JP2002275595A - Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same - Google Patents
Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the sameInfo
- Publication number
- JP2002275595A JP2002275595A JP2001079762A JP2001079762A JP2002275595A JP 2002275595 A JP2002275595 A JP 2002275595A JP 2001079762 A JP2001079762 A JP 2001079762A JP 2001079762 A JP2001079762 A JP 2001079762A JP 2002275595 A JP2002275595 A JP 2002275595A
- Authority
- JP
- Japan
- Prior art keywords
- less
- annealing
- rolling
- crystal grains
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、シンク、各種器物およ
びコンロ用バーナー等の家庭用機器の部品、燃料等のタ
ンク、給油管、モーターケース、カバーおよびフランジ
等の産業用機器の部品において、主にプレス加工に供さ
れる耐リジング性および深絞り加工性に優れたフェライ
ト系ステンレス鋼板およびその鋼板の製造方法に関する
ものである。なお、本発明における鋼板は、鋼板および
鋼帯を含むものとする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to parts of household equipment such as sinks, various appliances and stove burners, and parts of industrial equipment such as fuel tanks, oil supply pipes, motor cases, covers and flanges. The present invention relates to a ferritic stainless steel sheet excellent in ridging resistance and deep drawing workability mainly used for press working and a method for producing the steel sheet. The steel sheet in the present invention includes a steel sheet and a steel strip.
【0002】[0002]
【従来の技術】SUS430に代表されるフェライト系
ステンレス鋼は、良好な耐食性を有し、また高価なNi
を含有せず、オーステナイト系ステンレス鋼に比べると
経済的な利点を併せ持つことなどから、耐久消費財を中
心に広く使用されている。しかしながら、近年、ステン
レス鋼のプレス成形加工においては、より厳しい加工が
行われる場合が多くなり、更に優れた加工性を有するフ
ェライト系ステンレス鋼板が要望されている。2. Description of the Related Art A ferritic stainless steel represented by SUS430 has a good corrosion resistance and is expensive.
It is widely used, especially in durable consumer goods, because it does not contain iron and has economic advantages as compared with austenitic stainless steel. However, in recent years, in press forming of stainless steel, severer processing is often performed, and a ferritic stainless steel sheet having more excellent workability is demanded.
【0003】フェライト系ステンレス鋼板の加工性は、
一般にオーステナイト系ステンレス鋼に比べて劣り、ま
た、プレス成形時にリジングと呼ばれる独特のシワ状の
表面凹凸を生じる。したがって、フェライト系ステンレ
ス鋼において、そのプレス加工性および耐リジング性が
改善されれば、加工性が厳しいためにオーステナイト系
ステンレス鋼が使用されていた箇所に、従来適用困難で
あったより安価なフェライト系ステンレス鋼が使用でき
るようになる。[0003] The workability of ferritic stainless steel sheet is as follows.
Generally, it is inferior to austenitic stainless steel, and has a unique wrinkle-like surface irregularity called ridging at the time of press forming. Therefore, if the press workability and ridging resistance of ferritic stainless steel are improved, the less expensive ferritic stainless steel that was conventionally difficult to apply to places where austenitic stainless steel was used due to severe workability. Stainless steel can be used.
【0004】ところで、フェライト系ステンレス鋼のプ
レス成形性はr値に依存することが知られている。この
r値を示す指標として、平均的なr値を示すrが用いら
れている。r値を向上させる技術は、今までにも数多く
試みられている。例えば、特開昭53−48018号公
報には、C、Nを極力低下させ、Ti、Nbの一種また
は両方を添加することによりr値を向上させる技術が提
案されている。しかしながら、この技術はC、Nを低下
させるために精錬に時間がかかり、また高価なTiやN
bを添加するために原料費が高価になるため、製鋼のコ
ストが増加してしまう。It is known that the press formability of ferritic stainless steel depends on the r-value. As an index indicating the r value, r indicating an average r value is used. Many techniques for improving the r value have been tried so far. For example, Japanese Patent Application Laid-Open No. 53-48018 proposes a technique in which C and N are reduced as much as possible, and the r value is improved by adding one or both of Ti and Nb. However, this technique requires a long time for refining to reduce C and N, and expensive Ti and N
Since the raw material cost becomes high due to the addition of b, the cost of steelmaking increases.
【0005】また、リジング性を改善するためには、圧
延中に材料を一時的に待機させてパス間時間を大きくす
るいわゆるディレイ圧延を用いる技術が、例えば特開昭
62−199721号公報で提案されている。しかしな
がら、上記の技術は、低温領域で大きな歪みを与える方
法であるので、噛み込み不良や形状不良を招き、また、
圧延時間の増大を招き、生産性の低下をもたらす。した
がって、経済的な方法とは言い難い。In order to improve the ridging property, a technique using so-called delay rolling in which the material is temporarily made to stand by during rolling to increase the time between passes is proposed in, for example, Japanese Patent Application Laid-Open No. 62-197721. Have been. However, the above-mentioned technique is a method of giving a large distortion in a low temperature region, so that a biting failure or a shape failure is caused,
This causes an increase in the rolling time and a decrease in productivity. Therefore, it is hardly an economical method.
【0006】[0006]
【発明が解決しようとする課題】本発明は、このような
問題を解消すべく案出されたものであり、製鋼コストの
増大や熱延鋼帯の生産性低下を招くことなく、プレス加
工で必要とされる深絞り性を持ち、かつ満足できる耐リ
ジング性を有するフェライト系ステンレス鋼およびその
ような特性を発揮し得る、熱延以降の加工熱処理技術を
提案することを目的とする。SUMMARY OF THE INVENTION The present invention has been devised in order to solve such a problem, and can be performed by press working without increasing steelmaking cost or reducing productivity of hot-rolled steel strip. It is an object of the present invention to propose a ferritic stainless steel having a required deep drawability and a satisfactory ridging resistance, and a working heat treatment technique after hot rolling that can exhibit such properties.
【0007】[0007]
【課題を解決するための手段】本発明の耐リジング性お
よび深絞り加工性に優れるフェライト系ステンレス鋼
は、その目的を達成するために、質量%で、C:0.1
0%以下、Si:1.5%以下、Mn:1.0%以下、
P:0.050%以下、S:0.015%以下、Ni:
2.0%以下、Cr:10.0〜20.0%、Al:
0.10%以下、N:0.05%以下を含有し、さらに
必要に応じてTi:0.05%以下、Nb:0.05%
以下、Mo:1.0%以下、Cu:1.0%以下、B:
0.0010〜0.0100%の1種または2種以上を
含み、残部がFeおよび不可避的な不純物からなり、か
つ式(5)で定義されるγmaxが20以上80未満で
あり、さらに、板厚の1/2深さにおける圧延面の結晶
粒界のうち隣接する結晶粒の方位のずれが15°以上で
ある大角粒界の割合が90%以上であり、さらにまた、
式(6)を持つことを特徴とするものである。The ferritic stainless steel having excellent ridging resistance and deep drawability according to the present invention has a C content of 0.1% by mass in order to achieve the object.
0% or less, Si: 1.5% or less, Mn: 1.0% or less,
P: 0.050% or less, S: 0.015% or less, Ni:
2.0% or less, Cr: 10.0 to 20.0%, Al:
0.10% or less, N: 0.05% or less, and if necessary, Ti: 0.05% or less, Nb: 0.05%
Hereinafter, Mo: 1.0% or less, Cu: 1.0% or less, B:
0.0010 to 0.0100% of one or more kinds, the balance being Fe and unavoidable impurities, and γmax defined by the formula (5) is 20 or more and less than 80. The ratio of the large-angle grain boundaries in which the misorientation of adjacent crystal grains is 15 ° or more in the grain boundaries of the rolled surface at a depth of 1 / of the thickness is 90% or more.
It is characterized by having equation (6).
【0008】式(5) γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-5
0Nb-52Al+470N+189 式(6) X/Y≧5 ただし、Xは板厚の1/2深さにおける圧延面の{11
1}面からのずれが5゜以内の結晶粒の面積で、Yは板
厚の1/2深さにおける圧延面の{100}面からのず
れが5°以内の結晶粒の面積。Formula (5) γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-5
0Nb-52Al + 470N + 189 Equation (6) X / Y ≧ 5, where X is {11} of the rolled surface at a half depth of the plate thickness.
Y is the area of the crystal grains whose deviation from the 1} plane is within 5 °, and Y is the area of the crystal grains whose deviation from the {100} plane of the rolling plane at a half depth of the plate thickness is within 5 °.
【0009】また、本発明の製造方法は、その目的を達
成するために、上記フェライト系ステンレス鋼を製造す
るにあたり、それぞれの項に記載された成分からなる鋼
スラブを、熱間圧延を経て熱延鋼帯となし、冷間圧延と
焼鈍を組み合わせて冷延鋼板または鋼帯を製造する際
に、熱延鋼帯をAc1点以上1100℃以下のフェライ
ト+オーステナイトの2相領域に加熱する複相化焼鈍を
連続焼鈍炉によって行った後、さらに圧延率10%以上
50%以下の中間冷間圧延を行い、その後、箱型炉によ
る焼鈍を施し、仕上げ冷間圧延と再結晶焼鈍を行なうこ
とを特徴とするものである。In order to achieve the object, the production method of the present invention is characterized in that, when producing the above ferritic stainless steel, a steel slab composed of the components described in each section is subjected to hot rolling through hot rolling. When producing a cold-rolled steel sheet or a steel strip by combining cold rolling and annealing with a hot-rolled steel strip, a hot-rolled steel strip is heated to a two-phase region of ferrite and austenite at a temperature of 1 to 1100 ° C. After performing phase annealing in a continuous annealing furnace, further perform intermediate cold rolling at a rolling reduction of 10% or more and 50% or less, and then perform annealing in a box furnace, and perform finish cold rolling and recrystallization annealing. It is characterized by the following.
【0010】[0010]
【本発明の実施の態様】本発明者等は、上記課題に向け
て、製鋼コストの増大や熱延鋼帯の生産性を招くことな
く、フェライト系ステンレス鋼板の深絞り性および耐リ
ジング性を向上させるための合金組成、金属組織および
熱延以降の加工熱処理に関し、詳細に検討してきた。ま
た、選定した材料に対して、プレス加工を施し、プレス
加工に対して必要とされる特性を調査した。その結果、
熱延板焼鈍にAc1点以上の複相化焼鈍を施し、得られ
た(フェライト+マルテンサイト)2相組織に冷間圧延
により加工を加え、その後、箱型炉による焼鈍を施し、
仕上げ冷間圧延および再結晶焼鈍を行なったフェライト
系ステンレス鋼板は、耐リジング性および深絞り性が著
しく向上することを知見した。また、プレス加工に対し
て必要とされる特性を明らかにした。本発明は、この知
見に基づき完成したものである。以下に、発明の実施の
態様を実験結果に基づき説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS To solve the above-mentioned problems, the present inventors have developed a deep drawing and ridging resistance of a ferritic stainless steel sheet without increasing steelmaking cost and productivity of a hot-rolled steel strip. The alloy composition, the metal structure, and the thermomechanical treatment after hot rolling have been studied in detail. In addition, the selected materials were subjected to press working, and the characteristics required for press working were investigated. as a result,
The hot-rolled sheet is annealed with two or more phases of Ac at one point or more, and the obtained (ferrite + martensite) two-phase structure is processed by cold rolling, followed by annealing in a box furnace.
It has been found that the ferritic stainless steel sheet subjected to finish cold rolling and recrystallization annealing has remarkably improved ridging resistance and deep drawability. In addition, characteristics required for press working were clarified. The present invention has been completed based on this finding. Hereinafter, embodiments of the invention will be described based on experimental results.
【0011】表1の鋼種Aに示す化学成分を有する実ラ
インの厚さ4mmの熱延板を用い、実験室的に、熱延板
→複相化焼鈍(1050℃×均熱0sec)→中間冷延
→中間焼鈍(830℃×均熱9hr)→仕上げ冷延→仕
上げ焼鈍を行い、板厚0.8mmの焼鈍板とした。ここ
で、中間圧延と仕上げ圧延の冷延圧下配分を変化させ
た。また、前述の熱延板を従来の製造方法、すなわち、
熱延板→熱延板焼鈍(830℃×9hr)→仕上げ冷延
→仕上げ焼鈍(1回冷延焼鈍)および熱延板→熱延板焼
鈍(830℃×9hr)→中間冷延→中間焼鈍→仕上げ
冷延→仕上げ焼鈍(2回冷延焼鈍)で作製した。Using a hot-rolled sheet having a chemical composition shown in steel type A in Table 1 and having a thickness of 4 mm and having a thickness of 4 mm, a hot-rolled sheet → double-phase annealing (1050 ° C. × soaking at 0 sec) → intermediately Cold rolling → intermediate annealing (830 ° C. × soaking 9 hours) → finish cold rolling → finish annealing was performed to obtain an annealed sheet having a thickness of 0.8 mm. Here, the cold rolling reduction distribution of the intermediate rolling and the finish rolling was changed. Further, the above-described hot rolled sheet is produced by a conventional production method, that is,
Hot rolled sheet → Hot rolled sheet annealing (830 ° C x 9hr) → Finish cold rolling → Finish annealing (one time cold rolling annealing) and hot rolled sheet → Hot rolled sheet annealing (830 ° C x 9hr) → Intermediate cold rolling → Intermediate annealing → Finish cold rolling → Finish annealing (twice cold rolling annealing).
【0012】 [0012]
【0013】以上の工程で作製された焼鈍板から試験片
を採取し、r値の測定、リジング判定、EBSP法(El
ectron Backscattering Pattern)による結晶方位分布
測定およびプレス加工テストを行った。なお、rおよび
Δrはそれぞれr=(rL+2rD+rT)/4、Δr=
(rL−2rD+rT)/2である。ただし、rL、rDお
よびrTは、それぞれ圧延方向、圧延方向に対して45
°方向および圧延方向に対して90°方向のr値を示
す。また、耐リジング性の判定は、Aが最も耐リジング
性が良いもの、Dが最も耐リジング性が悪いものとし、
A、B、C、Dの4段階評価を行った。表2に耐リジン
グ性の判定基準を示す。A test piece was sampled from the annealed plate manufactured in the above process, and the r value was measured, ridging was judged, and the EBSP method (El
ectron Backscattering Pattern) and press working test. Note that r and Δr are r = (r L + 2r D + r T ) / 4 and Δr =
(R L -2r D + r T ) / 2. However, r L , r D and r T are respectively 45 degrees with respect to the rolling direction and the rolling direction.
The r value in the 90 ° direction with respect to the ° direction and the rolling direction is shown. In addition, the determination of ridging resistance was made such that A had the best ridging resistance and D had the lowest ridging resistance.
A, B, C, and D were evaluated in four steps. Table 2 shows criteria for ridging resistance.
【0014】 [0014]
【0015】EBSP法による結晶方位分布測定は、各
鋼板に対して、板厚の1/2深さにおける圧延板につい
て、圧延方向;500μm、幅方向;800μmの範囲
の結晶方位分布を測定し、得られたデータをもとに、隣
接する結晶粒の方位のずれ15°以上である大角粒界の
割合と({111}面からのずれが5°以内の結晶粒の
面積)/({100}面からのずれが5°以内の結晶粒
の面積)を解析した。In the crystal orientation distribution measurement by the EBSP method, the crystal orientation distribution in the range of 500 μm in the rolling direction and 800 μm in the width direction is measured for each steel sheet with respect to a rolled sheet at a half depth of the sheet thickness. Based on the obtained data, the ratio of the large-angle grain boundaries in which the deviation of the orientation of adjacent crystal grains is 15 ° or more and (the area of the crystal grains whose deviation from the {111} plane is within 5 °) / ({100 (}) The area of the crystal grains whose deviation from the plane is within 5 °) was analyzed.
【0016】また、プレス加工テストは、ポンチの寸法
が200mm×270mm、絞り深さが100mm、ダ
イ肩半径が10mmの角筒絞りを行い、成形できたもの
は○、割れが生じたものは×と判定した。表3にr、Δ
r、リジング判定、EBSP法による結晶分布解析およ
びプレス加工テストの結果に及ぼす中間圧延と仕上げ圧
延の冷延圧下配分の影響を示す。In the pressing test, a square cylinder having a punch size of 200 mm × 270 mm, a drawing depth of 100 mm, and a die shoulder radius of 10 mm was drawn. It was determined. Table 3 shows r and Δ
The influence of the cold rolling reduction of intermediate rolling and finish rolling on the results of r, ridging judgment, crystal distribution analysis by the EBSP method, and the press working test is shown.
【0017】 [0017]
【0018】表3より、大角粒界の割合が大きいと耐リ
ジング性が向上するよい対応関係にある。一般的に、リ
ジングの発生は、冷延焼鈍板内に存在する結晶方位の近
い結晶粒の集団(コロニー)に起因する。コロニーの起
源は、凝固柱状晶が熱延焼鈍後に残存することにより形
成される圧延方向に伸びた粗大な未再結晶フェライト粒
が、冷延後の焼鈍時においても再結晶による結晶方位の
分散が小さいため、コロニーが形成される。コロニー内
部では、見かけ上は微細な結晶組織を呈しているが、結
晶方位の分散が小さいためプレス成形などの塑性変形を
受けるとコロニーが大きな単結晶のように変形し、それ
ぞれのコロニーの塑性異方性の差によりリジングが発生
する。As shown in Table 3, there is a good correspondence that the ridging resistance is improved when the ratio of the large-angle grain boundaries is large. Generally, the occurrence of ridging is caused by a group (colonies) of crystal grains having a close crystal orientation existing in the cold-rolled annealed sheet. The origin of the colony is that coarse unrecrystallized ferrite grains extending in the rolling direction, formed by solidification columnar crystals remaining after hot rolling annealing, disperse the crystal orientation due to recrystallization even during annealing after cold rolling. Due to their small size, colonies are formed. The colony has an apparently fine crystal structure inside, but when subjected to plastic deformation such as press molding due to the small dispersion of the crystal orientation, the colony deforms like a large single crystal, and the plastic deformation of each colony changes. Ridging occurs due to the difference in anisotropy.
【0019】ここで、コロニー内部の結晶粒界は隣接す
る結晶の方位のずれが小さく、ずれが15°以上の大角
粒界は非常に少ない。すなわち、大角粒界の割合が小さ
い鋼板では、コロニーの形成が多くリジングが発生する
のに対し、大角粒界の割合が大きいと、その鋼板のリジ
ングの原因となるコロニーの形成が小さく耐リジング性
が向上し、特に、大角粒界の割合が90%以上であると
リジング発生が軽減し、リジング判定B以上の十分な耐
リジング性が得られる。Here, the crystal grain boundaries inside the colony have small deviations in the orientation of adjacent crystals, and very few large angle boundaries with deviations of 15 ° or more. In other words, a steel sheet having a small proportion of large-angle grain boundaries has a large colony formation and ridging, whereas a large proportion of large-angle grain boundaries has a small formation of colonies that cause ridging of the steel sheet and has a small ridging resistance. In particular, when the ratio of large-angle grain boundaries is 90% or more, ridging is reduced, and sufficient ridging resistance of ridging judgment B or more is obtained.
【0020】また、深絞りに良好な面として{111}
面が、r値に悪影響を及ぼす面として{100}面があ
り、板厚中心でこの良好な面と悪影響を及ぼす面積比で
整理すれば、r値との優劣を明確にできる。つまり、
(板厚の1/2深さにおける圧延面の{111}面から
のずれが5°以内の結晶粒の面積)/(板厚の1/2深
さにおける圧延面の{100}面からのずれが5°以内
の結晶粒の面積)がrによく対応し、特に{111}面
の面積/{100}面の面積が5以上においてその傾向
が顕著になり、rが1.4以上となる。表3において、
プレス加工テストで成形できたものは、{111}面の
面積/{100}面の面積が5以上のものであり、一
方、{111}面の面積/{100}面の面積が5より
小さいものは、深絞り性が不十分で、プレス途中で激し
い割れが生じた。Also, {111} is a good surface for deep drawing.
There is a {100} plane as a plane that has an adverse effect on the r value, and the order of the good surface and the area that adversely affects the thickness center makes it possible to clearly determine the superiority of the r value. That is,
(Area of crystal grain whose deviation from the {111} plane of the rolled surface at a half depth of the plate thickness is within 5 °) / (from the {100} plane of the rolled surface at a half depth of the plate thickness) The area of the crystal grains having a deviation of 5 ° or less) corresponds well to r. In particular, the tendency becomes remarkable when the area of {111} plane / area of {100} plane is 5 or more, and r is 1.4 or more. Become. In Table 3,
In the press molding test, the area of {111} plane / area of {100} plane is 5 or more, while the area of {111} plane / area of {100} plane is smaller than 5. The sample had insufficient deep drawability and severe cracking occurred during pressing.
【0021】しかしながら、従来方法の2回冷延焼鈍材
では、{111}面の面積/{100}面の面積が5.
5であり、rも1.40と十分に高いがプレス加工テス
トで割れが生じている。この鋼板では、結晶粒界のうち
隣接する結晶粒の方位のずれが15°以上である大角粒
界の割合が81%と比較的低く、耐リジング性が低くr
値の異方性を示すΔrが大きかったためコーナー部で割
れが発生した。すなわち、{111}集合組織が発達し
ていても大角粒界が少なくコロニーを形成していると、
満足するプレス成形性が得られず、{111}面の面積
/{100}面の面積が5以上であり、かつ大角粒界の
割合が90%以上必要であることが明らかになった。However, in the case of the twice cold-rolled annealed material of the conventional method, the area of {111} plane / area of {100} plane is 5.
5 and r is sufficiently high at 1.40, but cracks occur in the press working test. In this steel sheet, the ratio of the large-angle grain boundaries in which the misorientation of the adjacent crystal grains in the crystal grain boundaries is 15 ° or more is relatively low at 81%, and the ridging resistance is low.
Since Δr indicating the value anisotropy was large, cracks occurred at the corners. In other words, even if the {111} texture has developed, large-angle grain boundaries have few colonies,
Satisfactory press formability was not obtained, and it became clear that the area of {111} face / area of {100} face was 5 or more, and the ratio of large-angle grain boundaries was 90% or more.
【0022】複相化焼鈍を施す製造法において深絞り性
および耐リジング性が改善される理由は、次のように考
えられる。まず、フェライト系ステンレス鋼の熱延板に
Ac1点以上の複相化焼鈍を施すと、(フェライト+マ
ルテンサイト)2相組織が得られる。フェライト相はマ
ルテンサイト相に比べ非常に軟質であるので、中間圧延
により加工を加えると、フェライト相に歪みが蓄積され
る。これを、箱型炉で長時間焼鈍を施すことにより、マ
ルテンサイト相は炭化物を十分に析出し、フェライト相
へ再結晶すると同時に、非常に歪みが蓄積されたフェラ
イト相の再結晶が促進される。この時に、リジングの原
因となるような凝固柱状晶に由来した粗大なフェライト
粒の再結晶も促進され、再結晶粒の結晶方位は大きく分
散し、コロニーの形成を阻害し、大角粒界の割合を増大
させる。The reason why the deep drawing property and the ridging resistance are improved in the production method in which the dual phase annealing is performed is considered as follows. First, when a hot-rolled sheet of ferritic stainless steel is subjected to dual-phase annealing at one or more Ac points, a (ferrite + martensite) two-phase structure is obtained. Since the ferrite phase is much softer than the martensite phase, strain is accumulated in the ferrite phase when processed by intermediate rolling. By subjecting this to long-term annealing in a box furnace, the martensite phase sufficiently precipitates carbides and recrystallizes into a ferrite phase, and at the same time promotes recrystallization of a ferrite phase in which very strain is accumulated. . At this time, recrystallization of coarse ferrite grains derived from solidified columnar crystals that cause ridging is also promoted, the crystal orientation of the recrystallized grains is greatly dispersed, colony formation is inhibited, and the ratio of large angle grain boundaries Increase.
【0023】表3において、本発明製造法の複相化焼鈍
後の中間圧延率の増加とともに、結晶粒界のうち隣接す
る結晶粒の方位のずれが15°以上である大角粒界の割
合が増加し、対リジング性も改善された結果も、このこ
とを裏付けている。また、箱型焼鈍後にコロニーの形成
を阻害しているため、通常工程では残存しやすいr値を
下げる{100}のコロニーの形成も少なく、続く、仕
上げ圧延、仕上げ焼鈍により、r値に有効な{111}
集合組織は発達し、{111}面の面積/{100}面
の面積が5以上であり、かつ、大角粒界の割合が90%
以上の鋼板を製造することができた。In Table 3, as the intermediate rolling reduction after the dual-phase annealing in the production method of the present invention increases, the ratio of the large-angle grain boundaries in which the misorientation of adjacent crystal grains is 15 ° or more in the crystal grain boundaries increases. Increased results and improved ridging resistance also support this. In addition, since the formation of colonies is inhibited after box-shaped annealing, the formation of colonies of {100}, which lowers the r value that is likely to remain in the normal process, is small, and the subsequent finish rolling and finish annealing are effective for r values. {111}
The texture develops, the {111} plane area / {100} plane area is 5 or more, and the ratio of large-angle grain boundaries is 90%.
The above steel sheet could be manufactured.
【0024】次に、本発明のフェライト系ステンレス鋼
の成分、特性、製造条件の限定理由について説明する。
なお、以下の説明における%表示は、すべて質量%を示
す。C:0.10%以下 Cは、γmaxを大きくする作用を呈する合金元素であ
り、複相化焼鈍後に得られる(フェライト+マルテンサ
イト)2相組織において、十分な量のマルテンサイトと
その硬さを得るために有効に作用する。しかし、冷延焼
鈍後の強度を上昇させる成分であり、過剰に含まれると
延性を低下させることから、C含有量の上限は0.10
%とした。Next, the reasons for limiting the components, characteristics, and manufacturing conditions of the ferritic stainless steel of the present invention will be described.
In the following description, all percentages indicate mass%. C: 0.10% or less C is an alloying element exhibiting an effect of increasing γmax. In the two-phase structure (ferrite + martensite) obtained after the dual-phase annealing, a sufficient amount of martensite and its hardness Works effectively to get However, since it is a component that increases the strength after cold rolling annealing, and if it is contained excessively, it reduces the ductility, so the upper limit of the C content is 0.10.
%.
【0025】Si:1.5%以下 Siは、製鋼時に脱酸剤として添加される合金成分であ
るが、固溶強化能が高く、過剰に含有すると材質を硬化
し延性を低下させることから、その含有量の上限は1.
5%に設定した。Mn:1.0%以下 Mnはオーステナイト形成元素であり、γmaxの制御
に利用できる。また、固溶強化能が小さいため、材質を
硬化する影響も少ない。しかし、過剰に含有されると溶
接時にMn系ヒュームが生成する等、悪影響を与えるた
め、その含有量の上限は1.0%に設定した。 Si: 1.5% or less Si is an alloy component added as a deoxidizing agent during steel making, but has a high solid solution strengthening ability, and if contained excessively, hardens the material and lowers ductility. The upper limit of the content is 1.
It was set to 5%. Mn: 1.0% or less Mn is an austenite-forming element and can be used for controlling γmax. Further, since the solid solution strengthening ability is small, the effect of hardening the material is small. However, if contained excessively, it has an adverse effect such as formation of Mn-based fume during welding, so the upper limit of the content was set to 1.0%.
【0026】P:0.005%以下 Pは、その含有量に応じて熱間加工性を低下させるの
で、その含有量上限は0.005%とした。S:0.015%以下 Sは、その含有量が多くなると結晶粒界に偏析して結晶
粒界を脆化させるので、その含有量上限は0.015%
に設定した。Ni:2.0%以下 NiはMnと同様にオーステナイト形成元素であり、γ
max制御に利用できる。しかし、Niの過剰な含有
は、コストの上昇を招くことにもなるから、その含有量
の上限は2.0%とした。 P: 0.005% or less P lowers hot workability in accordance with its content, so the upper limit of the content was made 0.005%. S: 0.015% or less S, if its content increases, segregates at the crystal grain boundaries and embrittles the crystal grain boundaries, so the upper limit of the content is 0.015%.
Set to. Ni: 2.0% or less Ni is an austenite forming element like Mn, and γ
It can be used for max control. However, an excessive content of Ni also leads to an increase in cost. Therefore, the upper limit of the content is set to 2.0%.
【0027】Cr:10.0〜20.0% ステンレス鋼としての耐食性を得るには、Crを10.
0%以上含有させることが必要である。しかし、Cr量
が高くなると、靭性や加工性の低下を招くため、その含
有量は20.0%以下にする。Al:0.10%以下 Alは製鋼時に脱酸剤として添加される合金成分である
が、過剰量の添加は非金属介在物を増加させ、靭性低下
や表面欠陥の原因になるため、その含有量の上限は0.
10%とする。 Cr: 10.0 to 20.0% In order to obtain corrosion resistance as stainless steel, Cr is added to 10.10% .
It is necessary to contain 0% or more. However, when the Cr content is increased, the toughness and workability are reduced, so the content is set to 20.0% or less. Al: 0.10% or less Al is an alloy component added as a deoxidizing agent during steelmaking, but excessive addition increases nonmetallic inclusions and causes toughness reduction and surface defects. The upper limit of the amount is 0.
10%.
【0028】N:0.05%以下 NもCと同様にγmaxを大きくする作用を呈する元素
であり、複相化焼鈍時に生成するオーステナイトを増大
させ、微細組織化に有効に働き、耐リジング性を向上さ
せる。しかし、冷延焼鈍後の強度を上昇させる成分であ
り、過剰に含まれると延性を低下させることから、その
含有量の上限は0.05%とした。Ti:0.05%以下 TiはC、Nを固定し、加工性を向上させる元素である
が、Tiを添加すると、鋼材コストの増大を招くことか
ら、その含有量の上限は0.05%とした。 N: 0.05% or less N is an element exhibiting an effect of increasing γmax similarly to C, increases austenite generated at the time of dual phase annealing, works effectively for microstructure formation, and has ridging resistance. Improve. However, since it is a component that increases the strength after cold rolling annealing, and if contained excessively, it reduces the ductility, the upper limit of the content is set to 0.05%. Ti: 0.05% or less Ti is an element that fixes C and N and improves workability. However, addition of Ti causes an increase in steel material cost. Therefore, the upper limit of the content is 0.05%. And
【0029】Nb:0.05%以下 NbはC、Nを固定し、加工性を向上させる元素である
が、Nbを添加すると、鋼材コストの増大を招くことか
ら、その含有量の上限は0.05%とした。Mo:1.0%以下 Moは、必要に応じて添加される元素であり、耐食性の
改善に寄与する。しかし、Moが過剰に添加されると、
熱間加工性が低下するため、その含有量の上限は1.0
%とする。 Nb: 0.05% or less Nb is an element that fixes C and N and improves workability. However, the addition of Nb causes an increase in steel material cost. Therefore, the upper limit of the content is 0%. 0.05%. Mo: 1.0% or less Mo is an element added as necessary and contributes to improvement of corrosion resistance. However, when Mo is added in excess,
Since the hot workability decreases, the upper limit of the content is 1.0.
%.
【0030】Cu:1.0%以下 Cuは、溶製時にスクラップ等から混入する成分であ
り、その含有量が多くなると熱間加工性や耐食性に悪影
響を及ぼすので、上限は1.0%とする。B:0.0010〜0.0100% Bは、必要に応じて添加する元素であり、熱延板の変態
相を均一分散化し、耐リジング性を向上させる作用を呈
する。0.0010%以上の含有量でB添加の効果が顕
著になるが、0.0100%を越える過剰な添加は、熱
間加工性や溶接性の低下を招く。 Cu: 1.0% or less Cu is a component mixed from scrap or the like at the time of smelting, and if its content increases, it adversely affects hot workability and corrosion resistance, so the upper limit is 1.0%. I do. B: 0.0010 to 0.0100% B is an element added as necessary, and has an effect of uniformly dispersing the transformed phase of the hot-rolled sheet and improving ridging resistance. The effect of adding B becomes remarkable at a content of 0.0010% or more, but an excessive addition exceeding 0.0100% causes a reduction in hot workability and weldability.
【0031】γmax:20以上80未満 本発明では、熱延板をAc1点以上のフェライト+オー
ステナイトの2相域に加熱する焼鈍を連続焼鈍炉によっ
て行い、フェライト+マルテンサイトの2相組織を得る
複相化焼鈍を有効利用することに特徴がある。したがっ
て、本発明においては、γmaxの規定は重要な事項に
なる。すなわち、γmaxが20未満であると、複相化
焼鈍で得られるマルテンサイト量が少なく、中間圧延工
程でフェライト相に十分な歪みの蓄積がなされず、フェ
ライトバンドの再結晶が促進されないために、r値およ
び耐リジング性の改善が得られない。一方、γmaxを
高めるためには、C、N、MnおよびNi等のオーステ
ナイト形成元素の含有量を多くする必要があるが、これ
らは、鋼材の硬質化やコストの上昇を招くためγmax
は80未満にする必要がある。 Γmax: 20 or more and less than 80 In the present invention, annealing is performed by heating the hot-rolled sheet to a two-phase region of ferrite + austenite having one or more Ac points by a continuous annealing furnace to obtain a two-phase structure of ferrite + martensite. It is characterized by the effective use of dual-phase annealing. Therefore, in the present invention, the definition of γmax is an important matter. That is, if γmax is less than 20, the amount of martensite obtained in the dual-phase annealing is small, sufficient strain is not accumulated in the ferrite phase in the intermediate rolling step, and recrystallization of the ferrite band is not promoted. No improvement in r value and ridging resistance can be obtained. On the other hand, in order to increase γmax, it is necessary to increase the content of austenite-forming elements such as C, N, Mn, and Ni. However, since these increase the hardness of steel and increase the cost, γmax is increased.
Must be less than 80.
【0032】複相化焼鈍温度:Ac1点〜1100℃ 高温でフェライト+オーステナイトの2相組織を得て、
複相化焼鈍後に、フェライト+マルテンサイトの2相組
織を得るためには、少なくともAc1点以上の温度で焼
鈍を行うことが必須となる。しかし、1100℃を越え
る温度で焼鈍を行うと、結晶粒径の粗大化、さらには、
高温強度の低下による鋼板の切断の危険性が高まる。し
たがって、複相化焼鈍の温度は、Ac1点以上1100
℃以下の範囲とする。 Double-phase annealing temperature: Ac 1 point to 1100 ° C. At a high temperature, a two-phase structure of ferrite + austenite is obtained.
In order to obtain a two-phase structure of ferrite + martensite after the annealing for multiple phases, it is essential to perform annealing at a temperature of at least one point of Ac. However, when annealing is performed at a temperature exceeding 1100 ° C., the crystal grain size becomes coarse, and furthermore,
The risk of cutting the steel sheet due to the decrease in high-temperature strength increases. Therefore, the temperature of the dual-phase annealing is 1 point or more of Ac 1100
It should be in the range of ℃ or less.
【0033】中間冷延圧延率:10〜50% 複相化焼鈍後の中間圧延にて、フェライト相に歪みを蓄
積させるのであるが、10%より小さい圧延率では、そ
の効果が得られない。また、50%を越える中間圧延を
施すと、仕上げ圧延の圧延率が小さくなり、r値に有効
な集合組織の発達が得られないため、中間圧延の圧延率
は10%以上50%以下とする。また、中間焼鈍は、マ
ルテンサイトを炭化物とフェライトに再結晶させるため
に長時間焼鈍が必要となり、仮に、連続焼鈍炉で製造し
ようとすると、非常に効率が悪く、経済的でないため、
箱型焼鈍炉による長時間焼鈍とする。 Intermediate cold rolling reduction : 10 to 50% In intermediate rolling after dual-phase annealing, strain is accumulated in the ferrite phase, but at a rolling reduction of less than 10%, the effect cannot be obtained. If intermediate rolling exceeding 50% is performed, the rolling reduction in finish rolling is reduced, and the development of an effective texture for the r value cannot be obtained. Therefore, the rolling reduction in intermediate rolling is set to 10% or more and 50% or less. . In addition, intermediate annealing requires long-time annealing to recrystallize martensite into carbide and ferrite, and if it is to be manufactured in a continuous annealing furnace, it is very inefficient and not economical.
Long-time annealing using a box-type annealing furnace.
【0034】大角粒界の割合:90%以上、圧延面から
の小さいずれの結晶面の比:5以上 フェライト系ステンレス鋼板のプレス加工において、そ
の加工性を示す因子として、平均的なr値を示すrが用
いられてきた。しかしながら、実際のプレス加工では、
r値が高くともΔrが大きく異方性が大きい材料や、リ
ジングの発生が著しい材料では、加工できない場合が多
い。実際のプレス加工において好ましい材料は、異方性
が小さく、深絞り性と耐リジング性を兼ね備えた材料で
ある。そこで、図1に示した事前評価結果から、これら
の特性を満足させるためには、結晶粒界のうち隣接する
結晶粒の方位のずれが15°以上である大角粒界の割合
が90%以上であり、(板厚の1/2深さにおける圧延
面の{111}面からのずれが5°以内の結晶粒の面
積)/(板厚の1/2深さにおける圧延面の{100}
面からのずれが5°以内の結晶粒の面積)を5以上に規
定したものである。 Ratio of large-angle grain boundaries: 90% or more, from the rolled surface
In the pressing of ferritic stainless steel sheets, r indicating an average r value has been used as a factor indicating the workability of the ferrite stainless steel sheet. However, in actual press working,
Even if the r value is high, a material having a large Δr and a large anisotropy or a material in which ridging is remarkably generated often cannot be processed. A preferable material in actual press working is a material having small anisotropy and having both deep drawability and ridging resistance. From the results of the preliminary evaluation shown in FIG. 1, in order to satisfy these characteristics, the proportion of the large-angle grain boundaries in which the misorientation of adjacent crystal grains is 15 ° or more in the crystal grain boundaries is 90% or more. (The area of the crystal grains whose deviation from the {111} plane of the rolled surface at a half depth of the plate thickness is within 5 °) / ({100} of the rolled surface at a half depth of the plate thickness)
(Area of crystal grains whose deviation from the plane is within 5 °) is defined as 5 or more.
【0035】[0035]
【実施例】表1中にB、C、D、Eに示す化学組成の鋼
を溶製し、スラブとした後、熱間圧延機にて板厚4.0
mmの熱延板とした。この熱延板を、複相化焼鈍を施す
製造方法として、表4に示す複相化焼鈍温度、中間圧延
率を適用して、熱延板→複相化焼鈍→中間圧延→中間焼
鈍→仕上げ圧延→仕上げ焼鈍を行い、板厚0.8mmの
焼鈍板とした。また、前述の熱延板を従来の製造方法、
すなわち、熱延板→熱延板焼鈍(830℃×均熱9h
r)→仕上げ冷延→仕上げ焼鈍(1回冷延焼鈍の製造方
法)および熱延板→熱延板焼鈍(830℃×均熱9h
r)→中間冷延→中間焼鈍→仕上げ冷延→仕上げ焼鈍
(2回冷延焼鈍の製造方法)で作製した。EXAMPLE Steels having the chemical compositions shown in Table 1, B, C, D, and E were smelted to form slabs, and a sheet thickness of 4.0 was obtained by a hot rolling mill.
mm hot rolled sheet. As a production method of subjecting this hot-rolled sheet to dual-phase annealing, a dual-phase annealing temperature and an intermediate rolling rate shown in Table 4 are applied, and the hot-rolled sheet → double-phase annealing → intermediate rolling → intermediate annealing → finish Rolling → finish annealing was performed to obtain an annealed plate having a thickness of 0.8 mm. In addition, the above-described hot rolled sheet is manufactured by a conventional method,
That is, hot-rolled sheet → hot-rolled sheet annealing (830 ° C. × soaking for 9 hours)
r) Finish cold rolling → Finish annealing (manufacturing method of one time cold rolling annealing) and hot rolled sheet → Hot rolled sheet annealing (830 ° C x 9 hours soaking)
r) → intermediate cold rolling → intermediate annealing → finish cold rolling → finish annealing (manufacturing method of twice cold rolling annealing).
【0036】上記方法により得られた鋼板を供試材とし
て、下記の方法でr、Δrおよび耐リジング性を測定し
た。r値 :JIS13B号試験片を用い15%の引張歪みを
与えた後、rL、rDおよびrTを求めた。rL、rDおよ
びrTは、それぞれ圧延方向、圧延方向に対して45°
方向および圧延方向に対して90°方向のr値を示す。
上記の方法で求めたr値から、rおよびΔrはr=(r
L+2rD+rT)/4、Δr=(rL−2rD+rT)/2
により求めた。Using the steel sheet obtained by the above method as a test material, r, Δr and ridging resistance were measured by the following methods. r value : After applying a 15% tensile strain using a JIS No. 13B test piece, r L , r D and r T were determined. r L , r D and r T are 45 ° with respect to the rolling direction and the rolling direction, respectively.
The r value in the direction at 90 ° to the direction and the rolling direction is shown.
From the r value obtained by the above method, r and Δr are r = (r
L + 2r D + r T) / 4, Δr = (r L -2r D + r T) / 2
Determined by
【0037】耐リジング性:圧延方向から採取したJI
S5号試験片に20%の引張歪みを与えた後、耐リジン
グ性の判定を行った。耐リジング性の判定は、Aが最も
耐リジング性が良いもの、Dが最も耐リジング性が悪い
ものとし、A、B、C、Dの4段階評価を行った。 Ridging resistance : JI sampled from the rolling direction
After giving 20% tensile strain to the S5 test piece, ridging resistance was determined. The determination of ridging resistance was made on the basis of A, B, C, and D, with A having the best ridging resistance and D having the worst ridging resistance.
【0038】プレス加工テスト:ポンチの寸法が200
mm×270mm、絞り深さが100mm、ダイ肩半径
が10mmの角筒絞りを行い、成形できたものは○、割
れが生じたものは×と判定した。結晶方位分布測定 :EBSP法により板厚1/2深さに
おける圧延面について、圧延方向;500μm、幅方
向;800μmの範囲にわたって測定した。 Press working test : punch size is 200
A rectangular tube having a size of 270 mm x 270 mm, a drawing depth of 100 mm, and a die shoulder radius of 10 mm was drawn. Measurement of crystal orientation distribution : The EBSP method was used to measure the rolled surface at a plate thickness of 深 depth over a range of 500 μm in the rolling direction and 800 μm in the width direction.
【0039】上記した各化学組成の鋼の各製造方法およ
び各製造条件で得られた特性値を表4に合わせて示す。
また、各鋼板の結晶粒界のうち、隣接する結晶粒の方向
のずれが15°以上である大角粒界の割合および({1
11}面からのずれが5°以内の結晶粒の面積)/
({100}面からのずれが5°以内の結晶粒の面積)
の値とプレス加工テスト結果の関係を図1に示す。本発
明の請求項に記載された要件を満たすものはすべてプレ
ス加工テストにおいても、割れ等の不具合は生じず、良
好であった。しかしながら、複相化焼鈍温度がAc1点
温度より低いもの、中間圧延率が10%に満たないもの
では、プレス加工時に割れが発生した。Table 4 also shows the characteristic values obtained under each of the above-described methods for producing steel having each chemical composition and each of the production conditions.
Further, among the grain boundaries of each steel sheet, the ratio of large-angle grain boundaries in which the direction shift of adjacent crystal grains is 15 ° or more and (お よ び 1
(Area of crystal grains whose deviation from 11 ° plane is within 5 °) /
(Area of crystal grains within 5 ° deviation from {100} plane)
FIG. 1 shows the relationship between the value of and the result of the press working test. All of those satisfying the requirements described in the claims of the present invention were satisfactory without any problems such as cracks even in the press working test. However, when the dual-phase annealing temperature was lower than the Ac 1 point temperature and the intermediate rolling reduction was less than 10%, cracks occurred during press working.
【0040】 [0040]
【0041】[0041]
【発明の効果】以上に説明したように、本発明によれ
ば、製鋼コストの増大や熱延鋼帯の生産性低下を招くこ
となく、シンク、各種器物およびコンロ用バーナー等の
家庭用機器の部品、燃料タンク、給油管、モーターケー
ス、カバーおよびフランジ等の産業用機器の部品におい
て、主にプレス加工に供される深絞り性および耐リジン
グ性に優れたフェライト系ステンレス鋼板が製造でき
る。As described above, according to the present invention, it is possible to increase the cost of steelmaking and reduce the productivity of hot-rolled steel strips without causing the loss of household appliances such as sinks, various appliances and burners for stoves. For parts of industrial equipment such as parts, fuel tanks, oil supply pipes, motor cases, covers, and flanges, it is possible to produce ferritic stainless steel sheets excellent in deep drawability and ridging resistance that are mainly used for press working.
【図1】 各鋼板の結晶粒界のうち、隣接する結晶粒の
方向のずれが15°以上である大角粒界の割合および
({111}面からのずれが5°以内の結晶粒の面積)
/({100}面からのずれが5°以内の結晶粒の面
積)の値とプレス加工性の関係を示す図(実施例、比較
例、従来例を含む)。FIG. 1 shows the ratio of large-angle grain boundaries in which the direction of adjacent crystal grains in a grain boundary of each steel sheet has a deviation of 15 ° or more and the area of crystal grains in which the deviation from the {111} plane is within 5 °. )
FIG. 6 is a diagram showing the relationship between the value of / (area of crystal grains whose deviation from {100} plane is within 5 °) and press workability (including examples, comparative examples, and conventional examples).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 國武 保利 山口県新南陽市野村南町4976番地 日新製 鋼株式会社ステンレス事業本部内 Fターム(参考) 4K037 EA01 EA02 EA04 EA05 EA12 EA13 EA15 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EB06 EB07 EB08 EB09 FF03 FG03 FH03 FM01 FM04 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasutoshi Kunitake 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Prefecture F-term (reference) 4N037 EA01 EA02 EA04 EA05 EA12 EA13 EA15 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EB06 EB07 EB08 EB09 FF03 FG03 FH03 FM01 FM04
Claims (3)
1.5%以下、Mn:1.0%以下、P:0.050%
以下、S:0.015%以下、Ni:2.0%以下、C
r:10.0〜20.0%、Al:0.10%以下、
N:0.05%以下を含有し、残部がFeおよび不可避
的な不純物からなり、かつ式(1)で定義されるγma
xが20以上80未満であり、さらに、板厚の1/2深
さにおける圧延面の結晶粒界のうち隣接する結晶粒の方
位のずれが15°以上である大角粒界の割合が90%以
上であり、さらにまた、式(2)を満足することを特徴
とする耐リジング性および深絞り性に優れたフェライト
系ステンレス鋼板。 式(1) γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-52Al+470N+189 式(2) X/Y≧5 ただし、Xは板厚の1/2深さにおける圧延面の{11
1}面からのずれが5゜以内の結晶粒の面積で、Yは板
厚の1/2深さにおける圧延面の{100}面からのず
れが5°以内の結晶粒の面積。C. 0.10% or less by mass%, Si:
1.5% or less, Mn: 1.0% or less, P: 0.050%
Hereinafter, S: 0.015% or less, Ni: 2.0% or less, C
r: 10.0 to 20.0%, Al: 0.10% or less,
N: 0.05% or less, the balance being Fe and unavoidable impurities, and γma defined by the formula (1).
x is 20 or more and less than 80, and the ratio of the large-angle grain boundaries in which the deviation of the orientation of adjacent crystal grains is 15 ° or more among the grain boundaries on the rolled surface at a half depth of the sheet thickness is 90%. A ferritic stainless steel sheet excellent in ridging resistance and deep drawability, characterized by satisfying the expression (2). Equation (1) γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-52Al + 470N + 189 Equation (2) X / Y ≧ 5, where X is {11 of the rolled surface at half the plate thickness.
Y is the area of the crystal grains whose deviation from the {1} plane is within 5 °, and Y is the area of the crystal grains whose deviation from the {100} plane of the rolling plane at a half depth of the plate thickness is within 5 °.
1.5%以下、Mn:1.0%以下、P:0.050%
以下、S:0.015%以下、Ni:2.0%以下、C
r:10.0〜20.0%、Al:0.10%以下、
N:0.05%以下を含有し、さらに、Ti:0.05
%以下、Nb:0.05%以下、Mo:1.0%以下、
Cu:1.0%以下、B:0.0010〜0.0100
%の1種または2種以上を含み、残部がFeおよび不可
避的な不純物からなり、かつ式(3)で定義されるγm
axが20以上80未満であり、さらに、板厚の1/2
深さの圧延面における結晶粒界のうち隣接する結晶粒の
方位のずれが15°以上である大角粒界の割合が90%
以上であり、さらにまた、式(4)を満足することを特
徴とする耐リジング性および深絞り性に優れたフェライ
ト系ステンレス鋼板。 式(3) γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-5
0Nb-52Al+470N+189 式(4) X/Y≧5 ただし、Xは板厚の1/2深さにおける圧延面の{11
1}面からのずれが5゜以内の結晶粒の面積で、Yは板
厚の1/2深さにおける圧延面の{100}面からのず
れが5°以内の結晶粒の面積。2. In mass%, C: 0.10% or less, Si:
1.5% or less, Mn: 1.0% or less, P: 0.050%
Hereinafter, S: 0.015% or less, Ni: 2.0% or less, C
r: 10.0 to 20.0%, Al: 0.10% or less,
N: 0.05% or less, and further, Ti: 0.05%
%, Nb: 0.05% or less, Mo: 1.0% or less,
Cu: 1.0% or less, B: 0.0010 to 0.0100
% Or more, and the balance consists of Fe and unavoidable impurities, and γm defined by the formula (3).
ax is not less than 20 and less than 80, and is 1 / of the plate thickness.
90% of the large-angle grain boundaries in which the misorientation of adjacent crystal grains is 15 ° or more in the grain boundaries on the rolled surface having a depth of 90%
A ferritic stainless steel sheet excellent in ridging resistance and deep drawability, characterized by satisfying the formula (4). Formula (3) γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-5
0Nb-52Al + 470N + 189 Formula (4) X / Y ≧ 5 where X is {11 of the rolled surface at half the plate thickness.
Y is the area of the crystal grains whose deviation from the 1} plane is within 5 °, and Y is the area of the crystal grains whose deviation from the {100} plane of the rolling plane at a half depth of the plate thickness is within 5 °.
ステンレス鋼を製造するにあたり、それぞれの項に記載
された成分からなる鋼スラブを、熱間圧延を経て熱延鋼
帯となし、冷間圧延と焼鈍を組み合わせて冷延鋼板また
は鋼帯を製造する際に、熱延鋼帯をAc1点以上110
0℃以下のフェライト+オーステナイトの2相領域に加
熱する複相化焼鈍を連続焼鈍炉によって行った後、さら
に圧延率10%以上50%以下の中間冷間圧延を行い、
その後、箱型炉による焼鈍を施し、仕上げ冷間圧延と再
結晶焼鈍を行なうことを特徴とする耐リジング性および
深絞り性に優れたフェライト系ステンレス鋼板の製造方
法。3. In producing the ferritic stainless steel according to claim 1 or 2, a steel slab composed of the components described in each item is formed into a hot-rolled steel strip through hot rolling. When a cold-rolled steel sheet or steel strip is manufactured by combining rolling and annealing, the hot-rolled steel strip is made of one or more points of Ac.
After performing the dual-phase annealing of heating to the two-phase region of ferrite + austenite of 0 ° C or less by a continuous annealing furnace, further performing intermediate cold rolling at a rolling reduction of 10% or more and 50% or less,
Thereafter, a method of producing a ferritic stainless steel sheet having excellent ridging resistance and deep drawability, wherein annealing is performed in a box furnace, and finish cold rolling and recrystallization annealing are performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001079762A JP4428550B2 (en) | 2001-03-21 | 2001-03-21 | Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001079762A JP4428550B2 (en) | 2001-03-21 | 2001-03-21 | Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002275595A true JP2002275595A (en) | 2002-09-25 |
JP4428550B2 JP4428550B2 (en) | 2010-03-10 |
Family
ID=18936148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001079762A Expired - Lifetime JP4428550B2 (en) | 2001-03-21 | 2001-03-21 | Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4428550B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275596A (en) * | 2001-03-21 | 2002-09-25 | Nisshin Steel Co Ltd | Fe-Cr BASED STEEL SHEET HAVING EXCELLENT RIDGING RESISTANCE AND PRODUCTION METHOD THEREFOR |
KR101279052B1 (en) | 2009-12-23 | 2013-07-02 | 주식회사 포스코 | Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof |
KR101279051B1 (en) | 2009-12-28 | 2013-07-02 | 주식회사 포스코 | Ferritic stainless steel and method for manufacturing the same |
KR101316907B1 (en) | 2009-12-28 | 2013-10-11 | 주식회사 포스코 | Ferritic stainless steel and method for manufacturing the same |
WO2017098983A1 (en) * | 2015-12-11 | 2017-06-15 | 新日鐵住金株式会社 | Molded product manufacturing method and molded product |
CN109563576A (en) * | 2016-05-16 | 2019-04-02 | 日新制钢株式会社 | Gas exhaust tube flange component ferrite series stainless steel plate containing Ti and manufacturing method and flange components |
EP3594372A4 (en) * | 2017-04-25 | 2020-01-22 | JFE Steel Corporation | Material for cold-rolled stainless steel sheet, and production method therefor |
JP2020084210A (en) * | 2018-11-16 | 2020-06-04 | 日鉄ステンレス株式会社 | Bar-shaped steel material |
KR20220068743A (en) * | 2020-11-19 | 2022-05-26 | 주식회사 포스코 | Ferritic stainless steel with improved strength, workability and corrosion resistance |
CN115917029A (en) * | 2020-10-23 | 2023-04-04 | 日铁不锈钢株式会社 | Ferritic stainless steel and method for producing ferritic stainless steel |
KR20240059624A (en) | 2022-01-11 | 2024-05-07 | 닛테츠 스테인레스 가부시키가이샤 | Ferritic stainless steel sheet for clad plate, manufacturing method thereof, and clad plate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102020399B1 (en) | 2017-12-08 | 2019-09-10 | 주식회사 포스코 | High-strength ferritic stainless steel and method for manufacturing thereof |
EP4261309A1 (en) * | 2022-04-13 | 2023-10-18 | ThyssenKrupp Steel Europe AG | Cold-rolled steel sheet product and method for producing a cold-rolled steel sheet product |
-
2001
- 2001-03-21 JP JP2001079762A patent/JP4428550B2/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275596A (en) * | 2001-03-21 | 2002-09-25 | Nisshin Steel Co Ltd | Fe-Cr BASED STEEL SHEET HAVING EXCELLENT RIDGING RESISTANCE AND PRODUCTION METHOD THEREFOR |
JP4545335B2 (en) * | 2001-03-21 | 2010-09-15 | 日新製鋼株式会社 | Fe-Cr steel sheet having excellent ridging resistance and method for producing the same |
KR101279052B1 (en) | 2009-12-23 | 2013-07-02 | 주식회사 포스코 | Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof |
KR101279051B1 (en) | 2009-12-28 | 2013-07-02 | 주식회사 포스코 | Ferritic stainless steel and method for manufacturing the same |
KR101316907B1 (en) | 2009-12-28 | 2013-10-11 | 주식회사 포스코 | Ferritic stainless steel and method for manufacturing the same |
US10603706B2 (en) | 2015-12-11 | 2020-03-31 | Nippon Steel Corporation | Method of producing molded product and molded product |
CN108368562B (en) * | 2015-12-11 | 2021-07-20 | 日本制铁株式会社 | Method for producing molded article and molded article |
CN108368562A (en) * | 2015-12-11 | 2018-08-03 | 新日铁住金株式会社 | The manufacturing method and formed products of formed products |
JP6156613B1 (en) * | 2015-12-11 | 2017-07-05 | 新日鐵住金株式会社 | Manufacturing method of molded product and molded product |
WO2017098983A1 (en) * | 2015-12-11 | 2017-06-15 | 新日鐵住金株式会社 | Molded product manufacturing method and molded product |
US11161163B2 (en) | 2015-12-11 | 2021-11-02 | Nippon Steel Corporation | Method of producing molded product and molded product |
CN109563576A (en) * | 2016-05-16 | 2019-04-02 | 日新制钢株式会社 | Gas exhaust tube flange component ferrite series stainless steel plate containing Ti and manufacturing method and flange components |
EP3594372A4 (en) * | 2017-04-25 | 2020-01-22 | JFE Steel Corporation | Material for cold-rolled stainless steel sheet, and production method therefor |
JP2020084210A (en) * | 2018-11-16 | 2020-06-04 | 日鉄ステンレス株式会社 | Bar-shaped steel material |
JP7320936B2 (en) | 2018-11-16 | 2023-08-04 | 日鉄ステンレス株式会社 | bar steel |
CN115917029A (en) * | 2020-10-23 | 2023-04-04 | 日铁不锈钢株式会社 | Ferritic stainless steel and method for producing ferritic stainless steel |
KR20220068743A (en) * | 2020-11-19 | 2022-05-26 | 주식회사 포스코 | Ferritic stainless steel with improved strength, workability and corrosion resistance |
WO2022108058A1 (en) * | 2020-11-19 | 2022-05-27 | 주식회사 포스코 | Ferritic stainless steel with improved strength, workability, and corrosion resistance |
KR102424980B1 (en) | 2020-11-19 | 2022-07-25 | 주식회사 포스코 | Ferritic stainless steel with improved strength, workability and corrosion resistance |
KR20240059624A (en) | 2022-01-11 | 2024-05-07 | 닛테츠 스테인레스 가부시키가이샤 | Ferritic stainless steel sheet for clad plate, manufacturing method thereof, and clad plate |
Also Published As
Publication number | Publication date |
---|---|
JP4428550B2 (en) | 2010-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6458221B1 (en) | Ferritic stainless steel plate | |
KR100263365B1 (en) | Ferritic stainless steel sheet having less planar anisotropy and excellent anti ridging characteristics and process for producing same | |
JP5904310B1 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP5958669B1 (en) | High strength steel plate and manufacturing method thereof | |
JPWO2015105046A1 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP4428550B2 (en) | Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same | |
JP4065579B2 (en) | Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same | |
JP6306353B2 (en) | Method for producing slab for ferritic stainless steel cold rolled steel sheet and method for producing ferritic stainless steel cold rolled steel sheet | |
JP6411881B2 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP3578435B2 (en) | Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same | |
WO2009066868A1 (en) | Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same | |
KR20150038601A (en) | Easily worked ferrite stainless-steel sheet | |
KR20180027689A (en) | Method of manufacturing ferritic stainless steel having excellent formability and ridging properties | |
JP2020111792A (en) | Ferritic stainless steel sheet, and manufacturing method thereof | |
JP2003155543A (en) | Ferrite stainless steel having excellent deep drawability and reduced plane anisotropy, and production method therefor | |
JP2001271143A (en) | Ferritic stainless steel excellent in ridging resistance and its production method | |
JP2003213376A (en) | Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JP3290598B2 (en) | Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same | |
JP3455047B2 (en) | Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same | |
JP5921352B2 (en) | Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same | |
JP3456365B2 (en) | High gloss stainless steel sheet excellent in ridging resistance and workability and method for producing the same | |
JP2018538441A (en) | High-strength cold-rolled steel sheet excellent in shear workability and manufacturing method thereof | |
JP2001089814A (en) | Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
KR101938588B1 (en) | Manufacturing method of ferritic stainless steel having excellent ridging property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4428550 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |