JP2002221091A - Exhaust gas boiler and combustion method in exhaust gas boiler - Google Patents

Exhaust gas boiler and combustion method in exhaust gas boiler

Info

Publication number
JP2002221091A
JP2002221091A JP2001020777A JP2001020777A JP2002221091A JP 2002221091 A JP2002221091 A JP 2002221091A JP 2001020777 A JP2001020777 A JP 2001020777A JP 2001020777 A JP2001020777 A JP 2001020777A JP 2002221091 A JP2002221091 A JP 2002221091A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion chamber
boiler
combustion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001020777A
Other languages
Japanese (ja)
Inventor
Yonosuke Hoshi
要之介 星
Yoshihito Shimizu
義仁 清水
Kazuhiro Kawai
一寛 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001020777A priority Critical patent/JP2002221091A/en
Publication of JP2002221091A publication Critical patent/JP2002221091A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Incineration Of Waste (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas boiler producing less NOx utilizing the remaining oxygen in the exhaust gas in a diesel engine or a gas turbine. SOLUTION: A heat regenerator set consisting of two units is mounted on either side of a boiler combustion chamber, and the exhaust gas of a diesel engine or a gas turbine is fed to the heat regenerators on both sides of the boiler combustion chamber alternately at prescribed intervals by switching a selector valve. As the fuel is fed alternately, the exhaust gas boiler performs low-NOx combustion with high temperature and low oxygen concentration. In another case, a primary combustion chamber and a secondary combustion chamber are made to communicate with each other via a restrictor to perform fuel rich combustion in the primary combustion chamber and the combustion with high temperature and low oxygen concentration in the secondary combustion chamber by feeding air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ン或はガスタービンの排気ガスを再燃焼した燃焼ガスを
駆動熱源とするボイラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler using a combustion gas obtained by reburning exhaust gas of a diesel engine or a gas turbine as a driving heat source.

【0002】[0002]

【従来の技術】従来、ディーゼルエンジンやガスタービ
ンの排気ガスの持つ余熱を排ガスボイラで回収すること
が行われているが、排気ガスの温度は通常400℃〜5
00℃前後である。また、特にディーゼルエンジンの排
気ガスはNOxの濃度が高いので、触媒を用いた脱硝等
の排ガス処理が行われている。
2. Description of the Related Art Conventionally, the residual heat of exhaust gas of a diesel engine or a gas turbine has been recovered by an exhaust gas boiler.
It is around 00 ° C. In particular, since the exhaust gas of a diesel engine has a high NOx concentration, exhaust gas treatment such as denitration using a catalyst is performed.

【0003】[0003]

【発明が解決しようとする課題】ディーゼルエンジンや
ガスタービンの排気ガスの温度は400℃〜550℃前
後と低いので、単位容積当りの熱エネルギ保有量も少な
く、ボイラの出力を大きくするには大量の排気ガスを要
するのでボイラが大きくならざるを得ず、また、ボイラ
から出力される蒸気で蒸気タービンを駆動する場合、蒸
気タービンの効率を上げるのに十分な蒸気温度と圧力を
確保することができなかった。また、ディーゼルエンジ
ンの排気ガスはNOx濃度が高いので、排ガスボイラで
余熱を回収した後そのまま排出することは問題であっ
た。
Since the temperature of the exhaust gas of a diesel engine or gas turbine is as low as about 400 ° C. to 550 ° C., the amount of heat energy per unit volume is small, and a large amount of power is required to increase the output of the boiler. The boiler must be large because it requires exhaust gas, and when driving the steam turbine with the steam output from the boiler, it is necessary to secure sufficient steam temperature and pressure to increase the efficiency of the steam turbine. could not. Further, since the exhaust gas of a diesel engine has a high NOx concentration, there is a problem in that the residual heat is recovered and recovered as it is in an exhaust gas boiler.

【0004】ディーゼルエンジンは噴射された液体燃料
の完全燃焼を図るために過剰な空気のもとで燃焼され、
また、ガスタービンはタービン翼の耐熱性の点から燃焼
ガス温度を抑えるために過剰な空気が必要とされるた
め、排気ガス中には燃焼に関与しなかった余分の空気が
残存しており、しかも該排気ガスは、ディーゼルエンジ
ンシリンダ内或はタービン翼列内で断熱膨張して温度が
降下している。本発明は、該排気ガス中の残存空気を利
用して燃料をNOx生成が少ない方法で燃焼させて該排
気ガスの温度を再度上昇させ、少ない排気量で大きい出
力を得るもとができるボイラを提供することを目的とす
る。
[0004] Diesel engines are burned under excess air to achieve complete combustion of the injected liquid fuel,
In addition, gas turbines require excessive air in order to suppress the temperature of the combustion gas from the viewpoint of the heat resistance of the turbine blades.Therefore, excess air not involved in combustion remains in the exhaust gas, In addition, the exhaust gas is adiabatically expanded in the diesel engine cylinder or the turbine cascade, and its temperature is lowered. The present invention provides a boiler capable of utilizing a residual air in the exhaust gas to burn fuel in a method of generating less NOx to raise the temperature of the exhaust gas again to obtain a large output with a small displacement. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、水管を配設した筒状のボイ
ラ燃焼室の両端側に該ボイラ燃焼室に連通する通路を有
する蓄熱体を備えた第1及び第2の蓄熱式熱交換器を夫
々配設し、これら両蓄熱式熱交換器には前記蓄熱体より
も前記ボイラ燃焼室側に燃料を供給する燃料供給弁が配
設され、ディーゼルエンジン或はガスタービンの排気ガ
ス通路を切替弁を介して前記両蓄熱式熱交換器に連結し
たことを特徴とする排ガスボイラを提案する。
According to a first aspect of the present invention, there is provided a tubular boiler combustion chamber provided with a water pipe, having a passage communicating with the boiler combustion chamber at both ends. First and second regenerative heat exchangers each having a heat storage body are provided, and both of these heat storage type heat exchangers have a fuel supply valve for supplying fuel to the boiler combustion chamber side of the heat storage body. An exhaust gas boiler is provided, wherein an exhaust gas passage of a diesel engine or a gas turbine is connected to the two regenerative heat exchangers via a switching valve.

【0006】請求項2項に記載の発明は、前記切替弁の
切替えによって前記排気ガスを前記第1の蓄熱式熱交換
器或は第2の蓄熱式熱交換器へ連通し、一方の蓄熱式熱
交換器に連通された前記排気ガスは該熱交換器の蓄熱体
との熱交換によって昇温され、昇温された排気ガスに前
記燃料供給弁から燃料を供給して前記昇温された排気ガ
スとともに前記ボイラ燃焼室に噴出して前記昇温された
高温低酸素濃度ガス中での燃焼を行わしめ、燃焼ガスは
前記ボイラ燃焼室に配設された前記水管に放熱して降温
されながら他方の蓄熱式熱交換器に達し該蓄熱式熱交換
器を通る際に蓄熱体との熱交換によってさらに降温され
た後に前記切替弁を介して排出され、該切替弁の切替え
と燃料供給を所定の時間間隔で交互に行うことを特徴と
する排ガスボイラにおける燃焼方法である。
According to a second aspect of the present invention, the exhaust gas is communicated to the first regenerative heat exchanger or the second regenerative heat exchanger by switching the switching valve. The temperature of the exhaust gas communicated with the heat exchanger is increased by heat exchange with the heat storage body of the heat exchanger, and the heated exhaust gas is supplied with fuel from the fuel supply valve to increase the temperature of the exhaust gas. The gas is blown into the boiler combustion chamber together with the gas to perform combustion in the heated high-temperature, low-oxygen concentration gas, and the combustion gas releases heat to the water pipe provided in the boiler combustion chamber, and the other gas is cooled down. When the temperature reaches the regenerative heat exchanger and passes through the regenerative heat exchanger, the temperature is further reduced by heat exchange with the heat storage body, and then discharged through the switching valve.The switching of the switching valve and the fuel supply are performed in a predetermined manner. Exhaust gas boiler characterized by alternate operation at time intervals It is the definitive combustion method.

【0007】内燃機関の排気ガス中の残留酸素濃度は次
の式で求められる。 残留酸素濃度(重量%)=23・L・(λ−1)/(1+λ・L)…(1 ) ここに、λは空気過剰率、Lは理論空気量、即ち燃料
1kgを完全燃焼するのに必要な空気の量(kg)であ
る。Lの値は燃料の組成によって決るが、石油系燃料
をCnHmで代表し、m/nを1.9とすると、L
14.5である。23は空気の酸素濃度(重量%)であ
る。
[0007] The concentration of residual oxygen in the exhaust gas of an internal combustion engine is determined by the following equation. Residual oxygen concentration (% by weight) = 23 · L 0 · (λ−1) / (1 + λ · L 0 ) (1) where λ is the excess air ratio, and L 0 is the theoretical air amount, that is, 1 kg of fuel is completely used. It is the amount of air (kg) required to burn. The value of L 0 is determined by the composition of the fuel. When the petroleum-based fuel is represented by CnHm and m / n is 1.9, L 0 =
14.5. 23 is the oxygen concentration (% by weight) of the air.

【0008】(1)式において、理論空気量L=1
4.5kg/kgとおいて、残留酸素濃度(重量%)と
空気過剰率λとの関係をグラフに描くと図3のようにな
る。ディーゼルエンジンでの燃焼は拡散燃焼であり、燃
料の完全な燃焼を図るために空気過剰率はある程度大き
くする必要がある。ディーゼルエンジンの空気過剰率は
燃焼室形式や負荷等によって変り、直接噴射式の場合、
全負荷でλ=1.35〜2程度で低負荷ほど大きくな
る。ガスタービンの場合、単純サイクルを行うものは全
負荷でλ=3〜3.5程度、再燃器を備え再熱サイクル
を行う場合は全負荷でλ=1.2〜1.5程度で低負荷
ほど大きくなる。したがって、ディーゼルエンジンやガ
スタービン排気ガスの酸素濃度は大体5%以上である。
In the equation (1), the theoretical air amount L 0 = 1
At 4.5 kg / kg, the relationship between the residual oxygen concentration (% by weight) and the excess air ratio λ is plotted as shown in FIG. Combustion in a diesel engine is diffusion combustion, and the excess air ratio must be increased to some extent in order to achieve complete combustion of the fuel. The excess air ratio of a diesel engine varies depending on the combustion chamber type, load, etc.
At full load, λ = 1.35 to 2, and becomes larger as the load becomes lower. In the case of gas turbines, those that perform a simple cycle have a low load of about λ = 3 to 3.5 at full load, and those with a reheater and a reheat cycle have a low load of about λ = 1.2 to 1.5 at full load. It becomes bigger. Therefore, the oxygen concentration of the exhaust gas of a diesel engine or a gas turbine is about 5% or more.

【0009】通常の空気中における燃焼では、火炎内の
温度分布は非常に不均一で、局所的に非常に高温の部分
があり、平均温度はそれほど高くなくても前記局所的な
高温部分でNOxが大量に生成される。高温低酸素のガ
ス中で燃焼させると、火炎燃焼領域が通常の空気中での
燃焼の場合よりも大きくなり、燃焼領域の増大に伴い平
均熱流束が増加して燃焼ガス温度の均一化が進み、併せ
て酸素濃度が低いことから、NOx生成の少ない燃焼が
行われる。火炎容積の増大は高温、低酸素濃度ほど著し
い。
[0009] In normal combustion in air, the temperature distribution in the flame is very uneven, there are locally very high temperature portions, and even if the average temperature is not so high, NOx is generated in the local high temperature portions. Is generated in large quantities. When burning in high-temperature, low-oxygen gas, the flame combustion area becomes larger than when burning in normal air, and as the combustion area increases, the average heat flux increases and the combustion gas temperature becomes more uniform. In addition, since the oxygen concentration is low, combustion with little NOx generation is performed. The increase in flame volume is more significant at higher temperatures and lower oxygen concentrations.

【0010】本発明では、ディーゼルエンジンやガスタ
ービンの排気ガスを第1の蓄熱式熱交換器に導いて蓄熱
体との熱交換により昇温し、昇温された排気ガスに燃料
を供給してボイラ燃焼室に噴出させると、噴出時に前記
燃料と昇温された排気ガスの混合が進み、前記燃料は昇
温された排気ガスである高温低酸素濃度ガス中で燃焼さ
れるので前述したようなNOx生成の少ない燃焼が行わ
れる。ボイラ燃焼室にはボイラ水管が配設してあり、燃
焼ガスは燃焼しながら、一方において該ボイラ水管に放
熱しながら、即ち該ボイラ水管により冷却されながら、
第1の蓄熱式熱交換器とは反対側に配設された第2の蓄
熱式熱交換器に達し、該第2の蓄熱式熱交換器の蓄熱体
に放熱して降温され切替弁に至り、該切替弁を介して煙
道に排出される。
According to the present invention, the exhaust gas of a diesel engine or a gas turbine is guided to the first regenerative heat exchanger, the temperature of the exhaust gas is increased by heat exchange with the heat storage body, and fuel is supplied to the heated exhaust gas. When the fuel is injected into the boiler combustion chamber, mixing of the fuel and the heated exhaust gas at the time of injection proceeds, and the fuel is burned in the high-temperature, low-oxygen concentration gas that is the heated exhaust gas. Combustion with less NOx generation is performed. A boiler water pipe is provided in the boiler combustion chamber, and the combustion gas burns, while radiating heat to the boiler water pipe, that is, while being cooled by the boiler water pipe,
The heat reaches the second regenerative heat exchanger disposed on the side opposite to the first regenerative heat exchanger, radiates heat to the heat storage body of the second regenerative heat exchanger, and cools down to the switching valve. , Are discharged to the flue via the switching valve.

【0011】次に所定時間後に前記切替弁を切り替えて
前記排気ガスを、前記燃焼ガスによって昇温された前記
第2の蓄熱式熱交換器の蓄熱体を通して昇温し、昇温さ
れた排気ガスに燃料を供給してボイラ燃焼室に噴出させ
ると、噴出時に前記燃料と昇温された排気ガスの混合が
進み、前記燃料は昇温された排気ガスである高温低酸素
濃度ガス中で燃焼されるので、前述したようなNOx生
成の少ない燃焼が行われる。燃焼ガスは燃焼しながら、
一方において該ボイラ水管に放熱しながら、即ち該ボイ
ラ水管により冷却されながら、第2の蓄熱式熱交換器と
は反対側に配設された第1の蓄熱式熱交換器に達し、該
第1の蓄熱式熱交換器の蓄熱体に放熱して降温され切替
弁に至り、該切替弁を介して煙道に排出される。
After a predetermined period of time, the switching valve is switched to raise the temperature of the exhaust gas through the heat storage element of the second regenerative heat exchanger heated by the combustion gas. When fuel is supplied to the boiler combustion chamber and injected into the boiler combustion chamber, the mixing of the fuel and the heated exhaust gas at the time of injection proceeds, and the fuel is burned in the high-temperature low-oxygen gas, which is the heated exhaust gas. Therefore, the combustion with little NOx generation as described above is performed. As the combustion gas burns,
On the other hand, while radiating heat to the boiler water pipe, that is, while being cooled by the boiler water pipe, the heat reaches the first regenerative heat exchanger disposed on the side opposite to the second regenerative heat exchanger, and The heat is radiated to the heat storage body of the heat storage type heat exchanger, and the temperature is lowered to reach the switching valve, and is discharged to the flue via the switching valve.

【0012】このように、ディーゼルエンジンやガスタ
ービンの排気ガスは、ボイラ燃焼室の両側から所定の時
間間隔で交互に昇温されて燃料とともにボイラ燃焼室に
噴出され、燃焼は切替え時の極短時間を除いて常に行わ
れ、また、燃焼は高温低酸素濃度のもとで行われるので
NOx生成の少ない燃焼が行われ、前記排気ガス中に存
在していたNOxはHCN、NH等の中間生成物を経
由して部分的にNに還元されるので、ボイラ燃焼室か
ら切替弁を介して排出されるボイラ排ガスは低NOxの
排ガスとなる。そして、ボイラ燃焼室に配設された水管
を通る流体は加熱され、タービン等所用の用途に供給さ
れる。
As described above, the exhaust gas of a diesel engine or a gas turbine is alternately heated at predetermined time intervals from both sides of the boiler combustion chamber and is injected into the boiler combustion chamber together with the fuel. always performed except time, also, the combustion high temperatures because performed under a low oxygen concentration less combustion of NOx generation is performed, NOx which has been present in the exhaust gas HCN, intermediate, such as NH 3 The boiler exhaust gas discharged from the boiler combustion chamber via the switching valve becomes low NOx exhaust gas because it is partially reduced to N 2 via the product. Then, the fluid passing through the water pipe provided in the boiler combustion chamber is heated and supplied to a use such as a turbine.

【0013】請求項3に記載の発明は、ディーゼルエン
ジン或はガスタービンの排気ガス通路に1次燃焼室を設
け、該1次燃焼室を絞り通路を介して2次燃焼室に連結
し、前記1次燃焼室に燃料を供給して燃料過多の1次燃
焼を行わしめ、前記絞り部を出て前記2次燃焼室に噴出
する1次燃焼ガスに空気を供給して2次燃焼を行わし
め、該2次燃焼ガスをボイラ水管の加熱源とすることを
特徴とする。
According to a third aspect of the present invention, a primary combustion chamber is provided in an exhaust gas passage of a diesel engine or a gas turbine, and the primary combustion chamber is connected to a secondary combustion chamber via a throttle passage. The fuel is supplied to the primary combustion chamber to perform primary combustion with excess fuel, and the secondary combustion is performed by supplying air to the primary combustion gas that exits the throttling portion and is injected into the secondary combustion chamber. The secondary combustion gas is used as a heating source for a boiler water pipe.

【0014】かかる発明によれば、温度が400℃〜5
50℃前後で酸素濃度が少なくとも約5%以上のディー
ゼルエンジンやガスタービンの排気ガスを1次燃焼室に
導入して燃料を残存酸素量に対応する量よりも過剰に供
給してNOx生成が少ない燃料過剰の燃焼を行わしめ
る。該燃焼ガスは絞り部を通って2次燃焼室に噴出し、
断熱的に膨張して温度と圧力が下がる。前記2次燃焼室
に噴出時に燃焼ガスの混合が促進され、未燃燃料の分布
と温度分布の均一化が促進される。温度低下は前記絞り
部の絞りの程度によるが、前記均一化が進んだガスの温
度は前記2次燃焼室においても十分に高く、該2次燃焼
室に2次空気を供給することにより、未燃燃料は800
℃乃至1000℃以上の高温低酸素濃度雰囲気でNOx
生成の少ない燃焼がなされ、前記排気ガス中のNOxは
HCN、NH等の中間生成物を経由して部分的にN
に還元されるので、2次燃焼室から排出される燃焼ガス
はNOx濃度が低い排ガスとなる。該低NOxの燃焼ガ
スはボイラでに導入され、ボイラでは高温の燃焼ガスに
より同じ排気ガス量でより高出力が得られる。また、前
記2次燃焼室にボイラ水管を配設してもよい。
According to the invention, the temperature is from 400.degree.
Exhaust gas from a diesel engine or gas turbine having an oxygen concentration of at least about 5% or more at about 50 ° C. is introduced into the primary combustion chamber, and fuel is supplied in excess of an amount corresponding to the amount of residual oxygen, resulting in less NOx generation. Cause excessive combustion. The combustion gas is injected into the secondary combustion chamber through the throttle,
Expands adiabatically, lowering temperature and pressure. Mixing of the combustion gas at the time of ejection into the secondary combustion chamber is promoted, and uniformity of the distribution of unburned fuel and the temperature distribution is promoted. The temperature drop depends on the degree of restriction of the restrictor, but the temperature of the gas having been homogenized is sufficiently high also in the secondary combustion chamber, and by supplying secondary air to the secondary combustion chamber, 800 fuel
NOx in a high-temperature, low-oxygen concentration atmosphere at
Generating less combustion is performed, the NOx in the exhaust gas HCN, and partially via an intermediate product, such as NH 3 N 2
The combustion gas discharged from the secondary combustion chamber becomes exhaust gas having a low NOx concentration. The low NOx combustion gas is introduced into the boiler, where the high temperature combustion gas provides a higher output with the same amount of exhaust gas. Further, a boiler water pipe may be provided in the secondary combustion chamber.

【0015】[0015]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る寸法、材質、形状、その相対位置などは特に特定的な
記載がない限り、この発明の範囲をそれのみに限定する
趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, dimensions, materials, shapes, relative positions, and the like described in the embodiments are not intended to limit the scope of the present invention, but are merely illustrative examples, unless otherwise specified.

【0016】図1は、本発明の実施の第1形態に係わる
排ガスボイラの概略構成を示す。同図において、10は
ボイラ燃焼室、11ボイラ水管、12、13は夫々第
1、第2の蓄熱式熱交換器である。前記蓄熱式熱交換器
12、13には夫々蓄熱体12a、13aと燃料供給弁
12b、13bが設けられている。図示しない排気ガス
供給源であるディーゼルエンジンやガスタービンからの
排気ガスgはラインL により四方向弁14に導かれ
る。該四方向弁14の切替え位置が(A)図の場合、前
記排気ガスgは前記四方向弁14からラインLによ
り前記第1の蓄熱式熱交換器12に導かれ、蓄熱体12
aを通って前記ボイラ燃焼室10に導入されるが、蓄熱
体12aを通る際に該蓄熱体12aから受熱して昇温さ
れ、該蓄熱体12a直後の混合室12cで昇温された排
気ガスに前記燃料供給弁12bから燃料が供給される。
前記混合室12cに供給された燃料は、該混合室13c
で、昇温されて800〜1000℃以上になった排気ガ
スにより1部が燃焼しながらボイラ燃焼室10に噴出g
されて高温低酸素濃度のもとで燃焼が行われるので、
火炎領域が大きく広がり、局所的高温部がなく、NOx
生成の少ない燃焼となる。
FIG. 1 relates to a first embodiment of the present invention.
1 shows a schematic configuration of an exhaust gas boiler. In the figure, 10 is
Boiler combustion chamber, 11 boiler water pipes, 12 and 13
First and second regenerative heat exchangers. The regenerative heat exchanger
Heat storage bodies 12a and 13a and fuel supply valves are respectively provided in 12 and 13.
12b and 13b are provided. Exhaust gas not shown
From diesel engines and gas turbines
Exhaust gas g1Is the line L 1Is guided to the four-way valve 14 by
You. When the switching position of the four-way valve 14 is as shown in FIG.
Note exhaust gas g1Is a line L from the four-way valve 142By
The heat is led to the first regenerative heat exchanger 12
a into the boiler combustion chamber 10 through
When passing through the body 12a, heat is received from the heat storage body 12a to increase the temperature.
The exhaust gas heated in the mixing chamber 12c immediately after the heat storage body 12a
Fuel is supplied to the gas from the fuel supply valve 12b.
The fuel supplied to the mixing chamber 12c is
And the exhaust gas is heated to 800-1000 ° C. or more.
Squirt into boiler combustion chamber 10
2It is burned under high temperature and low oxygen concentration,
Flame area widens greatly, no local high temperature part, NOx
Combustion with less generation.

【0017】燃焼ガスgはボイラ燃焼室10内を前記
第2の蓄熱式熱交換器13に向って進み、その間主とし
て熱放射(輻射)によって前記燃焼室10の内壁に配設
されたボイラ水管11を熱して該水管11内を通る水及
び/或は水蒸気加熱する。この加熱のための熱放出によ
って1200℃前後に降温された燃焼ガスgは、前記
第2の蓄熱式熱交換器13の蓄熱体13aを通る際に該
蓄熱体13aを加熱して降温され、該降温されたボイラ
排ガスgはラインLを通って前記四方向弁14に導
かれ、該四方向弁を介してラインLを通り排出され
る。前記排気ガス発生源から供給される排気ガス中のN
OxはHCN、NH等の中間生成物を経由して部分的
にNに還元されるので、前記ラインLを通り排出さ
れるボイラ排ガスはNOx濃度の低い排ガスとなる。
The combustion gas g 3 advances toward the boiler combustion chamber 10 to the second regenerative heat exchanger 13, boiler water pipe disposed on the inner wall of the combustion chamber 10 primarily by thermal radiation between them (radiation) 11 is heated to heat water and / or steam passing through the water pipe 11. The combustion gas g 4 which is lowered around 1200 ° C. by the heat release for heating is lowered by heating the heat storage member 13a when passing through the regenerator 13a of the second regenerative heat exchanger 13, boiler exhaust gas g 5 which is the temperature drop is led to the four-way valve 14 through line L 3, it is through discharge line L 4 through the four-way valve. N in the exhaust gas supplied from the exhaust gas source
Because Ox is HCN, is reduced to partially N 2 via the intermediate products such as NH 3, boiler exhaust gas through discharging the line L 4 is a a low NOx concentration exhaust gas.

【0018】前記第2の蓄熱式熱交換器13の蓄熱体1
3aが十分に加熱された時点で前記四方向弁14を
(B)図の位置に切替えると、排気ガス供給源からの排
気ガスg は、ラインLを通って前記第2の蓄熱式熱
交換器13に導かれ蓄熱体13aを通る際に800〜1
000℃に昇温され、該蓄熱体13a直後の混合室13
cで昇温された排気ガスに前記燃料供給弁13bから燃
料が供給される。前記混合室13cに供給された燃料
は、該混合室13cで、前記昇温されて800〜100
0℃以上になった排気ガスにより1部が燃焼しながらボ
イラ燃焼室10に噴出gされて高温低酸素濃度のもと
で燃焼が行われるので、火炎領域が大きく広がり、局所
的高温部がなく、NOx生成の少ない燃焼となる。
The heat storage body 1 of the second heat storage type heat exchanger 13
When 3a is sufficiently heated, the four-way valve 14 is turned off.
(B) When the position is switched to the position shown in FIG.
Gas g 1Is the line L3Through the second regenerative heat
800-1 when guided by the exchanger 13 and passing through the heat storage body 13a.
000 ° C., and the mixing chamber 13 immediately after the heat storage body 13a
The exhaust gas whose temperature has been increased in FIG.
Fees are supplied. Fuel supplied to the mixing chamber 13c
Is heated to 800 to 100 in the mixing chamber 13c.
Exhaust gas of 0 ° C or higher burns a part while burning
Spout into the combustion chamber 102Under high temperature and low oxygen concentration
Combustion takes place in the
There is no target high temperature part, and combustion with little NOx generation is achieved.

【0019】燃焼ガスgはボイラ燃焼室10内を前記
第1の蓄熱式熱交換器12に向って進み、その間主とし
て熱放射(輻射)によって前記燃焼室10の内壁に配設
されたボイラ水管11を熱して該水管11内を通る水及
び/或は水蒸気加熱する。この加熱のための熱放出によ
って1200℃前後に降温された燃焼ガスgは、前記
第1の蓄熱式熱交換器12の蓄熱体12aを通る際に該
蓄熱体12aを加熱して降温され、該降温されたボイラ
排ガスgはラインLを通って前記四方向弁14に導
かれ、該四方向弁を介してラインLを通り排出され
る。前記排気ガス発生源から供給される排気ガス中のN
OxはHCN、NH等の中間生成物を経由して部分的
にNに還元されるので、前記ラインLを通り排出さ
れるボイラ排ガスはNOx濃度の低い排ガスとなる。
The combustion gas g 3 travels in the boiler combustion chamber 10 toward the first regenerative heat exchanger 12, during which the boiler water pipe disposed on the inner wall of the combustion chamber 10 mainly by heat radiation (radiation) 11 is heated to heat water and / or steam passing through the water pipe 11. The combustion gas g 4 which is lowered around 1200 ° C. by the heat release for heating is lowered by heating the heat storage member 12a when passing through the regenerator 12a of the first regenerative heat exchanger 12, boiler exhaust gas g 5 which is the temperature drop is led to the four-way valve 14 through line L 2, it is through discharge line L 4 through the four-way valve. N in the exhaust gas supplied from the exhaust gas source
Because Ox is HCN, is reduced to partially N 2 via the intermediate products such as NH 3, boiler exhaust gas through discharging the line L 4 is a a low NOx concentration exhaust gas.

【0020】上記したように、四方向弁14を所定の時
間間隔で切替えることにより、蓄熱体12a、13aは
交互に加熱、冷却され、ボイラ燃焼室10内は高温の燃
焼ガスが第1蓄熱式熱交換器12側から第2蓄熱式熱交
換器13側に向って、或は第2蓄熱式熱交換器13側か
ら第1蓄熱式熱交換器12側に向って交互に進み、ボイ
ラ燃焼室内に配設されたボイラ水管は常に高温の燃焼ガ
スによって加熱される。前記四方向弁14の切替え時の
極短時間を除いて燃焼は常に行われ、また、燃焼は高温
低酸素濃度のもとで行われるのでNOx生成の少ない燃
焼が行われ、前記排気ガス中に存在していたNOxはH
CN、NH等の中間生成物を経由して部分的にN
還元されるので、前記ラインLを通り排出されるボイ
ラ排ガスはNOx濃度の低い排ガスとなる。そして、ボ
イラ燃焼室に配設された水管を通る流体は加熱され、タ
ービン等所用の用途に供給される。なお、前記蓄熱体1
2a、13aは、ガスの通過抵抗が小さく、熱交換性能
が優れる、セラミックや金属をハニカム状に成形したも
のが適する。
As described above, by switching the four-way valve 14 at predetermined time intervals, the heat storage bodies 12a and 13a are alternately heated and cooled, and the high-temperature combustion gas in the boiler combustion chamber 10 is filled with the first heat storage type. From the heat exchanger 12 side to the second regenerative heat exchanger 13 side, or alternately from the second regenerative heat exchanger 13 side to the first regenerative heat exchanger 12 side, the boiler combustion chamber The boiler water pipes arranged in the boiler are always heated by the hot combustion gas. Combustion is always performed except for an extremely short time when the four-way valve 14 is switched.In addition, since combustion is performed under a high temperature and low oxygen concentration, combustion with little NOx generation is performed, and the combustion is performed in the exhaust gas. NOx that was present is H
CN, since it is reduced to partially N 2 via the intermediate products such as NH 3, boiler exhaust gas through discharging the line L 4 is a a low NOx concentration exhaust gas. Then, the fluid passing through the water pipe provided in the boiler combustion chamber is heated and supplied to a use such as a turbine. In addition, the said heat storage body 1
For 2a and 13a, a ceramic or metal formed into a honeycomb shape having a small gas passage resistance and excellent heat exchange performance is suitable.

【0021】図1では、前記第1及び第2蓄熱式熱交換
器は前記ボイラ燃焼室10の両端側に夫々1個配設され
ているが、夫々複数個配設してもよいことは勿論であ
る。また、排気ガスgは、排気ガス発生源の背圧を高
くしないために、図示しないブロワで四方向弁14に送
るのが好ましい。なお、ラインLを通って排出される
ボイラ排ガスgはボイラ給水加熱用等に供された後煙
突より排出される。
In FIG. 1, the first and second regenerative heat exchangers are respectively provided at both ends of the boiler combustion chamber 10, but it is needless to say that a plurality of heat exchangers may be provided respectively. It is. The exhaust gas g 1, in order not to increase the back pressure of the exhaust gas generating source, preferably send four-way valve 14 in the blower, not shown. Incidentally, boiler exhaust gas g 5 discharged through line L 4 are discharged from the chimney, which has been subjected to the boiler feed water heating or the like.

【0022】図1において、燃焼ガスgの進行方向に
よって燃焼ガスgのボイラ燃焼室10軸方向の温度分
布は変わるが、四方向弁の切替えは比較的短時間の間隔
で行われるので、前記温度分布の時間的変化は大きくは
なく、平均的な温度分布が定まる。ボイラ燃焼室を前記
平均的に定まる温度により区域に分けて、該区域毎に出
入口を有する水管を配設するようにしてもよい。また、
図1では水管11はボイラ燃焼室10の内壁に円環状に
配設してあるが、ボイラ燃焼室10の軸方向に向くよう
に配設してもよく、さらに、燃焼ガスgとの接触伝熱
を行わせるために燃焼室10内を横切る水管があっても
よい。
[0022] In FIG. 1, since it varies the temperature distribution of the boiler combustion chamber 10 axially of the combustion gas g 3 by the traveling direction of the combustion gas g 3, switching of the four-way valve is carried out in a relatively short time interval, The temporal change of the temperature distribution is not large, and an average temperature distribution is determined. The boiler combustion chamber may be divided into sections according to the averagely determined temperature, and a water pipe having an inlet / outlet may be provided for each section. Also,
Although water tube 11 in Figure 1 are arranged in a ring shape on the inner wall of the boiler combustion chamber 10 may be disposed so as to face in the axial direction of the boiler combustion chamber 10, further contact with the combustion gas g 3 There may be a water pipe traversing the combustion chamber 10 to effect heat transfer.

【0023】図2は本発明の実施の第2形態に係わる排
ガスボイラの概略構成を示す。同図において、排気ガス
供給源8であるディーゼルエンジン或はガスタービンか
らの排気ガスはブロワ9を介して1次燃焼室1に送ら
れ、該1次燃焼室1にはバーナ3から燃料が供給されて
燃料過剰の燃焼が行われる。燃料過剰燃焼とは、必ずし
も前記1次燃焼室に存在する酸素量に対して燃料過剰と
いう意味ではなく、燃焼領域で燃料過剰の燃焼がなされ
るという意味である。即ち還元燃焼領域の低NOxの燃
焼を行わしめる。
FIG. 2 shows a schematic configuration of an exhaust gas boiler according to a second embodiment of the present invention. In FIG. 1, exhaust gas from a diesel engine or a gas turbine as an exhaust gas supply source 8 is sent to a primary combustion chamber 1 via a blower 9, and fuel is supplied from the burner 3 to the primary combustion chamber 1. Then, excess fuel combustion is performed. Excessive fuel combustion does not necessarily mean that the amount of oxygen existing in the primary combustion chamber is excessive, but that excess combustion is performed in the combustion region. That is, low NOx combustion in the reduction combustion region is performed.

【0024】前記1次燃焼室での燃焼ガスは温度分布と
未燃燃料の分布が均一ではないが、絞り部2を通ってボ
イラ燃焼室、即ち2次燃焼室に断熱的に膨張噴出する際
に混合が促進されてより均一化され、温度も下がるが、
温度が下がっても800℃〜1000℃以上の温度が保
持されるような絞り度とされている。この比較的均一化
された、未燃焼燃料を含む高温ガスに前記絞り部2の出
口に設けられた空気ノズルより2次空気を供給して高温
低酸素濃度での燃焼を行わしめるので、ボイラ燃焼室で
の燃焼は火炎5aが大きく広がって局所的高温部がな
く、低NOxの燃焼となり、また、特にディーゼルエン
ジンの排気ガスに多く存在するNOxはHCN、NH
等の中間生成物を経由して部分的にNに還元され、ボ
イラ燃焼室の出口7からの排出ガスはNOxの少ない排
ガスとなる。
Although the temperature distribution and the unburned fuel distribution of the combustion gas in the primary combustion chamber are not uniform, the combustion gas is adiabatically expanded and injected into the boiler combustion chamber, that is, the secondary combustion chamber through the throttle portion 2. The mixing is promoted to make it more uniform and the temperature drops,
The squeezing degree is set so that the temperature of 800 ° C. to 1000 ° C. or more is maintained even when the temperature is lowered. Secondary air is supplied from the air nozzle provided at the outlet of the throttle unit 2 to the relatively uniform high-temperature gas containing unburned fuel to perform combustion at a high temperature and low oxygen concentration. In the combustion in the chamber, the flame 5a greatly spreads, and there is no local high-temperature portion, resulting in low NOx combustion. In particular, NOx, which is largely present in the exhaust gas of a diesel engine, is HCN, NH 3
And the like, and is partially reduced to N 2 via an intermediate product such as the above, and the exhaust gas from the outlet 7 of the boiler combustion chamber becomes an exhaust gas with low NOx.

【0025】前記ボイラ燃焼室(2次燃焼室)4内には
ボイラ水管5が配設してあり、主として高温の火炎5a
からの放射(輻射)熱により、水管5内を流れる水及び
/或は水蒸気が加熱される。図では前記水管5はボイラ
燃焼室4の炉壁に円環状に配設されているが、炉の軸方
向に向くように配設してもよく、また、火炎5aとの接
触伝熱を図るために、前記燃焼室4内を横切るような配
管があってもよいことは勿論である。
A boiler water pipe 5 is provided in the boiler combustion chamber (secondary combustion chamber) 4, and mainly includes a high-temperature flame 5a.
The water and / or steam flowing through the water pipe 5 is heated by the radiation (radiation) heat from the water pipe. In the figure, the water pipe 5 is arranged in an annular shape on the furnace wall of the boiler combustion chamber 4, but may be arranged so as to face in the axial direction of the furnace, and also for contact heat transfer with the flame 5a. Therefore, it goes without saying that there may be a pipe crossing the inside of the combustion chamber 4.

【0026】前記ボイラ燃焼室4内にはボイラ水管を配
設せず、ボイラ水管は燃焼ガス後流中に配設してもよ
い。前記2次空気を噴出する空気ノズル6は、該2次空
気が燃焼室4内で適切な旋回流を起すように位置、方向
を定めて複数個配置するのがよい。バーナ3は図では排
気ガスが1次燃焼室に流入する方向に対向して配設され
ているが、これも最適の位置、方向を定めて配設され、
1次燃焼室の形状も最適の形状とされることは勿論であ
る。
The boiler water pipe may not be disposed in the boiler combustion chamber 4, but may be disposed downstream of the combustion gas. It is preferable that a plurality of the air nozzles 6 for ejecting the secondary air are arranged in a position and a direction so that the secondary air causes an appropriate swirling flow in the combustion chamber 4. Although the burner 3 is disposed opposite to the direction in which the exhaust gas flows into the primary combustion chamber in the drawing, it is also disposed with an optimum position and direction determined.
It goes without saying that the shape of the primary combustion chamber is also optimized.

【0027】上記構成により、ディーゼルエンジン或は
ガスタービンの排気ガス中の残存酸素を燃焼用の酸化剤
として利用して1次燃焼と2次燃焼からなる、いわゆる
2段燃焼を行い、従来の排ガスボイラよりも同じ排気量
でボイラ出力を増大し、排出ガスをNOx濃度の低いも
のとすることができる。
With the above configuration, the so-called two-stage combustion consisting of primary combustion and secondary combustion is performed by using residual oxygen in the exhaust gas of a diesel engine or a gas turbine as an oxidizing agent for combustion. The boiler output can be increased with the same displacement as the boiler, and the exhaust gas can have a lower NOx concentration.

【0028】[0028]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記述されるような効果を奏する。
The present invention is embodied in the form described above, and has the following effects.

【0029】ボイラ燃焼室の両側に夫々第1及び第2の
蓄熱式熱交換器を配設し、ディーゼルエンジンやガスタ
ービンの排気ガスを切替弁を介して所定時間間隔で第1
及び第2の蓄熱式熱交換器に交互に導き、前記排気ガス
が蓄熱式熱交換器の蓄熱体で昇温されて前記ボイラ燃焼
室に噴出する際に燃料を供給することによって、高温低
酸素濃度における燃焼を行うNOx生成の少ない排ガス
ボイラを提供することができる。
First and second regenerative heat exchangers are disposed on both sides of the boiler combustion chamber, respectively, and the exhaust gas of a diesel engine or a gas turbine is supplied to the first heat exchanger via a switching valve at predetermined time intervals.
And alternately lead to the second regenerative heat exchanger, and supply the fuel when the exhaust gas is heated by the regenerator of the regenerative heat exchanger and ejects the exhaust gas into the boiler combustion chamber. It is possible to provide an exhaust gas boiler that performs combustion at a low concentration and generates less NOx.

【0030】ディーゼルエンジンやガスタービンの排気
ガスを1次燃焼室に導いて燃料過多の1次燃焼を行わし
め、絞り部を介して連通された2次燃焼室であるボイラ
燃焼室で2次空気を供給して2次燃焼を行わしめること
によって、前記排気ガス中の残存空気を利用した燃料過
多の燃焼と高温低酸素濃度における燃焼の2段燃焼を行
うNOx生成の少ない排ガスボイラを提供することがで
きる。
The exhaust gas of a diesel engine or a gas turbine is guided to a primary combustion chamber to perform primary combustion with an excessive amount of fuel, and secondary air is passed through a boiler combustion chamber, which is a secondary combustion chamber communicated via a throttle. To provide an exhaust gas boiler with low NOx generation that performs two-stage combustion of excessive fuel combustion and combustion at a high temperature and low oxygen concentration by using residual air in the exhaust gas by performing secondary combustion by supplying air. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の第1形態に係わる排ガスボイ
ラの概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an exhaust gas boiler according to a first embodiment of the present invention.

【図2】 本発明の実施の第2形態に係わる排ガスボイ
ラの概略構成を示す図である。
FIG. 2 is a diagram showing a schematic configuration of an exhaust gas boiler according to a second embodiment of the present invention.

【図3】 空気過剰率と燃焼ガス中の残存酸素濃度を示
すグラフである。
FIG. 3 is a graph showing an excess air ratio and a residual oxygen concentration in a combustion gas.

【符号の説明】[Explanation of symbols]

1 1次燃焼室 2 絞り部 3 バーナ 4 ボイラ燃焼室(2次燃焼室) 5 ボイラ水管 6 空気ノズル 7 ボイラ燃焼室出口 8 排気ガス供給源 9 ブロワ 10 ボイラ 11 ボイラ水管 12 第1蓄熱式熱交換器 13 第2蓄熱式熱交換器 14 四方向弁 DESCRIPTION OF SYMBOLS 1 Primary combustion chamber 2 Throttle part 3 Burner 4 Boiler combustion chamber (secondary combustion chamber) 5 Boiler water pipe 6 Air nozzle 7 Boiler combustion chamber outlet 8 Exhaust gas supply source 9 Blower 10 Boiler 11 Boiler water pipe 12 First regenerative heat exchange Unit 13 Second regenerative heat exchanger 14 Four-way valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 6/18 F02C 6/18 B 7/00 7/00 B F22B 1/18 F22B 1/18 R F23G 5/46 ZAB F23G 5/46 ZABZ 7/06 ZAB 7/06 ZABZ 103 103 F23L 15/02 F23L 15/02 (72)発明者 河合 一寛 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 Fターム(参考) 3G071 BA10 DA08 FA06 HA05 JA03 3G081 BA11 BA18 BB00 BC07 BD00 DA14 3K023 QA02 QB02 QB10 QC07 3K065 AA23 AB01 AC19 BA04 JA05 JA18 3K078 AA04 BA02 BA10 BA22 CA02 CA09 CA13 CA22 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02C 6/18 F02C 6/18 B 7/00 7/00 B F22B 1/18 F22B 1/18 R F23G 5 / 46 ZAB F23G 5/46 ZABZ 7/06 ZAB 7/06 ZABZ 103 103 F23L 15/02 F23L 15/02 (72) Inventor Kazuhiro Kawai 1-8-1 Koura, Kanazawa-ku, Yokohama-shi Yokohama, Mitsubishi Heavy Industries, Ltd. F term in the laboratory (reference) 3G071 BA10 DA08 FA06 HA05 JA03 3G081 BA11 BA18 BB00 BC07 BD00 DA14 3K023 QA02 QB02 QB10 QC07 3K065 AA23 AB01 AC19 BA04 JA05 JA18 3K078 AA04 BA02 BA10 BA22 CA02 CA09 CA13 CA22

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水管を配設した筒状のボイラ燃焼室の両
端側に該ボイラ燃焼室に連通する通路を有する蓄熱体を
備えた第1及び第2の蓄熱式熱交換器を夫々配設し、こ
れら両蓄熱式熱交換器には前記蓄熱体よりも前記ボイラ
燃焼室側に燃料を供給する燃料供給弁が配設され、ディ
ーゼルエンジン或はガスタービンの排気ガス通路を切替
弁を介して前記両蓄熱式熱交換器に連結したことを特徴
とする排ガスボイラ。
1. A first heat storage type heat exchanger and a second heat storage type heat exchanger each having a heat storage body having a passage communicating with the boiler combustion chamber at both ends of a cylindrical boiler combustion chamber provided with a water pipe. A fuel supply valve for supplying fuel to the boiler combustion chamber side of the regenerator is provided in each of these regenerative heat exchangers, and the exhaust gas passage of a diesel engine or a gas turbine is connected via a switching valve. An exhaust gas boiler connected to the both heat storage heat exchangers.
【請求項2】 前記切替弁の切替えによって前記排気ガ
スを前記第1の蓄熱式熱交換器或は第2の蓄熱式熱交換
器へ連通し、一方の蓄熱式熱交換器に連通された前記排
気ガスは該熱交換器の蓄熱体との熱交換によって昇温さ
れ、昇温された排気ガスに前記燃料供給弁から燃料を供
給して前記昇温された排気ガスとともに前記ボイラ燃焼
室に噴出して前記昇温された高温低酸素濃度ガス中での
燃焼を行わしめ、燃焼ガスは前記ボイラ燃焼室に配設さ
れた前記水管に放熱して降温されながら他方の蓄熱式熱
交換器に達し該蓄熱式熱交換器を通る際に蓄熱体との熱
交換によってさらに降温された後に前記切替弁を介して
排出され、該切替弁の切替えと燃料供給を所定の時間間
隔で交互に行うことを特徴とする請求項1に記載の排ガ
スボイラにおける燃焼方法。
2. The switching of the switching valve causes the exhaust gas to communicate with the first regenerative heat exchanger or the second regenerative heat exchanger, and the exhaust gas communicates with one of the regenerative heat exchangers. The temperature of the exhaust gas is increased by heat exchange with the heat storage body of the heat exchanger, and the fuel is supplied from the fuel supply valve to the heated exhaust gas, and is ejected to the boiler combustion chamber together with the heated exhaust gas. Then, the combustion is performed in the high-temperature, low-oxygen-concentration gas whose temperature has been increased, and the combustion gas reaches the other regenerative heat exchanger while radiating heat to the water pipe provided in the boiler combustion chamber and lowering the temperature. After passing through the regenerative heat exchanger, the temperature is further lowered by heat exchange with the heat storage body, then discharged through the switching valve, and the switching of the switching valve and the fuel supply are alternately performed at predetermined time intervals. The fuel in the exhaust gas boiler according to claim 1, wherein Baking method.
【請求項3】 ディーゼルエンジン或はガスタービンの
排気ガス通路に1次燃焼室を設け、該1次燃焼室を絞り
通路を介して2次燃焼室に連結し、前記1次燃焼室に燃
料を供給して燃料過多の1次燃焼を行わしめ、前記絞り
部を出て前記2次燃焼室に噴出する1次燃焼ガスに空気
を供給して2次燃焼を行わしめ、該2次燃焼ガスをボイ
ラ水管の加熱源としたことを特徴とする排ガスボイラ。
3. A primary combustion chamber is provided in an exhaust gas passage of a diesel engine or a gas turbine, the primary combustion chamber is connected to a secondary combustion chamber via a throttle passage, and fuel is supplied to the primary combustion chamber. The primary combustion gas is supplied to perform primary combustion with excess fuel, and air is supplied to the primary combustion gas ejected from the throttle portion and ejected to the secondary combustion chamber to perform secondary combustion. An exhaust gas boiler, which is used as a heating source for a boiler water pipe.
【請求項4】 前記2次燃焼室にボイラ水管を配設した
ことを特徴とする請求項3に記載の排ガスボイラ。
4. The exhaust gas boiler according to claim 3, wherein a boiler water pipe is provided in the secondary combustion chamber.
JP2001020777A 2001-01-29 2001-01-29 Exhaust gas boiler and combustion method in exhaust gas boiler Withdrawn JP2002221091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020777A JP2002221091A (en) 2001-01-29 2001-01-29 Exhaust gas boiler and combustion method in exhaust gas boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020777A JP2002221091A (en) 2001-01-29 2001-01-29 Exhaust gas boiler and combustion method in exhaust gas boiler

Publications (1)

Publication Number Publication Date
JP2002221091A true JP2002221091A (en) 2002-08-09

Family

ID=18886438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020777A Withdrawn JP2002221091A (en) 2001-01-29 2001-01-29 Exhaust gas boiler and combustion method in exhaust gas boiler

Country Status (1)

Country Link
JP (1) JP2002221091A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059055A (en) * 2012-08-24 2014-04-03 Eberspaecher Exhaust Technology Gmbh & Co Kg Four-way exhaust gas valve
KR101440790B1 (en) * 2014-05-28 2014-09-17 (주)위너텍코리아 Combustion and steam generating support apparatus of waste heat recovery boiler system
KR101806537B1 (en) 2015-10-30 2018-01-11 한국생산기술연구원 fluidized bed-type boiler using liquid metal and method of operation the same
CN108261902A (en) * 2017-01-04 2018-07-10 恩国环保科技(上海)有限公司 A kind of tail gas of carbonization stove processing unit and processing method
CN111425854A (en) * 2019-11-13 2020-07-17 北京华通兴远供热节能技术有限公司 Gas boiler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059055A (en) * 2012-08-24 2014-04-03 Eberspaecher Exhaust Technology Gmbh & Co Kg Four-way exhaust gas valve
KR101440790B1 (en) * 2014-05-28 2014-09-17 (주)위너텍코리아 Combustion and steam generating support apparatus of waste heat recovery boiler system
KR101806537B1 (en) 2015-10-30 2018-01-11 한국생산기술연구원 fluidized bed-type boiler using liquid metal and method of operation the same
CN108261902A (en) * 2017-01-04 2018-07-10 恩国环保科技(上海)有限公司 A kind of tail gas of carbonization stove processing unit and processing method
CN108261902B (en) * 2017-01-04 2023-12-01 恩国环保科技(上海)有限公司 Carbonization furnace tail gas treatment device and treatment method
CN111425854A (en) * 2019-11-13 2020-07-17 北京华通兴远供热节能技术有限公司 Gas boiler

Similar Documents

Publication Publication Date Title
US5746159A (en) Combustion device in tube nested boiler and its method of combustion
CA2434809A1 (en) Combustion method and apparatus for nox reduction
CN104456537B (en) Heat storage type porous medium burner assembly
CA2306398C (en) Water-tube boiler
CN101435575B (en) Thermal storage type natural gas boiler system for combustion selective catalytic reduction for flue gas denitration
JP2003254509A (en) Single end type heat accumulating radiant tube burner and its combustion method
CN108916864B (en) Supercritical carbon dioxide cyclone furnace for reducing nitrogen oxides based on ammonia spraying in high-temperature reduction zone
JP4819276B2 (en) Tube furnace
JP2002221091A (en) Exhaust gas boiler and combustion method in exhaust gas boiler
CN107504487B (en) Continuous dispersion type combustion device and method for forming continuous dispersion type combustion
CN104727976B (en) A kind of combustion heating system of Stirling engine
KR101030289B1 (en) full time regenerative type single radiant tube burner
KR100583819B1 (en) Self regenerative type single radiant tube burner
JP2004205113A (en) Radiant tube burner
JP3668546B2 (en) Air circulation type tube heating equipment
RU2378573C1 (en) Recuperative burner for gaseous fuel
JPH08128608A (en) Double-end type radiant tube burner system
CN111076170A (en) Low-nitrogen gas burner and working method
JP3771230B2 (en) How to burn a radiant tube burner
JP3722857B2 (en) Combustion control method for combustion heating device
JP2840534B2 (en) Thermal storage radiant tube burner
CN201396762Y (en) Energy-saving integrated thermal-accumulating burner of magnesium reduction furnace
JPH10196934A (en) Supply air flow preheater and supply air flow preheating method
JP2004060984A (en) Low nox combustor
JP2006349255A (en) Boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080718