JP2002275478A - Method for coal liquefaction - Google Patents

Method for coal liquefaction

Info

Publication number
JP2002275478A
JP2002275478A JP2001076749A JP2001076749A JP2002275478A JP 2002275478 A JP2002275478 A JP 2002275478A JP 2001076749 A JP2001076749 A JP 2001076749A JP 2001076749 A JP2001076749 A JP 2001076749A JP 2002275478 A JP2002275478 A JP 2002275478A
Authority
JP
Japan
Prior art keywords
coal
pressure
water
liquefaction
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001076749A
Other languages
Japanese (ja)
Inventor
Shigeo Nagaya
重夫 長屋
Seiji Furumura
清司 古村
Susumu Hirai
進 平井
Hiroaki Morita
広昭 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
SWCC Corp
Original Assignee
Chubu Electric Power Co Inc
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Showa Electric Wire and Cable Co filed Critical Chubu Electric Power Co Inc
Priority to JP2001076749A priority Critical patent/JP2002275478A/en
Publication of JP2002275478A publication Critical patent/JP2002275478A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the liquefaction ratio of coal by supercritical water. SOLUTION: Coal 27 and an impact body 23 are thrown into an inner vessel 21 of a pressure reactor 1 and the coal is brought into contact with supercritical water or subcritical water, reacted and liquefied while being crushed by the impact body 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界水技術を利
用して石炭を液化する方法に関する。
[0001] The present invention relates to a method for liquefying coal using supercritical water technology.

【0002】[0002]

【従来の技術】従来より、超臨界水技術を利用して石炭
を液化する方法として、微粉化した石炭と水とギ酸を混
合してスラリーを調製し、このスラリーを超臨界状態に
維持してギ酸を分解させ、この分解反応によって生じた
活性水素を石炭と反応させて軽質化し液化するなど、様
々な方法が報告されている(特開平10-237456号公報な
ど)。
2. Description of the Related Art Conventionally, as a method of liquefying coal using supercritical water technology, a slurry is prepared by mixing finely divided coal, water and formic acid, and the slurry is maintained in a supercritical state. Various methods have been reported, for example, in which formic acid is decomposed and active hydrogen generated by this decomposition reaction is reacted with coal to lighten and liquefy (for example, Japanese Patent Application Laid-Open No. 10-237456).

【0003】しかしながら、いずれも液化率が低く未だ
実用化されるまでには至っていない。このため、触媒な
どを利用することも検討されているが、液化率を大きく
向上させることができないでいる。
[0003] However, the liquefaction rate of each of them is low, and they have not yet been put to practical use. For this reason, the use of a catalyst or the like has been studied, but the liquefaction rate cannot be significantly improved.

【0004】[0004]

【発明が解決しようとする課題】ところで、超臨界水技
術を利用した石炭の液化技術において、石炭の液化率が
低い原因の一つとしては、超臨界水処理中に石炭の表面
が不活性化していくために、分解されずに残渣として残
るものが少なくないことが挙げられる。したがって、こ
のような超臨界水中での石炭表面の不活性化を防止する
ことができれば、分解・液化反応が促進されて液化率を
向上させることができると考えられる。
In the liquefaction technology of coal utilizing supercritical water technology, one of the causes of the low liquefaction rate of coal is that the surface of the coal becomes inactive during supercritical water treatment. For this reason, there are not a few that remain as residues without being decomposed. Therefore, it is considered that if the inactivation of the coal surface in such supercritical water can be prevented, the decomposition / liquefaction reaction is promoted and the liquefaction rate can be improved.

【0005】本発明はこのような点に着目してなされた
もので、超臨界水処理で石炭表面が不活性化していくの
で、超臨界水中で活性な表面を作り出すことにより石炭
の液化率を向上させることができる石炭の液化方法を提
供することを目的とする。
The present invention has been made in view of such a point, and since the surface of the coal is deactivated by the supercritical water treatment, the liquefaction rate of the coal is reduced by creating an active surface in the supercritical water. An object of the present invention is to provide a coal liquefaction method that can be improved.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明の石炭の液化方法は、石炭を粉
砕しつつ、超臨界水または亜臨界水と接触、反応させて
液化することを特徴とする。
In order to achieve the above object, a method for liquefying coal according to the first aspect of the present invention comprises crushing coal while contacting and reacting with supercritical water or subcritical water. It is characterized by the following.

【0007】本発明においては、石炭を超臨界水または
亜臨界水と接触、反応させる際、石炭を粉砕しつつ反応
させる。このように粉砕することによって、石炭に次々
と活性な表面が現われ、超臨界水または亜臨界水と反応
する。このため、液化が促進され、液化率が向上する。
In the present invention, when contacting and reacting coal with supercritical water or subcritical water, the coal is reacted while being pulverized. By such pulverization, an active surface appears on the coal one after another, and reacts with supercritical water or subcritical water. Therefore, liquefaction is promoted, and the liquefaction rate is improved.

【0008】本発明においては、請求項2に記載したよ
うに、反応温度を200℃〜850℃とし、かつ、反応圧力を
2Mpa〜100Mpaとすることが好ましい。
In the present invention, as described in claim 2, the reaction temperature is 200 ° C. to 850 ° C., and the reaction pressure is
It is preferable that the pressure be 2 Mpa to 100 Mpa.

【0009】また、上記石炭としては、請求項3に記載
したように、亜炭、褐炭、歴青炭および無煙炭が例示さ
れる。
[0009] Examples of the above-mentioned coal include lignite, lignite, bituminous coal and anthracite.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0011】本発明において使用される超臨界水は、臨
界温度(374℃)および臨界圧力(22.1MPa)を超えた非
凝縮性高密度水である。本発明においては、超臨界水で
なく亜臨界水を用いてもよい。
The supercritical water used in the present invention is a non-condensable high-density water exceeding a critical temperature (374 ° C.) and a critical pressure (22.1 MPa). In the present invention, subcritical water may be used instead of supercritical water.

【0012】本発明においては、石炭を超臨界水または
亜臨界水と接触、反応させる際、石炭を粉砕しつつ反応
させる。その際の反応温度および反応圧力としては、そ
れぞれ200℃〜850℃および2MPa〜100Mpaの範囲で調整す
ることが好ましい。温度および圧力のいずれか一方でも
前記範囲より低いと、石炭の液化反応が効率よく進行せ
ず、液化率が低くなる。逆に温度および圧力のいずれか
一方でも前記範囲より高いと、装置にかかる負荷が大き
くなるだけでなく、粉砕手段として後述するような永久
磁石を用いた場合に、永久磁石が機能しなくなり粉砕で
きなくなって、液化率を向上させることが困難になる。
より好ましい範囲は、反応温度が300℃〜750℃、反応圧
力が5MPa〜80MPaの範囲であり、反応温度を300℃〜600
℃、反応圧力を10MPa〜60MPaの範囲とするとさらに好ま
しい。
In the present invention, when the coal is brought into contact with and reacted with supercritical water or subcritical water, the coal is reacted while being pulverized. The reaction temperature and reaction pressure at this time are preferably adjusted in the range of 200 ° C. to 850 ° C. and 2 MPa to 100 MPa, respectively. If any one of the temperature and the pressure is lower than the above ranges, the liquefaction of the coal does not proceed efficiently, and the liquefaction rate decreases. Conversely, if either one of the temperature and the pressure is higher than the above range, not only does the load on the apparatus increase, but also when a permanent magnet as described below is used as the crushing means, the permanent magnet does not function and crushing can be performed. And it becomes difficult to improve the liquefaction rate.
A more preferred range is a reaction temperature of 300 ° C to 750 ° C, a reaction pressure of 5 MPa to 80 MPa, and a reaction temperature of 300 ° C to 600 ° C.
C. and the reaction pressure are more preferably in the range of 10 MPa to 60 MPa.

【0013】本発明の実施にあたっては、例えば次のよ
うな装置を使用することができる。
In carrying out the present invention, for example, the following apparatus can be used.

【0014】すなわち、図1は、本発明に使用される石
炭の液化装置の一例を概略的に示す図、また、図2は、
その要部を拡大して示したものである。
That is, FIG. 1 schematically shows an example of a coal liquefaction apparatus used in the present invention, and FIG.
The main part is shown enlarged.

【0015】これらの図に示すように、この装置は、電
気炉1aを備えた耐圧反応容器1と、純水を収容した溶
媒タンク2と、この溶媒タンク2から純水を耐圧反応容
器1に送り込むためのポンプ3と、送り込まれる純水を
予熱するための予熱器4と、耐圧反応容器1から排出さ
れる気体成分を水冷する水冷管5と、水冷により凝縮さ
れた液体を回収するドレンタンク6と、これらの各機器
を接続する配管7とを備えている。また、予熱器4と耐
圧反応容器1とを接続する配管7には、ラインヒータ8
が付設されている。なお、図1中、9は、ポンプ3と耐
圧反応容器1とを接続する配管7に介挿された流量計、
10は、耐圧反応容器1内の温度を測定するための温度
測定用熱電対、11は、温度制御用熱電対、12は、耐
圧反応容器1と水冷器5との間に介挿された圧力計、1
3は、水冷管5とドレンタンク6との間に介挿された減
圧弁をそれぞれ示している。
As shown in these figures, this apparatus comprises a pressure-resistant reaction vessel 1 having an electric furnace 1a, a solvent tank 2 containing pure water, and pure water from the solvent tank 2 to the pressure-resistant reaction vessel 1. A pump 3 for feeding in, a preheater 4 for preheating the pure water to be fed in, a water cooling pipe 5 for water-cooling a gas component discharged from the pressure-resistant reaction vessel 1, and a drain tank for collecting a liquid condensed by water cooling 6 and a pipe 7 for connecting these devices. A line heater 8 is provided in a pipe 7 connecting the preheater 4 and the pressure-resistant reaction vessel 1.
Is attached. In FIG. 1, reference numeral 9 denotes a flow meter inserted into a pipe 7 connecting the pump 3 and the pressure-resistant reaction vessel 1,
Reference numeral 10 denotes a thermocouple for measuring temperature in the pressure-resistant reaction vessel 1, 11 denotes a thermocouple for temperature control, and 12 denotes a pressure inserted between the pressure-resistant reaction vessel 1 and the water cooler 5. Total, 1
Reference numeral 3 denotes a pressure reducing valve interposed between the water cooling pipe 5 and the drain tank 6, respectively.

【0016】耐圧反応容器1は、図2に示すように、反
応容器本体20と、この反応容器本体20に内挿された
内容器21と、これらの上部開口を気密に封止する蓋体
22とを備えている。また、内容器21に投入された被
処理物を粉砕する粉砕機構として、内容器21内に収容
される、表面をステンレス鋼などで覆った永久磁石から
なる衝撃体23と、反応容器本体20の底部および蓋体
22の上部に配置され、衝撃体23を、電流の方向を変
えることによって上下動させるように構成された電磁コ
イル24、25を備えている。なお、26は、粉砕され
た被処理物の流出を防止するために配管7の開口に取り
付けられたフィルタである。
As shown in FIG. 2, the pressure-resistant reaction vessel 1 comprises a reaction vessel body 20, an inner container 21 inserted in the reaction vessel body 20, and a lid 22 for hermetically sealing the upper openings thereof. And Further, as a pulverizing mechanism for pulverizing the object to be treated put into the inner container 21, an impact body 23 made of a permanent magnet whose surface is covered with stainless steel or the like, which is accommodated in the inner container 21, Electromagnetic coils 24 and 25 are provided at the bottom and above the lid 22 and configured to move the impactor 23 up and down by changing the direction of the current. Reference numeral 26 denotes a filter attached to the opening of the pipe 7 to prevent the pulverized object from flowing out.

【0017】このような装置においては、まず、耐圧反
応容器1の内容器21内に石炭27および衝撃体23を
投入する。石炭27の形状は塊状、粉末状など、特に限
定されるものではない。次いで、溶媒タンク2から予熱
器4およびラインヒータ8により加熱された純水を連続
的に供給するとともに、耐圧反応容器1を加熱して、内
容器21内を前述したような温度および圧力範囲とし、
さらに、電磁コイル24、25への通電を開始する。内
容器21内に収容された石炭27は、衝撃体23によっ
て粉砕されつつ、超臨界状態または亜臨界状態の水と接
触し、効率良く分解される。この後、電磁コイル24、
25への通電を停止するとともに、内容器21内を常温
常圧に戻し、分解生成物を回収する。なお、分解生成物
の一部は、超臨界状態または亜臨界状態の水とともに配
管7を通じて耐圧反応容器1から排出され、水冷管5で
冷却され、常温常圧に戻され、ドレンタンク6に回収さ
れる。
In such an apparatus, first, coal 27 and impact body 23 are charged into inner container 21 of pressure-resistant reaction vessel 1. The shape of the coal 27 is not particularly limited, such as a lump or a powder. Next, the pure water heated by the preheater 4 and the line heater 8 is continuously supplied from the solvent tank 2 and the pressure-resistant reaction vessel 1 is heated to set the inside of the inner container 21 to the temperature and pressure range as described above. ,
Further, energization of the electromagnetic coils 24 and 25 is started. The coal 27 accommodated in the inner container 21 comes into contact with water in a supercritical state or a subcritical state while being pulverized by the impactor 23, and is efficiently decomposed. Thereafter, the electromagnetic coil 24,
While stopping the power supply to 25, the inside of the inner container 21 is returned to normal temperature and normal pressure, and the decomposition products are collected. A part of the decomposition product is discharged from the pressure-resistant reaction vessel 1 through the pipe 7 together with the water in the supercritical state or the subcritical state, cooled by the water cooling pipe 5, returned to normal temperature and normal pressure, and collected in the drain tank 6. Is done.

【0018】このような方法においては、粉砕によっ
て、石炭27に次々と活性な表面が現われて超臨界水ま
たは亜臨界水と反応するため、石炭27の分解が促進さ
れ、高い液化率で石炭を液化することができる。
In such a method, since active surfaces appear one after another on the coal 27 by pulverization and react with supercritical water or subcritical water, the decomposition of the coal 27 is promoted, and the coal is liquefied at a high liquefaction rate. Can be liquefied.

【0019】なお、本発明においては、圧反応容器1内
に石炭27および衝撃体23を投入した後、系内を一旦
純水で満たして内部の酸素を除去し、その後、加熱加圧
を開始するようにすることが望ましい。これによって、
石炭27表面の酸化などの分解反応以外の反応を抑制す
ることができ、液化率をより向上させることができる。
また、同様の観点から、分解に用いる水には、窒素ガス
によるバブリング処理を施すなどして、溶存する酸素を
除去したものを用いるようにすることが望ましい。
In the present invention, after charging the coal 27 and the impacting body 23 into the pressure reaction vessel 1, the inside of the system is once filled with pure water to remove the oxygen inside, and then the heating and pressurization is started. It is desirable to do so. by this,
Reactions other than the decomposition reaction such as oxidation of the surface of the coal 27 can be suppressed, and the liquefaction rate can be further improved.
In addition, from the same viewpoint, it is desirable to use water from which dissolved oxygen has been removed by performing bubbling treatment with nitrogen gas or the like as water used for decomposition.

【0020】本発明は、上述したようないわゆるセミバ
ッチ式の装置によらず、バッチ式や連続反応式の装置を
用いて行うこともできる。また、上記の例では、電磁コ
イルを利用した粉砕機構によって石炭を粉砕するように
しているが、超臨界水または亜臨界水中で粉砕を行なう
ことができるものであれば、特にこのようなものに限定
されるものではない。
The present invention can be carried out using a batch-type or continuous-reaction-type apparatus instead of the above-mentioned semi-batch-type apparatus. Further, in the above example, the coal is pulverized by a pulverizing mechanism using an electromagnetic coil. However, as long as pulverization can be performed in supercritical water or subcritical water, such a material is used. It is not limited.

【0021】本発明は、亜炭、褐炭、歴青炭、無煙炭な
どの各種石炭の液化に広く適用することができるが、水
素化されやすく揮発分を多く含み、液状物の生成量が多
い褐炭や歴青炭に適用した場合に特に有用である。
The present invention can be widely applied to the liquefaction of various types of coal such as lignite, lignite, bituminous coal, anthracite, etc. Particularly useful when applied to bituminous coal.

【0022】[0022]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は以下の実施例に限定されるものでは
ない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

【0023】実施例 図1に示す装置を用いて、石炭(褐炭)の液化実験を行
った。
EXAMPLE Using the apparatus shown in FIG. 1, a liquefaction experiment of coal (brown coal) was performed.

【0024】すなわち、耐圧反応容器1(内径20mm、高
さ100mm、容積約30cc)1内に、約5gの石炭塊状物と、
表面をステンレス鋼(SUS316)で被覆した永久磁石(フ
ェライト磁石)からなる衝撃体(直径10mm、長さ50mm)
23を投入した。次いで、系内を脱気した純水で満たし
た後、純水の流量を0.1ml/minに設定し、また、系内の
圧力を耐圧反応容器1出口部の圧力調整器(図示なし)
で40MPaに設定した。その後、約40分かけて反応容器1内
を390℃まで昇温した。反応容器1内の温度が390℃にな
った時点で、電磁コイル24、25に通電するととも
に、純水の流量を5ml/minに変更した。電磁コイル2
4、25の通電と同時に、衝撃体23の上下動が始ま
り、石炭塊状物の粉砕を開始した。そのまま5分間粉砕
を続けた後、電磁コイル24、25の通電を停止すると
ともに、純水の流量を0.1ml/minに戻し、約2時間かけて
冷却して常温常圧に戻し、耐圧反応容器1内の液状物お
よび反応時に系外に排出された液状物を回収した。
That is, in a pressure-resistant reaction vessel 1 (inner diameter: 20 mm, height: 100 mm, volume: about 30 cc), about 5 g of a lump of coal,
Impact body (diameter 10mm, length 50mm) made of permanent magnet (ferrite magnet) whose surface is coated with stainless steel (SUS316)
23 were introduced. Next, after the inside of the system is filled with degassed pure water, the flow rate of the pure water is set to 0.1 ml / min, and the pressure in the system is adjusted to a pressure regulator at the outlet of the pressure-resistant reaction vessel 1 (not shown).
Was set to 40MPa. Thereafter, the temperature inside the reaction vessel 1 was raised to 390 ° C. over about 40 minutes. When the temperature in the reaction vessel 1 reached 390 ° C., the electromagnetic coils 24 and 25 were energized, and the flow rate of pure water was changed to 5 ml / min. Electromagnetic coil 2
Simultaneously with the energization of 4, 25, the vertical movement of the impact body 23 started, and comminution of the lump of coal started. After continuing pulverization for 5 minutes, the energization of the electromagnetic coils 24 and 25 was stopped, the flow rate of pure water was returned to 0.1 ml / min, and cooling was performed over about 2 hours to return to normal temperature and normal pressure. The liquid in 1 and the liquid discharged out of the system during the reaction were recovered.

【0025】回収した液状物を100℃で5時間真空(10mm
Hg以下)乾燥させ、重量を測定して液化率を算出したと
ころ、約80%であった。
The collected liquid is evacuated at 100 ° C. for 5 hours (10 mm
(Hg or less)), dried, weighed and the liquefaction ratio was calculated to be about 80%.

【0026】比較例1 耐圧反応容器1内に投入する石炭として、予め粉砕して
おいた粉末状の石炭(平均粒径約0.1mm)を用いるとと
もに、衝撃体23を投入せず、かつ、電磁コイル24、
25への通電を行わないようにした以外は、上記実施例
と同様にして、石炭の液化処理を行い、耐圧反応容器1
内の液状物および反応時に系外に排出された液状物を回
収した。
COMPARATIVE EXAMPLE 1 As the coal to be charged into the pressure-resistant reaction vessel 1, powdered coal (average particle size: about 0.1 mm) which has been pulverized in advance is used. Coil 24,
The coal liquefaction process was performed in the same manner as in the above example except that the power was not supplied to
The liquid substance inside and the liquid substance discharged out of the system during the reaction were recovered.

【0027】回収した液状物を上記実施例と同様の条件
で真空乾燥させ、重量を測定して液化率を算出したとこ
ろ、約50%であった。
The collected liquid was dried under vacuum under the same conditions as in the above example, and the weight was measured to calculate the liquefaction. The result was about 50%.

【0028】比較例2 実施例と同様の石炭塊状物をそのまま耐圧反応容器1内
に投入するようにした以外は、比較例1と同様にして、
石炭の液化処理を行い、耐圧反応容器1内の液状物およ
び反応時に系外に排出された液状物を回収した。
Comparative Example 2 The procedure of Comparative Example 1 was repeated, except that the same lump of coal as in the example was directly charged into the pressure-resistant reactor 1.
The coal was liquefied, and the liquid in the pressure-resistant reactor 1 and the liquid discharged out of the system during the reaction were recovered.

【0029】回収した液状物を上記実施例と同様の条件
で真空乾燥させ、重量を測定して液化率を算出したとこ
ろ、約45%であった。
The collected liquid was dried under vacuum under the same conditions as in the above example, and the weight was measured to calculate the liquefaction. The result was about 45%.

【0030】比較例3 粉末状の石炭とともにギ酸約1gを耐圧反応容器1内に投
入するようにした以外は、比較例1と同様にして、石炭
の液化処理を行い、耐圧反応容器1内の液状物および反
応時に系外に排出された液状物を回収した。
Comparative Example 3 Coal liquefaction was performed in the same manner as in Comparative Example 1 except that about 1 g of formic acid was charged into the pressure-resistant reaction vessel 1 together with the powdered coal. The liquid and the liquid discharged out of the system during the reaction were recovered.

【0031】回収した液状物を上記実施例と同様の条件
で真空乾燥させ、重量を測定して液化率を算出したとこ
ろ、約55%であった。
The recovered liquid was dried under vacuum under the same conditions as in the above example, and the weight was measured to calculate the liquefaction. The result was about 55%.

【0032】比較例4 粉末状の石炭とともにCo-Mo酸化物系触媒(MoO2
およびCoOをアルミナに担持させたもの)約1gを耐圧
反応容器1内に投入するようにした以外は、比較例1と
同様にして、石炭の液化処理を行い、耐圧反応容器1内
の液状物および反応時に系外に排出された液状物を回収
した。
[0032] Comparative Example 4 powdery Co-Mo oxide based catalyst with coal (MoO 2
And CoO supported on alumina), and liquefaction of coal was performed in the same manner as in Comparative Example 1 except that about 1 g was charged into the pressure-resistant reaction vessel 1. In addition, the liquid discharged out of the system during the reaction was recovered.

【0033】回収した液状物を上記実施例と同様の条件
で真空乾燥させ、重量を測定して液化率を算出したとこ
ろ、約55%であった。
The recovered liquid was dried under vacuum under the same conditions as in the above example, and the weight was measured to calculate the liquefaction rate. The result was about 55%.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
超臨界水または亜臨界水中で石炭を粉砕しながら液化処
理するようにしたので、石炭の液化率を大きく向上させ
ることができる。
As described above, according to the present invention,
Since the liquefaction treatment is performed while pulverizing the coal in supercritical water or subcritical water, the liquefaction rate of the coal can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に使用される石炭の液化装置の一
例を概略的に示す図。
FIG. 1 is a diagram schematically showing an example of a coal liquefaction apparatus used for carrying out the present invention.

【図2】図1に示す装置の要部を拡大して示す断面図。FIG. 2 is an enlarged sectional view showing a main part of the apparatus shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1………耐圧反応容器 2………溶媒タンク 20………反応容器本体 21………内容器 22………蓋体 23………衝撃体 24、25………電磁コイル DESCRIPTION OF SYMBOLS 1 ... Pressure-resistant reaction container 2 ... Solvent tank 20 ... Reaction container main body 21 ... Inner container 22 ... Lid 23 ... Impact body 24, 25 ... Electromagnetic coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古村 清司 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 平井 進 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 森田 広昭 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Furumura 20-1 Kitakanyama, Odaka-cho, Midori-ku, Nagoya-shi, Aichi Prefecture Inside the Electric Power Research Laboratory, Chubu Electric Power Co., Inc. (72) Susumu Hirai, Susumu Hirai, Kawasaki, Kawasaki, Kanagawa Prefecture Inside Showa Electric Wire & Cable Co., Ltd. 2-1-1 Oda Sakae-ku (72) Inventor Hiroaki Morita Inside 1-1 Showa Electric Wire & Cable Co., Ltd. 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石炭を粉砕しつつ、超臨界水または亜臨
界水と接触、反応させて液化することを特徴とする石炭
の液化方法。
1. A method of liquefying coal, comprising crushing coal and contacting and reacting with supercritical water or subcritical water to liquefy the coal.
【請求項2】 反応温度を200℃〜850℃とし、かつ、反
応圧力を2Mpa〜100Mpaとすることを特徴とする請求項1
記載の石炭の液化方法。
2. The method according to claim 1, wherein the reaction temperature is 200 ° C. to 850 ° C. and the reaction pressure is 2 Mpa to 100 Mpa.
A liquefaction method for coal as described in the above.
【請求項3】 石炭が、亜炭、褐炭、歴青炭および無煙
炭の群から選択される少なくとも1種であることを特徴
とする請求項1または2記載の石炭の液化方法。
3. The method according to claim 1, wherein the coal is at least one selected from the group consisting of lignite, lignite, bituminous coal and anthracite.
JP2001076749A 2001-03-16 2001-03-16 Method for coal liquefaction Withdrawn JP2002275478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076749A JP2002275478A (en) 2001-03-16 2001-03-16 Method for coal liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076749A JP2002275478A (en) 2001-03-16 2001-03-16 Method for coal liquefaction

Publications (1)

Publication Number Publication Date
JP2002275478A true JP2002275478A (en) 2002-09-25

Family

ID=18933633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076749A Withdrawn JP2002275478A (en) 2001-03-16 2001-03-16 Method for coal liquefaction

Country Status (1)

Country Link
JP (1) JP2002275478A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292979C (en) * 2005-01-17 2007-01-03 西安交通大学 Coal-biomass co-overcritical water catalysis-gasification hydrogen production plant and method
WO2010012026A1 (en) * 2008-07-28 2010-02-04 Forbes Oil And Gas Pty Ltd Apparatus for liquefaction of carbonaceous material
WO2014088194A1 (en) * 2012-12-07 2014-06-12 한국지질자원연구원 System for measuring amount of residual coal bed methane
KR20200101843A (en) * 2019-02-19 2020-08-28 이상옥 Method for gasification of solid fuel using mechanical and plasma action and device
JP2021036012A (en) * 2019-08-30 2021-03-04 出光興産株式会社 Production method of pitch

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292979C (en) * 2005-01-17 2007-01-03 西安交通大学 Coal-biomass co-overcritical water catalysis-gasification hydrogen production plant and method
WO2010012026A1 (en) * 2008-07-28 2010-02-04 Forbes Oil And Gas Pty Ltd Apparatus for liquefaction of carbonaceous material
WO2010012027A1 (en) * 2008-07-28 2010-02-04 Forbes Oil And Gas Pty Ltd Method of liquefaction of carbonaceous material to liquid hydrocarbon
CN102165036A (en) * 2008-07-28 2011-08-24 福布斯油气私人有限公司 Method of liquefaction of carbonaceous material to liquid hydrocarbon
JP2011529127A (en) * 2008-07-28 2011-12-01 フォーブス オイル アンド ガス プロプライエタリー リミテッド Equipment for liquefaction of carbonaceous materials
US8727000B2 (en) 2008-07-28 2014-05-20 Forbes Oil And Gas Pty. Ltd. Method of liquefaction of carbonaceous material to liquid hydrocarbon
CN102165036B (en) * 2008-07-28 2015-05-20 福布斯油气私人有限公司 Method of liquefaction of carbonaceous material to liquid hydrocarbon
WO2014088194A1 (en) * 2012-12-07 2014-06-12 한국지질자원연구원 System for measuring amount of residual coal bed methane
KR20200101843A (en) * 2019-02-19 2020-08-28 이상옥 Method for gasification of solid fuel using mechanical and plasma action and device
KR102233238B1 (en) 2019-02-19 2021-03-29 이상옥 Method for gasification of solid fuel using mechanical and plasma action and device
JP2021036012A (en) * 2019-08-30 2021-03-04 出光興産株式会社 Production method of pitch
JP7304575B2 (en) 2019-08-30 2023-07-07 出光興産株式会社 Pitch manufacturing method

Similar Documents

Publication Publication Date Title
JPH04265201A (en) Method for producing activated magnesium hydride-magnesium-hydrogen storing system for absorbing hydrogen reversibly
KR20040084742A (en) Hydrogen production method and apparatus and engine employing hydrogen production apparatus
JP2002275478A (en) Method for coal liquefaction
CN107604160A (en) A kind of handling process of high-carbon difficult-treating gold mine
JPS6140596A (en) Batch type processing method of radioactive organic waste
AU734238B2 (en) Extraction of valuable metal by acid cyanide leach
CN109012660B (en) Catalyst for removing oxygen in hydrogen and preparation method and application thereof
US3421842A (en) Process for producing effervescent perborate compounds
US1251202A (en) Catalyzer-concentrate and process of making same.
CN105793193A (en) Process for deoxidizing silicon
Finlayson et al. The Peace River process for the production of iron powder
US20210025025A1 (en) Rare earth extraction apparatus and method of use thereof
KR950009442B1 (en) Method of titanium powder from titanium sponge
JPS5765779A (en) Conversion solvent-refined coal into liquid material
JPS5945901A (en) Method and apparatus for releasing hydrogen from hydrogen-occluding substance
JPS6135802A (en) Extraction of organic substance
CN114275784B (en) CO utilization 2 System and method for preparing CO gas
JPS63242934A (en) Recovery of ruthenium from radioactive waste
JPS58194742A (en) Denitration of uranium
JP2933482B2 (en) Coal liquefaction method and apparatus
JP2874291B2 (en) Method for treating massive particles generated by fluidized bed denitration
JPH09100105A (en) Production of superfine metal oxide particle
JP2007112672A (en) Apparatus and method for producing hydrogen
WO2021097363A1 (en) Production of high purity particulate silicon carbide by hydrocarbon pyrolysis
JPS63289496A (en) Fluidizing bed system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060616

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603