JP2002252002A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2002252002A
JP2002252002A JP2001007905A JP2001007905A JP2002252002A JP 2002252002 A JP2002252002 A JP 2002252002A JP 2001007905 A JP2001007905 A JP 2001007905A JP 2001007905 A JP2001007905 A JP 2001007905A JP 2002252002 A JP2002252002 A JP 2002252002A
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
electrode
hydrogen
fullerene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001007905A
Other languages
Japanese (ja)
Inventor
Naotake Kawamura
尚武 河村
Kazuhide Ota
和秀 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FULLERENE KK
Original Assignee
FULLERENE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FULLERENE KK filed Critical FULLERENE KK
Priority to JP2001007905A priority Critical patent/JP2002252002A/en
Publication of JP2002252002A publication Critical patent/JP2002252002A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell that has a fullerene, which does not use platinum or has very small quantity of it, as a catalyst. SOLUTION: The fullerene (fullerene, metal inclusive fullerene, a multi-layer carbon nanotube, a nanographiber, a carbon-nanocarbon, a carbon-nanocapsule, or the like), which does not use platinum or uses a very small quantity of it, is used for the catalyst of the fuel cell. The outstanding catalyst function is generated in decomposition of hydrogen, and composition of water, by conducting electricity on a catalyst film inside of a separator, or irradiating light at the catalyst film by preparing a light source. An energy source at the time of carrying out electric conduction or optical irradiation to the catalyst film, a part of the electric power generated in the fuel cell is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カーボンナノチュー
ブ、カーボンナノファイバー、フラーレン等のフラーレ
ン類を触媒膜とし、環境を整えて触媒機能を発揮できる
ようにした燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell in which fullerenes such as carbon nanotubes, carbon nanofibers and fullerenes are used as a catalyst film so that an environment can be adjusted and a catalyst function can be exhibited.

【0002】[0002]

【従来の技術】近年、カーボンナノチューブ、カーボン
ナノファイバー、フラーレン等の炭素系材料が、軽量で
水素を多量に吸蔵することから次世代のエネルギー貯蔵
手法として注目されているが、一定の容器に高密度に充
填することが困難であった。例えば、カーボンナノチュ
ーブ、カーボンナノファイバーは材料自体の体積当たり
の水素吸蔵量が10kg/mで充填率が50%とした
とき、実際の吸蔵量は5kg/mになってしまう。従
来、燃料電池の触媒には白金担持炭素が用いられてい
る。すなわち、触媒機能を有する白金を微細化し、導電
性を持つ炭素に担持させている。白金は高価な上、その
資源に限りがあるため、燃料電池が普及し需要が高まれ
ば価格が高騰するなどの克服すべき課題は多い。
2. Description of the Related Art In recent years, carbon-based materials such as carbon nanotubes, carbon nanofibers, and fullerenes have been attracting attention as a next-generation energy storage method because they are lightweight and occlude a large amount of hydrogen. It was difficult to fill to density. For example, carbon nanotubes and carbon nanofibers have a hydrogen storage capacity of 10 kg / m 3 per volume of the material itself and a filling rate of 50%, and the actual storage capacity is 5 kg / m 3 . Conventionally, platinum-supported carbon has been used as a catalyst for a fuel cell. That is, platinum having a catalytic function is miniaturized and supported on conductive carbon. Since platinum is expensive and its resources are limited, there are many issues to be overcome such as a rise in price if fuel cells become widespread and demand increases.

【0003】燃料電池は、触媒膜の一方に酸素極、他方
に陰極(水素極)を配置し、酸素極側に空気を送り、陰
極側に水素を送り込むと、水素は触媒の作用で水素イオ
ン(H)に変わり、電子(e)を放出する。この電
子eが陽極(空気極)に向って外部の回路に流れる際
に直流電流が発生する。広く知られている燃料電池にお
いては、カチオン交換膜の片面に正極としての多孔性電
極、他面に負極としての多孔性電極が、それぞれ一体に
接合され、純酸素もしくは空気が電池外部から正極に供
給され、水素が電池外部から負極に供給されて、次の反
応により発電される。 正極:O+4H++4e−→2HO (1) 負極:2H → 4H++4e− (2) 水電解セルにおいては、カチオン交換膜の両面に、主と
して白金電極が一体に接合され、その片方の電極が陰極
となり、他方の電極が陽極となり、次の反応により、水
の電解が起こる。 陽極:2HO→O+4H++4e− (3) 陰極:4H++4e−→2H (4)
[0003] In a fuel cell, an oxygen electrode is arranged on one side of a catalyst film and a cathode (hydrogen electrode) is arranged on the other side. When air is sent to the oxygen electrode side and hydrogen is sent to the cathode side, hydrogen is converted into hydrogen ions by the action of a catalyst. (H + ) and emits electrons (e ). When the electrons e flow to an external circuit toward the anode (air electrode), a direct current is generated. In a well-known fuel cell, a porous electrode as a positive electrode on one side of a cation exchange membrane and a porous electrode as a negative electrode on the other side are integrally bonded, and pure oxygen or air is supplied from the outside of the cell to the positive electrode. The hydrogen is supplied from the outside of the battery to the negative electrode, and power is generated by the following reaction. Positive electrode: O 2 + 4H ++ 4e− → 2H 2 O (1) Negative electrode: 2H 2 → 4H ++ 4e− (2) In a water electrolysis cell, a platinum electrode is mainly joined integrally on both sides of a cation exchange membrane, and one of the electrodes is The other electrode becomes the anode, and the next reaction causes the electrolysis of water. Anode: 2H 2 O → O 2 + 4H ++ 4e− (3) Cathode: 4H ++ 4e− → 2H 2 (4)

【0004】燃料電池は、水素の供給及び循環系が必須
であるため、電池系が一般に複雑かつ大がかりになる。
この点を解決するためのひとつの手段は、負極材料に水
素貯蔵合金を用いることである。水電解セルは、その反
応によって水素及び酸素が発生するが、その用途によっ
ては、酸素のみが利用され、水素が不要なことがある。
この場合にも、上述の水電解セルの陰極を、水素貯蔵合
金を主体にした電極で構成すれは、陽極では(1)式の
反応が起こり、陰極では次の反応により水素が発生しな
いことになる。 陰極:XH++M+Xe−→MHx(M:水素貯蔵合金) (5)
[0004] Since a fuel cell requires a hydrogen supply and circulation system, the cell system is generally complicated and large.
One means for solving this problem is to use a hydrogen storage alloy as a negative electrode material. In a water electrolysis cell, hydrogen and oxygen are generated by the reaction, but depending on the application, only oxygen is used and hydrogen may not be required.
Also in this case, when the cathode of the above-mentioned water electrolysis cell is constituted by an electrode mainly composed of a hydrogen storage alloy, the reaction of the formula (1) occurs at the anode, and no hydrogen is generated at the cathode by the following reaction. Become. Cathode: XH ++ M + Xe- → MHx (M: hydrogen storage alloy) (5)

【0005】[0005]

【発明が解決しようとする課題】水素吸蔵合金として
は、LaNi、MmNixAlyMnz(Mm:ミッ
シュメタル)、TiNi系等が知られているが、これら
の水素貯蔵合金を上述の目的に使用した場合、すなわち
強酸性を示すカチオン交換膜に一体に接合した際、一般
にその腐食がおこり、現実には使用不能である。しか
し、白金は高価で資源に限りがある。本発明は、燃料電
池の触媒である担持炭素材料としてフラーレン類を用
い、環境を整える(触媒膜に電流を流す、光照射等)こ
とにより、白金を用いなくとも触媒機能を発揮するよう
にした燃料電池を提供することを目的とする。
As the hydrogen storage alloy, LaNi 5 , MmNixAlyMnz (Mm: misch metal), TiNi type and the like are known. When these hydrogen storage alloys are used for the above-mentioned purpose, That is, when integrally bonded to a strongly acidic cation exchange membrane, it generally corrodes and cannot be used in practice. However, platinum is expensive and has limited resources. The present invention uses fullerenes as a supported carbon material which is a catalyst of a fuel cell, and performs a catalytic function without using platinum by preparing an environment (flowing current through a catalyst film, light irradiation, etc.). An object is to provide a fuel cell.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、触媒膜の一方に酸素極、他方に水素極を
配置し、触媒の作用で水素極と酸素極との間に直流電流
を発生させる燃料電池において、フラーレン類を触媒膜
とし、環境を整えて触媒機能を発揮できるようにしたも
のである。また、環境を整えるものとして、触媒膜に光
を照射し、または通電することにより、そのエネルギー
を利用して触媒能力を高めるようにす。環境を整える電
力は発生した電力の一部を用いることを特徴とするもの
である。このように、燃料電池の触媒に、白金を用い
ず、或いは極少量担持したフラーレン類(フラーレン、
金属内包フラーレン、多層カーボンナノチューブ、ナノ
グラファイバー、カーボンナノボーン、カーボンナノカ
プセルなど)を用いる。この燃料電池は、触媒膜の一方
に酸素極、他方に陰極(水素極)を配置し、酸素極側に
空気を送り、陰極側に水素を送り込むと、水素は触媒の
作用で水素イオン(H)に変わり、電子(e)を放
出する。この電子eが陽極(空気極)に向って外部の
回路に流れる際に直流電流が発生する。
In order to achieve the above object, the present invention provides an oxygen electrode on one side of a catalyst film and a hydrogen electrode on the other side of the catalyst film. In a fuel cell that generates an electric current, fullerenes are used as a catalyst film so that the environment can be adjusted and the catalyst function can be exhibited. In order to improve the environment, the catalyst film is irradiated with light or energized to utilize the energy to enhance the catalytic ability. The power for conditioning the environment is characterized by using a part of the generated power. Thus, fullerenes (fullerene,
Metal-encapsulated fullerenes, multi-walled carbon nanotubes, nanograph fibers, carbon nanobones, carbon nanocapsules, etc.). In this fuel cell, an oxygen electrode is arranged on one side of a catalyst film and a cathode (hydrogen electrode) is arranged on the other side. When air is sent to the oxygen electrode side and hydrogen is sent to the cathode side, hydrogen is converted into hydrogen ions (H + ) And emits electrons (e ). When the electrons e flow to an external circuit toward the anode (air electrode), a direct current is generated.

【0007】燃料電池の場合には、正極に従来公知の酸
素電極もしくは空気電極を用い、負極にフラーレン類の
電極を用いると、酸素(空気)−フラーレン電池が構成
される。フラーレン電極への水素の吸蔵は、電極を構成
する前でも後でもよい。電池系は密閉系にし、放電によ
ってフラーレン中の水素が消費されたら廃棄するような
一次電池タイプにすることも、電池に水素供給口を設
け、水素を電池外部から間欠的に供給して、繰り返し放
電することもできる。このようにすれは、複雑で大がが
りな循環系を常時電池に付設しておかなくてもすむとい
う点で、実用上、極めて便利である。また、フラ−レン
電極への水素の補給は、酸素電極(正極)として、例え
ば、白金触媒を担持したカーボンナノチュ−ブを主体と
する材料で構成し、いわゆる水素電極としても機能する
ような電極を用い、この正極に酸素もしくは空気を供給
する代わりに、電池外部から水素を供給し、この正極と
カーボンナノチュ−ブ電極(負極)との間に通電すれ
ば、負電極に水素がに吸蔵される。
In the case of a fuel cell, an oxygen (air) -fullerene battery is constituted by using a conventionally known oxygen electrode or air electrode as a positive electrode and using a fullerene-like electrode as a negative electrode. The storage of hydrogen in the fullerene electrode may be performed before or after forming the electrode. The battery system may be a closed system, and the primary battery type may be discarded if the hydrogen in the fullerenes is consumed by discharging. It can also be discharged. This is very practical in practice, since it is not necessary to always provide a complicated and large circulation system to the battery. For replenishing hydrogen to the fullerene electrode, the oxygen electrode (positive electrode) is made of, for example, a material mainly composed of a carbon nanotube carrying a platinum catalyst, and functions as a so-called hydrogen electrode. Using an electrode, instead of supplying oxygen or air to this positive electrode, hydrogen is supplied from the outside of the battery, and if electricity is supplied between this positive electrode and the carbon nanotube electrode (negative electrode), hydrogen is supplied to the negative electrode. Occluded.

【0008】[0008]

【実施例】[実施例1] 燃料電池の触媒に、白金を用
いず、或いは極少量担持したフラーレン類(フラーレ
ン、金属内包フラーレン、多層カーボンナノチューブ、
ナノグラファイバー、カーボンナノボーン、カーボンナ
ノカプセルなど)を用いる。触媒膜の一方に酸素極、他
方に水素極を配置し、触媒の作用で水素極と酸素極との
間に直流電流を発生させるが、フラーレン類の触媒機能
を発揮させる。その際、セパレータ内部に光源を設け、
環境を整えるため触媒に光、特に青色発光ダイオードに
より照射すると、フラーレンは、活性酸素を発生しやす
い等の性質をもつため、水素の分解、水の合成におい
て、優れた触媒機能を発生する。
EXAMPLES EXAMPLE 1 The fuel cell catalyst, without using platinum, or very small amount loaded with fullerenes (fullerene, metal-containing fullerenes, multi-walled carbon nanotubes,
Nanograph fiber, carbon nanobone, carbon nanocapsule, etc.). An oxygen electrode is disposed on one side of the catalyst film, and a hydrogen electrode is disposed on the other side. A direct current is generated between the hydrogen electrode and the oxygen electrode by the action of the catalyst, but the fullerenes exhibit a catalytic function. At that time, a light source is provided inside the separator,
When the catalyst is irradiated with light, in particular, a blue light emitting diode, to adjust the environment, fullerene has properties such as easy generation of active oxygen, and thus exhibits an excellent catalytic function in the decomposition of hydrogen and the synthesis of water.

【0009】[実施例2] 実施例1において、触媒膜
に通電する。フラーレンは通電により、白色発光するこ
とが知られており、通電するだけで環境が整えられ、そ
のエネルギーを利用して触媒能力を高める。また、環境
を整える電力は発生した電力の一部を用いる。このよう
にすると、白金を全く用いなくとも触媒機能が得られ、
白金の一酸化炭素被毒による特性劣化も起こらず、長く
使用できる。
[Embodiment 2] In Embodiment 1, a current is supplied to the catalyst film. It is known that fullerene emits white light when energized, and the environment is adjusted only by energizing, and the energy is used to enhance the catalytic ability. In addition, a part of generated power is used as power for conditioning the environment. In this way, a catalytic function can be obtained without using platinum at all,
It can be used for a long time without deterioration of characteristics due to platinum carbon monoxide poisoning.

【0010】[実施例3] カチオン交換膜の片面に、
正極としての白金を担持した多孔性カナボン電極を接合
し、他面に負極としての白金触媒を担持したフラーレン
を含む電極を接合して構成した、燃料電池を作製した。
電解質としてはたらくカチオン交換膜で、ここでは直径
50mm、厚み約0.2mmのパーフルオロカーボンス
ルフォン酸(商品名:ナフイオン117)を使用した。
金属触媒としての白金を2%担持した活性炭に、ディス
バージョンポリ4フッ化エチレンと、ナフイオン117
のアルコールと水との混合溶液を加えて結着して、ナフ
イオン117膜に接合したものである。負極には10%
の白金触媒を担持したフラーレンC60と、ディスバー
ジョンポリ4フッ化エチレンと、ナフイオン117のア
ルコールと水との混合溶液を加えて結着して、ナフイオ
ン117膜に接合したものである。正極・負極ともに直
径30mmとした。なお、電池を組み立てる場合には、
フラーレンC60中に水素ははとんど存在しない。この
燃料電池を使用するにあたっては、まず負極のフラーレ
ン中に水素を吸蔵させる必要がある。
[Example 3] On one side of a cation exchange membrane,
A fuel cell was manufactured in which a porous canabon electrode carrying platinum as a positive electrode was joined, and an electrode containing fullerene carrying a platinum catalyst as a negative electrode was joined to the other surface.
A cation exchange membrane that works as an electrolyte. In this case, perfluorocarbonsulfonic acid (trade name: Naphion 117) having a diameter of 50 mm and a thickness of about 0.2 mm was used.
Platinum as the metal catalyst 2% on activated carbon, and dispersions of polytetrafluoroethylene, Nafuion 117
Is added to a mixed solution of alcohol and water, bound and bonded to the Nafion 117 membrane. 10% for negative electrode
And fullerene C 60 carrying a platinum catalyst, and dispersions of polytetrafluoroethylene, and sintering wearing added a mixed solution of alcohol and water Nafuion 117 is obtained by joining the Nafuion 117 film. Both the positive electrode and the negative electrode had a diameter of 30 mm. When assembling the battery,
Hydrogen in fullerene C 60 is absent etc. tons. In using this fuel cell, first, it is necessary to store hydrogen in the fullerene of the negative electrode.

【0011】フラーレンを利用する燃料電池の高性能化
に際し、電極触媒は欠かすことはできない。特に、燃料
電池自動車の実現のためには、純水素を燃料に考える場
合でも、触媒膜の性能向上とには必須である。
Electrocatalysts are indispensable for improving the performance of fuel cells utilizing fullerenes. In particular, in order to realize a fuel cell vehicle, even when pure hydrogen is used as a fuel, it is essential to improve the performance of the catalyst film.

【0012】[0012]

【発明の効果】以上説明したように、本発明の燃料電池
は、燃料電池の触媒膜に、白金を用いず、或いは極少量
担持したフラーレン類を用いる。セパレータ内部の触媒
膜に通電するか、光源を設けて触媒膜に光を照射するこ
とにより、水素の分解、水の合成において、優れた触媒
機能を発生する。触媒膜に通電又は光照射する際のエネ
ルギー源は、燃料電池において発生した電力の一部を利
用する。このように、フラーレン類を触媒膜としたた
め、高分子膜の触媒を使用した場合のごとき強酸性の固
体高分子イオン導電体による腐食を受けないので、サイ
クル寿命のきわめて長い燃料電池が得られる。
As described above, in the fuel cell of the present invention, the catalyst film of the fuel cell does not use platinum or uses a fullerene supported in a very small amount. By supplying electricity to the catalyst film inside the separator or irradiating the catalyst film with light by providing a light source, an excellent catalytic function is generated in the decomposition of hydrogen and the synthesis of water. As an energy source for supplying electricity or irradiating light to the catalyst film, a part of electric power generated in the fuel cell is used. As described above, since the fullerenes are used as the catalyst membrane, they are not eroded by the strongly acidic solid polymer ion conductor as in the case of using a polymer membrane catalyst, so that a fuel cell having an extremely long cycle life can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA11 BA08A BA08B CC32 DA05 EA08 EC27 5H018 AA02 AS02 AS03 CC06 DD08 EE05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G069 AA11 BA08A BA08B CC32 DA05 EA08 EC27 5H018 AA02 AS02 AS03 CC06 DD08 EE05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 触媒膜の一方に酸素極、他方に水素極を
配置し、触媒の作用で水素極と酸素極との間に直流電流
を発生させる燃料電池において、フラーレン類を触媒膜
とし、環境を整えて触媒機能を発揮できるようにした燃
料電池。
1. A fuel cell in which an oxygen electrode is arranged on one side of a catalyst film and a hydrogen electrode is arranged on the other side, and a fullerene is used as a catalyst film in a fuel cell in which a direct current is generated between a hydrogen electrode and an oxygen electrode by the action of a catalyst. A fuel cell with an improved environment and a catalytic function.
【請求項2】 環境を整えるものとして、触媒膜に光を
照射し、または通電することにより、そのエネルギーを
利用して触媒能力を高めるようにした請求項1記載の燃
料電池。
2. The fuel cell according to claim 1, wherein the catalyst film is irradiated with light or energized so as to prepare an environment, thereby utilizing the energy to enhance the catalytic ability.
【請求項3】 環境を整える電力は発生した電力の一部
を用いることを特徴とする請求項1又は2記載の燃料電
池。
3. The fuel cell according to claim 1, wherein a part of the generated power is used as the power for conditioning the environment.
JP2001007905A 2000-12-18 2001-01-16 Fuel cell Pending JP2002252002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007905A JP2002252002A (en) 2000-12-18 2001-01-16 Fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-384120 2000-12-18
JP2000384120 2000-12-18
JP2001007905A JP2002252002A (en) 2000-12-18 2001-01-16 Fuel cell

Publications (1)

Publication Number Publication Date
JP2002252002A true JP2002252002A (en) 2002-09-06

Family

ID=26606030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007905A Pending JP2002252002A (en) 2000-12-18 2001-01-16 Fuel cell

Country Status (1)

Country Link
JP (1) JP2002252002A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109840A1 (en) * 2003-03-26 2004-12-16 Sony Corporation Electrode, method of forming the same, photoelectric conversion device, process for producing the same, electronic apparatus and process for producing the same
JP2005038818A (en) * 2003-06-30 2005-02-10 Junji Nakamura Carbonized molybdenum catalyst and its manufacturing method, as well as electrode for fuel cell and fuel cell utilizing the catalyst
JP2006228686A (en) * 2005-02-21 2006-08-31 Kaken:Kk Electrode material for fuel cell, and its manufacturing method
JP2010528403A (en) * 2006-03-30 2010-08-19 フォーダム ユニバーシティー Photocatalytic electrode and fuel cell
CN110661005A (en) * 2019-10-31 2020-01-07 宇石能源(南通)有限公司 Catalyst layer of proton exchange membrane fuel cell and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109840A1 (en) * 2003-03-26 2004-12-16 Sony Corporation Electrode, method of forming the same, photoelectric conversion device, process for producing the same, electronic apparatus and process for producing the same
US8035185B2 (en) 2003-03-26 2011-10-11 Sony Corporation Electrode, method of making same, photoelectric transfer element, method of manufacturing same, electronic device and method of manufacturing same
JP2005038818A (en) * 2003-06-30 2005-02-10 Junji Nakamura Carbonized molybdenum catalyst and its manufacturing method, as well as electrode for fuel cell and fuel cell utilizing the catalyst
JP2006228686A (en) * 2005-02-21 2006-08-31 Kaken:Kk Electrode material for fuel cell, and its manufacturing method
JP2010528403A (en) * 2006-03-30 2010-08-19 フォーダム ユニバーシティー Photocatalytic electrode and fuel cell
CN110661005A (en) * 2019-10-31 2020-01-07 宇石能源(南通)有限公司 Catalyst layer of proton exchange membrane fuel cell and preparation method thereof

Similar Documents

Publication Publication Date Title
US6706431B2 (en) Fuel cell
JP3719178B2 (en) Hydrogen gas production filling device and electrochemical device
KR0124985B1 (en) Akaline fuel cell
Zhang et al. A new fuel cell using aqueous ammonia-borane as the fuel
JP2004253385A (en) Catalyst for cathode of fuel battery
TW531928B (en) Fuel cell
JP2006019302A (en) Hydrogen storage-based rechargeable fuel cell system and method
US20020015869A1 (en) Liquid fuel cell
JP2015060665A (en) Air cell, negative electrode for air cell, and air cell unit
KR102319109B1 (en) Hybrid sodium-carbon dioxide secondary battery capable of obtaining energy storage along with high value-added product by electrochemical carbon dioxide reduction and secondary battery system comprising the same
JP2010146851A (en) Air battery
JP3576603B2 (en) Electrochemical cell and method of operating the same
JP2003178816A (en) Air secondary battery
JP4575783B2 (en) High current capacity battery
JP2002252002A (en) Fuel cell
WO2019144751A1 (en) Liquid metal fuel cell
US8318366B2 (en) Hydrogen generator and fuel cell using the same
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
WO2002027829A1 (en) Method of producing fuel cell
US20080318104A1 (en) Electrolyte solution for hydrogen generating apparatus and hydrogen generating apparatus comprising the same
US7045240B2 (en) Power generating apparatus having a proton conductor unit that includes a fullerene derivative
JP2002313401A (en) Fuel cell and method of feeding hydrogen and oxygen to fuel cell
JP2004349029A (en) Fuel cell system
Guo et al. Recent advances in Zn–CO2 batteries for the co-production of electricity and carbonaceous fuels
JP2015060667A (en) Air cell, negative electrode for air cell and air cell unit