B-type filter 17. In the automatic inspection as described in the present invention, a high inspection speed is essential. In such an inspection apparatus, it is the SN of the detected image that determines the inspection speed. If highly efficient secondary electron detection can be achieved in this embodiment, the inspection speed can be improved. In the present embodiment, an image with a good SN could be formed by only one or several scans of a high current electron beam of, for example, 100 nA which is about 100 times or more that of a normal SEM. For example, one image is 1000x1
When the data is captured in 10 msec with 000 pixels, the SN ratio is 2
Zero or more images can be obtained. The image signal is delayed by one image, the image comparison and evaluation are performed in synchronization with the capture of the next image, and a defect search on the circuit board is performed. That is, in the image processing system 47, the image storage unit 4
The image stored in the image storage unit 42b is compared with the image stored in the image storage unit 42b with a delay of one image from the delay circuit 43. The calculation unit 45 has a function of calculating, for example, a difference between the two images, and performs a defect inspection by storing an address P of an image in which the difference between the two images exceeds a certain threshold value in the defect determination unit 46. In the present invention, the first E × B filter 17 is disposed between the objective lens 13 and the object lens surface, but the first E × B filter 17 is disposed, for example, between the objective lens 13 and the objective lens image plane. Even if placed, the second E
For example, if the × B-type filter 18 is disposed between the objective lens 13 and the object surface of the objective lens and is set at an intensity ratio given by (Equation 1) and (Equation 2), the first E × B-type filter 17 Aberration can be corrected. That is, the second E × B filter 18 is placed at any position other than the space between the focusing lens in which the first E × B filter 17 is arranged and the image plane or object plane position of the focusing lens. Even if they are arranged, aberration can be corrected. Although the present invention has been described with respect to an electron beam apparatus, it goes without saying that the present invention is not limited to this and can be applied to a charged particle beam apparatus such as an ion beam. However, in the case of a charged particle beam having a positive charge, the deceleration voltage needs to be a positive value.
【0024】[0024]
【発明の効果】以上説明したように、本発明では、低加
速電圧でも高分解能でかつ二次電子の高検出効率が得ら
れる荷電粒子線装置を従来より短い電子光学系寸法で実
現できる効果がある。As described above, according to the present invention, there is an effect that a charged particle beam apparatus which can obtain high resolution and high secondary electron detection efficiency even at a low accelerating voltage can be realized with a shorter electron optical system size than before. is there.
【図1】本発明の第一実施例の構成図。FIG. 1 is a configuration diagram of a first embodiment of the present invention.
【図2】本発明の第一実施例のE×B形フィルタの構成
図。FIG. 2 is a configuration diagram of an E × B filter according to the first embodiment of the present invention.
【図3】本発明の第二実施例の構成図。FIG. 3 is a configuration diagram of a second embodiment of the present invention.
【図4】従来の構成図。FIG. 4 is a conventional configuration diagram.
【図5】E×B形フィルタの動作を説明する図。FIG. 5 is a diagram illustrating an operation of an E × B filter.
【図6】本発明のE×B形フィルタの第1の配置を示す
図。FIG. 6 is a diagram showing a first arrangement of an E × B filter according to the present invention.
【図7】本発明のE×B形フィルタの第2の配置を示す
図。FIG. 7 is a diagram showing a second arrangement of the E × B filter of the present invention.
1…試料、2…X−Yステージ、3…回転ステージ、1
0、…電子源、11…電子銃レンズ、12…コンデンサ
レンズ、13…対物レンズ、14…電極、15…偏向
器、16…検出器、17…第一のE×B形フィルタ、1
8…第二のE×B形フィルタ、19、20…磁性体、2
1…引き出し電圧制御電源、22…加速電圧制御電源、
23…第二のE×B形フィルタ用コイル供給電源、24
…第二のE×B形フィルタ用電極印加電源、25…コン
デンサレンズ用電源、26…プリアンプ、27…第一の
E×B形フィルタ用コイル供給電源、28…第一のE×
B形フィルタ用電極印加電源、29…偏向増幅器、30
…対物レンズ用電源、31…リターディング用電源、3
2…AD変換器、33…反射板、34…ブランカ、40
…制御部、41……表示装置、42a、42b…画像記
憶部、43…遅延回路、45…演算部,46…欠陥判定
部,47…画像処理系,48…制御部、101…電子光
学系、102…一次電子線、103…二次電子、104
…三次電子。1 ... sample, 2 ... XY stage, 3 ... rotary stage, 1
0, electron source, 11 electron gun lens, 12 condenser lens, 13 objective lens, 14 electrode, 15 deflector, 16 detector, 17 first E × B filter, 1
8: second E × B filter, 19, 20: magnetic material, 2
1. Extraction voltage control power supply 22. Acceleration voltage control power supply
23 ... second E × B filter coil supply power supply, 24
.., A second E × B filter electrode application power supply, 25 a condenser lens power supply, 26 a preamplifier, 27 a first E × B filter coil supply power, 28 a first E ×
B-type filter electrode application power supply, 29 ... deflection amplifier, 30
... Power supply for objective lens, 31 ... Power supply for retarding, 3
2 AD converter, 33 reflector, 34 blanker, 40
... Control unit, 41 ... Display device, 42a, 42b ... Image storage unit, 43 ... Delay circuit, 45 ... Calculation unit, 46 ... Defect determination unit, 47 ... Image processing system, 48 ... Control unit, 101 ... Electronic optical system , 102: primary electron beam, 103: secondary electron, 104
... Tertiary electrons.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 品田 博之 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5C033 AA02 AA05 JJ07 UU02 UU04 ──────────────────────────────────────────────────続 き Continued on the front page (72) Hiroyuki Shinada, Inventor 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5C033 AA02 AA05 JJ07 UU02 UU04
Claims (4)
の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記対物レンズ手段と前記電子源の間に配置され照
射系の倍率を制御するコンデンサレンズと、前記第一の
荷電粒子線の前記対物レンズに対する物面と前記対物レ
ンズの間に配置されて前記試料から発生した二次荷電粒
子線を前記第一の荷電粒子線から分離させる第一のフィ
ルタと、前記第一のフィルタで発生した第一の荷電粒子
線の収差を前記コンデンサレンズと前記コンデンサレン
ズの像面の間に配置された第二のフィルタで補正するこ
とを特徴とする荷電粒子線装置。1. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with a charged particle beam; and an irradiation system arranged between the objective lens means and the electron source. A condenser lens for controlling magnification, and a secondary charged particle beam generated from the sample, which is disposed between the object surface of the first charged particle beam with respect to the objective lens and the objective lens, and the first charged particle beam A first filter separated from the first filter, and correcting the aberration of the first charged particle beam generated by the first filter by the second filter disposed between the condenser lens and the image plane of the condenser lens. A charged particle beam device characterized by the above-mentioned.
の荷電粒子線を絞って試料に照射する対物レンズ手段
と、前記対物レンズ手段と前記電子源の間に配置され照
射系の倍率を制御するコンデンサレンズと、前記第一の
荷電粒子線の前記対物レンズに対する物面と前記対物レ
ンズの間に配置されて前記試料から発生した二次荷電粒
子線を前記第一の荷電粒子線から分離させる第一のフィ
ルタと、前記第一のフィルタで発生した第一の荷電粒子
線の収差を前記コンデンサレンズと前記コンデンサレン
ズの物面の間に配置された第二のフィルタで補正するこ
とを特徴とする荷電粒子線装置。2. A charged particle source, objective lens means for squeezing a first charged particle beam emitted from the charged particle source and irradiating the sample with a charged particle source; and an irradiation system arranged between the objective lens means and the electron source. A condenser lens for controlling magnification, and a secondary charged particle beam generated from the sample, which is disposed between the object surface of the first charged particle beam with respect to the objective lens and the objective lens, and the first charged particle beam A first filter separated from the first filter, and correcting the aberration of the first charged particle beam generated in the first filter by the second filter disposed between the condenser lens and the object surface of the condenser lens. A charged particle beam device characterized by the above-mentioned.
ルタが電界と磁界を交叉させて作用するE×B形フィル
タであることを特徴とする請求項1および請求項2記載
の荷電粒子線装置。3. The charged particle beam according to claim 1, wherein said first filter and said second filter are E × B filters which operate by crossing an electric field and a magnetic field. apparatus.
粒子線が一次電子線、前記二次荷電粒子線が二次電子で
あることを特徴とする請求項1から請求項3まで記載の
荷電粒子線装置。4. The apparatus according to claim 1, wherein the charged particle source is an electron source, the first charged particle beam is a primary electron beam, and the secondary charged particle beam is a secondary electron. A charged particle beam apparatus according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001176477A JP4103345B2 (en) | 2001-06-12 | 2001-06-12 | Charged particle beam equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001176477A JP4103345B2 (en) | 2001-06-12 | 2001-06-12 | Charged particle beam equipment |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002367552A true JP2002367552A (en) | 2002-12-20 |
JP2002367552A5 JP2002367552A5 (en) | 2006-04-06 |
JP4103345B2 JP4103345B2 (en) | 2008-06-18 |
Family
ID=19017456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001176477A Expired - Lifetime JP4103345B2 (en) | 2001-06-12 | 2001-06-12 | Charged particle beam equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4103345B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007242490A (en) * | 2006-03-10 | 2007-09-20 | Ebara Corp | Aberration correction optical device for charged particle beam optical system, and optical system |
JP2008135343A (en) * | 2006-11-29 | 2008-06-12 | Hitachi High-Technologies Corp | Charged particle beam device, scanning electron microscope, and testpiece observation method |
US7863580B2 (en) | 2006-06-13 | 2011-01-04 | Ebara Corporation | Electron beam apparatus and an aberration correction optical apparatus |
US8035082B2 (en) | 2005-03-03 | 2011-10-11 | Kabushiki Kaisha Toshiba | Projection electron beam apparatus and defect inspection system using the apparatus |
US8067732B2 (en) | 2005-07-26 | 2011-11-29 | Ebara Corporation | Electron beam apparatus |
JP2012023398A (en) * | 2005-04-28 | 2012-02-02 | Hitachi High-Technologies Corp | Inspection method and inspection apparatus using charged particle beam |
WO2013172365A1 (en) * | 2012-05-15 | 2013-11-21 | 株式会社日立ハイテクノロジーズ | Electron beam application device and electron beam adjustment method |
WO2014002734A1 (en) * | 2012-06-28 | 2014-01-03 | 株式会社 日立ハイテクノロジーズ | Charged particle beam device |
KR20180003601A (en) * | 2015-05-08 | 2018-01-09 | 케이엘에이-텐코 코포레이션 | Method and system for aberration correction of electron beam system |
KR20190085157A (en) * | 2016-12-07 | 2019-07-17 | 케이엘에이-텐코 코포레이션 | Method and system for aberration correction in an electron beam system |
-
2001
- 2001-06-12 JP JP2001176477A patent/JP4103345B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8035082B2 (en) | 2005-03-03 | 2011-10-11 | Kabushiki Kaisha Toshiba | Projection electron beam apparatus and defect inspection system using the apparatus |
JP2012023398A (en) * | 2005-04-28 | 2012-02-02 | Hitachi High-Technologies Corp | Inspection method and inspection apparatus using charged particle beam |
US8067732B2 (en) | 2005-07-26 | 2011-11-29 | Ebara Corporation | Electron beam apparatus |
JP2007242490A (en) * | 2006-03-10 | 2007-09-20 | Ebara Corp | Aberration correction optical device for charged particle beam optical system, and optical system |
US7863580B2 (en) | 2006-06-13 | 2011-01-04 | Ebara Corporation | Electron beam apparatus and an aberration correction optical apparatus |
JP2008135343A (en) * | 2006-11-29 | 2008-06-12 | Hitachi High-Technologies Corp | Charged particle beam device, scanning electron microscope, and testpiece observation method |
WO2013172365A1 (en) * | 2012-05-15 | 2013-11-21 | 株式会社日立ハイテクノロジーズ | Electron beam application device and electron beam adjustment method |
JP2013239329A (en) * | 2012-05-15 | 2013-11-28 | Hitachi High-Technologies Corp | Electron beam application device and electron beam adjustment method |
WO2014002734A1 (en) * | 2012-06-28 | 2014-01-03 | 株式会社 日立ハイテクノロジーズ | Charged particle beam device |
JP2014010928A (en) * | 2012-06-28 | 2014-01-20 | Hitachi High-Technologies Corp | Charged particle beam device |
US9627171B2 (en) | 2012-06-28 | 2017-04-18 | Hitachi High-Technologies Corporation | Charged particle beam device |
KR101759186B1 (en) * | 2012-06-28 | 2017-07-18 | 가부시키가이샤 히다치 하이테크놀로지즈 | Charged particle beam device |
KR20180003601A (en) * | 2015-05-08 | 2018-01-09 | 케이엘에이-텐코 코포레이션 | Method and system for aberration correction of electron beam system |
KR102387776B1 (en) * | 2015-05-08 | 2022-04-15 | 케이엘에이 코포레이션 | Method and system for correcting aberration of electron beam system |
KR20190085157A (en) * | 2016-12-07 | 2019-07-17 | 케이엘에이-텐코 코포레이션 | Method and system for aberration correction in an electron beam system |
JP2019537228A (en) * | 2016-12-07 | 2019-12-19 | ケーエルエー コーポレイション | Aberration correction method and system in electron beam system |
KR102325235B1 (en) * | 2016-12-07 | 2021-11-10 | 케이엘에이 코포레이션 | Method and system for aberration correction in electron beam system |
JP2022058942A (en) * | 2016-12-07 | 2022-04-12 | ケーエルエー コーポレイション | Electron optical system |
JP7194849B2 (en) | 2016-12-07 | 2022-12-22 | ケーエルエー コーポレイション | electron optical system |
Also Published As
Publication number | Publication date |
---|---|
JP4103345B2 (en) | 2008-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6265719B1 (en) | Inspection method and apparatus using electron beam | |
JP4236742B2 (en) | Scanning electron microscope | |
WO2020082861A1 (en) | Low-energy scanning electron microscope system, scanning electron microscope system, and specimen detection method | |
JP4215282B2 (en) | SEM equipped with electrostatic objective lens and electrical scanning device | |
JP3441955B2 (en) | Projection type charged particle microscope and substrate inspection system | |
JPH09171791A (en) | Scanning type electron microscope | |
US7034297B2 (en) | Method and system for use in the monitoring of samples with a charged particle beam | |
JP2001273861A (en) | Charged beam apparatus and pattern incline observation method | |
US6365897B1 (en) | Electron beam type inspection device and method of making same | |
US7095023B2 (en) | Charged particle beam apparatus, charged particle detection method, and method of manufacturing semiconductor device | |
JP2001093455A (en) | Electron beam device | |
JPH11148905A (en) | Electron beam inspection method and apparatus therefor | |
JP2010055756A (en) | Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus | |
JP2001511304A (en) | Environmentally controlled SEM using magnetic field for improved secondary electron detection | |
CN108807118B (en) | Scanning electron microscope system and sample detection method | |
JP2005209806A (en) | Charged beam equipment | |
JP2004342341A (en) | Mirror electron microscope, and pattern defect inspection device using it | |
JP5525128B2 (en) | Charged particle beam application apparatus and sample observation method | |
US6580074B1 (en) | Charged particle beam emitting device | |
JP4103345B2 (en) | Charged particle beam equipment | |
JPH10302705A (en) | Scanning electron microscope | |
JPH11242943A (en) | Inspection device | |
JP2006093161A (en) | Electron scanning microscope | |
JP5478683B2 (en) | Charged particle beam irradiation method and charged particle beam apparatus | |
US11251018B2 (en) | Scanning electron microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060216 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060216 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080317 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4103345 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140404 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |