JP2002248583A - Method and device for friction stir working - Google Patents
Method and device for friction stir workingInfo
- Publication number
- JP2002248583A JP2002248583A JP2001050357A JP2001050357A JP2002248583A JP 2002248583 A JP2002248583 A JP 2002248583A JP 2001050357 A JP2001050357 A JP 2001050357A JP 2001050357 A JP2001050357 A JP 2001050357A JP 2002248583 A JP2002248583 A JP 2002248583A
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- joining
- friction stir
- processing
- rotating tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、新規な摩擦攪拌加
工方法及び装置に関し、特に加工後による酸化及び変形
並びに加工によって生じる欠陥を防止し、被加工部の品
質を改善する摩擦攪拌加工方法とその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel friction stir processing method and apparatus, and more particularly, to a friction stir processing method for preventing oxidation and deformation after processing and defects caused by processing and improving the quality of a processed part. Regarding the device.
【0002】[0002]
【従来の技術】摩擦攪拌加工方法は、実質的に被加工物
の材質よりも硬い材質の回転ツール(金属棒)を加工部に
挿入し、この回転ツールを回転させながら移動するか又
は被加工物自体を移動することによって、回転ツールと
被加工物との問で発生する摩擦熱により接合又は加工す
る方法である。これは、特公表7-505090号公報(EP06154
80B1)で公知である。つまり、回転ツールと被加工物と
の摩擦熱による塑性流動現象を利用したもので、アーク
溶接のように被加工物を溶かして溶接するものではな
い。このため、金属の融点以下で接合できるなど多くの
利点がある。2. Description of the Related Art In a friction stir processing method, a rotary tool (metal rod) made of a material substantially harder than the material of a workpiece is inserted into a processing portion, and the rotary tool is moved while rotating or the workpiece is rotated. This is a method of joining or processing by moving frictionally by frictional heat generated between a rotary tool and a workpiece by moving the workpiece itself. This is disclosed in Japanese Patent Publication No. 7-505090 (EP06154).
80B1). That is, the method utilizes a plastic flow phenomenon caused by frictional heat between the rotating tool and the workpiece, and does not melt and weld the workpiece as in arc welding. For this reason, there are many advantages such as joining at a temperature lower than the melting point of the metal.
【0003】[0003]
【発明が解決しようとする課題】特公表7-505090号公報
の摩擦掩拝接合方法は、回転ツールと被加工物との問に
よって生じる摩擦熱によって接合または加工する。その
接合方法は特にアルミニウム合金に適している。しか
し、前記接合方法で被加工物を接合した場合、次のよう
な課題が生じる。The friction welding method disclosed in Japanese Patent Publication No. 7-505090 involves joining or processing by frictional heat generated by a problem between a rotary tool and a workpiece. The joining method is particularly suitable for aluminum alloys. However, when the workpieces are joined by the joining method, the following problems occur.
【0004】アルミニウム合金でも被加工物の接合長さ
が長い場合又は厚さが厚い場合、または被加工物の剛性
が高い銅又は鉄鋼を接合、又は加工する場合、回転ツー
ルと被加工物との摩擦熱が大きくなる。このため、接合
または加工後の変形(ひずみ)が大きくなり、変形に伴う
欠陥も生じやすくなる。さらに、前記回転ツールの温度
も高くなるため、熱的な破損も頻繁に生じる。When the joining length of the workpiece is long or thick even in the case of aluminum alloy, or when copper or steel with high rigidity of the workpiece is joined or machined, the rotating tool and the workpiece are connected to each other. The friction heat increases. For this reason, deformation (strain) after joining or processing is increased, and defects accompanying the deformation are likely to occur. Further, since the temperature of the rotating tool increases, thermal damage frequently occurs.
【0005】摩擦攪拌加工方法によって大気中又は水中
で加工する場合、接合部及び加工部の表面に空気又は水
分が直接接触するため、特に加工材表面の酸化が激し
く、製品としての品質及び美観の低下になる。これは特
に鉄系、チタン合金系、マグネシウム合金系、ジルコニ
ウム合金系の場合に顕著である。[0005] When processing in the air or water by the friction stir processing method, air or moisture comes into direct contact with the surface of the joint and the processed part, so that the surface of the processed material is particularly severely oxidized, and the quality and aesthetic appearance of the product are poor. Will drop. This is particularly remarkable in the case of iron, titanium alloy, magnesium alloy, and zirconium alloy.
【0006】本発明の目的は、接合及び加工後の変形及
び変形に伴う接合欠陥並びに酸化を防止でき、長時間の
接合においても熱的な破損を減少できる摩擦攪拌加工方
法及びその装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a friction stir processing method and apparatus capable of preventing deformation after bonding and working and bonding defects due to deformation and oxidation, and reducing thermal damage even during long-time bonding. It is in.
【0007】[0007]
【課題を解決するための手段】本発明は、摩擦攪拌によ
って大気中又は液体中で接合又は加工する場合、回転ツ
ールの先端部の接合部又は加工部近傍を空気や空気中の
水分を遮蔽するシールド管で覆い、前記シールド管の中
を不活性ガスで満し、接合又は加工の最中常に接合部又
は加工部に噴射させるた状態で接合または加工すること
によって達成できる。一方、液体中での接合又は加工と
して、水中、油中、ガスなどの冷却材の中で前記摩擦攪
拌加工方法によって接合する場合、回転ツール及び加工
部近傍を前記冷却材を遮蔽するシールド管で覆い、前記
シールド材の中を不活性ガスで満たした状態で接合また
は加工することによって達成できる。SUMMARY OF THE INVENTION According to the present invention, when joining or working in the air or liquid by friction stirring, the joining portion at the tip of the rotary tool or the vicinity of the working portion is shielded from air or moisture in the air. It can be achieved by covering with a shield tube, filling the inside of the shield tube with an inert gas, and joining or processing in such a state that it is always jetted to the joint or the processing portion during the joining or processing. On the other hand, when joining by friction stir processing in a coolant such as water, oil, gas, etc. as a joining or working in a liquid, a rotating tool and a shield tube that shields the coolant near the working part are used. It can be achieved by covering and joining or processing the shield material in a state filled with an inert gas.
【0008】本発明は、被加工物よりも硬い材質の回転
ツールを回転させながら前記被加工物に挿入し、前記回
転ツールと被加工物との間で発生する摩擦熱によって前
記被加工物を大気中又は液体中にて接合又は加工する摩
擦攪拌加工方法において、前記接合又は加工の最中常に
接合部又は加工部の大気又は液体を非酸化性ガスによっ
て排除することを特徴とする。According to the present invention, a rotating tool made of a material harder than the workpiece is inserted into the workpiece while rotating, and the workpiece is heated by frictional heat generated between the rotating tool and the workpiece. In a friction stir processing method of joining or processing in air or liquid, the atmosphere or liquid in the joint or processed part is always removed by a non-oxidizing gas during the joining or processing.
【0009】又、本発明は、被加工物よりも硬い材質の
回転ツールを回転させながら前記被加工物に挿入し、前
記回転ツールと被加工物との間で発生する摩擦熱によっ
て前記被加工物を大気中にて接合又は加工する摩擦攪拌
加工方法において、前記接合又は加工の最中常に接合部
又は加工部の大気又は液体を非酸化性ガスによって排除
すると共に、前記接合部又は加工部の前記非酸化性ガス
の外側に液体冷媒を噴射して冷却しながら前記接合又は
加工することを特徴とする。The present invention also provides a rotating tool, which is made of a material harder than the workpiece, is inserted into the workpiece while rotating the workpiece, and frictional heat generated between the rotating tool and the workpiece causes the workpiece to rotate. In the friction stir processing method of joining or processing objects in the atmosphere, the air or liquid of the joint or the processing part is always eliminated by a non-oxidizing gas during the joining or the processing, and the joint or the processing part is removed. The joining or processing may be performed while injecting a liquid refrigerant to the outside of the non-oxidizing gas for cooling.
【0010】前記非酸化性ガスを前記回転ツールの前記
挿入部分の全周を覆いながら前記被加工物表面に噴射さ
せること、又、前記液体冷媒の噴射を前記接合又は加工
方向の前後の少なくとも一方で行うことが好ましい。Injecting the non-oxidizing gas onto the surface of the workpiece while covering the entire circumference of the insertion portion of the rotary tool, and injecting the liquid refrigerant at least one of before and after in the joining or processing direction. It is preferable to carry out in.
【0011】本発明は、被加工物よりも硬い材質の前記
被加工物への挿入部と該挿入部より大径のショルダー部
とを有する回転ツールを回転させながら被加工物に挿入
し、前記回転ツールと被加工物との問で発生する摩擦熱
によって前記被加工物を大気中又は液体中にて接合又は
加工する摩擦攪拌加工装置において、前記回転ツールは
接合部又は加工部の大気又は液体を非酸化性ガスによっ
て排除するシールド手段を備えていることを特徴とする
更に、本発明は、被加工物よりも硬い材質の前記被加工
物への挿入部と該挿入部より大径のショルダー部とを有
する回転ツールを回転させながら被加工物に挿入し、前
記回転ツールと被加工物との問で発生する摩擦熱によっ
て前記被加工物を大気中にて接合又は加工する摩擦攪拌
加工装置において、前記回転ツールは接合部又は加工部
の大気を非酸化性ガスによって排除するシールド手段
と、該シールド手段の外側に液体冷媒を噴射させる液体
冷媒噴射手段とを備えていることを特徴とする。According to the present invention, a rotating tool having an insertion portion of a material harder than the workpiece and inserted into the workpiece and a shoulder portion having a larger diameter than the insertion portion is inserted into the workpiece while rotating. In a friction stir processing apparatus that joins or processes the workpiece in the air or liquid by frictional heat generated between the rotary tool and the workpiece, the rotary tool is configured to be connected to the atmosphere or liquid at a joint or processing part. In addition, the present invention is characterized in that the present invention is characterized in that the present invention is characterized in that the present invention provides an insertion portion of the material harder than the workpiece to the workpiece and a shoulder having a larger diameter than the insertion portion. A friction stir processing apparatus that inserts a rotary tool having a portion into a workpiece while rotating the workpiece, and joins or processes the workpiece in the atmosphere by frictional heat generated between the rotary tool and the workpiece. At The rotary tool is characterized in that it comprises a shielding means for eliminating the atmosphere of the joint or processing unit by a non-oxidizing gas, a liquid refrigerant injection means for injecting a liquid refrigerant to the outside of the shield means.
【0012】前記シールド手段は前記回転ツールの前記
ショルダー部の全周を覆い、前記非酸化性ガスを前記被
加工物表面に噴射させるように前記回転ツールに設けら
れていること、又、前記液体冷媒噴射手段は前記接合又
は加工の方向の前後の少なくとも一方に備えていること
が好ましい。[0012] The shield means is provided on the rotary tool so as to cover the entire circumference of the shoulder portion of the rotary tool, and to spray the non-oxidizing gas onto the surface of the workpiece. It is preferable that the refrigerant injection means is provided at least one of before and after in the joining or processing direction.
【0013】[0013]
【作用】回転ツール及び加工部近傍をシールド管で覆
い、前記シールド管の中を不活性ガスで満した状態で接
合または加工することによって回転ツール及び加工部近
傍を空気中の酸素、窒素、水分から遮蔽できる。このた
め、接合部及び加工部の酸化、ぜい化、硬化などを防止
できる。The rotary tool and the vicinity of the processing portion are covered with a shield tube, and the shield tube is joined or processed in a state filled with an inert gas. Can be shielded from For this reason, oxidation, embrittlement, hardening, etc. of a joined part and a processed part can be prevented.
【0014】一方、水中またはオイルまたはガスなどの
冷却材の中で接合または加工する場合、前記回転ツール
及び加工部近傍を前記冷却材を遮蔽するシールド管で覆
い、前記シールド管の中を不活一性ガスで満たした状態
で接合または加工することにより前記冷却材に直接接触
することなく加工できる。このため、水中においても接
合または加工部に酸化、ぜい化、硬化などを発生するこ
となく、接合部および加工部以外の部分を冷却材で効率
的に冷却できる。従って、加工部材の温度、変形を減少
できる。さらに回転ツールの熱的損傷も低減できる。On the other hand, when joining or processing in water or in a coolant such as oil or gas, the rotary tool and the vicinity of the processing portion are covered with a shield tube for shielding the coolant, and the inside of the shield tube is inactivated. By joining or processing in a state filled with the unidirectional gas, processing can be performed without directly contacting the coolant. Therefore, even in water, portions other than the joint and the processed portion can be efficiently cooled by the coolant without generating oxidation, embrittlement, hardening, etc. in the joined or processed portion. Therefore, the temperature and deformation of the processed member can be reduced. Further, thermal damage to the rotating tool can be reduced.
【0015】[0015]
【発明の実施の形態】(実施例1)図1はアルミニウム
合金からなる接合材を大気中で摩擦撹絆接合する場合の
実施例を示す断面図である。前記回転ツール1は回転し
た状態で前記細い部分が被接合材4の接合部5に挿入さ
れ、回転した状態で接・合線方向に移動することにより
摩擦熱と接合材の塑性流現象で接合される。本発明では
回転ツール1及び接合部の近傍から大気の空気または水
分を遮蔽するため、回転ツール1をシールド管2で覆い、
前記シールド管2の中にアルゴンガス3を流した状態で接
合する。前記回転ツール1の先端部分は細く加工されて
いる。この先端部の直径は5mm、太い部分の径は15m
mである。ここで、前記回転ツール1を覆うシールド管2
の内径は前記回転ツールの外径より大きい50mmである。
回転ツール1は、被接合材4に挿入される被接合材4より
硬い工具鋼等よりなる挿入部と、挿入部と同等の材質で
それより大径のショルダー部とを有するものである。(Embodiment 1) FIG. 1 is a sectional view showing an embodiment in which a joining material made of an aluminum alloy is friction stir welded in the air. When the rotating tool 1 is rotated, the thin portion is inserted into the joining portion 5 of the material 4 to be joined, and moves in a tangent / joining direction while rotating, thereby joining by friction heat and a plastic flow phenomenon of the joining material. Is done. In the present invention, in order to shield the air or moisture of the atmosphere from the vicinity of the rotating tool 1 and the joint, the rotating tool 1 is covered with a shield tube 2,
Joining is performed with argon gas 3 flowing through the shield tube 2. The tip of the rotary tool 1 is thinly processed. The diameter of this tip is 5 mm and the diameter of the thick part is 15 m
m. Here, a shield tube 2 covering the rotating tool 1
Is 50 mm larger than the outer diameter of the rotary tool.
The rotary tool 1 has an insertion portion made of tool steel or the like which is harder than the material 4 to be inserted into the material 4 to be joined, and a shoulder portion having the same material as the insertion portion and a larger diameter.
【0016】なお、前記シールド管2は接合の過程で300
℃以上の高温になるため、耐熱牲のカーボン繊維を布状
に成型して造られている。アルゴンガスは接合の問、連
続的に流され、大気中に放出される。ここで、アルガゴ
ンガスの流量を調節することによりシールド管の内部圧
力を大気の圧力より高くキープできる。これによって、
回転ツール1と接合部5を大気から遮蔽できるため、回転
ツール1と接合部5の表面の酸化を防止できる。さらに、
回転ツール1の熱的損傷の減少及び接合後の接合材4の変
形を減少できる。本実施例で用いた接合材4はその厚さ8
mm、幅が500mm、長さ5000mmのアルミニウム合金(JIS規
格A5083)、回転ツールの回転数は1000rpm、移動速度は3
00mm/min、アルゴンガス流量は20リットル/minである。The shield tube 2 is 300
Since the temperature becomes higher than ℃, it is made by molding heat-resistant carbon fiber into a cloth. Argon gas is continuously flowed at the time of bonding and released into the atmosphere. Here, the internal pressure of the shield tube can be kept higher than the atmospheric pressure by adjusting the flow rate of the argon gas. by this,
Since the rotating tool 1 and the joint 5 can be shielded from the atmosphere, oxidation of the surfaces of the rotating tool 1 and the joint 5 can be prevented. further,
Thermal damage to the rotary tool 1 and deformation of the bonding material 4 after bonding can be reduced. The bonding material 4 used in this embodiment has a thickness 8
mm, width 500mm, length 5000mm aluminum alloy (JIS standard A5083), rotation speed of rotating tool is 1000rpm, moving speed is 3
00 mm / min and the flow rate of argon gas is 20 l / min.
【0017】(実施例2)本実施例では実施例1と同様
の本発明によってマグネシウム合金、ジルコニウム合
金、鉄合金の各々を大気中において突合せ接合する場合
について説明する。実施例1と同様に回転ツールと接合
部近傍を大気の空気又は水分から遮蔽するため、回転ツ
ールと接合部近傍をシールド管で覆い、前記シールド材
の中にアルゴンガスを流した状態で接合する。この結
果、いずれの接合材も表面に酸化と欠陥の見られない良
好な接合体が得られることを確認している。(Embodiment 2) In this embodiment, a description will be given of a case where a magnesium alloy, a zirconium alloy, and an iron alloy are butt-joined in the air according to the present invention as in Embodiment 1. In order to shield the vicinity of the rotating tool and the joint from the air or moisture of the atmosphere in the same manner as in the first embodiment, the rotating tool and the vicinity of the joint are covered with a shield tube, and the joining is performed in a state in which argon gas flows in the shielding material. . As a result, it has been confirmed that any of the bonding materials can provide a good bonded body having no oxidation and no defects on the surface.
【0018】(実施例3)図2は鋳造によって製作され
た鉄合金からなる円筒管6を大気中で加工部の近傍に水
をかけながら摩擦攪拌加工する場合の実施例を示す斜視
図である。本実施例では前記鋳造合金の内部に存在する
気泡欠陥の補修が目的である。前記円筒管6の内部に存
在する気泡欠陥は前記回転ツール1の回転によって攪拌
と圧縮されて無くなる。回転ツール1及び加工部の近傍
から水分を遮蔽するため、回転ツール1をシールド管2で
覆い、前記シールド管2の中にアルゴンガス3を流し、円
筒管6の加工部表面にアルゴンガス3を噴射させた状態で
加工する。さらに加工部の近傍を強制的に冷却するた
め、アルゴンガス3の外側で加工部の近傍に水7を注ぎな
がら加工する。(Embodiment 3) FIG. 2 is a perspective view showing an embodiment in which a cylindrical tube 6 made of an iron alloy manufactured by casting is subjected to friction stir processing while sprinkling water near the processing portion in the atmosphere. . The purpose of the present embodiment is to repair a bubble defect existing inside the cast alloy. Bubble defects existing inside the cylindrical tube 6 are agitated and compressed by the rotation of the rotary tool 1 and disappear. In order to shield the rotary tool 1 and the vicinity of the processing part from moisture, the rotary tool 1 is covered with a shield tube 2, and argon gas 3 is flowed into the shield tube 2, and argon gas 3 is applied to the surface of the processing part of the cylindrical tube 6. Process in the state of being sprayed. Further, in order to forcibly cool the vicinity of the processing part, the processing is performed while pouring water 7 near the processing part outside the argon gas 3.
【0019】前記回転ツール1の先端部分は細く加工さ
れ、先端部の径5mmは、太い部分の径15mmである。ここ
で、前記回転ツール1を覆うシールド管2の内径は前記
回転ツールユの外径よりわずかに大きい50mmである。な
お、前記シールド管2は耐熱牲のカーボン繊維を布状に
成型して造られている。前記回転ツール1は回転した状
態で前記細い部分が加工部に挿入した後、円筒管6を回
転して移動することにより加工される。The tip of the rotary tool 1 is processed to be thin, and the diameter of the tip is 5 mm and the diameter of the thick part is 15 mm. Here, the inner diameter of the shield tube 2 that covers the rotary tool 1 is 50 mm, which is slightly larger than the outer diameter of the rotary tool. The shield tube 2 is formed by molding heat-resistant carbon fiber into a cloth shape. The rotary tool 1 is processed by rotating and moving the cylindrical tube 6 after the thin portion is inserted into the processing portion in a rotated state.
【0020】アルゴンガス3は加工の間、常時流され、
接合材とシールド管の空隙から外部に放出される。この
アルゴンガス3の流量を調節することにより前記シール
ド管1の内部の圧力を白動的に調節できる。これによ
り、加工部の近傍に外部からの水の侵入を遮蔽できる。The argon gas 3 is constantly flowed during processing,
It is released to the outside from the gap between the bonding material and the shield tube. By adjusting the flow rate of the argon gas 3, the pressure inside the shield tube 1 can be dynamically adjusted. Thereby, invasion of water from the outside in the vicinity of the processed portion can be shielded.
【0021】本実施例における回転ツール1の回転数は1
OOOrpm、円筒管の移動速度は300mm/minである。本発明
によって前記鋳造合金の表面の酸化を防止し、かつ、前
記鋳造合金の内部に存在する気泡欠陥が補修できる。さ
らに、アルゴンガス3と水冷7によって回転ツール1と接
合部近傍を効率的に冷却できるため、回転ツール1の熱
的損傷の減少及び加工後の円筒管6の変形を減少でき
る。In this embodiment, the rotation speed of the rotary tool 1 is 1
OOOrpm, the moving speed of the cylindrical tube is 300mm / min. According to the present invention, oxidation of the surface of the casting alloy can be prevented, and a bubble defect existing inside the casting alloy can be repaired. Furthermore, since the rotating tool 1 and the vicinity of the joint can be efficiently cooled by the argon gas 3 and the water cooling 7, thermal damage to the rotating tool 1 and deformation of the cylindrical tube 6 after processing can be reduced.
【0022】(実施例4)図3は、Nb-Ti合金からなる
超伝導線材8が純銅からなる安定化材9の中に埋め込まれ
た超伝導コイルを水中10で接合する場合の断面図であ
る。Nb-Ti合金の超電導線材8は300℃以上の温度では超
電導特性が失われるため、30ぴC以下で接合する必要が
ある。このため、本実施例では10℃の水槽11の中で摩擦
撹絆接合するものである。(Embodiment 4) FIG. 3 is a cross-sectional view of a case where a superconducting coil in which a superconducting wire 8 made of an Nb-Ti alloy is embedded in a stabilizer 9 made of pure copper is joined in water 10. is there. Since the superconducting wire 8 of the Nb-Ti alloy loses superconducting properties at a temperature of 300 ° C. or higher, it must be joined at 30 ° C. or lower. For this reason, in this embodiment, friction stir welding is performed in the water tank 11 at 10 ° C.
【0023】本実施例においては、前記回転ツール1を
透明なアクリル系の筒から造られるシールド管2で覆
い、このシールド管2の中にアルゴンガス3を流した状態
で水中で接合する。回転ツール1の先端部分は細く加工
され、先端部の径2mmは、太い部分の径6mmである。この
細い部分が銅安定化材9の突合せ接合部に挿入され、回
転しながら接合線方向に移動して接合される。なお、回
転ツール1の外径は6mmのため、前記回転ツール1.覆うシ
ールド管2の内径は前記回転ツールの外径より大きい15m
mである。In this embodiment, the rotary tool 1 is covered with a shield tube 2 made of a transparent acrylic tube, and is joined in water with an argon gas 3 flowing through the shield tube 2. The tip of the rotary tool 1 is processed to be thin, and the diameter of the tip is 2 mm and the diameter of the thick part is 6 mm. This thin portion is inserted into the butt joint of the copper stabilizing material 9 and moves in the joining line direction while rotating to be joined. Since the outer diameter of the rotating tool 1 is 6 mm, the inner diameter of the rotating tool 1. The shield tube 2 to cover is 15 m larger than the outer diameter of the rotating tool.
m.
【0024】アルゴンガス3は接合の間、連続的に流さ
れ、シールド管2と安定化材9との表面の空隙から順次水
中に排出される。ここで、アルゴンガス3の流量を調節
することによりシールド管2の中の圧力を外部の水圧よ
り高くできるため、シールド材3の中には水の侵入はな
い。従って、接合部の近傍は水との接触がないため、安
定化材の純銅の表面の酸化は全く見られない。本実施例
では回転ツール1の温度は300℃以下、超伝導線材8の近
くの温度は200℃以下に冷却されるため、超電導特性を
損なうことなく接合できる。さらに、接合後の変形も本
発明を実施しない場合に比べて1/5以下に減少できる。
なお、回転ツールの回転数は1O00rpm、移動速度は500mm
/min、アルゴンガスの流量は30リッター/minである。The argon gas 3 is continuously flowed during the bonding, and is sequentially discharged into the water from the gaps on the surfaces of the shield tube 2 and the stabilizing material 9. Here, by adjusting the flow rate of the argon gas 3, the pressure in the shield tube 2 can be made higher than the external water pressure, so that no water enters the shield material 3. Therefore, since there is no contact with water in the vicinity of the joint, no oxidation of the surface of the pure copper as the stabilizing material is observed. In the present embodiment, the temperature of the rotating tool 1 is cooled to 300 ° C. or less, and the temperature near the superconducting wire 8 is cooled to 200 ° C. or less, so that the joining can be performed without impairing the superconducting characteristics. Furthermore, deformation after bonding can be reduced to 1/5 or less as compared with the case where the present invention is not carried out.
The rotation speed of the rotating tool is 100 rpm and the moving speed is 500 mm
/ min, the flow rate of argon gas is 30 liter / min.
【0025】(実施例5)接合材としてマグネシウム合
金、ジルコニウム合金、鉄合金の各々を水中で摩擦攪拌
接合する実施例について説明する。本実施例では前記実
施例4と同じく回転ツール及び接合部近傍を水から遮蔽
するため、回転ツールと接合部近傍を透明なアクリル製
のシールド管で覆い、前記シールド管の中にアルゴンガ
スを流した状態で接合する。この結果、接合材の表面に
酸化と変形の見られない良好な接合体が得られる。(Embodiment 5) An embodiment in which each of a magnesium alloy, a zirconium alloy and an iron alloy as a joining material is friction stir welded in water will be described. In this embodiment, as in the fourth embodiment, the rotary tool and the joint are shielded from water in order to shield the vicinity of the rotary tool and the joint from water.Around the rotary tool and the joint are covered with a transparent acrylic shield tube, and argon gas is supplied into the shield tube. Join in the state. As a result, a good joined body having no oxidation and deformation on the surface of the joining material can be obtained.
【0026】(実施例6)本実施例では厚さ40mm、幅10
0mm、長さ500の鋳造で造られたアルミニウム合金(JIS規
格ADC1O)の内部に存在する気泡欠陥を本発明によって水
中で補修する場合について説明する。前記アルミニウム
合金の内部に存在する気泡欠陥は前記回転ツールの回転
によって前記合金の内部が攪拌・圧縮されるため無くな
る。本実施例においは前記回転ツールを金属繊維を布状
に成型してて造られたシールド管で覆い、このシールド
管の中に窒素ガスを流した状態で水中で補修する。本実
施例における回転ツールの外径は30mmのため、前記回転
ツーを覆うシールド管の内径は前記回転ツールの外径よ
り大きい50mmである。(Embodiment 6) In this embodiment, the thickness is 40 mm and the width is 10 mm.
A case in which a bubble defect existing inside an aluminum alloy (JIS standard ADC1O) made by casting of 0 mm and length of 500 is repaired in water by the present invention will be described. Bubble defects existing in the aluminum alloy are eliminated because the inside of the alloy is agitated and compressed by the rotation of the rotating tool. In this embodiment, the rotary tool is covered with a shield tube made by molding a metal fiber into a cloth shape, and is repaired in water with nitrogen gas flowing through the shield tube. Since the outer diameter of the rotary tool in this embodiment is 30 mm, the inner diameter of the shield tube covering the rotary tool is 50 mm larger than the outer diameter of the rotary tool.
【0027】ここで、シールド内の圧力はアルゴンガス
の流量を調節することにより水中の水圧より高く保持で
きるため、前記シールド管の中には水の侵入はない。従
って、加工部の近傍は水との接触がないため、前記アル
ミニウム合金表面及び補修後の内部にも酸化は全く見ら
れない。また、補修後の変形も本発明を実施しない場合
に比べて1/10以下に減少できる。さらに、回転ツールも
窒素ガスで強制的に冷却されるため、回転ツールの温度
は300℃以下にキープできる。従って、回転ツールの熱
的な損傷もない。本発明によって補修したアルミニウム
合金を白動車用の部品として適用できる。Here, since the pressure in the shield can be maintained higher than the water pressure in water by adjusting the flow rate of the argon gas, no water enters the shield tube. Accordingly, since there is no contact with water in the vicinity of the processed portion, no oxidation is observed on the surface of the aluminum alloy and the inside after the repair. Further, the deformation after the repair can be reduced to 1/10 or less as compared with the case where the present invention is not carried out. Further, since the rotating tool is also forcibly cooled by the nitrogen gas, the temperature of the rotating tool can be kept at 300 ° C. or less. Therefore, there is no thermal damage to the rotating tool. The aluminum alloy repaired by the present invention can be applied as a part for a white moving vehicle.
【0028】(実施例7)図4に示す本実施例では、厚
さ50mm、高さ6000mm、直径5000mmの円筒状のステレンス
製容器の表面近傍に存在する微小な亀裂を水中で補修す
る場合について説明する。前記ステンレス鋼12の表面に
発生している亀裂欠陥13は、亀裂部13を前記回転ツール
1の回転と移動によって亀裂部が攪拌と圧縮されて無く
なる。図4に示すように、回転ツール1はステンレス鋼1
2の断面に対して横向き(水平)方向に配置されている。
前記回転ツール1を覆うシールド管2は耐熱製の透明なガ
ラスで造られている。シールド管2は先端部が末広がり
のラッパ状である。(Embodiment 7) In this embodiment shown in FIG. 4, a case in which a minute crack existing near the surface of a cylindrical stainless steel container having a thickness of 50 mm, a height of 6000 mm and a diameter of 5000 mm is repaired in water. explain. Crack defect 13 occurring on the surface of the stainless steel 12, the crack 13 is formed by the rotating tool.
By the rotation and movement of 1, the crack is agitated and compressed and disappears. As shown in FIG. 4, the rotating tool 1 is made of stainless steel 1
2 are arranged in a horizontal (horizontal) direction with respect to the cross section.
The shield tube 2 covering the rotary tool 1 is made of heat-resistant transparent glass. The shield tube 2 is in the shape of a trumpet whose tip end is widened.
【0029】これにより加工中の加工状態を観察でき
る、このシールド管2の中にアルゴンガス3を流した状態
で水中で亀裂を補修する。本実施例こおける回転ツール
1の外径は15mmのため、前記回転ツール1を覆うシール
ド管2の内径は前記回転ツールの外径より大きい50mmで
ある。アルゴンガス3は前記シールド管2内に連続的に
流され、シールド管2と前記ステンレス合金表面12との
空隙から順次、水中に排出される。ここで、シールド管
の中には圧カセンサ、温度センサ、湿度センサさらに加
工状態を観察するためのCCDカメラが配置されている。
これにより、加工過程の加工状態の物理的情報並びに肉
眼的観察ができる。Thus, the processing state during the processing can be observed. The crack is repaired in water with the argon gas 3 flowing in the shield tube 2. Since the outer diameter of the rotary tool 1 in this embodiment is 15 mm, the inner diameter of the shield tube 2 covering the rotary tool 1 is 50 mm larger than the outer diameter of the rotary tool. The argon gas 3 is continuously flown into the shield tube 2 and is sequentially discharged into water from a gap between the shield tube 2 and the stainless alloy surface 12. Here, a pressure sensor, a temperature sensor, a humidity sensor, and a CCD camera for observing a processing state are arranged in the shield tube.
Thereby, physical information and visual observation of the processing state in the processing process can be obtained.
【0030】例えば、水中において回転ツール1の水深
さが変化した場合、シールド管の内部の圧力はアルゴン
ガスの流量を白動的に調節することにより常に水圧より
高く保持できる。このため、前記シールド管の中には水
の侵入はない。従って、亀裂部の近傍は水との接触がな
いため、前記ステンレス鋼及び補修後の内部にも酸化と
欠陥は全く見られない。さらに、回転ツールの温度は30
0℃以下に冷却されるため長い時間の間、熱的な損傷も
ない。なお、本発明では、回転ツールだけでなく回転ツ
ールの回転と移動用の駆動機構さらに一部の制御機構も
シールド管で覆われ、水の浸入を防止する機構が設けら
れている。さらに、前記摩擦攪拌加工装置、水シールド
機構、起動機構は上下、左右の移動が可能なロボットに
取付けられ、原子炉用機器の内部及び船舶などの欠陥の
補修または接合を水中で効率的にできる。For example, when the water depth of the rotary tool 1 changes in the water, the pressure inside the shield tube can always be kept higher than the water pressure by adjusting the flow rate of the argon gas. Therefore, there is no intrusion of water into the shield tube. Therefore, there is no contact with water in the vicinity of the crack, and no oxidation and defects are seen in the stainless steel and the inside after repair. In addition, the temperature of the rotating tool is 30
There is no thermal damage for a long time because it is cooled below 0 ° C. In the present invention, not only the rotating tool but also a drive mechanism for rotating and moving the rotating tool and a part of the control mechanism are covered with the shield tube, and a mechanism for preventing water from entering is provided. Further, the friction stir processing apparatus, the water shield mechanism, and the starting mechanism are mounted on a robot that can move up and down, left and right, and can repair or join a defect inside the equipment for a reactor and a ship efficiently underwater. .
【0031】(実施例8)本発明を蒸気タービン翼の亀
裂の補修への適用例について説明する。図5は摩擦攪拌
加工方法で蒸気タービン翼の亀裂を補修する場合の斜視
図を示す。前記タービン翼14の表面近傍に発生している
亀裂欠陥13は、亀裂部を前記回転ツール1の回転と移動
によって亀裂部が攪拌と圧縮されて無くなる。前記回転
ツール1を覆うシールド管2は耐熱製の透明なガラスで造
られている。これにより加工中の加工状態を観察でき
る。このシールド管2の中にアルゴンガス3を流した状
態で大気中で亀裂を補修する。シールド管2は先端が末
広がりのラッパ状である。(Embodiment 8) An example in which the present invention is applied to repair of a crack in a steam turbine blade will be described. FIG. 5 is a perspective view showing a case where a crack in a steam turbine blade is repaired by a friction stir processing method. The crack defect 13 generated near the surface of the turbine blade 14 is eliminated by agitating and compressing the crack portion by rotation and movement of the rotary tool 1. The shield tube 2 covering the rotary tool 1 is made of heat-resistant transparent glass. Thereby, the processing state during the processing can be observed. Cracks are repaired in the atmosphere with the argon gas 3 flowing through the shield tube 2. The shield tube 2 is in the shape of a trumpet whose tip is widened.
【0032】本実施例こおける回転ツール1の外径はlOm
mのため、前記回転ツール1覆うシールド材3の内径は前
記回転ツールの外径より大きい40mmである。アルゴンガ
ス3は前記シールド管ユ内に連続的に流され、シールド
管2と前記タービン翼14の表面との空隙から順次大気中
に排出される。ここで、アルゴンガスの流量を調節する
ことによりシールド管の中の圧力は常に大気の圧力より
高い状態キープすることができる。このため、前記シー
ルド管2の中に大気中の空気や水分の侵入はない。従っ
て、亀裂部の近傍は空気や水との接触がないため、加工
部近傍の表面酸化が防止できる。さらに、回転ツールの
温度は300℃以下に冷却されため長い時間の間、熱的な
損傷もない。なお、本実施例では、前記摩擦攪拌加工装
置、シールド機構、駆動機構は上下、左右の移動がか可
能なロボットに取付けられ、前記タービン翼の表面形状
に沿って移動する。なお、前記加工装置を固定して前記
タービン翼を移動ロボットに取付けて移動しても本目的
を達成できる。The outer diameter of the rotary tool 1 in this embodiment is lOm
m, the inner diameter of the shield member 3 covering the rotating tool 1 is 40 mm larger than the outer diameter of the rotating tool. The argon gas 3 is continuously flowed into the shield tube U, and is sequentially discharged into the atmosphere from a gap between the shield tube 2 and the surface of the turbine blade 14. Here, by adjusting the flow rate of the argon gas, the pressure in the shield tube can always be kept higher than the atmospheric pressure. Therefore, there is no invasion of air or moisture in the atmosphere into the shield tube 2. Therefore, since there is no contact with air or water near the cracked portion, surface oxidation near the processed portion can be prevented. Further, since the temperature of the rotating tool is cooled below 300 ° C., there is no thermal damage for a long time. In this embodiment, the friction stir processing apparatus, the shield mechanism, and the drive mechanism are attached to a robot that can move up and down, left and right, and move along the surface shape of the turbine blade. This object can also be achieved by fixing the processing device and moving the turbine blade by attaching it to a mobile robot.
【0033】[0033]
【発明の効果】本発明によれば、接合及び加工後の変形
並びに変形に伴う接合欠陥を防止でき、又加工材の酸
化、ぜい化、硬化などの特性の劣化が防止できる。更
に、ジルコニウム合金、チタン合金、マグネシウム合金
などの酸化性が大きい金属の加工において加工後の酸化
を水中で行うことによって防止できる。一方、回転ツー
ルを効率的に冷却できるため、長時間の接合においても
熱的な破損を減少できる。According to the present invention, it is possible to prevent deformation after bonding and processing and bonding defects due to the deformation, and to prevent deterioration of properties such as oxidation, embrittlement, and hardening of the processed material. Furthermore, in the processing of highly oxidizable metals such as zirconium alloys, titanium alloys, and magnesium alloys, it is possible to prevent oxidation after processing in water. On the other hand, since the rotating tool can be cooled efficiently, thermal damage can be reduced even during long-time joining.
【図1】 本発明の実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.
【図2】 本発明の実施例を示す斜視図。FIG. 2 is a perspective view showing an embodiment of the present invention.
【図3】 本発明の実施例を示す断面図。FIG. 3 is a sectional view showing an embodiment of the present invention.
【図4】 本発明の実施例を示す斜視図。FIG. 4 is a perspective view showing an embodiment of the present invention.
【図5】 本発明の実施例を示す斜視図。FIG. 5 is a perspective view showing an embodiment of the present invention.
1…回転ツール、2…シールド管、3…アルゴンガス、4…
接合材、5…溶接部、6…円筒管、7…水、8…超伝導線
材、9…銅安定化材、10…水、11…容器、13…亀裂、14
…蒸気タービン翼。1 ... rotating tool, 2 ... shield tube, 3 ... argon gas, 4 ...
Joining material, 5: weld, 6: cylindrical tube, 7: water, 8: superconducting wire, 9: copper stabilizer, 10: water, 11: container, 13: crack, 14
... Steam turbine blades.
Claims (8)
転させながら前記被加工物に挿入し、前記回転ツールと
被加工物との間で発生する摩擦熱によって前記被加工物
を大気中又は液体中にて接合又は加工する摩擦攪拌加工
方法において、前記接合又は加工の最中常に接合部又は
加工部の大気又は液体を非酸化性ガスによって排除する
ことを特徴とする摩擦攪拌加工方法。1. A rotating tool made of a material harder than a workpiece is inserted into the workpiece while rotating, and the workpiece is exposed to the atmosphere by frictional heat generated between the rotating tool and the workpiece. Alternatively, in a friction stir processing method of joining or processing in a liquid, a non-oxidizing gas is used to eliminate the atmosphere or liquid in a joint or a processed part during the joining or processing.
転させながら前記被加工物に挿入し、前記回転ツールと
被加工物との間で発生する摩擦熱によって前記被加工物
を大気中にて接合又は加工する摩擦攪拌加工方法におい
て、前記接合又は加工の最中常に接合部又は加工部の大
気又は液体を非酸化性ガスによって排除すると共に、前
記接合部又は加工部の前記非酸化性ガスの外側に液体冷
媒を噴射して冷却しながら前記接合又は加工することを
特徴とする摩擦攪拌加工方法。2. A rotating tool made of a material harder than a workpiece is inserted into the workpiece while rotating, and the workpiece is exposed to the atmosphere by frictional heat generated between the rotating tool and the workpiece. In the friction stir processing method of joining or processing at the same time, the atmosphere or liquid of the joining part or the processing part is always eliminated by a non-oxidizing gas during the joining or processing, and the non-oxidizing A friction stir processing method wherein the joining or processing is performed while injecting and cooling a liquid refrigerant to the outside of the gas.
スを前記回転ツールの前記挿入部分の全周を覆いながら
前記被加工物表面に噴射させることを特徴とする摩擦攪
拌加工方法。3. The friction stir processing method according to claim 1, wherein the non-oxidizing gas is sprayed onto the surface of the workpiece while covering the entire periphery of the insertion portion of the rotary tool.
噴射を前記接合又は加工方向の前後の少なくとも一方で
行うことを特徴とする摩擦攪拌加工方法。4. The friction stir processing method according to claim 2, wherein the injection of the liquid refrigerant is performed at least one of before and after the joining or processing direction.
の挿入部と該挿入部より大径のショルダー部とを有する
回転ツールを回転させながら被加工物に挿入し、前記回
転ツールと被加工物との問で発生する摩擦熱によって前
記被加工物を大気中又は液体中にて接合又は加工する摩
擦攪拌加工装置において、前記回転ツールは接合部又は
加工部の大気又は液体を非酸化性ガスによって排除する
シールド手段を備えていることを特徴とする摩擦攪拌加
工装置。5. A rotary tool having an insertion portion of a material harder than the workpiece and inserted into the workpiece and a shoulder portion having a larger diameter than the insertion portion is inserted into the workpiece while rotating. In a friction stir processing apparatus that joins or processes the workpiece in the air or liquid by frictional heat generated between the workpiece and the workpiece, the rotating tool removes air or liquid from the joint or the processing section. A friction stir processing apparatus comprising a shield means for eliminating by an oxidizing gas.
の挿入部と該挿入部より大径のショルダー部とを有する
回転ツールを回転させながら被加工物に挿入し、前記回
転ツールと被加工物との問で発生する摩擦熱によって前
記被加工物を大気中にて接合又は加工する摩擦攪拌加工
装置において、前記回転ツールは接合部又は加工部の大
気を非酸化性ガスによって排除するシールド手段と、該
シールド手段の外側に液体冷媒を噴射させる液体冷媒噴
射手段とを備えていることを特徴とする摩擦攪拌加工装
置。6. A rotary tool having a portion harder than the workpiece inserted into the workpiece and a shoulder having a larger diameter than the insertion portion is inserted into the workpiece while rotating. In a friction stir processing apparatus that joins or processes the workpiece in the atmosphere by frictional heat generated between the workpiece and the workpiece, the rotating tool eliminates the atmosphere of the joint or the processing section by a non-oxidizing gas. A friction stir processing apparatus, comprising: a shield means for performing liquid cooling; and a liquid refrigerant injection means for injecting a liquid refrigerant outside the shield means.
記回転ツールの前記ショルダー部の全周を覆い、前記非
酸化性ガスを前記被加工物表面に噴射させるように前記
回転ツールに設けられていることを特徴とする摩擦攪拌
加工装置。7. The rotating tool according to claim 6, wherein the shielding means is provided on the rotating tool so as to cover the entire circumference of the shoulder portion of the rotating tool and inject the non-oxidizing gas to the surface of the workpiece. A friction stir processing apparatus.
射手段は前記接合又は加工の方向の前後の少なくとも一
方に備えていることを特徴とする摩擦攪拌加工装置。8. A friction stir processing apparatus according to claim 6, wherein said liquid refrigerant injection means is provided in at least one of before and after the joining or processing direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001050357A JP2002248583A (en) | 2001-02-26 | 2001-02-26 | Method and device for friction stir working |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001050357A JP2002248583A (en) | 2001-02-26 | 2001-02-26 | Method and device for friction stir working |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002248583A true JP2002248583A (en) | 2002-09-03 |
Family
ID=18911324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001050357A Pending JP2002248583A (en) | 2001-02-26 | 2001-02-26 | Method and device for friction stir working |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002248583A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6772935B2 (en) * | 2000-07-20 | 2004-08-10 | Eads Deutschland Gmbh | Method and device for friction stir welding with simultaneous cooling |
US6854632B1 (en) * | 1997-12-19 | 2005-02-15 | Esab, Ab | Welding apparatus |
JP2005230874A (en) * | 2004-02-20 | 2005-09-02 | Mazda Motor Corp | Rotary tool for friction welding device |
WO2005105360A1 (en) * | 2004-04-30 | 2005-11-10 | Tokyu Car Corporation | Method of connecting metal material |
JP2007083267A (en) * | 2005-09-21 | 2007-04-05 | Mitsubishi Heavy Ind Ltd | Repairing method and repairing device |
JP2007237253A (en) * | 2006-03-09 | 2007-09-20 | Taiyo Nippon Sanso Corp | Joining method |
EP1882543A1 (en) * | 2006-07-28 | 2008-01-30 | Kawasaki Jukogyo Kabushiki Kaisha | Friction stir welding machine and friction stir welding tool, the portion of the tool being in contact with the materials to be welded being coated with aluminium nitride |
WO2008023500A1 (en) * | 2006-08-21 | 2008-02-28 | Osaka University | Process for working metal members and structures |
CN100460131C (en) * | 2007-04-24 | 2009-02-11 | 中国航空工业第一集团公司北京航空制造工程研究所 | Thermal-settling agitation fricting welding method and apparatus by array flow-jet impact |
KR100954190B1 (en) * | 2002-12-24 | 2010-04-21 | 재단법인 포항산업과학연구원 | Welding apparatus having a gas cooling means |
US8038047B2 (en) | 2006-08-25 | 2011-10-18 | Osaka University | Method for welding metal material |
EP2469032A2 (en) | 2010-12-27 | 2012-06-27 | Hitachi Ltd. | Titanium alloy turbine blade |
EP2535138A2 (en) | 2011-06-14 | 2012-12-19 | Hitachi, Ltd. | High corrosion resistant equipment for a plant |
JP2013142602A (en) * | 2012-01-11 | 2013-07-22 | Hitachi-Ge Nuclear Energy Ltd | Channel box for reactor fuel assembly and method for manufacturing the same |
CN103212782A (en) * | 2013-04-28 | 2013-07-24 | 江苏科技大学 | Enhancement blowing-half-dry type underwater friction stir soldering set |
CN103212780A (en) * | 2013-04-28 | 2013-07-24 | 江苏科技大学 | Partial-draining and semi-dry type underwater friction stir welding set |
JP2014085155A (en) * | 2012-10-19 | 2014-05-12 | Nikkeikin Aluminium Core Technology Co Ltd | Neutron absorbing material and manufacturing method of the same |
CN104985318A (en) * | 2015-06-30 | 2015-10-21 | 苏州华日金菱机械有限公司 | Cold welding method |
CN106282637A (en) * | 2016-08-18 | 2017-01-04 | 上海交通大学 | A kind of original position prepares the method for boron-containing magnesium-base composite |
-
2001
- 2001-02-26 JP JP2001050357A patent/JP2002248583A/en active Pending
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6854632B1 (en) * | 1997-12-19 | 2005-02-15 | Esab, Ab | Welding apparatus |
US6772935B2 (en) * | 2000-07-20 | 2004-08-10 | Eads Deutschland Gmbh | Method and device for friction stir welding with simultaneous cooling |
KR100954190B1 (en) * | 2002-12-24 | 2010-04-21 | 재단법인 포항산업과학연구원 | Welding apparatus having a gas cooling means |
JP2005230874A (en) * | 2004-02-20 | 2005-09-02 | Mazda Motor Corp | Rotary tool for friction welding device |
JP5180472B2 (en) * | 2004-04-30 | 2013-04-10 | 株式会社総合車両製作所 | Metal joining method |
JPWO2005105361A1 (en) * | 2004-04-30 | 2008-03-13 | 東急車輛製造株式会社 | Metal joining method |
GB2439159B (en) * | 2004-04-30 | 2009-06-24 | Tokyu Car Corp | Method of connecting metal material |
GB2454401B (en) * | 2004-04-30 | 2009-06-24 | Hidetoshi Fujii | Method of connecting metal material |
GB2439159A (en) * | 2004-04-30 | 2007-12-19 | Tokyu Car Corp | Method of connecting metal material |
WO2005105361A1 (en) * | 2004-04-30 | 2005-11-10 | Tokyu Car Corporation | Method of connecting metal material |
WO2005105360A1 (en) * | 2004-04-30 | 2005-11-10 | Tokyu Car Corporation | Method of connecting metal material |
GB2427846A (en) * | 2004-04-30 | 2007-01-10 | Tokyu Car Corp | Method of connecting metal material |
JPWO2005105360A1 (en) * | 2004-04-30 | 2008-03-13 | 東急車輛製造株式会社 | Joining method of metal materials |
GB2454401A (en) * | 2004-04-30 | 2009-05-06 | Hidetoshi Fujii | Method of Welding Two Stainless Steel Plates |
JP5180471B2 (en) * | 2004-04-30 | 2013-04-10 | 株式会社総合車両製作所 | Metal joining method |
GB2427846B (en) * | 2004-04-30 | 2009-04-15 | Tokyu Car Corp | Method of connecting metal material |
JP2007083267A (en) * | 2005-09-21 | 2007-04-05 | Mitsubishi Heavy Ind Ltd | Repairing method and repairing device |
EP2000245A2 (en) * | 2006-03-09 | 2008-12-10 | Taiyo Nippon Sanso Corporation | Welding method |
JP2007237253A (en) * | 2006-03-09 | 2007-09-20 | Taiyo Nippon Sanso Corp | Joining method |
EP2000245A4 (en) * | 2006-03-09 | 2009-11-04 | Taiyo Nippon Sanso Corp | Welding method |
EP1882543A1 (en) * | 2006-07-28 | 2008-01-30 | Kawasaki Jukogyo Kabushiki Kaisha | Friction stir welding machine and friction stir welding tool, the portion of the tool being in contact with the materials to be welded being coated with aluminium nitride |
US8025200B2 (en) | 2006-07-28 | 2011-09-27 | Kawasaki Jukogyo Kabushiki Kaisha | Friction stir welding machine and friction stir welding tool |
US7828191B2 (en) | 2006-07-28 | 2010-11-09 | Kawasaki Jukogyo Kabushiki Kaisha | Friction stir welding machine and friction stir welding tool |
WO2008023500A1 (en) * | 2006-08-21 | 2008-02-28 | Osaka University | Process for working metal members and structures |
JP5099009B2 (en) * | 2006-08-21 | 2012-12-12 | 国立大学法人大阪大学 | Metal processing method and structure |
US8038047B2 (en) | 2006-08-25 | 2011-10-18 | Osaka University | Method for welding metal material |
CN100460131C (en) * | 2007-04-24 | 2009-02-11 | 中国航空工业第一集团公司北京航空制造工程研究所 | Thermal-settling agitation fricting welding method and apparatus by array flow-jet impact |
JP2012136999A (en) * | 2010-12-27 | 2012-07-19 | Hitachi Ltd | Titanium alloy turbine blade |
EP2469032A2 (en) | 2010-12-27 | 2012-06-27 | Hitachi Ltd. | Titanium alloy turbine blade |
EP2535138A2 (en) | 2011-06-14 | 2012-12-19 | Hitachi, Ltd. | High corrosion resistant equipment for a plant |
US8479970B2 (en) | 2011-06-14 | 2013-07-09 | Hitachi, Ltd. | High corrosion resistant equipment for a plant |
JP2013142602A (en) * | 2012-01-11 | 2013-07-22 | Hitachi-Ge Nuclear Energy Ltd | Channel box for reactor fuel assembly and method for manufacturing the same |
JP2014085155A (en) * | 2012-10-19 | 2014-05-12 | Nikkeikin Aluminium Core Technology Co Ltd | Neutron absorbing material and manufacturing method of the same |
CN103212782A (en) * | 2013-04-28 | 2013-07-24 | 江苏科技大学 | Enhancement blowing-half-dry type underwater friction stir soldering set |
CN103212780A (en) * | 2013-04-28 | 2013-07-24 | 江苏科技大学 | Partial-draining and semi-dry type underwater friction stir welding set |
CN103212780B (en) * | 2013-04-28 | 2014-12-10 | 江苏科技大学 | Partial-draining and semi-dry type underwater friction stir welding set |
CN103212782B (en) * | 2013-04-28 | 2014-12-10 | 江苏科技大学 | Enhancement blowing-half-dry type underwater friction stir soldering set |
CN104985318A (en) * | 2015-06-30 | 2015-10-21 | 苏州华日金菱机械有限公司 | Cold welding method |
CN106282637A (en) * | 2016-08-18 | 2017-01-04 | 上海交通大学 | A kind of original position prepares the method for boron-containing magnesium-base composite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002248583A (en) | Method and device for friction stir working | |
US9808876B2 (en) | Stainless steel weldment and pad combined welding method | |
Kuo et al. | Effect of activated TIG flux on performance of dissimilar welds between mild steel and stainless steel | |
US20090090700A1 (en) | Joining method | |
EP0810056A3 (en) | Friction stir welding with simultaneous cooling | |
CN106312247A (en) | Bilateral welding method for fillet seams of U rib and orthotropic steel deck plate | |
JPH11226757A (en) | Friction welding method | |
JP2000153377A (en) | Friction welding method | |
WO2004098815A1 (en) | Mold and method of manufacturing the same | |
US5705786A (en) | Underwater welding | |
CN103753021A (en) | Laser welding method for red copper and brass | |
JPH10286685A (en) | Build-up method with laser beam and build-up structure | |
JP2003181619A (en) | Method of casting metallic semi-finished product by casting | |
CN112594254A (en) | Positioning sleeve of mud beating mechanism and preparation method | |
US8435431B2 (en) | Method for producing a laser processing machine component having a corrosion-resistant internal coating | |
CN110788503B (en) | Method for forming advanced dissimilar metal composite structure of 45# steel/tin-lead alloy | |
JPH04210886A (en) | Laser beam cladding method | |
JP3173705B2 (en) | Overlay method | |
CN111945155A (en) | Method for double-cylinder synchronous powder feeding, melting and depositing composite cladding layer based on 30CrMnSiA steel | |
JP2002361425A (en) | Inert gas arc welding method and equipment | |
US20240326168A1 (en) | Method for welding or additive manufacturing by laser fusion then cooling with powder inerting | |
JP2005305480A (en) | Method and apparatus for repair-processing casting defect in aluminum alloy casting | |
Mostafa et al. | Slag-free laser cutting for aluminum | |
CN114273774A (en) | Aluminum alloy casting defect laser welding repair method | |
Cao et al. | Continuous wave Nd: YAG laser welding of ZE41A-T5 magnesium sand castings: conduction or keyhole mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060307 |