JP2002292591A - Production method of robot hand element - Google Patents

Production method of robot hand element

Info

Publication number
JP2002292591A
JP2002292591A JP2001097478A JP2001097478A JP2002292591A JP 2002292591 A JP2002292591 A JP 2002292591A JP 2001097478 A JP2001097478 A JP 2001097478A JP 2001097478 A JP2001097478 A JP 2001097478A JP 2002292591 A JP2002292591 A JP 2002292591A
Authority
JP
Japan
Prior art keywords
prepreg sheet
robot hand
prepreg
hand member
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001097478A
Other languages
Japanese (ja)
Other versions
JP3632841B2 (en
Inventor
Takashi Kobayashi
孝至 小林
Kenichi Aoyanagi
健一 青柳
Daisuke Uchida
大介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2001097478A priority Critical patent/JP3632841B2/en
Priority to KR1020020016981A priority patent/KR20020077179A/en
Priority to CNB021085870A priority patent/CN100402246C/en
Priority to US10/107,307 priority patent/US20020180104A1/en
Priority to TW091106239A priority patent/TW544383B/en
Publication of JP2002292591A publication Critical patent/JP2002292591A/en
Application granted granted Critical
Publication of JP3632841B2 publication Critical patent/JP3632841B2/en
Priority to US11/147,459 priority patent/US7833455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of production process steps in a production method for a robot hand element that is attached to an industrial robot arm and that is light and excels in flatness, flexural rigidity, heat-resistance, etc. SOLUTION: A preimpregnation sheet 7 including reinforced fiber is wound in several layers to the outer surface of a specified section core material 6 made by using a material that has no heat deformation less than a specified temperature. The outside molds 10a, 10b having a specified inner surface form are pressed to the outer surface of the preimpregnation sheet laminated material 9 wound in several layers and the outside of the preimpregnation sheet laminated material 9 is formed to a specified dimension, and this preimpregnation sheet laminated material 9 is thermally set by heating to a specified temperature and becomes the fiber reinforced composite. It is manufactured by extracting the core material 6 from an element 11 made of fiber-reinforced composite as hollow structure. In this way, the production process steps are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業用ロボットの
アーム部に取り付けられる軽量で、平面性に優れ、曲げ
剛性、耐熱性等に優れたロボットハンド部材を製造する
方法に関し、詳しくは、芯材の外周面に強化繊維を含む
プリプレグシートを巻き付け熱硬化させて繊維強化複合
材料とすることによって、製造工程数を低減しようとす
るロボットハンド部材の製造方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a robot hand member which is attached to an arm of an industrial robot and is lightweight, excellent in flatness, excellent in bending rigidity, heat resistance and the like. The present invention relates to a method for manufacturing a robot hand member which aims to reduce the number of manufacturing steps by winding a prepreg sheet containing reinforcing fibers around an outer peripheral surface of a material and thermally curing the prepreg sheet to form a fiber reinforced composite material.

【0002】[0002]

【従来の技術】液晶ディスプレー(LCD)の普及と共
に、ガラス基板のサイズが大きくなってきている。それ
に伴い、LCD、プラズマディスプレーパネル(PD
P)、シリコンウェハ等の精密品の製造工程で使用され
る基板搬送用ロボットハンドのサイズも大きくする必要
がある。また、大型のプラズマディスプレーパネル(P
DP)の搬送用ロボットハンドのサイズは、上記LCD
の搬送用ロボットハンドよりも大きい。
2. Description of the Related Art With the spread of liquid crystal displays (LCD), the size of glass substrates has been increasing. Accordingly, LCDs, plasma display panels (PD
P), the size of the substrate transfer robot hand used in the manufacturing process of precision products such as silicon wafers also needs to be increased. In addition, large plasma display panels (P
DP) The size of the transfer robot hand is the above LCD
Larger than the transfer robot hand.

【0003】そして、これまでのロボットハンドの素材
としては、鉄、ステンレス、アルミニウム等の金属が使
われていた。そして、近年のロボットハンドの大型化に
伴って軽量化が求められ、繊維強化複合材料(Fiber Re
inforced Plastic : 以下、「FRP」と略称する。)が使
われれるようになってきた。特に、炭素繊維強化複合材
料(Carbon Fiber Reinforced Plastic : 以下、「CFR
P」と略称する。)の無垢材から成るロボットハンド部
材が普及している。しかしながら、さらに大型化が進ん
でいる現状では、これまでに使用しているCFRPの無垢材
ではロボットハンドそのものが重くなり、その自重によ
る撓みが大きくなってしまう。また、ロボットハンドが
重くなると、ロボット駆動系への負荷も大きくなり、ロ
ボットそのものの設計やコストにも影響することがあ
る。
[0003] Metals such as iron, stainless steel and aluminum have been used as materials for robot hands up to now. With the recent increase in size of robot hands, weight reduction is required, and fiber reinforced composite materials (Fiber Re
inforced Plastic: Hereinafter, abbreviated as "FRP". ) Is being used. In particular, carbon fiber reinforced composite materials (Carbon Fiber Reinforced Plastic:
P ”. Robot hand members made of solid materials are widely used. However, under the current situation of further increase in size, the solid hand of CFRP used so far makes the robot hand itself heavy, and the deflection due to its own weight increases. Also, when the robot hand becomes heavier, the load on the robot drive system increases, which may affect the design and cost of the robot itself.

【0004】このような状況において、ロボットハンド
部材の厚みを薄くしたり、ワーク支持面の幅を狭くした
りして軽量化することで、自重撓みはある程度解消でき
るが、このような対策では、ロボットハンドの曲げ剛性
が低下するので、ワークを支持した際の撓み(荷重撓
み)が大きくなってしまう。特に、長尺のロボットハン
ド部材を片持ちに取り付けた場合は、先端部における撓
みが大きくなり、ワークを支持した際の振動等が大きく
なり易いので、ワーク支持性或いは搬送性に支障を来す
虞があった。
In such a situation, by reducing the thickness of the robot hand member or reducing the width of the work supporting surface to reduce the weight, the deflection of its own weight can be eliminated to some extent. Since the bending stiffness of the robot hand decreases, the bending (load bending) when supporting the workpiece increases. In particular, when a long robot hand member is mounted on a cantilever, the bending at the tip becomes large, and the vibration or the like at the time of supporting the work is likely to increase, which hinders the work supportability or transportability. There was a fear.

【0005】従来、CFRPを用いたロボットハンド部材の
製造については、特開2000−343476号公報に
記載されているように、炭素繊維を含むプリプレグシー
トを複数枚積層して加熱し熱硬化させた板状の炭素繊維
強化複合材料(CFRP)から成るスキン層と、同じくCFRP
から成るコア層とを別々に成形し、上記コア層を芯材と
してその上面及び下面にスキン層を積層し、該コア層と
スキン層とを接着剤により貼り合せて製造する技術が提
案されている。
Conventionally, for manufacturing a robot hand member using CFRP, as described in Japanese Patent Application Laid-Open No. 2000-343476, a plurality of prepreg sheets containing carbon fibers are laminated, heated and thermoset. A skin layer made of plate-like carbon fiber reinforced composite material (CFRP) and CFRP
A core layer composed of a core layer, a skin layer is laminated on the upper and lower surfaces of the core layer using the core layer as a core material, and the core layer and the skin layer are bonded to each other with an adhesive. I have.

【0006】この場合、上記スキン層としては、炭素繊
維の配向方向を異ならせたプリプレグシートを複数枚積
層して曲げ剛性、振動減衰特性、耐熱性等を向上させて
いる。また、上記コア層としては、アルミニウム等の金
属や繊維集合体から成るハニカム状の芯材とCFRP材とを
組み合わせて、軽量化を図ると共に、曲げ剛性、振動減
衰特性、耐熱性等を向上させている。
In this case, as the skin layer, a plurality of prepreg sheets having different orientation directions of carbon fibers are laminated to improve bending rigidity, vibration damping characteristics, heat resistance and the like. Further, as the core layer, a honeycomb-shaped core material made of a metal such as aluminum or a fiber assembly and a CFRP material are combined to reduce the weight and improve bending rigidity, vibration damping characteristics, heat resistance, and the like. ing.

【0007】[0007]

【発明が解決しようとする課題】しかし、このような従
来のロボットハンド部材の製造においては、材料として
一旦、所定の厚さと面積を有するCFRPから成るスキン層
を成形し、同じくCFRP等から成るコア層を成形し、上記
コア層を芯材としてその上面及び下面にスキン層を積層
して接着剤により接合し、この積層体を所定の長さと幅
に切断して所定の形状に加工しているので、上記スキン
層及びコア層の成形毎にプリプレグシートを加熱硬化さ
せる工程と、これらスキン層及びコア層を接着剤で接着
する工程と、さらにこれらの積層体を所定の形状に切断
加工する工程とが必要となるものであった。したがっ
て、製造の工程数が多くなって、ロボットハンド部材の
製造に要する時間が多く掛かり、製造効率が悪いと共
に、製造コストが高くなるものであった。
However, in manufacturing such a conventional robot hand member, a skin layer made of CFRP having a predetermined thickness and area is once formed as a material, and a core layer also made of CFRP or the like is formed. A layer is formed, a skin layer is laminated on the upper surface and lower surface of the core layer using the core layer as a core material, bonded with an adhesive, and the laminated body is cut into a predetermined length and width to be processed into a predetermined shape. Therefore, a step of heating and curing the prepreg sheet for each molding of the skin layer and the core layer, a step of bonding the skin layer and the core layer with an adhesive, and a step of cutting and processing the laminate into a predetermined shape Was necessary. Therefore, the number of manufacturing steps is increased, and the time required for manufacturing the robot hand member is increased, and the manufacturing efficiency is deteriorated and the manufacturing cost is increased.

【0008】また、上記CFRPの貼り合わせ法では、予め
所定の厚みに成形した(熱硬化させた)4面分のCFRP板
を接着剤を用いて貼り合わせる方法も考えられる。しか
し、この方法では、プリプレグの積層工程、CFRP成形工
程、貼り合わせ工程が必要であると共に、接着して貼り
合わせた部分の荷重に対する強度が低いという問題があ
る。
[0008] In the above-mentioned CFRP laminating method, a method of laminating a CFRP plate of four surfaces (heat-cured) formed in advance to a predetermined thickness using an adhesive is also conceivable. However, this method requires a prepreg laminating step, a CFRP molding step, and a bonding step, and has a problem that the strength of the bonded and bonded portion with respect to the load is low.

【0009】さらに、ロボットハンド部材としては、液
晶ディスプレー、プラズマディスプレーパネル、シリコ
ンウェハ等の精密品をワークとして搬送するため、該ロ
ボットハンド部材がワークを傷付けたりしないような十
分な平面性が必要であるが、中空構造のロボットハンド
部材にすると中央部分が窪み易いという問題がある。し
たがって、中空構造のロボットハンド部材を平面にする
後加工を不要とし或いは軽減し、製造コストの軽減可能
な製造方法を開発することが必要とされる。
Further, since the robot hand member transports a precision product such as a liquid crystal display, a plasma display panel, and a silicon wafer as a work, the robot hand member needs to have sufficient flatness so that the work is not damaged. However, there is a problem that the center part is easily depressed when the robot hand member has a hollow structure. Therefore, there is a need to develop a manufacturing method capable of eliminating or reducing the post-processing of flattening the hollow-structured robot hand member and reducing the manufacturing cost.

【0010】そこで、本発明は、このような問題点に対
処し、製造工程数を低減しようとするロボットハンド部
材の製造方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method of manufacturing a robot hand member which addresses such a problem and reduces the number of manufacturing steps.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明によるロボットハンド部材の製造方法は、所
定温度以下では加熱非変形性を有する材料を用いて所定
の断面形状とされた芯材の外周面に、強化繊維を含むプ
リプレグシートを巻き付けるステップと、上記巻き付け
られたプリプレグシートの外周面に所定の内面形状を有
する外型を押し付けて上記プリプレグシートの外面形状
を所定寸法に成形するステップと、上記成形されたプリ
プレグシートを所定温度に加熱し熱硬化させて繊維強化
複合材料とするステップと、上記繊維強化複合材料とさ
れた部材から芯材を抜き取り中空構造とするステップ
と、を順次行うものである。上記芯材は、加熱硬化工程
における所定温度以下では加熱非変形性を有し、且つ加
熱硬化後の繊維強化複合材料から容易に抜き取れる材質
のものを用いる。上記所定温度とは、例えば、プリプレ
グシートの加熱硬化処理における加熱温度である。ま
た、上記強化繊維を含むプリプレグシートとは、炭素繊
維、ガラス繊維、アラミド繊維、炭化珪素繊維等の強化
繊維に熱硬化性樹脂を含浸させた未硬化状態のシートを
いう。
In order to achieve the above object, a method of manufacturing a robot hand member according to the present invention comprises a core having a predetermined cross-sectional shape using a material which is not deformable by heating at a predetermined temperature or lower. Winding a prepreg sheet containing reinforcing fibers on the outer peripheral surface of the material, and pressing an outer mold having a predetermined inner surface shape on the outer peripheral surface of the wound prepreg sheet to form the outer surface shape of the prepreg sheet into a predetermined dimension. Step, heating the molded prepreg sheet to a predetermined temperature and heat curing to obtain a fiber reinforced composite material, and extracting a core material from the member made of the fiber reinforced composite material to form a hollow structure, It is performed sequentially. The core material is made of a material that has heat non-deformability at a predetermined temperature or lower in the heat curing step and can be easily extracted from the fiber reinforced composite material after the heat curing. The predetermined temperature is, for example, a heating temperature in a heat curing treatment of a prepreg sheet. In addition, the prepreg sheet containing the reinforcing fibers refers to an uncured sheet in which reinforcing fibers such as carbon fibers, glass fibers, aramid fibers, and silicon carbide fibers are impregnated with a thermosetting resin.

【0012】このような構成により、所定温度以下では
加熱非変形性を有する材料を用いて所定の断面形状とさ
れた芯材の外周面に、強化繊維を含むプリプレグシート
を巻き付け、この巻き付けられたプリプレグシートの外
周面に所定の内面形状を有する外型を押し付けて上記プ
リプレグシートの外面形状を所定寸法に成形し、この成
形されたプリプレグシートを所定温度に加熱し熱硬化さ
せて繊維強化複合材料とし、この繊維強化複合材料とさ
れた部材から芯材を抜き取り中空構造として製造する。
これにより、製造工程数の低減が図られる。
With such a configuration, a prepreg sheet containing reinforcing fibers is wound around the outer peripheral surface of a core material having a predetermined cross-sectional shape using a material having heat non-deformability at a predetermined temperature or lower. An outer mold having a predetermined inner surface shape is pressed against the outer peripheral surface of the prepreg sheet to form the outer surface shape of the prepreg sheet into a predetermined size, and the formed prepreg sheet is heated to a predetermined temperature and thermally cured to obtain a fiber-reinforced composite material. Then, a core material is extracted from the member made of the fiber reinforced composite material to produce a hollow structure.
Thus, the number of manufacturing steps can be reduced.

【0013】また、他の手段によるロボットハンド部材
の製造方法は、所定温度以下では加熱非変形性を有する
材料を用いて所定の断面形状とされた芯材の外周面に、
強化繊維を含むプリプレグシートを巻き付けるステップ
と、上記巻き付けられたプリプレグシートの外周面に所
定の内面形状を有する外型を押し付けて上記プリプレグ
シートの外面形状を所定寸法に成形するステップと、上
記成形されたプリプレグシートを所定温度に加熱し熱硬
化させて芯材と一体化した繊維強化複合材料とするステ
ップと、を順次行うものである。上記芯材は、加熱硬化
工程における所定温度以下では加熱非変形性を有し、プ
リプレグシートとの密着性の優れた材料を用い、プリプ
レグシートと熱硬化後に一体化させる。なお、上記芯材
としては、繊維強化複合材料よりも軽量な例えば合成樹
脂から成る軽量部材を用る。
[0013] Further, a method of manufacturing a robot hand member by another means is as follows: a core material having a predetermined cross-sectional shape using a material having a non-heat-deformable property at a predetermined temperature or less;
Winding a prepreg sheet containing reinforcing fibers, pressing an outer mold having a predetermined inner surface shape on an outer peripheral surface of the wound prepreg sheet to form an outer surface shape of the prepreg sheet to a predetermined size, Heating the prepreg sheet to a predetermined temperature and thermally curing the prepreg sheet to obtain a fiber-reinforced composite material integrated with the core material. The core material has a non-deformability under heating at a predetermined temperature or lower in the heat curing step, and is made of a material having excellent adhesion to the prepreg sheet, and is integrated with the prepreg sheet after thermosetting. As the core material, a lightweight member made of, for example, a synthetic resin, which is lighter than the fiber-reinforced composite material, is used.

【0014】このような構成により、所定温度以下では
加熱非変形性を有する材料を用いて所定の断面形状とさ
れた芯材の外周面に、強化繊維を含むプリプレグシート
を巻き付け、この巻き付けられたプリプレグシートの外
周面に所定の内面形状を有する外型を押し付けて上記プ
リプレグシートの外面形状を所定寸法に成形し、この成
形されたプリプレグシートを所定温度に加熱し熱硬化さ
せて芯材と一体化した繊維強化複合材料として製造す
る。これにより、芯材を有する中実構造のものにおいて
も、芯材として繊維強化複合材料よりも軽量な合成樹脂
等の軽量部材を用いることにより軽量化を図ると共に、
製造工程数の低減が図られる。
With such a configuration, a prepreg sheet containing reinforcing fibers is wound around the outer peripheral surface of a core material having a predetermined cross-sectional shape using a material having heat non-deformability at a predetermined temperature or lower. An outer mold having a predetermined inner surface shape is pressed against the outer peripheral surface of the prepreg sheet to form the outer surface shape of the prepreg sheet into a predetermined dimension, and the formed prepreg sheet is heated to a predetermined temperature, thermally cured, and integrated with the core material. It is manufactured as a fiberized fiber reinforced composite material. Thereby, even in a solid structure having a core material, the weight is reduced by using a lightweight member such as a synthetic resin which is lighter than the fiber reinforced composite material as the core material,
The number of manufacturing steps can be reduced.

【0015】そして、上記各手段の製造方法において、
上記芯材の外周面にプリプレグシートを巻き付けるステ
ップは、該プリプレグシートを複数層に巻き付けるもの
である。これにより、厚みの異なるプリプレグシート積
層体を適宜設計でき、ロボットハンド部材の曲げ剛性等
を制御可能とする。
[0015] In the manufacturing method of each of the above means,
The step of winding the prepreg sheet around the outer peripheral surface of the core material includes winding the prepreg sheet into a plurality of layers. Thereby, the prepreg sheet laminates having different thicknesses can be appropriately designed, and the bending rigidity and the like of the robot hand member can be controlled.

【0016】また、上記プリプレグシートを複数層に巻
き付ける工程は、プリプレグシートの強化繊維の配向
を、長手方向に沿う方向と長手方向に略直交する方向に
異ならせて積層する工程を含むものである。これによ
り、ロボットハンドの使用環境に応じてロボットハンド
部材の曲げ剛性、振動減衰特性、耐熱性等の特性を制御
可能とする。
Further, the step of winding the prepreg sheet around a plurality of layers includes a step of laminating the prepreg sheets so that the orientation of the reinforcing fibers of the prepreg sheet is different in a direction along the longitudinal direction and a direction substantially orthogonal to the longitudinal direction. This makes it possible to control the bending stiffness, vibration damping characteristics, heat resistance, and other characteristics of the robot hand members according to the usage environment of the robot hand.

【0017】さらに、上記プリプレグシートを巻き付け
る最外層には、クロスプリプレグシートを巻き付ける工
程を含むものである。これにより、後加工として切削や
研磨加工したときに毛羽立ちが少なく部材としての加工
性を向上し、また製品の美観を良くする。この場合のク
ロスプリプレグシートとは、上記プリプレグシートの他
に積層するものであり、複数の方向に織り込んだ強化繊
維に熱硬化性樹脂を含浸させた未硬化状態のシートであ
る。
Further, the outermost layer around which the prepreg sheet is wound includes a step of winding a cross prepreg sheet. Thereby, when cutting or polishing is performed as the post-processing, fluffing is reduced and workability as a member is improved, and the appearance of the product is improved. In this case, the cross prepreg sheet is a sheet that is laminated in addition to the above prepreg sheet, and is an uncured sheet in which reinforcing fibers woven in a plurality of directions are impregnated with a thermosetting resin.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳細に説明する。図1は本発明によるロ
ボットハンド部材の製造方法が適用されるロボットハン
ド1を示す斜視図である。このロボットハンド1は、産
業用ロボットのアーム部に取り付けられるもので、図示
省略のロボットのアーム部に取り付けるための例えば平
板状の取付部材2と、この取付部材2に固定されワーク
3を支持する部材となるロボットハンド部材4とから成
る。なお、図1において、符号5は上記ロボットのアー
ム部に取り付けるため取付部材2に穿設された取付孔を
示している。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing a robot hand 1 to which a method for manufacturing a robot hand member according to the present invention is applied. The robot hand 1 is attached to an arm of an industrial robot. For example, a flat attachment member 2 to be attached to an arm of a robot (not shown) and a work 3 fixed to the attachment member 2 are supported. And a robot hand member 4 as a member. In FIG. 1, reference numeral 5 denotes a mounting hole formed in the mounting member 2 for mounting on the arm of the robot.

【0019】上記ロボットハンド部材4は、例えば液晶
ディスプレー(LCD)、プラズマディスプレーパネル
(PDP)、半導体ウェハ等のガラス基板などのワーク
3を支持して搬送するもので、軽量で、平面性に優れ、
曲げ剛性、耐熱性等に優れたものとするために繊維強化
複合材料(FRP)で製造され、例えば中空構造の角形パ
イプ状に形成されており、上記取付部材2にネジ止め等
により2本平行に取り付けられている。そのサイズは、
例えば幅約50mm、長さ約1500mm程度とされている。な
お、上記取付部材2とロボットハンド部材4とは、一体
的に形成してもよい。
The robot hand member 4 supports and transports a work 3 such as a liquid crystal display (LCD), a plasma display panel (PDP), or a glass substrate such as a semiconductor wafer, and is lightweight and excellent in flatness. ,
It is made of fiber reinforced composite material (FRP) to make it excellent in bending stiffness, heat resistance, etc., and is formed, for example, in the shape of a hollow pipe with a hollow structure. Attached to. Its size is
For example, the width is about 50 mm and the length is about 1500 mm. The mounting member 2 and the robot hand member 4 may be formed integrally.

【0020】まず、中空構造のロボットハンド部材4の
製造方法について、図2を参照して説明する。まず、図
2(a)に示すように、所定温度以下では加熱非変形性
を有する材料を用いて所定の断面形状とされた芯材6の
外周面に、強化繊維を含むプリプレグシート7を複数層
に巻き付ける。上記芯材6は、プリプレグシート7を巻
き付けるための台部材となるもので、後述の成形された
プリプレグシート積層体9を所定温度(樹脂により異な
るが、通常約100〜190℃)に加熱し熱硬化させる
工程の温度よりやや高い温度以下では加熱により殆ど変
形しない性質を有し、且つ加熱硬化後のFRPから容易に
抜き取れる材料で例えば断面矩形状の角棒状に形成され
ている。ここで、芯材6が加熱により殆ど変形しないと
は、プリプレグシート積層体9の加熱硬化の工程におい
て、芯材6の材料が溶融したり、芯材6の部材に反り、
曲がり、撓み、捩れや皺、褶曲等の変形が生じないこと
をいう。上記芯材6の材料としては、例えば、アルミニ
ウム、鉄、ステンレス等の金属や、MCナイロン樹脂、
ポリイミド樹脂等の樹脂がある。上記金属や樹脂等は、
FRPより熱膨張率が大きいため、加熱後の冷却により収
縮し、抜き取り容易となる。また、必要に応じ、芯材の
表面に離型材を施してもよい。離型材としては、スプレ
ー等による薬剤(例えば、界面活性剤等)の塗布、或い
はテフロン(登録商標)シート等の離型シートの使用な
どいずれでもよい。
First, a method for manufacturing the robot hand member 4 having a hollow structure will be described with reference to FIG. First, as shown in FIG. 2 (a), a plurality of prepreg sheets 7 containing reinforcing fibers are provided on the outer peripheral surface of a core material 6 having a predetermined cross-sectional shape using a material having heat non-deformability at a predetermined temperature or lower. Wrap around layers. The core material 6 serves as a base member on which the prepreg sheet 7 is wound. The core material 6 heats a molded prepreg sheet laminate 9 described below to a predetermined temperature (depending on resin, usually about 100 to 190 ° C.). At a temperature slightly higher than the temperature of the curing step, the material has a property that it is hardly deformed by heating, and is formed of a material that can be easily extracted from the FRP after heat curing, for example, in a rectangular rod shape having a rectangular cross section. Here, that the core material 6 is hardly deformed by heating means that the material of the core material 6 is melted or warped to the member of the core material 6 in the step of heating and curing the prepreg sheet laminate 9.
No deformation such as bending, bending, twisting, wrinkling, or folding occurs. Examples of the material of the core material 6 include metals such as aluminum, iron, and stainless steel, MC nylon resin,
There is a resin such as a polyimide resin. The above metals and resins are
Because it has a higher coefficient of thermal expansion than FRP, it contracts by cooling after heating, making it easier to extract. If necessary, a release material may be applied to the surface of the core material. As the release material, application of a chemical (eg, a surfactant) by spraying or the like, or use of a release sheet such as a Teflon (registered trademark) sheet may be used.

【0021】上記プリプレグシート7は、強化繊維を一
方向に配向させた一方向平織物、一方向不織シート等の
いわゆる一方向材や、強化繊維を二方向に配向させた平
織物、綾織物、朱子織物等の二方向材や、強化繊維を三
方向に配向させた三軸織物等の三方向材などをシート化
したものに、予めマトリックス樹脂を含浸させ、少し粘
着性を有した未硬化状態にしたものである。この場合、
上記強化繊維には、剛性及び軽量性の観点から一般的に
は炭素繊維を用いる。しかし、炭素繊維以外にも、ガラ
ス繊維、アラミド繊維、炭化珪素繊維等も使用可能であ
る。例えば、積層される複数のプリプレグシート7は、
炭素繊維プリプレグシートを主体として使用し、ロボッ
トハンド部材としての支持性能或いは搬送性能を損なわ
ない限りで、上記ガラス繊維等、或いはその他の繊維を
含むプリプレグシートを一部に加えてもよい。なお、上
記炭素繊維には、原料の違いによってポリアクリロニト
リル(PAN)系炭素繊維と、ピッチ系炭素繊維の2種
類がある。
The prepreg sheet 7 is a so-called unidirectional material such as a unidirectional plain woven fabric in which reinforcing fibers are oriented in one direction or a unidirectional nonwoven sheet, a plain woven fabric in which reinforcing fibers are oriented in two directions, or a twill fabric. A sheet made of a bidirectional material such as a satin fabric or a triaxial material such as a triaxial fabric in which reinforcing fibers are oriented in three directions is impregnated with a matrix resin in advance, and has a slightly tacky uncured It is in the state. in this case,
Generally, carbon fibers are used as the reinforcing fibers from the viewpoint of rigidity and lightness. However, besides carbon fiber, glass fiber, aramid fiber, silicon carbide fiber and the like can also be used. For example, a plurality of prepreg sheets 7 to be laminated are:
The carbon fiber prepreg sheet may be used as a main component, and the prepreg sheet containing the above glass fiber or the like or another fiber may be added to a part of the prepreg sheet as long as the support performance or the transfer performance as the robot hand member is not impaired. There are two types of carbon fibers, polyacrylonitrile (PAN) -based carbon fibers and pitch-based carbon fibers, depending on the difference in raw materials.

【0022】また、マトリックス樹脂としては、エポキ
シ樹脂、フェノール樹脂、シアネート樹脂、不飽和ポリ
エステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂等
の熱硬化性樹脂が使われる。又は、耐衝撃性や靭性を付
与する目的で、熱硬化性樹脂にゴムや樹脂から成る微粒
子を添加したもの或いは熱硬化性樹脂に熱可塑性樹脂を
溶解させたものが使われる。ここで、上記微粒子として
のゴムは、ニトリルゴム、ブタジエンゴム、スチレン−
ブタジエンゴム、ブタジエン−ニトリルゴム、アクリル
ゴム、ブチルゴム等がある。また、上記微粒子としての
樹脂は、熱硬化性樹脂、熱可塑性樹脂が用いられる。熱
硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、
不飽和ボリエステル樹脂、アミノ樹脂、ウレタン樹脂等
がある。熱可塑性樹脂としては、ポリイミド樹脂、ボリ
アクリレート樹脂、ポリ酢酸ビニル樹脂、ボリアミド樹
脂、ボリアラミド樹脂、ポリカーボネート樹脂等があ
る。さらに、熱硬化性樹脂に溶解させる熱可塑性樹脂と
しては、ポリスルホン樹脂、ボリカーボネート樹脂、ポ
リエーテルスルホン樹脂、ポリエーテルイミド樹脂、芳
香族ポリエステル樹脂、ポリビニルホルマール樹脂、ボ
リアミド樹脂、ポリイミド樹脂等がある。
As the matrix resin, a thermosetting resin such as an epoxy resin, a phenol resin, a cyanate resin, an unsaturated polyester resin, a polyimide resin and a bismaleimide resin is used. Alternatively, for the purpose of imparting impact resistance and toughness, a material obtained by adding fine particles made of rubber or resin to a thermosetting resin or a material obtained by dissolving a thermoplastic resin in a thermosetting resin is used. Here, the rubber as the fine particles is nitrile rubber, butadiene rubber, styrene-
Butadiene rubber, butadiene-nitrile rubber, acrylic rubber, butyl rubber and the like. As the resin as the fine particles, a thermosetting resin or a thermoplastic resin is used. As thermosetting resin, epoxy resin, phenol resin,
There are unsaturated polyester resins, amino resins, urethane resins and the like. Examples of the thermoplastic resin include a polyimide resin, a polyacrylate resin, a polyvinyl acetate resin, a polyamide resin, a boriaramid resin, and a polycarbonate resin. Further, examples of the thermoplastic resin dissolved in the thermosetting resin include a polysulfone resin, a polycarbonate resin, a polyethersulfone resin, a polyetherimide resin, an aromatic polyester resin, a polyvinyl formal resin, a polyamide resin, and a polyimide resin.

【0023】ここで、上記プリプレグシート7を複数層
に巻き付ける工程は、図3に示すように、該プリプレグ
シート7の強化繊維の配向方向を異ならせて積層する。
すなわち、或る層のプリプレグシート7aの強化繊維8
aの配向方向は0度とし、他の層のプリプレグシート7
bの強化繊維8bの配向方向は90度とし、更に上記の
プリプレグシートに加えて、他の層のプリプレグシート
7cを積層してもよく、そのプリプレグシート7cの強
化繊維8cは二方向の強化繊維が配向角度90度で交わ
ったクロスプリプレグシート或いは一方向材プリプレグ
シートを長手方向に対して±45度の一対で配向して積
層してもよい。このような状態で、上記各層のプリプレ
グシート7a,7b,7cを適宜の厚さで順次積層し、
最終的に例えば厚さ1〜7mm程度に積層する。なお、こ
の場合の積層厚さは、プリプレグシートが加熱硬化する
際の体積減少分を見越して、ロボットハンド部材のFRP
板の要求板厚よりも僅かに厚い程度が好ましい。
Here, in the step of winding the prepreg sheet 7 into a plurality of layers, as shown in FIG. 3, the prepreg sheets 7 are laminated while the orientation direction of the reinforcing fibers is changed.
That is, the reinforcing fibers 8 of the prepreg sheet 7a of a certain layer
The orientation direction of a is 0 degree, and the prepreg sheet 7 of another layer is
b, the orientation direction of the reinforcing fibers 8b is 90 degrees, and in addition to the above prepreg sheet, a prepreg sheet 7c of another layer may be laminated, and the reinforcing fibers 8c of the prepreg sheet 7c are bidirectional reinforcing fibers. May be laminated with a cross prepreg sheet or unidirectional prepreg sheet intersecting at an orientation angle of 90 degrees oriented in a pair at ± 45 degrees with respect to the longitudinal direction. In such a state, the prepreg sheets 7a, 7b, 7c of the respective layers are sequentially laminated with an appropriate thickness,
Finally, the layers are laminated to a thickness of, for example, about 1 to 7 mm. In this case, the thickness of the laminated layer is determined in consideration of the volume decrease when the prepreg sheet is cured by heating.
It is preferable that the thickness is slightly larger than the required thickness of the plate.

【0024】なお、上記プリプレグシート7を複数に積
層する例について、以下に更に詳述する。図2(a)に
おいて、芯材6に接して積層される最内層のプリプレグ
シート7は、強化繊維の配向方向が長手方向に対して例
えば0度又は90度とされる。上記最内層の上に積層さ
れる2番目のプリプレグシート7は、強化繊維の配向方
向が長手方向に対して例えば0度とされ、長手方向の撓
み防止や、振動減衰特性を向上する目的を有する。上記
2番目のプリプレグシート7の上に積層される3番目の
プリプレグシート7は、強化繊維の配向方向が長手方向
に対して例えば90度とされ、上記積層された二つのプ
リプレグシート7と合わせた全体部材の曲げ剛性や、曲
げ振動の振動減衰特性を向上し、且つ反り、撓みを防止
する目的を有する。なお、上記の他に、強化繊維の配向
方向が長手方向に対して例えば±45度とされたプリプ
レグシート7の層を追加してもよい。この場合は、部材
全体としての捻れ剛性、捻れ振動減衰特性を向上するこ
とができる。さらに、これらプリプレグシート7の他に
クロスプリプレグシートを最外層に積層することができ
る。このクロスプリプレグシートは、強化繊維の織物で
構成されたプリプレグシートであり、強化繊維としては
炭素繊維、ガラス繊維、アラミド繊維或いは炭化珪素繊
維等が好ましく、織り構造は平織り、綾織り、朱子織
り、三軸織り等が適宜使用できる。クロスプリプレグシ
ートを積層することは、後加工としての切削や研磨加工
したときに毛羽立ちが少なく部材としての加工性を向上
し、また製品の美観を良くする目的を有する。
An example in which a plurality of the prepreg sheets 7 are laminated will be described in more detail below. In FIG. 2A, the orientation direction of the reinforcing fibers of the prepreg sheet 7 of the innermost layer laminated in contact with the core material 6 is, for example, 0 ° or 90 ° with respect to the longitudinal direction. The second prepreg sheet 7 laminated on the innermost layer has the orientation direction of the reinforcing fibers set to, for example, 0 degrees with respect to the longitudinal direction, and has the purpose of preventing longitudinal bending and improving vibration damping characteristics. . The third prepreg sheet 7 laminated on the second prepreg sheet 7 has the orientation direction of the reinforcing fibers set to, for example, 90 degrees with respect to the longitudinal direction, and is combined with the two laminated prepreg sheets 7. The object is to improve the bending stiffness of the entire member and the vibration damping characteristics of bending vibration, and to prevent warpage and bending. In addition to the above, a layer of the prepreg sheet 7 in which the orientation direction of the reinforcing fibers is set to, for example, ± 45 degrees with respect to the longitudinal direction may be added. In this case, the torsional rigidity and torsional vibration damping characteristics of the entire member can be improved. Further, in addition to the prepreg sheet 7, a cross prepreg sheet can be laminated on the outermost layer. This cross prepreg sheet is a prepreg sheet composed of a reinforced fiber woven fabric, and the reinforcing fibers are preferably carbon fiber, glass fiber, aramid fiber or silicon carbide fiber, and the woven structure is plain weave, twill weave, satin weave, Triaxial weave or the like can be used as appropriate. Laminating the cross prepreg sheet has the purpose of improving the workability as a member with less fuzz when cut or polished as a post-process and improving the appearance of the product.

【0025】上記プリプレグシート7を複数に積層する
積層順としては、90度配向シートを最下層(最内層)
とするのが、芯材6の抜き取りやすさの観点から好まし
い。なぜならば、炭素繊維はマトリックス樹脂よりも熱
収縮率が低いので、シートとしての収縮率は、繊維配向
方向への収縮率の方が繊維配列方向への収縮率よりも低
くなるので、パイプ状のFRP板の内側面を90度配向シ
ートによって構成することで、芯材6の外周を囲むよう
に炭素繊維が配向することとなるので、熱硬化した際
に、パイプ状のFRP板がそれほど縮径しなくて済むから
である。
The order of laminating the prepreg sheets 7 is as follows: the 90-degree oriented sheet is the lowermost layer (the innermost layer).
It is preferable from the viewpoint of easy removal of the core material 6. Because the carbon fiber has a lower heat shrinkage than the matrix resin, the shrinkage as a sheet is lower in the fiber orientation direction than in the fiber arrangement direction. By forming the inner surface of the FRP plate with a 90-degree oriented sheet, the carbon fibers are oriented so as to surround the outer periphery of the core material 6, so that when thermally cured, the diameter of the pipe-shaped FRP plate is not so reduced. It is not necessary to do it.

【0026】また、上層に積層されるプリプレグシート
(外側のシート)ほど、ロボットハンド部材の特性(曲
げ剛性等)への寄与率が高いので、0度配向シートを9
0度配向シートよりも上層に積層するのが、撓み防止の
観点から好ましい。したがって、以上のような点を考慮
しつつ、使用すべきプリプレグシートの組み合わせ及び
積層順序を決定すればよい。
The higher the prepreg sheet (outer sheet) laminated on the upper layer, the higher the contribution to the characteristics (flexural rigidity, etc.) of the robot hand member.
It is preferable to laminate the upper layer than the 0-degree oriented sheet from the viewpoint of preventing bending. Therefore, the combination of the prepreg sheets to be used and the lamination order may be determined in consideration of the above points.

【0027】次に、図2(b)に示すように、上記複数
層に巻き付けられたプリプレグシート積層体9の外周面
に、所定の内面形状を有する外型10a,10bを押し
付けて上記プリプレグシート積層体9の外面形状を所定
寸法に成形する。これは、図2(a)に示す芯材6に対
してプリプレグシート7を巻き付ける積層数が多くなる
と、各角部が外側に膨らんだ状態となり、該角部の形状
が不均一となるので、略直角の形状となるように成形す
るものである。そのために、例えば内周面の形状がコ字
形に形成されたチャンネル状の二つの外型10a,10
bを上記プリプレグシート積層体9の上下に対向配置し
て、プレス加工と同様に矢印A,Bのように押し付け
る。これにより、上記外型10a,10bのコ字形の内
面形状でプリプレグシート積層体9の各角部が押圧され
て略直角状に成形される。
Next, as shown in FIG. 2 (b), the outer dies 10a and 10b having a predetermined inner surface shape are pressed against the outer peripheral surface of the prepreg sheet laminate 9 wound around the plurality of layers to form the prepreg sheet. The outer shape of the laminate 9 is formed to a predetermined size. This is because, when the number of laminations around which the prepreg sheet 7 is wound around the core material 6 shown in FIG. 2A increases, each corner is bulged outward, and the shape of the corner becomes uneven. It is formed so as to have a substantially right angle shape. For this purpose, for example, two channel-shaped outer dies 10a and 10 having an inner peripheral surface formed in a U-shape are used.
b is arranged above and below the prepreg sheet laminate 9 so as to face each other, and pressed as indicated by arrows A and B in the same manner as in the press working. Thereby, each corner of the prepreg sheet laminate 9 is pressed by the U-shaped inner surface shape of the outer dies 10a and 10b to be formed into a substantially right angle.

【0028】次に、図2(c)に示すように、上記成形
されたプリプレグシート積層体9を所定温度に加熱し熱
硬化させて繊維強化複合材料(FRP)とする。このと
き、上記プリプレグシート積層体9の全体を例えば真空
バッグに入れて加熱する。その加熱温度条件は、例えば
室温から2〜10℃/minの割合で加熱昇温させ、約1
00〜190℃に60分間程度保持し、その後加熱を停
止して自然冷却により降温させて室温に戻す。これによ
り、上記プリプレグシート積層体9の全体が熱硬化され
て、FRPとなる。なお、この場合、前記芯材6は、所定
温度以下では加熱非変形性を有する材料でできているの
で、上記の加熱工程により殆ど変形せず、芯材6として
の断面形状を正しく保つことができる。なお、プリプレ
グシート積層体9を真空バッグに入れるのは、積層工程
で生じたシート間等の気泡を吸引するという目的と、プ
リプレグシート積層体9に対して外圧(大気圧)を略均
等に加える目的とがある。
Next, as shown in FIG. 2C, the formed prepreg sheet laminate 9 is heated to a predetermined temperature and thermally cured to obtain a fiber reinforced composite material (FRP). At this time, the entire prepreg sheet laminate 9 is put into, for example, a vacuum bag and heated. As for the heating temperature condition, for example, the temperature is raised from room temperature at a rate of 2 to 10 ° C./min.
The temperature is kept at 00 to 190 ° C. for about 60 minutes, and then the heating is stopped and the temperature is lowered by natural cooling to return to room temperature. As a result, the entire prepreg sheet laminate 9 is thermally cured to become FRP. In this case, since the core material 6 is made of a material that is not deformable by heating at a predetermined temperature or lower, the core material 6 is hardly deformed by the above-described heating process, and the cross-sectional shape of the core material 6 can be properly maintained. it can. The reason why the prepreg sheet laminate 9 is put in the vacuum bag is to suck air bubbles between the sheets generated in the laminating step and to apply an external pressure (atmospheric pressure) to the prepreg sheet laminate 9 substantially uniformly. There is a purpose.

【0029】次に、図2(d)に示すように、上記FRP
とされた部材11から芯材6を抜き取り中空構造とす
る。これにより、図4に示すように、角形パイプ状に形
成されたロボットハンド部材4が製造される。なお、上
記角形パイプ状の中空部分は、ワーク3を支持して搬送
するための空気吹き出し又は空気吸引等を行うチューブ
などを配置するために、また、上記ワーク3の存在或い
は保持を検出するセンサー用の電気配線などにも利用す
ることができる。
Next, as shown in FIG.
The core member 6 is extracted from the member 11 and has a hollow structure. Thereby, as shown in FIG. 4, the robot hand member 4 formed in a square pipe shape is manufactured. The rectangular pipe-shaped hollow portion is provided with a tube for performing air blowing or air suction for supporting and transporting the work 3, and a sensor for detecting the presence or holding of the work 3. It can also be used for electrical wiring and the like.

【0030】なお、上記ロボットハンド部材4の断面形
状は、上述の角形パイプ状に限られず、三角形、多角
形、円形或いは半円形等、どのような形状であってもよ
い。例えば、図5に示すように、上面が平らで下面側が
円弧状に形成されたパイプ状であってもよい。この場合
は、図2(a)に示す芯材6の断面形状も、上面が平ら
で下面側が円弧状に形成されたものとなる。
The cross-sectional shape of the robot hand member 4 is not limited to the above-described square pipe shape, but may be any shape such as a triangle, a polygon, a circle, or a semicircle. For example, as shown in FIG. 5, the pipe may have a flat upper surface and an arcuate lower surface. In this case, the cross-sectional shape of the core material 6 shown in FIG. 2A also has a flat upper surface and an arcuate lower surface.

【0031】次に、他の実施形態による中実構造のロボ
ットハンド部材4の製造方法について説明する。この実
施形態の場合は、図2(a)において、所定の断面形状
の芯材6として所定温度以下では加熱非変形性を有し、
プリプレグシートとの密着性の優れた材料を用いたもの
である。上記芯材6としては、FRPよりも軽量な例えば
合成樹脂から成る軽量部材を用いるとよい。上記軽量部
材としては、成形されたプリプレグシート積層体9を所
定温度(樹脂により異なるが、通常約100〜190
℃)に加熱し熱硬化させる工程の温度よりやや高い温度
以下では、加熱によって成形後にFRPとの隙間が生じな
い材料で形成されている。例えば、エポキシ樹脂、フェ
ノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹
脂、ビスマレイミド樹脂、ポリウレタン樹脂及びこれら
の発泡材等のプラスチックを用いることができる。な
お、芯材6は、プリプレグシート7との密着性を向上す
るために表面をサンドブラスト、サンドペーパー等によ
る粗面化処理を行ってもよい。また、必要に応じて、接
着剤の塗布を行ってもよい。
Next, a method for manufacturing the robot hand member 4 having a solid structure according to another embodiment will be described. In the case of this embodiment, in FIG. 2A, the core material 6 having a predetermined cross-sectional shape has a heating non-deformability at a predetermined temperature or less,
It is made of a material having excellent adhesion to a prepreg sheet. As the core member 6, it is preferable to use a lightweight member made of, for example, a synthetic resin, which is lighter than FRP. As the lightweight member, the molded prepreg sheet laminate 9 is heated at a predetermined temperature (depending on the resin, usually about 100 to 190).
At a temperature slightly higher than the temperature in the step of heating to (° C.) and thermally curing, the material is formed of a material that does not cause a gap with the FRP after molding due to heating. For example, plastics such as an epoxy resin, a phenol resin, an unsaturated polyester resin, a polyimide resin, a bismaleimide resin, a polyurethane resin, and a foamed material thereof can be used. The surface of the core material 6 may be subjected to a surface roughening treatment with sandblasting, sandpaper or the like in order to improve the adhesion to the prepreg sheet 7. Moreover, you may apply | coat an adhesive agent as needed.

【0032】そして、製造工程は、図2(a),
(b),(c)に示すと全く同様に進み、図2(d)に
示すFRPとされた部材11から芯材6を抜き取り中空構
造とする工程は行わない。すなわち、図2(c)に示す
プリプレグシート積層体9を所定温度に加熱し熱硬化さ
せてFRPとする工程で完了する。この場合も、上記芯材
6は、所定温度以下では加熱非変形性を有する材料でで
きているので、図2(c)に示す加熱工程により殆ど変
形せず、芯材6としての断面形状を正しく保つことがで
きる。
The manufacturing process is shown in FIG.
2B and 2C, the process proceeds in exactly the same manner, and the step of extracting the core material 6 from the FRP member 11 shown in FIG. 2D and forming a hollow structure is not performed. That is, the process is completed by heating the prepreg sheet laminate 9 shown in FIG. Also in this case, since the core material 6 is made of a material having heat non-deformability at a predetermined temperature or less, the core material 6 is hardly deformed by the heating step shown in FIG. Can be kept right.

【0033】これにより、図6に示すように、FRPとさ
れた部材11の内部に軽量部材から成る芯材6が残った
状態の中実構造のロボットハンド部材4が製造される。
その後、ワーク3を支持して搬送するための空気吹き出
し路又は空気吸引路、或いは上記ワーク3の存在又は保
持を検出するセンサー用の電気配線路等の穴あけや、取
付け用のネジ孔を、機械加工により施す。この実施形態
では、芯材6を有する中実構造のものにおいても軽量化
を図ると共に、製造工程数の低減が図られる。
As a result, as shown in FIG. 6, the robot hand member 4 having a solid structure in which the core member 6 made of a lightweight member remains inside the member 11 made of FRP.
Thereafter, a hole such as an air blowing path or an air suction path for supporting and transporting the work 3, an electric wiring path for a sensor for detecting the presence or holding of the work 3, and a screw hole for attachment are formed by a machine. Apply by processing. In this embodiment, the weight of the solid structure having the core member 6 is reduced, and the number of manufacturing steps is reduced.

【0034】上記中実構造のロボットハンド部材4にお
いては、芯材6の抜取工程が不要なので、製造所要時間
を大幅に短縮できる。また、軽量部材から成る芯材6を
残存させたので、中空構造のロボットハンド部材と無垢
材のロボットハンド部材の双方の不利な点が解消され
る。すなわち、中空構造のロボットハンド部材の場合
は、使用に伴って中央部分に窪み等の経時的変形が生ず
るという不利や、従来型の無垢材のロボットハンド部材
からの切り換えの際に、溝や孔の加工部位の設計変更を
余儀なくされるといった不利な点があったが、この実施
形態の中実構造のロボットハンド部材4では、そのよう
な不利な点は生じない。更に、無垢材のロボットハンド
部材と同等の体積を維持した状態で、ロボットハンド部
材全体の重量を軽くできるので、自重撓みに加えて荷重
撓みも抑制できる。
In the robot hand member 4 having the above-mentioned solid structure, the step of extracting the core member 6 is unnecessary, so that the time required for manufacturing can be greatly reduced. Further, since the core member 6 made of a lightweight member is left, disadvantages of both the hollow-structured robot hand member and the solid-state robot hand member are eliminated. That is, in the case of a hollow-structured robot hand member, there is a disadvantage that a temporal deformation such as a dent is generated in a central portion with use, and when switching from a conventional solid robot hand member, a groove or a hole is required. However, such a disadvantage does not occur in the robot hand member 4 having the solid structure according to the present embodiment. Furthermore, since the weight of the entire robot hand member can be reduced while maintaining the same volume as that of the solid-state robot hand member, the deflection of the load in addition to its own weight can be suppressed.

【0035】なお、以上の説明においては、芯材6の外
周面にプリプレグシート7を複数層に巻き付けるものと
したが、本発明はこれに限られず、上記プリプレグシー
ト7を曲げ剛性、振動減衰特性等を有する所定の厚みに
形成した場合は、単層のプリプレグシート7を巻き付け
てもよい。
In the above description, the prepreg sheet 7 is wound around the outer peripheral surface of the core material 6 in a plurality of layers. However, the present invention is not limited to this. When the prepreg sheet 7 is formed to have a predetermined thickness, a single-layer prepreg sheet 7 may be wound.

【0036】[0036]

【実施例】以下、本発明によるロボットハンド部材の製
造方法を適用して製造したロボットハンド部材の具体的
な実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of a robot hand member manufactured by applying the method for manufacturing a robot hand member according to the present invention will be described below.

【0037】(1)比較例:図7に示す表1…CFRPの無
垢材の積層例この比較例は、従来技術の項で説明したCF
RPの無垢材でロボットハンド部材を製造したものを説明
しており、表1はその製造数値例を示している。この例
は、炭素繊維の配向方向を長手方向に対して0度と90
度で交わらせたクロスプリプレグと、引張弾性率800
GPaのピッチ系炭素繊維を配向方向0度で配向したプリ
プレグ−Aと、引張弾性率240GPaのPAN系炭素繊
維を配向方向90度で配向したプリプレグ−Bとを用
い、最内層と最外層にクロスプリプレグを積層し、それ
らの間にプリプレグ−Aを2層、プリプレグ−Bを3層
積層して合計7層としたものである。製造した結果のCF
RP板厚は12mm、自重撓みは1.6mm、重量は1.53kgであ
る。
(1) Comparative example: Table 1 shown in FIG. 7... Example of lamination of solid CFRP material This comparative example is the same as the CF described in the section of the prior art.
A description will be given of a case where a robot hand member is manufactured from solid RP material, and Table 1 shows an example of the manufactured numerical value. In this example, the orientation direction of the carbon fibers is 0 degree and 90 degrees with respect to the longitudinal direction.
Cross prepreg mixed at a degree and tensile modulus of 800
Using prepreg-A in which GPa pitch-based carbon fibers are oriented at an orientation direction of 0 ° and prepreg-B in which PAN-based carbon fibers having a tensile modulus of 240 GPa are oriented at an orientation direction of 90 °, cross the innermost layer and the outermost layer. A prepreg is laminated, and two layers of prepreg-A and three layers of prepreg-B are laminated between them to make a total of seven layers. CF of production result
The RP plate thickness is 12 mm, the weight deflection is 1.6 mm, and the weight is 1.53 kg.

【0038】(2)実施例1:図8に示す表2…CFRPの
中空構造の積層例この実施例1は、図2に示す製造方法
で中空構造のロボットハンド部材を製造したものを説明
しており、表2はその製造数値例を示している。この例
は、炭素繊維の配向方向を長手方向に対して0度と90
度で交わらせたクロスプリプレグと、引張弾性率800
GPaのピッチ系炭素繊維を配向方向0度で配向したプリ
プレグ−Aと、引張弾性率240GPaのPAN系炭素繊
維を配向方向90度で配向したプリプレグ−Bと、アル
ミニウムで製造された芯材を用い、この芯材の外周面に
最内層としてクロスプリプレグを積層し、その上にプリ
プレグ−Aを2層、プリプレグ−Bを2層、最外層にク
ロスプリプレグを積層して合計6層とし、このプリプレ
グの積層体を熱硬化させた後、上記芯材を抜き取り中空
構造としたものである。製造した結果のCFRP板厚は2.55
mm、角形パイプ厚は12mm、自重撓みは0.47mm、重量は
0.75kgである。なお、ロボットハンド部材の中央部にお
ける厚みが11.8mmであり、端部における厚み(12.0mm,1
2.1mm)よりも若干窪んではいるが、ワークの支持性能
及び搬送性能上の問題はなく、平面性に優れていた。こ
のことから、実施例1の場合は、比較例に比して自重撓
みが1.6mmから0.47mmに小さくなっており、重量が1.53k
gから0.75kgに小さくなっていることがわかる。
(2) Embodiment 1: Table 2 shown in FIG. 8... Example of lamination of hollow structure of CFRP This embodiment 1 describes a case where a hollow structure robot hand member is manufactured by the manufacturing method shown in FIG. Table 2 shows a numerical example of the production. In this example, the orientation direction of the carbon fibers is 0 degree and 90 degrees with respect to the longitudinal direction.
Cross prepreg mixed at a degree and tensile modulus of 800
Using a prepreg-A in which GPa pitch-based carbon fibers are oriented at an orientation direction of 0 °, a prepreg-B in which PAN-based carbon fibers having a tensile modulus of 240 GPa are oriented at an orientation direction of 90 °, and a core material made of aluminum A cross prepreg is laminated as an innermost layer on the outer peripheral surface of the core material, and two layers of prepreg-A, two layers of prepreg-B, and a cross prepreg are laminated on the outermost layer to form a total of six layers. After thermosetting the laminate, the above-mentioned core material was removed to form a hollow structure. The resulting CFRP plate thickness is 2.55
mm, square pipe thickness is 12mm, own weight deflection is 0.47mm, weight is
0.75kg. The thickness at the center of the robot hand member is 11.8 mm, and the thickness at the end (12.0 mm, 1
Although it was slightly depressed from 2.1 mm), there was no problem with the support performance and transport performance of the work, and the flatness was excellent. From this, in the case of Example 1, the deflection of its own weight was reduced from 1.6 mm to 0.47 mm as compared with the comparative example, and the weight was 1.53 k.
It can be seen that it has decreased from g to 0.75 kg.

【0039】(3)実施例2:図9に示す表3…CFRPの
中実構造の積層例この実施例2は、図6に示す中実構造
のロボットハンド部材を製造したものを説明しており、
表3はその製造数値例を示している。この例は、炭素繊
維の配向方向を長手方向に対して0度と90度で交わら
せたクロスプリプレグと、引張弾性率800GPaのピッ
チ系炭素繊維を配向方向0度で配向したプリプレグ−A
と、引張弾性率240GPaのPAN系炭素繊維を配向方
向90度で配向したプリプレグ−Bと、発泡ウレタンの
軽量部材で製造された芯材を用い、この芯材の外周面に
最内層としてクロスプリプレグを積層し、その上にプリ
プレグ−Aを2層、プリプレグ−Bを2層、最外層にク
ロスプリプレグを積層して合計6層とし、上記芯材を入
れたままプリプレグの積層体を熱硬化させたものであ
る。製造した結果のCFRP板厚は2.55mm、角形パイプ厚は
12mm、自重撓みは0.57mm、重量は1.06kgである。な
お、ロボットハンド部材の厚みは、端部においても中央
部においても同一(12.0mm)であり、上記実施例1の中
空構造のロボットハンド部材よりも平面性に優れている
ことが理解できる。このことから、実施例2の場合は、
比較例に比して自重撓みが1.6mmから0.57mmに小さくな
っており、重量が1.53kgから1.06kgに小さくなっている
ことがわかる。
(3) Example 2: Table 3 shown in FIG. 9... Example of lamination of solid structure of CFRP This example 2 describes a case where a robot hand member having a solid structure shown in FIG. 6 is manufactured. Yes,
Table 3 shows an example of the production numerical value. In this example, a cross prepreg in which the orientation directions of carbon fibers cross each other at 0 ° and 90 ° with respect to the longitudinal direction, and a prepreg-A in which pitch-based carbon fibers having a tensile modulus of 800 GPa are oriented in an orientation direction of 0 °.
And a prepreg-B in which a PAN-based carbon fiber having a tensile modulus of 240 GPa is oriented in an orientation direction of 90 degrees, and a core material made of a lightweight member of urethane foam, and a cross prepreg as an innermost layer on the outer peripheral surface of the core material. Are laminated, and two layers of prepreg-A, two layers of prepreg-B and two layers of cross prepreg are laminated on the outermost layer to form a total of six layers, and the laminate of the prepreg is thermally cured while the core material is inserted. It is a thing. As a result of the production, the thickness of the CFRP plate is 2.55 mm, the thickness of the rectangular pipe is 12 mm, the deflection by its own weight is 0.57 mm, and the weight is 1.06 kg. The thickness of the robot hand member is the same (12.0 mm) at both the end and the center, and it can be understood that the robot hand member is superior in flatness to the robot hand member having the hollow structure of the first embodiment. From this, in the case of Example 2,
It can be seen that the self-weight deflection is reduced from 1.6 mm to 0.57 mm and the weight is reduced from 1.53 kg to 1.06 kg as compared with the comparative example.

【0040】[0040]

【発明の効果】本発明は以上のように構成されたので、
請求項1に係る発明によれば、所定温度以下では加熱非
変形性を有する材料の芯材の外周面に強化繊維を含むプ
リプレグシートを巻き付け、このプリプレグシートの外
周面に外型を押し付けて外面形状を所定寸法に成形し、
これを所定温度に加熱し熱硬化させて繊維強化複合材料
とし、この部材から上記芯材を抜き取り中空構造として
ロボットハンド部材を製造することができる。これによ
り、従来のように、異なる層の部材の成形毎に加熱硬化
させ、この複数の層の部材を接着剤で接着し、さらにこ
れらの積層体を所定の形状に切断加工する必要がなく、
製造工程数を低減することができる。したがって、ロボ
ットハンド部材の製造に要する時間を削減し、製造効率
を向上すると共に、製造コストを低下させることができ
る。また、繊維強化複合材料を用いて、アルミニウム材
のロボットハンドよりも軽量で、平面性に優れ、曲げ剛
性、振動減衰特性、耐熱性等に優れたロボットハンド部
材を製造することができる。
The present invention has been configured as described above.
According to the invention according to claim 1, a prepreg sheet containing reinforcing fibers is wound around an outer peripheral surface of a core material of a material having heat non-deformability at a predetermined temperature or lower, and an outer mold is pressed against the outer peripheral surface of the prepreg sheet to form an outer surface. Form the shape to the prescribed dimensions,
This is heated to a predetermined temperature and thermally cured to obtain a fiber reinforced composite material. The core material is extracted from this member, and a robot hand member having a hollow structure can be manufactured. Thereby, unlike the conventional case, it is possible to heat and cure each time a member of a different layer is formed, to bond the members of the plurality of layers with an adhesive, and further, it is not necessary to cut these laminates into a predetermined shape,
The number of manufacturing steps can be reduced. Therefore, the time required for manufacturing the robot hand member can be reduced, the manufacturing efficiency can be improved, and the manufacturing cost can be reduced. Further, using a fiber reinforced composite material, it is possible to manufacture a robot hand member which is lighter than an aluminum robot hand, has excellent flatness, and is excellent in bending rigidity, vibration damping characteristics, heat resistance and the like.

【0041】また、請求項2に係る発明によれば、所定
温度以下では加熱非変形性を有する材料から成る芯材の
外周面に強化繊維を含むプリプレグシートを巻き付け、
このプリプレグシートの外周面に外型を押し付けて外面
形状を所定寸法に成形し、これを所定温度に加熱し熱硬
化させて芯材と一体化した繊維強化複合材料として、中
実構造のロボットハンド部材を製造することができる。
これにより、芯材を有する中実構造のものにおいても、
芯材として繊維強化複合材料よりも軽量な合成樹脂等の
軽量部材を用いることにより軽量化を図ると共に、製造
工程数を低減し、製造所要時間を短縮することができ
る。
According to the second aspect of the present invention, a prepreg sheet containing reinforcing fibers is wound around an outer peripheral surface of a core material made of a material having a non-deformable property at a predetermined temperature or lower.
An outer mold is pressed against the outer peripheral surface of the prepreg sheet to form the outer surface into a predetermined dimension, which is heated to a predetermined temperature and thermally cured to be integrated with the core material as a fiber-reinforced composite material. The component can be manufactured.
Thereby, even in a solid structure having a core material,
By using a lightweight member such as a synthetic resin that is lighter than the fiber-reinforced composite material as the core material, the weight can be reduced, and the number of manufacturing steps can be reduced, and the time required for manufacturing can be reduced.

【0042】さらに、請求項3に係る発明によれば、上
記芯材の外周面にプリプレグシートを巻き付ける工程に
おいて、該プリプレグシートを複数層に巻き付けること
により、厚みの異なるプリプレグシート積層体を適宜設
計でき、ロボットハンド部材の曲げ剛性等を制御するこ
とができる。
Further, according to the third aspect of the present invention, in the step of winding the prepreg sheet around the outer peripheral surface of the core material, the prepreg sheet is wound into a plurality of layers to appropriately design a prepreg sheet laminate having a different thickness. It is possible to control the bending rigidity and the like of the robot hand member.

【0043】さらにまた、請求項4に係る発明によれ
ば、上記プリプレグシートを複数層に巻き付ける工程
で、プリプレグシートの強化繊維の配向を長手方向に沿
う方向と長手方向に略直交する方向に異ならせて積層す
る工程を含むことにより、ロボットハンドの使用環境に
応じてロボットハンド部材の曲げ剛性、振動減衰特性、
耐熱性等の特性を制御することができる。
According to the fourth aspect of the present invention, in the step of winding the prepreg sheet into a plurality of layers, if the orientation of the reinforcing fibers of the prepreg sheet is different from the direction along the longitudinal direction and the direction substantially orthogonal to the longitudinal direction. The bending stiffness, vibration damping characteristics,
Characteristics such as heat resistance can be controlled.

【0044】また、請求項5に係る発明によれば、上記
プリプレグシートを巻き付ける最外層には、クロスプリ
プレグシートを巻き付ける工程を含むことにより、後加
工として切削や研磨加工したときに毛羽立ちが少なく部
材としての加工性を向上し、また製品の美観を良くする
ことができる。
According to the fifth aspect of the present invention, the outermost layer around which the prepreg sheet is wound includes a step of winding a cross prepreg sheet, so that the outermost layer is less fuzzy when cut or polished as a post-process. Processability as well as the appearance of the product can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明によるロボットハンド部材の製造方法
が適用されるロボットハンドを示す斜視図である。
FIG. 1 is a perspective view showing a robot hand to which a method for manufacturing a robot hand member according to the present invention is applied.

【図2】 本発明のロボットハンド部材の製造方法の工
程を示す断面説明図である。
FIG. 2 is an explanatory sectional view showing steps of a method for manufacturing a robot hand member of the present invention.

【図3】 プリプレグシートを複数層に巻き付ける工程
において、該プリプレグシートの強化繊維の配向方向を
異ならせて積層する状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which the prepreg sheets are laminated with the orientation directions of reinforcing fibers of the prepreg sheets varied in a step of winding the prepreg sheets into a plurality of layers.

【図4】 角形パイプ状に製造されたロボットハンド部
材を示す斜視図である。
FIG. 4 is a perspective view showing a robot hand member manufactured in a rectangular pipe shape.

【図5】 上記ロボットハンド部材の断面形状の変形例
を示す断面図である。
FIG. 5 is a cross-sectional view showing a modification of the cross-sectional shape of the robot hand member.

【図6】 他の実施形態によるロボットハンド部材の製
造方法により製造されたロボットハンド部材を示す断面
図である。
FIG. 6 is a cross-sectional view illustrating a robot hand member manufactured by a method for manufacturing a robot hand member according to another embodiment.

【図7】 ロボットハンド部材の比較例としてCFRPの無
垢材の積層体を製造した具体的な製造数値例を示す表1
である。
FIG. 7 is a table 1 showing specific numerical examples of manufacturing a laminate of solid CFRP as a comparative example of a robot hand member.
It is.

【図8】 ロボットハンド部材の実施例1としてCFRPの
中空構造の積層体を製造した具体的な製造数値例を示す
表2である。
FIG. 8 is Table 2 showing specific numerical examples of manufacturing a laminated body having a hollow structure of CFRP as Embodiment 1 of the robot hand member.

【図9】 ロボットハンド部材の実施例2としてCFRPの
忠実構造の積層体を製造した具体的な製造数値例を示す
表3である。
FIG. 9 is Table 3 showing specific examples of manufacturing numerical values for manufacturing a laminate having a faithful structure of CFRP as Embodiment 2 of the robot hand member.

【符号の説明】[Explanation of symbols]

1…ロボットハンド 2…取付部材 3…ワーク 4…ロボットハンド部材 6…芯材 7,7a,7b,7c…プリプレグシート 8a,8b,8c…強化繊維 9…プリプレグシート積層体 10a,10b…外型 11…FRP部材 DESCRIPTION OF SYMBOLS 1 ... Robot hand 2 ... Mounting member 3 ... Work 4 ... Robot hand member 6 ... Core material 7, 7a, 7b, 7c ... Prepreg sheet 8a, 8b, 8c ... Reinforcing fiber 9 ... Prepreg sheet laminated body 10a, 10b ... Outer die 11 ... FRP members

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 大介 東京都港区西新橋一丁目3番12号 日石三 菱株式会社技術開発部内 Fターム(参考) 3C007 DS01 ES02 ES17 EV05 EW00 NS09 NS10 NS12 NS13 4F205 AA36 AD16 AG07 AG09 AH05 HA02 HA11 HA14 HA23 HA25 HA45 HB01 HC05 HK03 HK04 HL12 HL13 HT02 5F031 CA02 CA05 GA01 GA41  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Daisuke Uchida 1-3-12 Nishishinbashi, Minato-ku, Tokyo Nishiishi Mitsui Corporation R & D Department F-term (reference) 3C007 DS01 ES02 ES17 EV05 EW00 NS09 NS10 NS12 NS13 4F205 AA36 AD16 AG07 AG09 AH05 HA02 HA11 HA14 HA23 HA25 HA45 HB01 HC05 HK03 HK04 HL12 HL13 HT02 5F031 CA02 CA05 GA01 GA41

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】産業用ロボットのアーム部に取り付けられ
るロボットハンド部材を製造する方法において、 所定温度以下では加熱非変形性を有する材料を用いて所
定の断面形状とされた芯材の外周面に、強化繊維を含む
プリプレグシートを巻き付けるステップと、 上記巻き付けられたプリプレグシートの外周面に所定の
内面形状を有する外型を押し付けて上記プリプレグシー
トの外面形状を所定寸法に成形するステップと、 上記成形されたプリプレグシートを所定温度に加熱し熱
硬化させて繊維強化複合材料とするステップと、 上記繊維強化複合材料とされた部材から芯材を抜き取り
中空構造とするステップと、を順次行うことを特徴とす
るロボットハンド部材の製造方法。
1. A method for manufacturing a robot hand member attached to an arm of an industrial robot, comprising: a core material having a predetermined cross-sectional shape formed of a material having a non-heat-deformable property at a predetermined temperature or lower; Winding a prepreg sheet containing reinforcing fibers; pressing an outer mold having a predetermined inner surface shape on an outer peripheral surface of the wound prepreg sheet to form the outer surface shape of the prepreg sheet to a predetermined dimension; Heating the prepreg sheet to a predetermined temperature and thermally curing the prepreg sheet to form a fiber-reinforced composite material; and removing a core material from the member made of the fiber-reinforced composite material to form a hollow structure. Manufacturing method of a robot hand member.
【請求項2】産業用ロボットのアーム部に取り付けられ
るロボットハンド部材を製造する方法において、 所定温度以下では加熱非変形性を有する材料を用いて所
定の断面形状とされた芯材の外周面に、強化繊維を含む
プリプレグシートを巻き付けるステップと、 上記巻き付けられたプリプレグシートの外周面に所定の
内面形状を有する外型を押し付けて上記プリプレグシー
トの外面形状を所定寸法に成形するステップと、 上記成形されたプリプレグシートを所定温度に加熱し熱
硬化させて芯材と一体化した繊維強化複合材料とするス
テップと、を順次行うことを特徴とするロボットハンド
部材の製造方法。
2. A method for manufacturing a robot hand member to be attached to an arm of an industrial robot, comprising the steps of: forming a core material having a predetermined cross-sectional shape by using a material which is not deformable by heating at a predetermined temperature or lower; Winding a prepreg sheet containing reinforcing fibers; pressing an outer mold having a predetermined inner surface shape on an outer peripheral surface of the wound prepreg sheet to form the outer surface shape of the prepreg sheet to a predetermined dimension; And heating the prepreg sheet to a predetermined temperature and thermally curing the prepreg sheet to form a fiber-reinforced composite material integrated with the core material.
【請求項3】上記芯材の外周面にプリプレグシートを巻
き付けるステップは、該プリプレグシートを複数層に巻
き付けることを特徴とする請求項1又は2記載のロボッ
トハンド部材の製造方法。
3. The method according to claim 1, wherein the step of winding the prepreg sheet around the outer peripheral surface of the core material includes winding the prepreg sheet into a plurality of layers.
【請求項4】上記プリプレグシートを複数層に巻き付け
る工程は、プリプレグシートの強化繊維の配向を、長手
方向に沿う方向と長手方向に略直交する方向に異ならせ
て積層する工程を含むことを特徴とする請求項3記載の
ロボットハンド部材の製造方法。
4. The step of winding the prepreg sheet around a plurality of layers includes a step of laminating the prepreg sheets such that the orientation of the reinforcing fibers of the prepreg sheet is different in a direction along the longitudinal direction and a direction substantially orthogonal to the longitudinal direction. The method for manufacturing a robot hand member according to claim 3, wherein
【請求項5】上記プリプレグシートを巻き付ける最外層
には、クロスプリプレグシートを巻き付ける工程を含む
ことを特徴とする請求項1〜4のいずれか1項に記載の
ロボットハンド部材の製造方法。
5. The method for manufacturing a robot hand member according to claim 1, wherein the outermost layer around which the prepreg sheet is wound includes a step of winding a cross prepreg sheet.
JP2001097478A 2001-03-29 2001-03-29 Manufacturing method of robot hand member Expired - Fee Related JP3632841B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001097478A JP3632841B2 (en) 2001-03-29 2001-03-29 Manufacturing method of robot hand member
KR1020020016981A KR20020077179A (en) 2001-03-29 2002-03-28 Robot hand member and method of producing the same
CNB021085870A CN100402246C (en) 2001-03-29 2002-03-28 Robot hand unit and its making method
US10/107,307 US20020180104A1 (en) 2001-03-29 2002-03-28 Robot hand member and method of producing the same
TW091106239A TW544383B (en) 2001-03-29 2002-03-29 Robot hand member and method of producing the same
US11/147,459 US7833455B2 (en) 2001-03-29 2005-06-08 Robot hand member and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097478A JP3632841B2 (en) 2001-03-29 2001-03-29 Manufacturing method of robot hand member

Publications (2)

Publication Number Publication Date
JP2002292591A true JP2002292591A (en) 2002-10-08
JP3632841B2 JP3632841B2 (en) 2005-03-23

Family

ID=18951260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097478A Expired - Fee Related JP3632841B2 (en) 2001-03-29 2001-03-29 Manufacturing method of robot hand member

Country Status (1)

Country Link
JP (1) JP3632841B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103751A (en) * 2003-10-01 2005-04-21 Korea Advanced Inst Of Science & Technol Robot arm having shock absorbing structure
JP2005161572A (en) * 2003-11-28 2005-06-23 Toho Tenax Co Ltd Flat curved beam
JP2007076202A (en) * 2005-09-15 2007-03-29 Toho Tenax Co Ltd Molding method of frp-made square pipe
JP2007091433A (en) * 2005-09-29 2007-04-12 Nidec Sankyo Corp Robot hand and workpiece carrying robot using the same
JP2009285823A (en) * 2008-05-28 2009-12-10 Meian Kokusai Gigyo Kofun Yugenkoshi Robot arm, component of its holding means, and manufacturing method of the component
JP2011183471A (en) * 2010-03-04 2011-09-22 Jx Nippon Oil & Energy Corp Robot hand
JP4980712B2 (en) * 2004-04-20 2012-07-18 Jx日鉱日石エネルギー株式会社 Robot hand member, manufacturing method thereof, and robot hand
US8827339B2 (en) 2010-03-04 2014-09-09 Jx Nippon Oil & Energy Corporation Robot hand
JP2014180731A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Robot
JP2018113344A (en) * 2017-01-12 2018-07-19 株式会社アルバック Substrate transportation method and substrate transportation device
JPWO2018087936A1 (en) * 2016-11-09 2019-09-26 シャープ株式会社 Extension tube of vacuum cleaner
JP2020093544A (en) * 2018-11-30 2020-06-18 株式会社北陸カラーフォーム Method for manufacturing fiber-reinforced resin structure
WO2021111661A1 (en) * 2019-12-02 2021-06-10 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
CN113290886A (en) * 2021-05-24 2021-08-24 宁波江丰复合材料科技有限公司 Release film winding method of conical carbon fiber pipe
CN113707593A (en) * 2021-07-13 2021-11-26 宁波复升新材料科技有限公司 Carbon fiber wafer carrying finger and manufacturing method thereof
JP7508882B2 (en) 2020-06-17 2024-07-02 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
JP7508885B2 (en) 2020-06-17 2024-07-02 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
JP7508884B2 (en) 2020-06-17 2024-07-02 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
JP7508883B2 (en) 2020-06-17 2024-07-02 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103751A (en) * 2003-10-01 2005-04-21 Korea Advanced Inst Of Science & Technol Robot arm having shock absorbing structure
JP2005161572A (en) * 2003-11-28 2005-06-23 Toho Tenax Co Ltd Flat curved beam
JP4980712B2 (en) * 2004-04-20 2012-07-18 Jx日鉱日石エネルギー株式会社 Robot hand member, manufacturing method thereof, and robot hand
JP2007076202A (en) * 2005-09-15 2007-03-29 Toho Tenax Co Ltd Molding method of frp-made square pipe
JP2007091433A (en) * 2005-09-29 2007-04-12 Nidec Sankyo Corp Robot hand and workpiece carrying robot using the same
JP4731267B2 (en) * 2005-09-29 2011-07-20 日本電産サンキョー株式会社 Robot hand and workpiece transfer robot using the same
JP2009285823A (en) * 2008-05-28 2009-12-10 Meian Kokusai Gigyo Kofun Yugenkoshi Robot arm, component of its holding means, and manufacturing method of the component
JP2011183471A (en) * 2010-03-04 2011-09-22 Jx Nippon Oil & Energy Corp Robot hand
US8827339B2 (en) 2010-03-04 2014-09-09 Jx Nippon Oil & Energy Corporation Robot hand
JP2014180731A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Robot
JPWO2018087936A1 (en) * 2016-11-09 2019-09-26 シャープ株式会社 Extension tube of vacuum cleaner
JP2018113344A (en) * 2017-01-12 2018-07-19 株式会社アルバック Substrate transportation method and substrate transportation device
JP2020093544A (en) * 2018-11-30 2020-06-18 株式会社北陸カラーフォーム Method for manufacturing fiber-reinforced resin structure
JP2020093545A (en) * 2018-11-30 2020-06-18 株式会社北陸カラーフォーム Method for manufacturing fiber-reinforced resin structure
WO2021111661A1 (en) * 2019-12-02 2021-06-10 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
JP7508882B2 (en) 2020-06-17 2024-07-02 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
JP7508885B2 (en) 2020-06-17 2024-07-02 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
JP7508884B2 (en) 2020-06-17 2024-07-02 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
JP7508883B2 (en) 2020-06-17 2024-07-02 株式会社北陸カラーフオーム Method for manufacturing fiber-reinforced resin structure
CN113290886A (en) * 2021-05-24 2021-08-24 宁波江丰复合材料科技有限公司 Release film winding method of conical carbon fiber pipe
CN113707593A (en) * 2021-07-13 2021-11-26 宁波复升新材料科技有限公司 Carbon fiber wafer carrying finger and manufacturing method thereof
CN113707593B (en) * 2021-07-13 2024-05-28 宁波复升新材料科技有限公司 Manufacturing method of carbon fiber wafer carrying finger

Also Published As

Publication number Publication date
JP3632841B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
JP2002292591A (en) Production method of robot hand element
US7833455B2 (en) Robot hand member and method of producing the same
TWI468272B (en) Cfrp-based conveyance member and robot hand using same
KR100938971B1 (en) Oval-Shaped Supporting Member
WO2005117100A1 (en) Support bar for substrate cassette
JP4980712B2 (en) Robot hand member, manufacturing method thereof, and robot hand
JP3632842B2 (en) Manufacturing method of robot hand member
KR101307627B1 (en) Conveyance member made of cfrp and robot hand employing the same
JP3632846B2 (en) Robot hand member and manufacturing method thereof
JP4458739B2 (en) Manufacturing method of molded products
JP2004035604A (en) Semi-impregnated prepreg
JP2018024097A (en) Method for producing fiber-reinforced resin molded body
KR102418441B1 (en) Forming method of carbon fiber reinforced plastic
JP4481855B2 (en) Hand for transfer device
KR20010016305A (en) Fiber reinforced composites pipe and method for manufacturing the same
JP2004058608A (en) Method for manufacturing hollow molded article
JP4608175B2 (en) Method for producing prepreg reinforcing sheet, method for producing prepreg
JP7236245B2 (en) composite molding
JP2005297452A (en) Cantilevered beam manufacturing method
JPH10278185A (en) Manufacture of sandwich structure
JP2004074471A (en) Frp molding intermediate material and its production method
JP2012040689A (en) Method of manufacturing fiber-reinforced composite material
JPH11257366A (en) Torque transmitting coupling
JP2024070038A (en) Molding jig, and method for manufacturing panel structure made of composite material
JP2020093410A (en) Method of producing composite molded article

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20031204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20031208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040722

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent or registration of utility model

Ref document number: 3632841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees