JP2002261373A - Package for storing optical semiconductor element and optical semiconductor device - Google Patents

Package for storing optical semiconductor element and optical semiconductor device

Info

Publication number
JP2002261373A
JP2002261373A JP2001053280A JP2001053280A JP2002261373A JP 2002261373 A JP2002261373 A JP 2002261373A JP 2001053280 A JP2001053280 A JP 2001053280A JP 2001053280 A JP2001053280 A JP 2001053280A JP 2002261373 A JP2002261373 A JP 2002261373A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
layer
base
mounting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001053280A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kawabata
和弘 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001053280A priority Critical patent/JP2002261373A/en
Publication of JP2002261373A publication Critical patent/JP2002261373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To dissipate heat generated from an optical semiconductor element efficiently to the outside and to secure an optical semiconductor package rigidly to an external electric circuit board by means of screws. SOLUTION: A substantially square base 1 has a part 1a, for mounting an optical semiconductor element 2 on the upper surface, and screw fixing parts 1b, in the form of a through hole or a cut, on the opposite side. On the upper and lower surfaces of a base material 1c, which is composed of a metal carbon complex comprising unilateral carbon fibers 1c-A impregnated with copper and/or silver 1c-B and is arrange in the thickness direction, a metal layer 1d comprising an adhesive layer 1d-A of chromium-iron alloy, an intermediate layer 1d-B of copper and a surface layer 1d-C of molybdenum is formed sequentially from the base material 1c side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信分野に用い
られる半導体レーザ(LD),フォトダイオード(P
D)等の光半導体素子を収納する光半導体素子収納用パ
ッケージおよび光半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser (LD) and a photodiode (P) used in the optical communication field.
The present invention relates to an optical semiconductor element housing package for housing an optical semiconductor element such as D) and an optical semiconductor device.

【0002】[0002]

【従来の技術】従来の光通信分野に用いられる光半導体
素子収納用パッケージ(以下、光半導体パッケージとい
う)について、その一例を図3,図4に、それぞれ斜視
図,部分拡大断面図を示す。この光半導体パッケージ
は、上面に光半導体素子12が載置される載置部11a
を有するとともに、対向する辺部に貫通穴または切欠き
から成るネジ取付部11bを有し、光半導体素子12を
支持する支持部材および外部電気回路基板(図示せず)
に固定される固定部材として機能する略四角形の基体1
1を有する。また、一側部に貫通孔または切欠き部から
成る入出力端子14の取付部13bを有し、他の側部に
光信号の経路となる貫通孔13aを有するとともに、載
置部11aを囲繞するように取着された枠体13と、取
付部13bに嵌着された入出力端子14とを具備する。
2. Description of the Related Art FIGS. 3 and 4 are perspective views and partial enlarged cross-sectional views, respectively, showing an example of a conventional package for housing an optical semiconductor element (hereinafter referred to as an optical semiconductor package) used in the field of optical communication. This optical semiconductor package includes a mounting portion 11a on which an optical semiconductor element 12 is mounted.
And a supporting member for supporting the optical semiconductor element 12 and an external electric circuit board (not shown) having a screw mounting portion 11b formed of a through hole or a notch on the opposite side.
Substrate 1 that functions as a fixing member fixed to the base
One. Further, one side has a mounting portion 13b of the input / output terminal 14 formed of a through hole or a cutout portion, and the other side has a through hole 13a serving as an optical signal path and surrounds the mounting portion 11a. And an input / output terminal 14 fitted to the mounting portion 13b.

【0003】なお、基体11は一方向性炭素繊維11c
−Aを炭素11c−Bで結合した一方向性複合材料11
cの上下面に、例えば、第1層としてクロム(Cr)−
鉄(Fe)合金層11d−A、第2層として銅(Cu)
層11d−B、第3層としてモリブデン(Mo)層11
d−Cが順次積層して成る3層構造を有する金属層11
dが被着されている。そして、光半導体素子12の作動
時に発する熱を効率良く外部電気回路基板に伝える、所
謂放熱板として機能する。
The substrate 11 is made of unidirectional carbon fiber 11c.
-A composite material 11 in which -A is bonded by carbon 11c-B
c, for example, as the first layer, chromium (Cr)-
Iron (Fe) alloy layer 11d-A, copper (Cu) as second layer
Layer 11d-B, Molybdenum (Mo) Layer 11 as Third Layer
Metal layer 11 having a three-layer structure in which dC is sequentially laminated
d is applied. Then, it functions as a so-called heat sink, which efficiently transmits heat generated when the optical semiconductor element 12 operates to the external electric circuit board.

【0004】具体的には、この基体11は、一方向性炭
素繊維11c−Aが上面側から下面側に向かって配列し
ており、金属層11dの被着が無い場合、光半導体素子
12の接合面(載置面)に平行な方向、即ち一方向性炭
素繊維11c−Aの配列方向に垂直な方向の熱膨張係数
は約7ppm/℃(×10-6/℃)である。これに金属
層11dを被着しても、一方向性炭素繊維11c−Aの
配列方向に垂直な方向の弾性率が10GPa以下と非常
に低いため、一方向性炭素繊維11c−Aの熱膨張係数
に近似することとなる。また、一方向性炭素繊維11c
−Aの熱伝導率は、光半導体素子12の接合面に平行な
方向、即ち一方向性炭素繊維11c−Aの配列方向に垂
直な方向で30W/m・K以下であるが、一方向性炭素
繊維11c−Aの配列方向で300W/m・K以上と大
きくなっている。
[0004] Specifically, the substrate 11 has unidirectional carbon fibers 11c-A arranged from the upper surface to the lower surface, and when the metal layer 11d is not adhered, the optical semiconductor element 12 has The coefficient of thermal expansion in the direction parallel to the bonding surface (mounting surface), that is, the direction perpendicular to the arrangement direction of the unidirectional carbon fibers 11c-A is about 7 ppm / ° C. (× 10 −6 / ° C.). Even when the metal layer 11d is adhered thereto, the thermal expansion of the unidirectional carbon fibers 11c-A is very low at 10 GPa or less in the direction perpendicular to the arrangement direction of the unidirectional carbon fibers 11c-A. It will approximate the coefficient. In addition, the unidirectional carbon fiber 11c
-A has a thermal conductivity of 30 W / m · K or less in a direction parallel to the bonding surface of the optical semiconductor element 12, that is, in a direction perpendicular to the arrangement direction of the unidirectional carbon fibers 11 c -A. It is as large as 300 W / m · K or more in the arrangement direction of the carbon fibers 11c-A.

【0005】このようなことから、光半導体素子12と
基体11との熱膨張係数が近似し、それらの接合は良好
となり、かつ光半導体素子12の作動時に発する熱は上
面側から下面側にかけて選択的に効率良く伝達されるこ
ととなる。その結果、光半導体素子12は常に適温とな
り、光半導体素子12を長期間にわたり正常かつ安定に
作動させることが可能となる。
Thus, the thermal expansion coefficients of the optical semiconductor element 12 and the base 11 are close to each other, the bonding therebetween is good, and the heat generated during the operation of the optical semiconductor element 12 is selected from the upper surface to the lower surface. It will be transmitted efficiently efficiently. As a result, the optical semiconductor element 12 always has an appropriate temperature, and the optical semiconductor element 12 can be normally and stably operated for a long period of time.

【0006】このような基体11を有する光半導体パッ
ケージの放熱構造は、大量の熱を発するLSI,FET
等を収容する半導体パッケージにも適用できる。
The heat dissipation structure of an optical semiconductor package having such a base 11 is an LSI or FET that generates a large amount of heat.
The present invention can also be applied to a semiconductor package for accommodating the like.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、光半導
体素子12の作動時に発する熱量が多く、基体11の熱
伝達による放熱の限界を超えた場合、熱は基体11に蓄
熱されて基体11の温度が高くなる。そのため、光半導
体素子12の温度が上昇して光半導体素子12が誤作動
する、あるいは光半導体素子12が熱破壊されるという
問題点を有していた。
However, when the amount of heat generated during operation of the optical semiconductor element 12 is large and exceeds the limit of heat radiation due to heat transfer of the base 11, heat is stored in the base 11 and the temperature of the base 11 is reduced. Get higher. Therefore, there has been a problem that the temperature of the optical semiconductor element 12 rises and the optical semiconductor element 12 malfunctions or the optical semiconductor element 12 is thermally destroyed.

【0008】また、光半導体パッケージを外部電気回路
基板にネジ取付部11bを介してネジ止めした際、基体
11の剛性が金属に比し非常に小さいことから、ネジの
締め付けトルクを大きくしていくと厚さ方向に潰れてし
まうことが有り、従って光半導体パッケージを外部電気
回路基板に強い締め付け力で固定できなくなるという問
題点を有していた(特開2000−150746号公報
参照)。
Further, when the optical semiconductor package is screwed to the external electric circuit board via the screw mounting portion 11b, the rigidity of the base 11 is very small as compared with metal, so that the screw tightening torque is increased. In some cases, the optical semiconductor package cannot be fixed to the external electric circuit board with a strong clamping force (see JP-A-2000-150746).

【0009】このような問題点を解決する手段として、
ネジ止めされる部位が剛性の高い金属板からなり、光半
導体素子12を載置固定するとともに放熱板として機能
する一方向性複合材料が、金属板の貫通孔にロウ材を介
して埋設されて成る構造のものが提案されている(特開
2000−150745号公報参照)。しかしながら、
この場合、金属板の貫通孔に一方向性複合材料をロウ材
で完全に埋めるのは、金属板の貫通孔の大きさと一方向
性複合材料の大きさにバラツキが生じると、不完全なも
のとなる傾向にある。即ち、光半導体素子12を光半導
体パッケージ内部に気密に封止できなくなるという問題
を招来していた。
As a means for solving such a problem,
A portion to be screwed is made of a highly rigid metal plate, and a one-way composite material that functions as a heat sink while mounting and fixing the optical semiconductor element 12 is embedded in a through hole of the metal plate via a brazing material. A structure having such a structure has been proposed (see JP-A-2000-150745). However,
In this case, completely filling the through hole of the metal plate with the one-way composite material with the brazing material is incomplete if the size of the through hole of the metal plate and the size of the one-way composite material vary. It tends to be. That is, there has been a problem that the optical semiconductor element 12 cannot be hermetically sealed inside the optical semiconductor package.

【0010】本発明は、上記問題点に鑑み完成されたも
のであり、その目的は、光半導体素子が発生する熱を効
率良く外部に放散して光半導体パッケージ内部に収容す
る光半導体素子を長期にわたり正常かつ安定に作動させ
ることと、光半導体パッケージを外部電気回路基板にネ
ジ止めにより強固に固定させることにある。更には、こ
のような光半導体パッケージを用いた光半導体装置を提
供することにある。
The present invention has been completed in view of the above problems, and an object of the present invention is to provide an optical semiconductor device for efficiently dissipating heat generated by an optical semiconductor device to the outside and housing the optical semiconductor device inside an optical semiconductor package. And to operate the optical semiconductor package to the external electric circuit board firmly by screwing. Still another object is to provide an optical semiconductor device using such an optical semiconductor package.

【0011】[0011]

【課題を解決するための手段】本発明の光半導体パッケ
ージは、上面に光半導体素子が載置される載置部を有す
るとともに、対向する辺部に貫通穴または切欠きから成
るネジ取付部を有する略四角形の基体と、一側部に貫通
孔または切欠き部から成る入出力端子の取付部を有する
とともに前記載置部を囲繞するように前記基体の上面に
取着された枠体と、前記取付部に嵌着された入出力端子
と、前記枠体の他の側部に形成された貫通孔に嵌着され
た筒状の光ファイバ固定部材とを具備した光半導体素子
収納用パッケージにおいて、前記基体は、厚さ方向に配
列されるとともに銅および/または銀が含浸された一方
向性炭素繊維から成る金属炭素複合体から構成された基
材の上下面に、前記基材側からクロム−鉄合金から成る
接着層、銅から成る中間層およびモリブデンから成る表
面層が積層されて成る金属層が形成されていることを特
徴とする。
An optical semiconductor package according to the present invention has a mounting portion on which an optical semiconductor element is mounted on an upper surface and a screw mounting portion having a through hole or a notch on an opposite side portion. A substantially rectangular base having, and a frame attached to an upper surface of the base so as to have a mounting portion for an input / output terminal formed of a through hole or a cutout on one side and surround the mounting portion, An optical semiconductor element housing package comprising: an input / output terminal fitted to the mounting portion; and a cylindrical optical fiber fixing member fitted to a through hole formed on another side of the frame. The base is made of a metal-carbon composite composed of unidirectional carbon fibers impregnated with copper and / or silver and arranged in the thickness direction. -An adhesive layer made of iron alloy, made of copper Wherein the metal layer surface layer consisting of intermediate layer and molybdenum are laminated is formed.

【0012】本発明は、このような構成により、光半導
体素子が発生する熱を効率良く外部に放散して光半導体
パッケージ内部に収容する光半導体素子を長期間にわた
り正常かつ安定に作動させ得る。また光半導体パッケー
ジを外部電気回路基板にネジ止めにより強固に固定させ
得る。
According to the present invention, with such a configuration, the heat generated by the optical semiconductor device can be efficiently radiated to the outside, and the optical semiconductor device housed in the optical semiconductor package can be normally and stably operated for a long period of time. Further, the optical semiconductor package can be firmly fixed to the external electric circuit board by screwing.

【0013】本発明において、好ましくは、前記接着層
および前記中間層の厚さがそれぞれ5〜30μmであ
り、前記表面層の厚さが30〜100μmであることを
特徴とする。
In the present invention, the thickness of the adhesive layer and the thickness of the intermediate layer are preferably 5 to 30 μm, and the thickness of the surface layer is preferably 30 to 100 μm.

【0014】本発明は、このような構成により、基体と
光半導体素子との熱膨張係数を近似させることができ、
光半導体素子の作動時に発する熱を効率良く基体に伝え
ることができる。
According to the present invention, with such a configuration, the thermal expansion coefficients of the base and the optical semiconductor element can be approximated,
The heat generated during the operation of the optical semiconductor element can be efficiently transmitted to the base.

【0015】本発明の光半導体装置は、本発明の光半導
体素子収納用パッケージと、前記載置部に載置固定され
前記入出力端子に電気的に接続された光半導体素子と、
前記枠体の上面に接合された蓋体とを具備したことを特
徴とする。
An optical semiconductor device according to the present invention comprises: an optical semiconductor element storage package according to the present invention; an optical semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal;
A lid joined to an upper surface of the frame.

【0016】本発明の光半導体装置は、このような構成
により、上記の特有の作用効果を有する光半導体パッケ
ージを用いた信頼性の高い光半導体装置を提供できる。
The optical semiconductor device of the present invention having such a structure can provide a highly reliable optical semiconductor device using an optical semiconductor package having the above-mentioned specific effects.

【0017】[0017]

【発明の実施の形態】本発明の光半導体パッケージを以
下に詳細に説明する。図1,図2は、本発明の光半導体
パッケージについて実施の形態の一例を示すものであ
り、図1は光半導体パッケージの斜視図,図2は光半導
体パッケージの基体の部分拡大断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical semiconductor package of the present invention will be described in detail below. 1 and 2 show an example of an embodiment of an optical semiconductor package of the present invention. FIG. 1 is a perspective view of the optical semiconductor package, and FIG. 2 is a partially enlarged sectional view of a base of the optical semiconductor package. .

【0018】図1において、1は略四角形の基体、1a
は光半導体素子2の載置部、2はLD,PD等の光半導
体素子、3は枠体、3aは枠体3に設けられた光信号経
路となる貫通孔、3bは枠体3に設けられた入出力端子
4の取付部、4は高周波信号の入出力を行う入出力端子
であり、これら基体1と枠体3と入出力端子4とで、光
半導体素子2を収容する容器が基本的に構成される。
In FIG. 1, reference numeral 1 denotes a substantially square base, 1a
Is a mounting portion of the optical semiconductor element 2, 2 is an optical semiconductor element such as an LD or PD, 3 is a frame, 3a is a through hole serving as an optical signal path provided in the frame 3, and 3b is provided in the frame 3. The mounting portion 4 of the input / output terminal 4 is an input / output terminal for inputting / outputting a high-frequency signal. The base 1, the frame 3, and the input / output terminal 4 basically form a container for housing the optical semiconductor element 2. It is composed.

【0019】また、図2は基体1の部分拡大断面図を示
し、同図において、1c−Aは一方向性炭素繊維、1c
−Bはそれぞれの一方向性炭素繊維1c−Aの隙間(気
孔)に含浸された銅および/または銀、1cは一方向性
炭素繊維1c−Aと銅および/または銀1c−Bとから
成る金属炭素複合体から構成された基材である。1d−
Aは基材1cの上下面に形成された接着層、1d−Bは
接着層1d−A上に形成された中間層、1d−Cは中間
層1d−B上に形成された表面層をそれぞれ示す。これ
ら接着層1d−Aと中間層1d−Bと表面層1d−Cと
で金属層1dが構成される。
FIG. 2 is a partially enlarged cross-sectional view of the base 1, in which 1c-A indicates unidirectional carbon fibers, 1c
-B is copper and / or silver impregnated in gaps (pores) of each unidirectional carbon fiber 1c-A, and 1c is composed of unidirectional carbon fiber 1c-A and copper and / or silver 1c-B. It is a substrate composed of a metal-carbon composite. 1d-
A is an adhesive layer formed on the upper and lower surfaces of the substrate 1c, 1d-B is an intermediate layer formed on the adhesive layer 1d-A, and 1d-C is a surface layer formed on the intermediate layer 1d-B. Show. The adhesive layer 1d-A, the intermediate layer 1d-B, and the surface layer 1d-C constitute a metal layer 1d.

【0020】このような基材1cは、一方向性炭素繊維
1c−Aの隙間の90体積%以上が銅および/または銀
1c−Bにより置換され、銅および/または銀1c−B
の含有量が基材1c全体積の35体積%以下と成ってい
る。また、この基材1cは、融点よりも50〜250℃
程度高い温度で溶融した銅および/または銀1c−B
を、一方向性炭素繊維1c−Aの隙間に加圧装置の押圧
器により押圧器断面積当たり200kg/cm2以上で
加圧含浸することにより作製される。
In such a substrate 1c, 90% by volume or more of the gap between the unidirectional carbon fibers 1c-A is replaced by copper and / or silver 1c-B, and copper and / or silver 1c-B
Is 35% by volume or less of the total volume of the substrate 1c. In addition, the base material 1c has a melting point of 50 to 250 ° C.
Copper and / or silver 1c-B melted at an elevated temperature
Is pressurized and impregnated into the gap between the unidirectional carbon fibers 1c-A with a pressing device of a pressing device at a pressure of 200 kg / cm 2 or more per cross-sectional area of the pressing device.

【0021】基材1cは、一方向性炭素繊維1c−Aに
直交する方向においては、一方向性炭素繊維1c−Aに
平行な方向の弾性率に対して1/70程度の非常に小さ
い弾性率を有していることと、その熱膨張係数は、銅お
よび/または銀1c−Bが銀(約20ppm/℃)の場
合、その含有量が基材1c全体積の35体積%の際には
約11.6ppm/℃程度になる。このことから、基材
1cの上下面に基材1c側から接着層1d−A、中間層
1d−Bおよび表面層1d−Cを積層させた金属層1d
が形成されていても、基材1cと金属層1dとの間に発
生する熱膨張係数差による熱歪みを十分に緩和できる。
The base material 1c has a very small elasticity of about 1/70 in the direction perpendicular to the unidirectional carbon fibers 1c-A with respect to the elastic modulus in the direction parallel to the unidirectional carbon fibers 1c-A. And the coefficient of thermal expansion is such that when copper and / or silver 1c-B is silver (about 20 ppm / ° C.), its content is 35% by volume of the total volume of the substrate 1c. Is about 11.6 ppm / ° C. From this, the metal layer 1d in which the adhesive layer 1d-A, the intermediate layer 1d-B, and the surface layer 1d-C are laminated on the upper and lower surfaces of the substrate 1c from the substrate 1c side.
Is formed, thermal strain due to a difference in thermal expansion coefficient generated between the base material 1c and the metal layer 1d can be sufficiently reduced.

【0022】具体的には、基材1cの熱膨張係数は、基
材1cの全体積に対する一方向性炭素繊維1c−A,銅
および/または銀1c−Bの体積比により容易に導ける
ものである。また、クロム−鉄合金から成る接着層1d
−Aの熱膨張係数が11〜16ppm/℃程度であるこ
とと、接着層1d−A中の鉄原子と一方向性炭素繊維1
c−A中の炭素原子とが高温のもとで相互拡散されるこ
とから、基材1cと接着層1d−Aとの接合は非常に強
固なものとなる。
Specifically, the coefficient of thermal expansion of the substrate 1c can be easily derived from the volume ratio of the unidirectional carbon fibers 1c-A, copper and / or silver 1c-B to the entire volume of the substrate 1c. is there. Further, an adhesive layer 1d made of a chromium-iron alloy
-A has a thermal expansion coefficient of about 11 to 16 ppm / ° C., and the iron atoms and unidirectional carbon fibers 1 in the adhesive layer 1d-A
Since the carbon atoms in the c-A are interdiffused at a high temperature, the bonding between the base material 1c and the adhesive layer 1d-A becomes very strong.

【0023】また、基材1cの銅および/または銀1c
−Bが銅(約18ppm/℃)であり、その含有量が基
材1c全体積の10体積%の場合、約8.1ppm/℃
程度になるが、この場合においては一方向性炭素繊維1
c−Aに直交する方向の弾性率が非常に小さいため、基
材1cと接着層1d−Aとの間に発生する熱歪みを十分
に緩和でき、それらの接合は非常に強固なものとなる。
Further, copper and / or silver 1c of the substrate 1c
When -B is copper (about 18 ppm / ° C.) and its content is 10% by volume of the total volume of the substrate 1c, about 8.1 ppm / ° C.
In this case, the unidirectional carbon fiber 1
Since the modulus of elasticity in the direction perpendicular to c-A is very small, the thermal strain generated between the base material 1c and the adhesive layer 1d-A can be sufficiently reduced, and the bonding therebetween becomes very strong. .

【0024】なお、銅および/または銀1c−Bを含浸
した後に基材1cの表面に露出している銅および/また
は銀1c−Bと接着層1d−Aとの接合は、アンカー効
果による物理的接合によるため、非常に強固なものと成
る。
The bonding between the copper and / or silver 1c-B exposed on the surface of the substrate 1c after the impregnation with the copper and / or silver 1c-B and the adhesive layer 1d-A is performed by the physical effect of the anchor effect. It is very strong because of the mechanical joining.

【0025】金属層1dの接着層1d−Aは、クロム−
鉄合金から成り、基材1cに強固に接合させる密着層と
して機能する。中間層1d−Bは、銅から成り、接着層
1d−Aと表面層1d−Cとを強固に接合させるととも
に両者の相互拡散を有効に防止する拡散防止層として機
能する。表面層1d−Cは、モリブデンから成り、厚さ
を調整することにより基体1の熱膨張係数を光半導体素
子2や枠体3に近似させる熱膨張係数調整層として機能
するとともに、剛性の高い性質から光半導体素子2や枠
体3との熱膨張係数が異なった場合にも、基体1の反り
変形を有効に防止する反り変形防止層として機能する。
The adhesive layer 1d-A of the metal layer 1d is made of chromium-
It is made of an iron alloy and functions as an adhesion layer that is firmly joined to the substrate 1c. The intermediate layer 1d-B is made of copper, and functions as a diffusion preventing layer that firmly joins the adhesive layer 1d-A and the surface layer 1d-C and effectively prevents mutual diffusion between the two. The surface layer 1d-C is made of molybdenum, and functions as a thermal expansion coefficient adjusting layer that approximates the thermal expansion coefficient of the substrate 1 to the optical semiconductor element 2 or the frame 3 by adjusting the thickness, and has high rigidity. Therefore, even when the thermal expansion coefficients of the optical semiconductor element 2 and the frame 3 are different from each other, it functions as a warpage deformation preventing layer for effectively preventing the base body 1 from warping.

【0026】また、このような金属層1dを基材1cの
上下面に形成するのは、基材1cの片面のみに接合した
場合、基材1cが熱応力を十分に緩和できず基体1が反
り変形を起こすためである。そのため、基材1cの上下
面に形成される金属層1dは同じ材質および同じ厚さで
あることが良い。
The reason why such a metal layer 1d is formed on the upper and lower surfaces of the base material 1c is that when the base material 1c is bonded to only one surface, the base material 1c cannot sufficiently reduce the thermal stress and the base material 1 This is to cause warpage. Therefore, the metal layers 1d formed on the upper and lower surfaces of the base material 1c are preferably made of the same material and the same thickness.

【0027】また、接着層1d−Aおよび中間層1d−
Bの厚さは、それぞれ5〜30μm程度が良く、一方、
表面層1d−Cの厚さは30〜100μm程度が良い。
The adhesive layer 1d-A and the intermediate layer 1d-
The thickness of each B is preferably about 5 to 30 μm, while
The thickness of the surface layer 1d-C is preferably about 30 to 100 μm.

【0028】接着層1d−Aの厚さが5μm未満では、
接着層1d−Aとなる金属箔の厚さのばらつきが大きく
なり、中間層1d−Bを形成する際の密着層としての機
能を果たさなくなる。一方、接着層1d−Aの厚さが3
0μmを超える場合、接着層1d−Aと基材1cとの熱
膨張係数の相違によって発生する熱応力により、基材1
c表面から接着層1d−Aが剥がれることがあり、基材
1cとの密着性が劣化する。
If the thickness of the adhesive layer 1d-A is less than 5 μm,
Variations in the thickness of the metal foil serving as the adhesive layer 1d-A become large, and the metal foil does not function as an adhesive layer when the intermediate layer 1d-B is formed. On the other hand, if the thickness of the adhesive layer 1d-A is 3
When the thickness exceeds 0 μm, the thermal stress generated by the difference in thermal expansion coefficient between the adhesive layer 1d-A and the substrate 1c causes the substrate 1
The adhesive layer 1d-A may be peeled off from the surface c, and the adhesion to the substrate 1c is deteriorated.

【0029】また、中間層1d−Bの厚さが5μm未満
では、中間層1d−Bとなる金属箔の厚さのばらつきが
大きくなり、接着層1d−Aと表面層1d−Cとを強固
に接合させるとともに両者の相互拡散を有効に防止する
拡散防止層としての機能を果たさなくなる。一方、中間
層1d−Bの厚さが30μmを超える場合、接着層1d
−Aと基材1cとの熱膨張係数の相違によって発生する
熱応力により、接着層1d−Aとの界面および表面層1
d−Cとの界面で剥がれることがあり、接着層1d−A
および表面層1d−Cとの間の密着性が劣化する。
When the thickness of the intermediate layer 1d-B is less than 5 μm, the variation in the thickness of the metal foil to be the intermediate layer 1d-B becomes large, and the adhesive layer 1d-A and the surface layer 1d-C are firmly connected. And does not function as a diffusion preventing layer for effectively preventing mutual diffusion between the two. On the other hand, when the thickness of the intermediate layer 1d-B exceeds 30 μm, the adhesive layer 1d
-A and the base layer 1c, the interface between the adhesive layer 1d-A and the surface layer 1
The adhesive layer 1d-A may come off at the interface with d-C.
And the adhesiveness with the surface layer 1d-C deteriorates.

【0030】また、表面層1d−Cは、非常に剛性の高
い材質であることと、基材1cの弾性率が30GPa以
下と非常に軟質であることから、表面層1d−Cの厚さ
を調整することにより、基体1の幅方向(横方向),厚
さ方向(縦方向)の熱膨張係数を光半導体素子2のそれ
に近似させることができる。更には、表面層1d−Cは
非常に剛性の高い性質であることから、たとえ基体1c
の熱膨張係数が光半導体素子2のそれと異なった場合で
も、基体1cの反り変形を有効に防止できる。
Since the surface layer 1d-C is made of a material having a very high rigidity and the elasticity of the base material 1c is very low at 30 GPa or less, the thickness of the surface layer 1d-C is reduced. By adjusting, the coefficient of thermal expansion in the width direction (horizontal direction) and the thickness direction (vertical direction) of the base 1 can be approximated to that of the optical semiconductor element 2. Furthermore, since the surface layer 1d-C has very high rigidity, even if the substrate 1c
Even if the thermal expansion coefficient of the substrate 1c is different from that of the optical semiconductor element 2, the warpage of the base 1c can be effectively prevented.

【0031】なお、表面層1d−Cの厚さが30μm未
満では、基体1と光半導体素子2との熱膨張係数差によ
る熱歪みを有効に防止できない。即ち、この厚さでは基
体1と光半導体素子2との間の熱膨張係数が大きく異な
る場合、基体1の反り変形を有効に防止できなくなり、
光半導体素子2と光ファイバ7との光軸がずれる。その
結果、光半導体素子2と光ファイバ7との光結合が損な
われ、光半導体素子2の作動性が損なわれる。一方、表
面層1d−Cの厚さが100μmを超えると、中間層1
d−Bと表面層1d−Cとの熱膨張係数差により、それ
らの密着性が損なわれる傾向にある。即ち、光半導体素
子2を載置部1aに安定して載置させ、光半導体素子2
と光ファイバ7との光結合効率を良好としたり、光半導
体素子2の作動時に発する熱を効率良く外部電気回路基
板に伝えることが困難となる。
If the thickness of the surface layer 1d-C is less than 30 μm, thermal distortion due to a difference in thermal expansion coefficient between the substrate 1 and the optical semiconductor element 2 cannot be effectively prevented. That is, if the thermal expansion coefficient between the base 1 and the optical semiconductor element 2 is significantly different at this thickness, the warpage of the base 1 cannot be effectively prevented,
The optical axes of the optical semiconductor element 2 and the optical fiber 7 are shifted. As a result, the optical coupling between the optical semiconductor element 2 and the optical fiber 7 is impaired, and the operability of the optical semiconductor element 2 is impaired. On the other hand, if the thickness of the surface layer 1d-C exceeds 100 μm,
Due to the difference in thermal expansion coefficient between dB and the surface layer 1d-C, their adhesion tends to be impaired. That is, the optical semiconductor element 2 is stably mounted on the mounting portion 1a.
It is difficult to improve the optical coupling efficiency between the optical fiber 7 and the optical fiber 7, and to efficiently transmit the heat generated during the operation of the optical semiconductor element 2 to the external electric circuit board.

【0032】金属層1dは、具体的には、基材1cの上
下面に例えば厚さが約10μmの金属箔から成る接着層
1d−A,中間層1d−Bと、厚さが約30μmの金属
箔から成る表面層1d−Cとを順次載置し、次に真空ホ
ットプレスで5MPa(メガパスカル)の圧力をかけつ
つ約1200℃の温度を1時間加えることにより形成さ
れる。
Specifically, the metal layer 1d is composed of, for example, an adhesive layer 1d-A and an intermediate layer 1d-B made of a metal foil having a thickness of about 10 μm on the upper and lower surfaces of the substrate 1c, and a metal layer 1d-B having a thickness of about 30 μm. The surface layer 1d-C made of metal foil is sequentially placed, and then formed by applying a temperature of about 1200 ° C. for 1 hour while applying a pressure of 5 MPa (megapascal) by a vacuum hot press.

【0033】これにより、基体1は上面側から下面側に
かけて約400W/m・K以上の熱伝導率が得られると
ともに、光半導体素子2の載置部1aの面方向(略水平
方向)については約100W/m・K以上の熱伝導率が
得られる。そのため、光半導体素子2の作動時に発する
熱は、一方向性炭素繊維1c−Aの方向のみに限らず、
ランダムな方向にもある程度伝達されることとなる。
As a result, the substrate 1 has a thermal conductivity of about 400 W / m · K or more from the upper surface to the lower surface, and the surface direction (substantially horizontal direction) of the mounting portion 1a of the optical semiconductor element 2 is A thermal conductivity of about 100 W / m · K or more is obtained. Therefore, the heat generated when the optical semiconductor element 2 operates is not limited to the direction of the unidirectional carbon fiber 1c-A,
It will also be transmitted to some extent in random directions.

【0034】また、基体1は、基材1cが一方向性炭素
繊維1c−Aの気孔中に銅および/または銀1c−Bが
含浸された構成であるため剛性が非常に高い。そのた
め、対向する辺部に貫通穴または切欠きから成るネジ取
付部1bを有した基体1を、外部電気回路基板にネジ取
付部1bを介してネジでトルクをかけて強固に締め付け
ても基体1は破損しない。その結果、光半導体素子2か
ら基体1そして外部電気回路基板へと効率良く伝熱でき
る。
The base 1 has a very high rigidity because the base 1c has a structure in which the pores of the unidirectional carbon fibers 1c-A are impregnated with copper and / or silver 1c-B. Therefore, even if the base 1 having the screw mounting portion 1b formed of a through hole or a notch on the opposite side is firmly tightened by applying a torque to the external electric circuit board via the screw mounting portion 1b with a screw. Does not break. As a result, heat can be efficiently transferred from the optical semiconductor element 2 to the base 1 and the external electric circuit board.

【0035】また、基体1の比重は3〜5g/cm3
度であり、従来から一般的に用いられる銅−タングステ
ン(W)合金に比べ1/3〜1/5程度と非常に軽量と
なる。従って、近時の小型軽量化が進む電子装置へ実装
する際に非常に有利なものとなる。
The specific gravity of the substrate 1 is about 3 to 5 g / cm 3 , which is very light, about 1/3 to 1/5 as compared with a conventional copper-tungsten (W) alloy. . Therefore, it is very advantageous when the electronic device is mounted on an electronic device which is recently becoming smaller and lighter.

【0036】なお、基体1の表面には0.5〜9μmの
Ni層や0.5〜5μmの金(Au)層等の金属層をメ
ッキ法により被着させておくのが良く、その場合、基体
1が酸化腐食するのを有効に防止できるとともに、基体
1上面に光半導体素子2を強固に接着固定できる。
A metal layer such as a Ni layer of 0.5 to 9 μm or a gold (Au) layer of 0.5 to 5 μm is preferably deposited on the surface of the substrate 1 by plating. In addition, the substrate 1 can be effectively prevented from being oxidized and corroded, and the optical semiconductor element 2 can be firmly adhered and fixed to the upper surface of the substrate 1.

【0037】このような基体1上面の外周部には、光半
導体素子2の載置部1aを囲繞するようにして枠体3が
銀ロウ等のロウ材を介して取着されており、基体1と枠
体3とで光半導体素子2を収容するための空所が形成さ
れる。
A frame 3 is attached to the outer peripheral portion of the upper surface of the base 1 via a brazing material such as silver brazing so as to surround the mounting portion 1a of the optical semiconductor element 2. A space for accommodating the optical semiconductor element 2 is formed by 1 and the frame 3.

【0038】この枠体3はFe−Ni−Co合金やFe
−Ni合金等の金属材料から成り、例えばFe−Ni−
Co合金から成る場合、この合金のインゴットに圧延加
工やプレス加工等の金属加工を施すことにより所定の形
状に製作される。また、枠体3の基体1への接合は基体
1上面と枠体3下面とを、基体1上面に敷設した適度な
ボリュームを有するプリフォームとされた銀ロウ等のロ
ウ材を介してロウ接合される。さらに、基体1と同様に
して、枠体3表面に0.5〜9μmのNi層や0.5〜
5μmのAu層等の金属層をメッキ法により被着させて
おくと良い。
The frame 3 is made of Fe—Ni—Co alloy or Fe
-Made of a metal material such as a Ni alloy, for example, Fe-Ni-
When made of a Co alloy, an ingot of this alloy is manufactured into a predetermined shape by subjecting the ingot to metal working such as rolling or pressing. In addition, the frame 3 is joined to the base 1 by brazing the upper surface of the base 1 and the lower surface of the frame 3 via a brazing material such as silver brazing which is a preform having an appropriate volume laid on the upper surface of the base 1. Is done. Further, in the same manner as the base 1, a 0.5 to 9 μm Ni layer or a 0.5 to 9 μm
A metal layer such as a 5 μm Au layer is preferably applied by plating.

【0039】また、枠体3の一側部には、外部電気回路
基板と高周波信号の入出力を行う機能を有する入出力端
子4が嵌着される、貫通孔または切欠き部から成る取付
部3bが形成され、他の側部には光信号の経路となる貫
通孔3aが形成される。
On one side of the frame body 3, an input / output terminal 4 having a function of inputting / outputting a high-frequency signal to / from an external electric circuit board is fitted. 3b is formed, and a through hole 3a serving as a path of an optical signal is formed on the other side.

【0040】貫通孔3aの枠体3の外面側開口の周辺部
には、光ファイバ7を挿通し樹脂接着剤等で接着された
ホルダー8を固定するための光ファイバ固定部材(以
下、固定部材という)5が銀ロウ等のロウ材で接合され
る。固定部材5はFe−Ni−Co合金やFe−Ni合
金等の金属材料から成り、例えばFe−Ni−Co合金
から成る場合、この合金のインゴットに圧延加工やプレ
ス加工等の金属加工を施すことにより所定の形状に製作
される。また、その表面には酸化腐食を有効に防止する
ために、0.5〜9μmのNi層や0.5〜5μmのAu
層等の金属層をメッキ法により被着させておくと良い。
An optical fiber fixing member (hereinafter referred to as a fixing member) for fixing the holder 8 to which the optical fiber 7 is inserted and adhered with a resin adhesive or the like is provided around the outer opening of the frame 3 in the through hole 3a. 5) are joined with a brazing material such as silver brazing. The fixing member 5 is made of a metal material such as an Fe-Ni-Co alloy or an Fe-Ni alloy. For example, when the fixing member 5 is made of an Fe-Ni-Co alloy, the ingot of this alloy is subjected to metal working such as rolling or pressing. To form a predetermined shape. In order to effectively prevent oxidation corrosion, a 0.5-9 μm Ni layer or a 0.5-5 μm Au
A metal layer such as a layer is preferably applied by a plating method.

【0041】なお、固定部材5の内周面には、集光レン
ズとして機能するとともに光半導体パッケージ内部を塞
ぐ非晶質ガラス等から成る透光性部材9が、その接合部
の表面に形成されたメタライズ層を介して、200〜4
00℃の融点を有する金(Au)−錫(Sn)合金等の
低融点ロウ材で接合される。
A translucent member 9 made of amorphous glass or the like, which functions as a condensing lens and closes the inside of the optical semiconductor package, is formed on the inner peripheral surface of the fixing member 5 on the surface of the joint. 200-4 through the metallized layer
It is joined with a low melting point brazing material such as a gold (Au) -tin (Sn) alloy having a melting point of 00 ° C.

【0042】透光性部材9は、熱膨張係数が4〜12
(ppm/℃)(室温〜400℃)のサファイア(単結
晶アルミナ)や非晶質ガラス等から成り、球状,半球
状,凸レンズ状,ロッドレンズ状等の形状とされる。そ
して、外部のレーザ光等の光を光ファイバ7を伝わって
光半導体素子2に入力させる、または光半導体素子2で
出力したレーザ光等の光を光ファイバ7に入力させるた
めの集光用部材として用いられる。透光性部材9が、例
えば結晶軸の存在しない非結晶ガラスの場合、酸化珪素
(SiO2),酸化鉛(PbO)を主成分とする鉛系、
またはホウ酸やケイ砂を主成分とするホウケイ酸系のも
のを用いる。
The translucent member 9 has a coefficient of thermal expansion of 4 to 12
(Ppm / ° C.) (room temperature to 400 ° C.) made of sapphire (single crystal alumina), amorphous glass, or the like, and has a spherical, hemispherical, convex lens shape, rod lens shape, or the like. A light condensing member for transmitting light such as an external laser beam to the optical semiconductor element 2 through the optical fiber 7 or for inputting light such as laser light output from the optical semiconductor element 2 to the optical fiber 7. Used as When the translucent member 9 is, for example, an amorphous glass having no crystal axis, a lead-based material containing silicon oxide (SiO 2 ) and lead oxide (PbO) as main components,
Alternatively, a borosilicate material containing boric acid or silica sand as a main component is used.

【0043】また、透光性部材9は、その熱膨張係数が
枠体3のそれと異なっていても固定部材5が熱膨張差に
よる応力を吸収し緩和するので、結晶軸が応力のために
ある方向に揃うことにより光に屈折率の変化を起こすよ
うなことは発生しにくい。従って、このような透光性部
材9を用いることにより、光半導体素子2と光ファイバ
7との間の光の結合効率を高くできる。
The crystal axis of the translucent member 9 is provided because the fixing member 5 absorbs and relaxes the stress due to the difference in thermal expansion even if the coefficient of thermal expansion of the translucent member 9 is different from that of the frame 3. It is unlikely that the light will cause a change in the refractive index due to the alignment in the direction. Therefore, by using such a translucent member 9, the light coupling efficiency between the optical semiconductor element 2 and the optical fiber 7 can be increased.

【0044】また、ホルダー8は、固定部材5にYAG
レーザ溶接等で接合されるため、固定部材5と同様に金
属材料から成る方が良く、更には熱膨張係数は、光半導
体素子2と光ファイバ7との光軸がずれることが無いよ
うに、固定部材5と同様の材質であることが良い。従っ
て、ホルダー8は固定部材5がFe−Ni−Co合金で
あればFe−Ni−Co合金が良く、一方、固定部材5
がFe−Ni合金であればホルダー8はFe−Ni合金
であることが良い。
The holder 8 is provided with a YAG
Since it is joined by laser welding or the like, it is better to be made of a metal material like the fixing member 5, and further, the thermal expansion coefficient is set so that the optical axis of the optical semiconductor element 2 and the optical fiber 7 do not shift. The material is preferably the same as that of the fixing member 5. Therefore, if the fixing member 5 is made of an Fe—Ni—Co alloy, the holder 8 is preferably made of an Fe—Ni—Co alloy.
Is an Fe—Ni alloy, the holder 8 is preferably an Fe—Ni alloy.

【0045】また、取付部3bには、セラミック基板4
aにメタライズ層4bが被着された入出力端子4が嵌着
される。セラミック基板4aは取付部3b内周面に銀ロ
ウ等のロウ材で接合されており、光半導体素子2を気密
に収容するための機能を有するとともに、その上面のメ
タライズ層4bと枠体3とを電気的に絶縁する絶縁機能
を有する。また、セラミック基板4aの材料は、その誘
電率や熱膨張係数等の特性に応じて、アルミナ(Al2
3)セラミックスや窒化アルミニウム(AlN)セラ
ミックス等のセラミックス材料が適宜選定される。
The ceramic substrate 4 is attached to the mounting portion 3b.
The input / output terminal 4 on which the metallized layer 4b is attached is fitted to a. The ceramic substrate 4a is joined to the inner peripheral surface of the mounting portion 3b with a brazing material such as silver brazing, and has a function of airtightly housing the optical semiconductor element 2, and has a metallized layer 4b and a frame 3 on its upper surface. Has an insulating function of electrically insulating the. In addition, the material of the ceramic substrate 4a is made of alumina (Al 2 O 3) in accordance with characteristics such as a dielectric constant and a thermal expansion coefficient.
Ceramic materials such as O 3 ) ceramics and aluminum nitride (AlN) ceramics are appropriately selected.

【0046】入出力端子4は、メタライズ層4bとなる
W,Mo,Mn等の粉末に有機溶剤,溶媒を添加混合し
て得た金属ペーストを、セラミック基板4aとなる原料
粉末に適当な有機バインダや溶剤等を添加混合しペース
ト状と成すとともに、このペーストをドクターブレード
法やカレンダーロール法によって成形されたセラミック
グリーンシートに、予め従来周知のスクリーン印刷法に
より所望の形状に印刷、塗布し、約1600℃の高温で
焼結することにより製作される。
The input / output terminals 4 are formed by adding a metal paste obtained by adding an organic solvent and a solvent to a powder of W, Mo, Mn or the like to be the metallized layer 4b, and applying an organic binder suitable for the raw material powder to be the ceramic substrate 4a. And a solvent or the like are added and mixed to form a paste, and the paste is printed and applied to a ceramic green sheet formed by a doctor blade method or a calendar roll method in a desired shape in advance by a conventionally well-known screen printing method. It is manufactured by sintering at a high temperature of 1600 ° C.

【0047】また、メタライズ層4b上面には、リード
端子6が銀ロウ等のロウ材を介して接合される。このリ
ード端子6は入出力端子4との接合を強固なものとする
ために、入出力端子4の熱膨張係数に近似する部材が用
いられる。例えばリード端子6は、入出力端子4のセラ
ミック基板4aがAl23セラミックスから成る場合
は、Fe−Ni−Co合金やFe−Ni合金から成る。
The lead terminal 6 is joined to the upper surface of the metallized layer 4b via a brazing material such as silver brazing. The lead terminal 6 is made of a material having a coefficient of thermal expansion close to that of the input / output terminal 4 in order to strengthen the connection with the input / output terminal 4. For example, when the ceramic substrate 4a of the input / output terminal 4 is made of Al 2 O 3 ceramic, the lead terminal 6 is made of an Fe—Ni—Co alloy or an Fe—Ni alloy.

【0048】このような入出力端子4,固定部材5が接
合された枠体3上面には、蓋体10がシーム溶接等によ
り接合され、光半導体素子2を光半導体パッケージ内部
に封止することとなる。
A lid 10 is joined to the upper surface of the frame 3 to which the input / output terminal 4 and the fixing member 5 are joined by seam welding or the like, thereby sealing the optical semiconductor element 2 inside the optical semiconductor package. Becomes

【0049】このように、本発明の光半導体パッケージ
は、その基体1が、厚さ方向に配列されるとともに銅お
よび/または銀1c−Bが含浸された一方向性炭素繊維
1c−Aから成る金属炭素複合体から構成された基材1
cの上下面に、基材1c側からクロム−鉄合金から成る
接着層1d−A、銅から成る中間層1d−Bおよびモリ
ブデンから成る表面層1d−Cが積層されて成る金属層
1dが形成されているとともにネジ取付部1bを有す
る。また、基体1の上面に光半導体素子2の載置部1a
を囲繞するように接合され、貫通孔3a,取付部3bを
有する枠体3と、外部電気回路基板との高周波信号の入
出力を行う入出力端子4とを具備する。
As described above, in the optical semiconductor package of the present invention, the base 1 is made of the unidirectional carbon fibers 1c-A which are arranged in the thickness direction and impregnated with copper and / or silver 1c-B. Substrate 1 composed of metal-carbon composite
On the upper and lower surfaces of the substrate c, a metal layer 1d is formed by laminating an adhesive layer 1d-A made of a chromium-iron alloy, an intermediate layer 1d-B made of copper, and a surface layer 1d-C made of molybdenum from the base 1c side. And has a screw mounting portion 1b. Also, the mounting portion 1a of the optical semiconductor element 2
And a frame 3 having a through hole 3a and a mounting portion 3b, and an input / output terminal 4 for inputting / outputting a high-frequency signal to / from an external electric circuit board.

【0050】また、上記本発明の光半導体パッケージ
と、載置部1aに載置固定され入出力端子4に電気的に
接続される光半導体素子2と、光半導体パッケージ上面
に接合され光半導体素子2を封止する蓋体10とを具備
することにより、製品としての光半導体装置となる。な
お、光半導体パッケージに固定される光ファイバ7は、
一般に光半導体装置の使用時に設けられるものであり、
単品としての光半導体装置に付加されていてもよいし、
または光半導体装置を外部電気回路基板等に固定した後
の使用時に光半導体装置に取り付けても構わない。
Further, the optical semiconductor package of the present invention, an optical semiconductor device 2 mounted and fixed on the mounting portion 1a and electrically connected to the input / output terminal 4, and an optical semiconductor device bonded to the upper surface of the optical semiconductor package. An optical semiconductor device as a product is provided by including the lid 10 that seals 2. The optical fiber 7 fixed to the optical semiconductor package is
Generally provided when using an optical semiconductor device,
It may be added to the optical semiconductor device as a single item,
Alternatively, the optical semiconductor device may be attached to the optical semiconductor device at the time of use after being fixed to an external electric circuit board or the like.

【0051】このような光半導体装置は、例えば外部電
気回路基板から供給される高周波信号により光半導体素
子2を光励起させ、励起したレーザ光等の光を透光性部
材9を通して光ファイバ7に授受させるとともに光ファ
イバ7内を伝送させることにより、大容量の情報を高速
に伝送できる光電変換装置として機能し、光通信分野等
に多く用いることができる。
In such an optical semiconductor device, the optical semiconductor element 2 is optically excited by, for example, a high-frequency signal supplied from an external electric circuit board, and the excited laser light or the like is transmitted to or received from the optical fiber 7 through the translucent member 9. By transmitting the data through the optical fiber 7, the device functions as a photoelectric conversion device capable of transmitting a large amount of information at high speed, and can be widely used in the field of optical communication and the like.

【0052】なお、本発明は上記実施の形態に限定され
ず、本発明の要旨を逸脱しない範囲内において種々の変
更を行うことは何等支障ない。例えば、光半導体装置
は、内部または外部に、例えば固定部材5の枠体3内側
または外側に、あるいは枠体3外側の光ファイバ7の途
中に、戻り光防止用の光アイソレータを設けても良い。
この場合、光半導体素子2と光ファイバ7との光の結合
効率がさらに良好なものとなる。
It should be noted that the present invention is not limited to the above embodiment, and that various changes can be made without departing from the scope of the present invention. For example, in the optical semiconductor device, an optical isolator for preventing return light may be provided inside or outside, for example, inside or outside the frame 3 of the fixing member 5 or in the middle of the optical fiber 7 outside the frame 3. .
In this case, the light coupling efficiency between the optical semiconductor element 2 and the optical fiber 7 is further improved.

【0053】[0053]

【発明の効果】本発明は、上面に光半導体素子が載置さ
れる載置部を有するとともに、対向する辺部に貫通穴ま
たは切欠きから成るネジ取付部を有する略四角形の基体
は、厚さ方向に配列されるとともに銅および/または銀
が含浸された一方向性炭素繊維から成る金属炭素複合体
から構成された基材の上下面に、基材側からクロム−鉄
合金から成る接着層、銅から成る中間層およびモリブデ
ンから成る表面層が積層されて成る金属層が形成されて
いることにより、光半導体素子が発生する熱を効率良く
外部に放散して光半導体パッケージ内部に収容する光半
導体素子を長期間にわたり正常かつ安定に作動させ得
る。また光半導体パッケージを外部電気回路基板にネジ
止めにより強固に固定させ得る。
According to the present invention, a substantially rectangular base having a mounting portion on which an optical semiconductor element is mounted on its upper surface and having a screw mounting portion formed of a through hole or a notch on the opposite side portion has a large thickness. Adhesive layers made of a chromium-iron alloy on the upper and lower surfaces of a substrate composed of a metal-carbon composite composed of unidirectional carbon fibers impregnated with copper and / or silver and arranged from the substrate side Since the metal layer formed by laminating the intermediate layer made of copper and the surface layer made of molybdenum is formed, the heat generated by the optical semiconductor element is efficiently dissipated to the outside and the light accommodated in the optical semiconductor package. The semiconductor element can operate normally and stably for a long period of time. Further, the optical semiconductor package can be firmly fixed to the external electric circuit board by screwing.

【0054】本発明は、好ましくは接着層および中間層
の厚さがそれぞれ5〜30μmであり、表面層の厚さが
30〜100μmであることにより、基体と光半導体素
子との熱膨張係数を近似させることができ、光半導体素
子の作動時に発する熱を効率良く基体に伝えることがで
きる。
According to the present invention, preferably, the adhesive layer and the intermediate layer each have a thickness of 5 to 30 μm, and the surface layer has a thickness of 30 to 100 μm. It can be approximated, and the heat generated during the operation of the optical semiconductor element can be efficiently transmitted to the base.

【0055】本発明の光半導体装置は、本発明の光半導
体素子収納用パッケージと、載置部に載置固定され入出
力端子に電気的に接続された光半導体素子と、枠体の上
面に接合された蓋体とを具備したことにより、上記本発
明に特有の作用効果を有する光半導体パッケージを用い
た信頼性の高い光半導体装置を提供できる。
An optical semiconductor device according to the present invention includes an optical semiconductor element housing package according to the present invention, an optical semiconductor element mounted and fixed on a mounting portion and electrically connected to input / output terminals, and an optical semiconductor device mounted on an upper surface of a frame. With the provision of the joined lid, it is possible to provide a highly reliable optical semiconductor device using the optical semiconductor package having the above-described effects and advantages unique to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光半導体パッケージについて実施の形
態の一例を示す斜視図である。
FIG. 1 is a perspective view showing an example of an embodiment of an optical semiconductor package of the present invention.

【図2】図1の光半導体パッケージの基体の部分拡大断
面図である。
FIG. 2 is a partially enlarged sectional view of a base of the optical semiconductor package of FIG. 1;

【図3】従来の光半導体パッケージの断面図である。FIG. 3 is a cross-sectional view of a conventional optical semiconductor package.

【図4】図3の光半導体パッケージの基体の部分拡大断
面図である。
FIG. 4 is a partially enlarged sectional view of a base of the optical semiconductor package of FIG. 3;

【符号の説明】[Explanation of symbols]

1:基体 1a:載置部 1b:ネジ取付部 1c:基材 1c−A:一方向性炭素繊維 1c−B:銅および/または銀 1d:金属層 1d−A:接着層 1d−B:中間層 1d−C:表面層 2:光半導体素子 3:枠体 3a:貫通孔 3b:取付部 4:入出力端子 5:光ファイバ固定部材 7:光ファイバ 10:蓋体 1: Base 1a: Placement section 1b: Screw mounting section 1c: Base 1c-A: Unidirectional carbon fiber 1c-B: Copper and / or silver 1d: Metal layer 1d-A: Adhesive layer 1d-B: Middle Layer 1d-C: Surface layer 2: Optical semiconductor element 3: Frame 3a: Through hole 3b: Mounting part 4: Input / output terminal 5: Optical fiber fixing member 7: Optical fiber 10: Lid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 31/0232 H01L 31/02 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 31/0232 H01L 31/02 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上面に光半導体素子が載置される載置部
を有するとともに、対向する辺部に貫通穴または切欠き
から成るネジ取付部を有する略四角形の基体と、一側部
に貫通孔または切欠き部から成る入出力端子の取付部を
有するとともに前記載置部を囲繞するように前記基体の
上面に取着された枠体と、前記取付部に嵌着された入出
力端子と、前記枠体の他の側部に形成された貫通孔に嵌
着された筒状の光ファイバ固定部材とを具備した光半導
体素子収納用パッケージにおいて、前記基体は、厚さ方
向に配列されるとともに銅および/または銀が含浸され
た一方向性炭素繊維から成る金属炭素複合体から構成さ
れた基材の上下面に、前記基材側からクロム−鉄合金か
ら成る接着層、銅から成る中間層およびモリブデンから
成る表面層が積層されて成る金属層が形成されているこ
とを特徴とする光半導体素子収納用パッケージ。
1. A substantially quadrangular base having a mounting portion on which an optical semiconductor element is mounted on its upper surface and having a screw mounting portion formed of a through hole or a notch on an opposite side, and a through hole on one side. A frame body attached to the upper surface of the base so as to have an input / output terminal mounting portion formed of a hole or a cutout portion and surround the mounting portion, and an input / output terminal fitted to the mounting portion; And a cylindrical optical fiber fixing member fitted into a through hole formed on the other side of the frame, wherein the base is arranged in the thickness direction. A bonding layer made of a chromium-iron alloy, an intermediate layer made of copper, on the upper and lower surfaces of a base made of a metal-carbon composite made of unidirectional carbon fibers impregnated with copper and / or silver. Layer and a surface layer of molybdenum A package for housing an optical semiconductor element, wherein a metal layer is formed.
【請求項2】 前記接着層および前記中間層の厚さがそ
れぞれ5〜30μmであり、前記表面層の厚さが30〜
100μmであることを特徴とする請求項1記載の光半
導体素子収納用パッケージ。
2. The adhesive layer and the intermediate layer each have a thickness of 5 to 30 μm, and the surface layer has a thickness of 30 to 30 μm.
2. The package for housing an optical semiconductor element according to claim 1, wherein the thickness is 100 μm.
【請求項3】 請求項1記載の光半導体素子収納用パッ
ケージと、前記載置部に載置固定され前記入出力端子に
電気的に接続された光半導体素子と、前記枠体の上面に
接合された蓋体とを具備したことを特徴とする光半導体
装置。
3. The optical semiconductor element storage package according to claim 1, further comprising: an optical semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal; and joined to an upper surface of the frame. An optical semiconductor device, comprising:
JP2001053280A 2001-02-28 2001-02-28 Package for storing optical semiconductor element and optical semiconductor device Pending JP2002261373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053280A JP2002261373A (en) 2001-02-28 2001-02-28 Package for storing optical semiconductor element and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053280A JP2002261373A (en) 2001-02-28 2001-02-28 Package for storing optical semiconductor element and optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2002261373A true JP2002261373A (en) 2002-09-13

Family

ID=18913764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053280A Pending JP2002261373A (en) 2001-02-28 2001-02-28 Package for storing optical semiconductor element and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2002261373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023006510A (en) * 2021-06-30 2023-01-18 日亜化学工業株式会社 Light-emitting module, vehicle lamp, and heat dissipation member
WO2024202527A1 (en) * 2023-03-29 2024-10-03 ソニーセミコンダクタソリューションズ株式会社 Semiconductor package, semiconductor device, and method for manufacturing semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023006510A (en) * 2021-06-30 2023-01-18 日亜化学工業株式会社 Light-emitting module, vehicle lamp, and heat dissipation member
WO2024202527A1 (en) * 2023-03-29 2024-10-03 ソニーセミコンダクタソリューションズ株式会社 Semiconductor package, semiconductor device, and method for manufacturing semiconductor package

Similar Documents

Publication Publication Date Title
US20040183172A1 (en) Package for housing semiconductor chip, and semiconductor device
JP2001313345A (en) Package for accommodating semiconductor device
JP3659336B2 (en) Package for storing semiconductor elements
JP2002261373A (en) Package for storing optical semiconductor element and optical semiconductor device
JP2000183253A (en) Package for housing semiconductor element
JP2003069127A (en) Package for accommodating optical semiconductor element and optical semiconductor device
JP4454164B2 (en) Package for storing semiconductor elements
JP3554304B2 (en) Semiconductor element storage package and semiconductor device
JP3457898B2 (en) Optical semiconductor element storage package
JP2002314186A (en) Package for storing optical semiconductor element and optical semiconductor device
JP3702200B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2002232052A (en) Package for storing optical semiconductor element, and optical semiconductor device
JP3522132B2 (en) Optical semiconductor element storage package
JP2000183236A (en) Package for housing semiconductor element
JP2003197800A (en) Package for housing semiconductor element, and semiconductor device
JP2002246497A (en) Package for accommodating semiconductor device
JP3457901B2 (en) Optical semiconductor element storage package
JP2003218440A (en) Package for housing optical semiconductor element and optical semiconductor device
JP2003060279A (en) Package for accommodating optical semiconductor device and the optical semiconductor device
JP2000277645A (en) Package for housing optical semiconductor element
JP3961388B2 (en) Optical semiconductor element storage package and optical semiconductor device
JP2002252299A (en) Package for storing semiconductor element and semiconductor device
JP2003046042A (en) Semiconductor element for storing package and semiconductor device
JP2000183215A (en) Package for housing semiconductor element
JP2002261374A (en) Package for storing optical semiconductor element and optical semiconductor device