JP2002191944A - Fluid separating element - Google Patents

Fluid separating element

Info

Publication number
JP2002191944A
JP2002191944A JP2000392465A JP2000392465A JP2002191944A JP 2002191944 A JP2002191944 A JP 2002191944A JP 2000392465 A JP2000392465 A JP 2000392465A JP 2000392465 A JP2000392465 A JP 2000392465A JP 2002191944 A JP2002191944 A JP 2002191944A
Authority
JP
Japan
Prior art keywords
water
membrane
fluid separation
separation element
toc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000392465A
Other languages
Japanese (ja)
Inventor
Koji Fujiwara
浩二 藤原
Motohiro Okazaki
素弘 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000392465A priority Critical patent/JP2002191944A/en
Publication of JP2002191944A publication Critical patent/JP2002191944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid separating element by which ordinary fluid separation can be performed in a short time after operation is started even in a case where an original water with a low TOC concentration is treated such as a field for manufacturing ultrapure water and with a slight self-eluation of organic carbon. SOLUTION: The fluid separating element with a membrane unit containing a feed liquid flow path material, a separating membrane and a transmitted liquid flow path material around a water collecting pipe is such a fluid separating element in which after a water with a TOC concentration of 1-3 ppb and a temperature of 50 deg.C is washed by transmitting it through for 1 hour by a membrane transmitting flux density of 0.3 m3/m2/day, when a water in a range of a TOC concentration of 1-3 ppb and at a temperature of 25 deg.C is treated by a membrane transmitting flux density of 1.0 m3/m2/day, a relation between the TOC concentration (TOCin) of the original water after 3 hours passes from starting of the treatment and the TOC concentration (TOCout) of the transmitted water is TOCout-TOCin<=2 ppb.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超純水製造に好適
に用いられる流体分離素子に関し、詳しくは、有機炭素
の溶出が少ない流体分離素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid separation element suitably used for producing ultrapure water, and more particularly, to a fluid separation element with less elution of organic carbon.

【0002】[0002]

【従来の技術】逆浸透膜等の分離膜を用いた流体分離素
子としては、スパイラル型やプレートアンドフレーム
型、さらには中空型の流体分離素子がある。たとえば、
一定容積中に多くの膜を設けることが可能であることか
ら最も多く利用されている、図1に示す逆浸透膜を用い
たスパイラル型の流体分離素子1は、透過液流路材2を
挟むように分離膜3を2つ折りにし、接着剤でその分離
膜の集水管軸方向両端部11を封止して封筒状膜4を形
成し、その封筒状膜4を集水管5側で開口するように配
置するとともに、供給液流路材6と重ねて集水管5の周
りにスパイラル状に巻囲することにより構成される。
2. Description of the Related Art As a fluid separation element using a separation membrane such as a reverse osmosis membrane, there are a spiral type, a plate and frame type, and a hollow type fluid separation element. For example,
A spiral-type fluid separation element 1 using a reverse osmosis membrane shown in FIG. 1 which is most frequently used because a large number of membranes can be provided in a fixed volume sandwiches a permeated liquid flow path material 2. Thus, the separation membrane 3 is folded in two, and the two ends 11 of the separation membrane in the axial direction of the water collecting pipe are sealed with an adhesive to form an envelope-shaped membrane 4, and the envelope-shaped membrane 4 is opened on the water collecting pipe 5 side. In such a manner as to overlap the supply liquid flow path material 6 and spirally surround the water collecting pipe 5.

【0003】流体分離素子1においては、供給液7が流
体分離素子1の一方の端部から供給され、供給液流路材
6に沿って流れる途中でその一部が分離膜3を通過す
る。分離膜3を通過した透過液9は、透過液流路材2に
沿って集水管5の集水孔10を通過し、集水管5の端部
に排出される。また、分離膜3を通過しなかった供給液
7の残りは、流体分離素子1の他方の端面から濃縮液8
として排出される。このとき、供給液7が分離膜3を通
過することで処理水中の有機炭素が除去され、有機炭素
濃度(以下、TOC濃度という)の低い透過水は、純
水、超純水として利用される。
In the fluid separation element 1, a supply liquid 7 is supplied from one end of the fluid separation element 1, and a part of the supply liquid 7 passes through the separation membrane 3 while flowing along the supply liquid flow path member 6. The permeated liquid 9 that has passed through the separation membrane 3 passes through the water collecting hole 10 of the water collecting pipe 5 along the permeated liquid flow path material 2 and is discharged to the end of the water collecting pipe 5. The remainder of the supply liquid 7 that has not passed through the separation membrane 3 is transferred from the other end face of the fluid separation element 1 to the concentrated liquid 8.
Is discharged as At this time, the supply liquid 7 passes through the separation membrane 3 to remove organic carbon in the treated water, and the permeated water having a low organic carbon concentration (hereinafter referred to as TOC concentration) is used as pure water or ultrapure water. .

【0004】このように、処理水を純水、超純水とする
には流体分離素子を用いて処理水中の有機炭素を排除す
るが、流体分離素子は通常その製造工程の最終段階で不
純物を洗い流しているにも関わらず、流体分離素子自体
に使用した接着剤や分離膜等の部材から有機炭素が自己
溶出するため、運転開始直後の透過水には原水に含まれ
る以上の有機炭素が含まれている。そのため、運転をそ
のまま続けてTOC濃度を低下させるが、原水のTOC
濃度が低い場合、透過水のTOC濃度が原水よりも低く
なるまでには24時間以上の時間を要する場合が多く、
場合によっては数日間を要することもあり、その間の処
理水と時間を無駄にせざるを得ないなお、特開平7−8
0259号公報には、原水に含まれる有機炭素をできる
だけ多く阻止するとともに、運転開始直後の透過水中の
TOC濃度をできるだけ短時間で一定レベル以下にすべ
く、流体分離素子や膜を酸性溶液やアルカリ性溶液で洗
浄する方法が開示されている。また、特開平7−802
60号公報には、流体分離素子や膜を熱純水で洗浄する
方法が、特開平7−80261号公報には、流体分離素
子や膜を塩素含有水溶液で洗浄する方法が、さらに、特
開平7−80262号公報には、流体分離素子や膜を有
機溶剤で洗浄する方法が記載されている。しかしなが
ら、これらに記載されている方法では、いずれも、供給
水のTOC濃度が10〜30ppbと高い場合には十分
な効果が得られるものの、供給水のTOC濃度が1〜3
ppb程度と低い場合には不十分となってしまう。
As described above, in order to make the treated water pure water or ultrapure water, organic carbon in the treated water is eliminated by using a fluid separating element. However, the fluid separating element usually removes impurities at the final stage of the manufacturing process. Despite the flushing, organic carbon is self-eluted from the adhesive or separation membrane used for the fluid separation element itself, so the permeated water immediately after the start of operation contains more organic carbon than is contained in the raw water Have been. Therefore, the operation is continued as it is to reduce the TOC concentration.
When the concentration is low, it often takes 24 hours or more for the TOC concentration of the permeated water to become lower than the raw water,
In some cases, several days may be required, and during that time the treated water and time must be wasted.
No. 0259 discloses that a fluid separation element and a membrane are made of an acidic solution or an alkaline solution in order to prevent the organic carbon contained in the raw water as much as possible and to reduce the TOC concentration in the permeated water immediately after the start of operation to a certain level or less in a short time. A method for washing with a solution is disclosed. Also, Japanese Patent Application Laid-Open No. 7-802
Japanese Unexamined Patent Publication No. 60-80261 discloses a method for cleaning a fluid separation element and a membrane with hot pure water, and Japanese Patent Laid-Open No. 7-80261 discloses a method for cleaning a fluid separation element and a membrane with a chlorine-containing aqueous solution. JP-A-7-80262 describes a method of cleaning a fluid separation element and a membrane with an organic solvent. However, in any of the methods described in these documents, a sufficient effect is obtained when the TOC concentration of the supply water is as high as 10 to 30 ppb, but the TOC concentration of the supply water is 1 to 3 ppb.
If it is as low as ppb, it will be insufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明は、超純水製造
分野等、TOC濃度が低い原水を処理する場合にも運転
開始後短時間で通常の流体分離を行える、有機炭素の自
己溶出の少ない流体分離素子を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention relates to a method for self-elution of organic carbon which can perform normal fluid separation in a short time after starting operation even when treating raw water having a low TOC concentration, such as in the field of ultrapure water production. It is an object of the present invention to provide a small fluid separation element.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明は、集水管の周りに、供給液流路材と、分離膜
と、透過液流路材とを含む膜ユニットを形成してなる流
体分離素子を、40〜90℃の水を膜透過流速が0.0
5m3/m2・day以上になるように供給して洗浄する
流体分離素子の製造方法を特徴とするものである。この
とき、圧力0.05〜0.6MPaの範囲で加圧した水
を1〜20時間の範囲で供給して洗浄することが好まし
い。
In order to achieve the above object, according to the present invention, a membrane unit including a supply liquid flow path material, a separation membrane, and a permeate liquid flow path material is formed around a water collecting pipe. The fluid separation element comprising:
The method is characterized by a method of manufacturing a fluid separation element for supplying and cleaning at a flow rate of 5 m 3 / m 2 · day or more. At this time, it is preferable to wash by supplying water pressurized at a pressure of 0.05 to 0.6 MPa for a period of 1 to 20 hours.

【0007】また、本発明は、集水管の周りに、供給液
流路材と、分離膜と、透過液流路材とを含む膜ユニット
を有し、かつ、40〜90℃の水を、膜透過流速0.0
5m 3/m2・day以上になるように供給して洗浄して
なる流体分離素子を特徴とするものである。ここで、圧
力0.05〜0.6MPaの範囲で加圧した水を1〜2
0時間の範囲で供給して洗浄してなるものであることが
好ましい。
[0007] Further, the present invention provides a method for supplying a supply liquid around a collecting pipe.
Membrane unit including flow path material, separation membrane, and permeate flow path material
And water at 40 to 90 ° C. is supplied at a membrane permeation flow rate of 0.0
5m Three/ MTwo・ Supply and clean so that it is more than day
Characterized by a fluid separation element. Where the pressure
Water pressurized in the range of 0.05-0.6 MPa
It must be supplied and cleaned within 0 hours.
preferable.

【0008】さらに、本発明は、集水管の周囲に、供給
液流路材と、分離膜と、透過液流路材とを含む膜ユニッ
トを有する流体分離素子であって、TOC濃度1〜3p
pbの温度50℃の水を膜透過流束0.3m3/m2/d
ayで15時間透過させて洗浄した後、TOC濃度1〜
3ppbの範囲にある25℃の水を膜透過流速1.0m
3/m2・dで処理した場合、処理開始から3時間経過し
た時点の原水のTOC濃度(TOCin)と透過水TOC
濃度(TOCout)との関係が、TOCout−TOCin
2ppbにある流体分離素子を特徴とするものである。
Further, the present invention is a fluid separation element having a membrane unit including a supply liquid flow path material, a separation membrane, and a permeate flow path material around a water collecting pipe, wherein the TOC concentration is 1 to 3 p.
pb water at a temperature of 50 ° C. with a membrane permeation flux of 0.3 m 3 / m 2 / d
ay for 15 hours, and then washed with a TOC concentration of 1 to
Water at 25 ° C. in the range of 3 ppb is passed through
When treated at 3 / m 2 · d, the TOC concentration of raw water (TOC in ) and the permeated water TOC at 3 hours after the start of treatment
The relationship with the concentration (TOC out ) is: TOC out −TOC in
It features a fluid separation element at 2 ppb.

【0009】ここで、本発明の流体分離素子は、洗浄直
後にTOC濃度1〜3ppbの範囲にある25℃の水を
処理した場合と、洗浄した後に1か月保管し、その後、
TOC濃度1〜3ppbの範囲にある25℃の水を処理
した場合の、処理開始から3時間経過した時点での透過
水TOC濃度の差が、5ppb以内であることが好まし
い。また、分離膜は、3官能基のブタジエンジオールを
含む接着剤で封筒状に形成されていることが好ましく、
接着剤は、主剤としてイソシアネートを、硬化剤として
3官能基のブタジエンジオールを含むものであること
が、より好ましい。
Here, the fluid separation element of the present invention is treated with water at 25 ° C. having a TOC concentration in the range of 1 to 3 ppb immediately after washing, or stored for one month after washing, and thereafter,
In the case of treating water at 25 ° C. having a TOC concentration of 1 to 3 ppb, it is preferable that the difference in the permeated water TOC concentration after 3 hours from the start of the treatment is within 5 ppb. Further, the separation membrane is preferably formed in an envelope shape with an adhesive containing trifunctional butadiene diol,
More preferably, the adhesive contains isocyanate as a main component and trifunctional butadiene diol as a curing agent.

【0010】以上のような流体分離素子は、超純水製造
用に好適であり、このような流体分離素子を圧力容器に
収納してなる流体分離膜モジュールも好ましい態様であ
る。
The above-described fluid separation element is suitable for producing ultrapure water, and a fluid separation membrane module in which such a fluid separation element is housed in a pressure vessel is also a preferred embodiment.

【0011】[0011]

【発明の実施の形態】本発明の流体分離素子を、説明の
便宜上、従来の技術の欄で参照した図と同じ図1を用い
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A fluid separation element according to the present invention will be described with reference to FIG.

【0012】本発明の流体分離素子1は、集水管5の周
囲に、供給液流路材6と、透過液流路材2を分離膜3で
挟みこむように形成した封筒状膜4とを含む膜ユニット
が、たとえばスパイラル状に巻囲されている。封筒状膜
4は、透過液流路材2を挟み込むようにして分離膜3を
折り畳み、重なり合っている分離膜3同士を、折り畳み
中心の辺に隣接する2辺(集水管5への巻付時の軸方向
両端部11)において接着剤で接合して形成されてい
る。
The fluid separation element 1 of the present invention includes a supply liquid flow path member 6 and an envelope-shaped membrane 4 formed so that a permeate liquid flow path member 2 is sandwiched between separation membranes 3 around a water collecting pipe 5. The membrane unit is wound, for example, in a spiral shape. The envelope-shaped membrane 4 folds the separation membrane 3 so as to sandwich the permeated liquid flow path material 2, and divides the overlapping separation membranes 3 into two sides adjacent to the center side of the fold (when wound around the water collection pipe 5). At both ends 11) in the axial direction.

【0013】このような流体分離素子1は、運転初期の
透過水TOC濃度が非常に高くなるため洗浄してから使
用に供することとなる。この洗浄を、温度を高く、透過
水量を多くして行うことで洗浄効果が大きくなり、反対
に、温度を常温に近くにし、透過水量を少なくして洗浄
コスト、製造コストを抑えることができるが、本発明に
おいては、特に、使用されている接着剤や分離膜3から
自己溶出する有機炭素を洗浄し、洗浄効果とコストとを
バランス良く満足させるために、40〜90℃の温水
を、膜透過流速が0.05m3/m2・day以上になる
ように供給して洗浄する。特にこの程度の温水を上記膜
透過流速で通過させることによって、有機炭素の拡散効
果が向上するため、効果的に分離膜3中の有機炭素を溶
出させるとともに、透過した温水の一部が、透過液流路
材2に面している接着剤端面を流れることによって、接
着剤自体から溶出する有機炭素を効率的に洗い流すこと
ができる。透過液流路材2等に、水中での軟化温度が7
0℃程度にあるポリエステル等を使用する場合には、洗
浄水の温度は50〜70℃調節することが好ましい。
[0013] Such a fluid separation element 1 is used after being washed since the permeated water TOC concentration in the initial stage of operation becomes extremely high. By performing this cleaning at a higher temperature and increasing the amount of permeated water, the cleaning effect is increased.On the contrary, the temperature can be made close to room temperature, and the amount of permeated water can be reduced to reduce the cleaning cost and production cost. In the present invention, in particular, in order to clean the self-eluting organic carbon used from the adhesive and the separation membrane 3 used, and to satisfy a good balance between the cleaning effect and the cost, warm water of 40 to 90 ° C. is used. It is supplied and washed so that the permeation flow rate becomes 0.05 m 3 / m 2 · day or more. In particular, by passing hot water of this degree at the above-mentioned membrane permeation flow rate, the diffusion effect of organic carbon is improved, so that the organic carbon in the separation membrane 3 is effectively eluted and a part of the permeated warm water is permeated. The organic carbon eluted from the adhesive itself can be efficiently washed away by flowing through the adhesive end face facing the liquid flow path material 2. When the softening temperature in water is 7
When using polyester or the like at about 0 ° C., the temperature of the washing water is preferably adjusted to 50 to 70 ° C.

【0014】また、洗浄時間が長くなるほど洗浄効果が
より大きくなり、反対に洗浄時間を短くするほど洗浄コ
スト、製造コストをより抑えることができるので、たと
えば圧力0.05〜0.6MPaの範囲で加圧した水を
1〜20時間の範囲で供給して洗浄することが好まし
い。
In addition, the longer the cleaning time, the greater the cleaning effect. On the contrary, the shorter the cleaning time, the more the cleaning cost and the manufacturing cost can be reduced. It is preferable to wash by supplying pressurized water for 1 to 20 hours.

【0015】さらに、流体分離素子は、通常、プラント
等で使用されるまでに、保管、輸送等を経るが、保管や
運送中に、接着剤等に含まれる有機炭素が透過液流路や
供給液流路等、既に洗浄された部分に移動し、その有機
炭素が処理開始後の透過水に含まれることになり、透過
水のTOC濃度が増加する。そのため、流体分離素子
は、たとえばTOC濃度が1〜3ppbの範囲にあるよ
うな原水を用いた場合、運転初期の透過水のTOC濃度
が原水のTOC濃度よりもはるかに高くなる。
Further, the fluid separation element usually undergoes storage, transportation, etc. before it is used in a plant or the like. During storage or transportation, organic carbon contained in an adhesive or the like passes through a permeate flow path or a supply path. The organic carbon is moved to a portion that has already been washed, such as a liquid channel, and the organic carbon is included in the permeated water after the start of the treatment, and the TOC concentration of the permeated water increases. For this reason, when the raw water having a TOC concentration in the range of 1 to 3 ppb is used as the fluid separation element, the TOC concentration of the permeated water in the initial stage of operation becomes much higher than the TOC concentration of the raw water.

【0016】しかしながら、本発明の流体分離素子1
は、TOC濃度1〜3ppbの温度50℃の水を膜透過
流束0.3m3/m2/dayで1時間透過させて洗浄し
た後、TOC濃度1〜3ppbの範囲にある25℃の水
を膜透過流速1.0m3/m2・dで処理すると、処理開
始から3時間経過した時点の原水のTOC濃度(TOC
in)と透過水TOC濃度(TOCout)との関係が、T
OCout−TOCin≦2ppbとなる。
However, the fluid separation element 1 of the present invention
Permeates water at a temperature of 50 ° C with a TOC concentration of 1 to 3 ppb
0.3m fluxThree/ MTwo/ Day for 1 hour to wash
After that, the water at 25 ° C. having a TOC concentration of 1 to 3 ppb was used.
Is 1.0 mThree/ MTwo・ When processing with d, processing is opened
The TOC concentration of raw water 3 hours after the beginning (TOC concentration)
in) And TOC concentration of permeate (TOC)out) Is T
OCout-TOCin≤ 2 ppb.

【0017】TOCout−TOCinを2ppb以下にす
るために、たとえば、接着剤に、3官能基のブタジエン
ジオールを含むもの、特には主剤がイソシアネート、硬
化剤が3官能基のブタジエンジオールを含むものなど、
主剤や硬化剤の未反応モノマーを低減できるものを用い
ることが好ましい。3官能基を有することにより、2官
能基の場合よりも、残存する未反応物が少なく、反応が
より立体的に進むため、より未反応物が溶出しづらい構
造の硬化状態が形成される。その結果、透過水への有機
炭素溶出を低減できる。
In order to reduce TOC out -TOC in to 2 ppb or less, for example, an adhesive containing a trifunctional butadiene diol in an adhesive, particularly an adhesive containing a isocyanate as a main component and a butadiene diol as a curing agent in a trifunctional group Such,
It is preferable to use one that can reduce unreacted monomers of the main agent and the curing agent. By having three functional groups, the remaining unreacted substances are less and the reaction proceeds more sterically than in the case of bifunctional groups, so that a hardened state of a structure in which unreacted substances are harder to elute is formed. As a result, the elution of organic carbon into permeated water can be reduced.

【0018】このように、TOCout−TOCinが2p
pb以下であれば、その後の工程で設置されている、紫
外線照射装置等による有機炭素分解の際の負荷が過大と
なることはないため、運転開始時の立ち上げに要する時
間と水量を大幅に削減することが可能となる。
Thus, TOC out -TOC in is 2p
If the pressure is not more than pb, since the load at the time of decomposing organic carbon by an ultraviolet irradiation device or the like, which is installed in a subsequent process, does not become excessive, the time required for startup at the start of operation and the amount of water are greatly reduced. It becomes possible to reduce.

【0019】さらに、流体分離素子は製造から1ヶ月以
上経過した後に使用されることも少なくないが、上記の
洗浄を行った後に、減圧密封した袋に収納し4℃程度の
冷所保存から外気温である30℃程度までの温度下で保
管したり、通気性が保たれた状態で保管することによ
り、洗浄直後に水処理した場合と、洗浄後1ヶ月間保管
した後に水を処理した場合との透過水TOC濃度差を小
さくできる。具体的には、TOC濃度1〜3ppbの範
囲にある25℃の水を3時間処理した時の透過水TOC
濃度差を5ppb以内、さらには2ppb以内にでき
る。
Further, although the fluid separation element is often used after one month or more from its manufacture, after the above-mentioned washing, it is stored in a bag sealed under reduced pressure and stored in a cold storage room at about 4 ° C. Water treatment immediately after washing by storing at a temperature up to about 30 ° C, which is the air temperature, or keeping in a state where air permeability is maintained, or when water is treated after storing for one month after washing And the difference in TOC concentration of the permeated water can be reduced. Specifically, the permeated water TOC obtained by treating water at 25 ° C. having a TOC concentration of 1 to 3 ppb for 3 hours.
The concentration difference can be made within 5 ppb, and further within 2 ppb.

【0020】保管前後における透過水TOC濃度差を上
記範囲内にできることで、紫外線照射装置等、後工程に
おける有機炭素分解負荷をさらに低減でき、運転開始直
後に通水できる場合が多くなる。また、仮に通水できな
かった場合でも、やはりその後の洗浄時間を短くでき、
運転開始時の立ち上げに要する時間と水量をさらに削減
することが可能となる。
By making the difference in the concentration of the permeated water TOC before and after storage within the above range, the load of decomposing organic carbon in a subsequent process such as an ultraviolet irradiation device can be further reduced, and water can be passed immediately after the start of operation in many cases. Also, even if water cannot be passed, the subsequent cleaning time can be shortened,
It is possible to further reduce the time and the amount of water required for startup at the start of operation.

【0021】また、通水までに必要な時間をさらに短縮
するためには、有機炭素の自己溶出が少ない素材を供給
液流路材6や透過液流路材2など構成部材に使用するこ
とも好ましい。例えば、供給液流路材6としては、ポリ
エチレンやポリプロピレンといったポリオレフィン樹脂
のネット等、透過液流路材2としては、トリコットと呼
ばれるポリエステル樹脂やポリオレフィン樹脂から織ら
れた編み物を熱融着により固定化したもの等が好まし
い。
Further, in order to further reduce the time required for passing water, a material having a small amount of self-elution of organic carbon may be used for components such as the supply liquid flow path member 6 and the permeate liquid flow path member 2. preferable. For example, the feed liquid flow path material 6 is fixed by heat fusion of a net made of a polyolefin resin such as polyethylene or polypropylene, and the permeate flow flow path material 2 is a knitted fabric woven from a polyester resin or polyolefin resin called tricot by heat fusion. And the like are preferred.

【0022】さらに、透過水のTOC濃度を低減させる
ためには、分離膜自体の有機炭素排除率を高く、たとえ
ば93〜95%以上にすることも好ましい。
Further, in order to reduce the TOC concentration of the permeated water, it is preferable that the organic carbon exclusion rate of the separation membrane itself is high, for example, 93 to 95% or more.

【0023】上述の本発明の流体分離素子は、圧力容器
等に収容してモジュール化すれば、たとえば半導体製造
工程等における超純水製造において、流体分離素子の定
期交換を実施した場合にも、運転開始後、短時間で質の
高い水を得ることができる。その結果、他の系列から得
られた超純水を使用したり、他の系列の超純水製造装置
の取水負荷を一時的に上げるだけで、半導体製造工程の
停機を行わずに済む場合が多く、また、停機する場合に
もその時間を大幅に短縮することができる。
If the fluid separation element of the present invention described above is housed in a pressure vessel or the like and modularized, for example, in the case of ultrapure water production in a semiconductor production process or the like, even if the fluid separation element is periodically replaced, After starting operation, high quality water can be obtained in a short time. As a result, in some cases, it is not necessary to stop the semiconductor manufacturing process simply by using ultrapure water obtained from another system or by temporarily increasing the intake load of the ultrapure water production equipment of another system. In many cases, even when the vehicle stops, the time can be greatly reduced.

【0024】[0024]

【実施例】実施例1 図1に示す本発明の流体分離素子を圧力容器に1本収容
した流体分離膜モジュールを用い、運転圧力1.5MP
a、膜透過流束1.0m3/m2・day、回収率50
%、温度25℃の条件の下、TOC濃度1.5ppbの
水の処理を行い、透過水のTOC濃度の測定を行った。
EXAMPLE 1 An operating pressure of 1.5 MPa was used using a fluid separation membrane module containing one fluid separation element of the present invention shown in FIG. 1 in a pressure vessel.
a, membrane permeation flux: 1.0 m 3 / m 2 · day, recovery rate: 50
% And a temperature of 25 ° C., water having a TOC concentration of 1.5 ppb was treated, and the TOC concentration of the permeated water was measured.

【0025】なお、流体分離素子は、径が200mm、
長さ1m、充填膜面積39m2であった。また、流体分
離膜モジュールは、事前に、TOC濃度1.5ppb、
温度50℃の水を膜透過流束0.3m3/m2/dayに
なるように加圧圧力0.5MPaで1時間透過させて洗
浄しておいた。
The fluid separation element has a diameter of 200 mm,
The length was 1 m, and the packed film area was 39 m 2 . The fluid separation membrane module has a TOC concentration of 1.5 ppb,
Water was washed at a temperature of 50 ° C. for 1 hour at a pressure of 0.5 MPa so as to have a membrane permeation flux of 0.3 m 3 / m 2 / day.

【0026】接着剤としては、主剤にイソシアネート、
硬化剤に3官能基のブタジエンジオールを含むポリウレ
タン接着剤を使用した。
As an adhesive, isocyanate is used as a main component,
A polyurethane adhesive containing butadiene diol having three functional groups was used as a curing agent.

【0027】結果を表1に示す。処理開始後3時間後の
透過水TOC濃度は、1.5ppbと非常に低かった。
The results are shown in Table 1. The permeate TOC concentration 3 hours after the start of the treatment was as low as 1.5 ppb.

【0028】また、上記条件での洗浄後に流体分離素子
を保存袋内に密閉し、25℃暗所にて1ヶ月間保存し、
その後、運転圧力1.5MPa、膜透過流束1.0m3
/m2・day、回収率50%、温度25℃の条件の
下、TOC濃度1.5ppbの水の処理を行い、透過水
のTOC濃度の測定を行った。その結果、TOC濃度は
3.4ppbで、保管によるTOC濃度変化は1.9p
pbと小さく、立ち上げに要する時間も非常に短かかっ
た。比較例1洗浄条件として、膜透過流束が得られない
圧力で20時間上記温水を流し続けた以外は、実施例1
と同様にして透過水のTOC濃度の測定を行った。
After the washing under the above conditions, the fluid separation element is sealed in a storage bag and stored at 25 ° C. in a dark place for one month.
Thereafter, the operating pressure was 1.5 MPa, and the membrane permeation flux was 1.0 m 3.
Under the conditions of / m 2 · day, a recovery rate of 50%, and a temperature of 25 ° C., water having a TOC concentration of 1.5 ppb was treated, and the TOC concentration of the permeated water was measured. As a result, the TOC concentration was 3.4 ppb, and the TOC concentration change due to storage was 1.9 pb.
It was as small as pb, and the time required for startup was very short. Comparative Example 1 Example 1 was repeated except that the hot water was kept flowing for 20 hours at a pressure at which a membrane permeation flux was not obtained.
The TOC concentration of the permeated water was measured in the same manner as described above.

【0029】結果を表1に示す。実施例1に比べ、洗浄
直後のTOC濃度が高く、また、1ヶ月保存した後のT
OC濃度上昇も大きい。 比較例2 温水洗浄を全く実施しなかった以外は、実施例1と同様
に透過水のTOC濃度の測定を行った。
The results are shown in Table 1. Compared with Example 1, the TOC concentration immediately after washing was higher, and the T
The increase in OC concentration is also large. Comparative Example 2 The TOC concentration of the permeated water was measured in the same manner as in Example 1 except that no hot water washing was performed.

【0030】結果を表1に示す。洗浄が全く行われてい
ないため、透過水のTOC濃度が非常に高い。
The results are shown in Table 1. Since no washing is performed, the TOC concentration of the permeated water is very high.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明においては、流体分離素子を40
〜90℃の水を膜透過流速が0.05m3/m2・day
以上になるように供給して洗浄することで、特に、使用
されている接着剤や分離膜3から自己溶出する有機炭素
を効果的に洗浄でき、洗浄効果とコストとをバランス良
く満足することができる。
According to the present invention, the fluid separation element is provided with 40
-90 ° C. water permeation flow rate of 0.05 m 3 / m 2 · day
By supplying and cleaning as described above, in particular, it is possible to effectively clean the self-eluting organic carbon which is used from the adhesive and the separation membrane 3 used, and to satisfy the cleaning effect and the cost in a well-balanced manner. it can.

【0033】また、本発明の流体分離素子は、TOC濃
度1〜3ppbの温度50℃の水を膜透過流束0.3m
3/m2/dayで1時間透過させて洗浄した後、TOC
濃度1〜3ppbの範囲にある25℃の水を膜透過流速
1.0m3/m2・dで処理した場合、処理開始から3時
間経過した時点の原水のTOC濃度(TOCin)と透過
水TOC濃度(TOCout)との関係が、TOCout−T
OCin≦2ppbになるので、その後の工程で設置され
ている紫外線照射装置等による有機炭素分解時の負荷が
過大となることがなく、また、短時間で後工程に通水で
きる質の高い水を得ることができるため、立ち上げに要
する時間や無駄に捨てる水量を大幅に低減できる。その
結果、成長の著しい半導体製造工程等に使用する超純水
製造用流体分離素子として好適に用いることができる。
Further, the fluid separation element of the present invention is provided with a water having a TOC concentration of 1 to 3 ppb at a temperature of 50 ° C. and a membrane permeation flux of 0.3 m
After washing by permeation for 1 hour at 3 / m 2 / day, TOC
When water at 25 ° C. having a concentration in the range of 1 to 3 ppb is treated at a membrane permeation flow rate of 1.0 m 3 / m 2 · d, the TOC concentration (TOC in ) of the raw water and the permeated water after 3 hours from the start of the treatment The relationship with the TOC concentration (TOC out ) is TOC out -T
Since OC in ≦ 2 ppb, the load at the time of decomposing the organic carbon by the ultraviolet irradiation device or the like installed in the subsequent process does not become excessive, and high-quality water capable of passing water to the subsequent process in a short time. Therefore, the time required for starting up and the amount of waste water can be greatly reduced. As a result, it can be suitably used as a fluid separation element for producing ultrapure water used in a semiconductor production process or the like where growth is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スパイラル型流体分離素子の一部切り欠き斜視
図である。
FIG. 1 is a partially cutaway perspective view of a spiral type fluid separation element.

【符号の説明】[Explanation of symbols]

1:流体分離素子 2:透過液流路材 3:分離膜 4:封筒状膜 5:集水管 6:供給液流路材 7:供給液 8:濃縮液 9:透過液 10:集水孔 11:集水管軸方向両端部 12:フィラメントワインディング 1: fluid separation element 2: permeate flow path material 3: separation membrane 4: envelope-shaped membrane 5: water collecting pipe 6: supply liquid flow path material 7: supply liquid 8: concentrated liquid 9: permeate 10: water collection hole 11 : Both ends of water collecting pipe in the axial direction 12: Filament winding

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】集水管の周りに、供給液流路材と、分離膜
と、透過液流路材とを含む膜ユニットを形成してなる流
体分離素子を、40〜90℃の水を膜透過流速が0.0
5m 3/m2・day以上になるように供給して洗浄する
ことを特徴とする流体分離素子の製造方法。
1. A feed liquid flow path material and a separation membrane around a water collecting pipe.
And a flow formed by forming a membrane unit including
The body separation element was prepared by passing water at 40 to 90 ° C. at a membrane permeation flow rate of 0.0
5m Three/ MTwo・ Supply and clean so that it is at least day
A method for manufacturing a fluid separation element, comprising:
【請求項2】圧力0.05〜0.6MPaの範囲で加圧
した水を1〜20時間の範囲で供給して洗浄する、請求
項1に記載の流体分離素子の製造方法。
2. The method for producing a fluid separation element according to claim 1, wherein water pressurized at a pressure of 0.05 to 0.6 MPa is supplied for washing for 1 to 20 hours.
【請求項3】集水管の周りに、供給液流路材と、分離膜
と、透過液流路材とを含む膜ユニットを有し、かつ、4
0〜90℃の水を膜透過流速が0.05m3/m2・da
y以上になるように供給して洗浄してなることを特徴と
する流体分離素子。
3. A membrane unit including a supply liquid flow path material, a separation membrane, and a permeate flow path material around a water collecting pipe, and
The membrane permeation flow rate of water of 0 to 90 ° C is 0.05 m 3 / m 2 · da.
A fluid separation element characterized by being supplied and washed so as to be y or more.
【請求項4】圧力0.05〜0.6MPaの範囲で加圧
した水を1〜20時間の範囲で供給して洗浄してなる、
請求項3に記載の流体分離素子。
4. Washing by supplying water pressurized at a pressure of 0.05 to 0.6 MPa for a period of 1 to 20 hours.
The fluid separation element according to claim 3.
【請求項5】集水管の周囲に、供給液流路材と、分離膜
と、透過液流路材とを含む膜ユニットを有する流体分離
素子であって、TOC濃度1〜3ppbの温度50℃の
水を膜透過流束0.3m3/m2/dayで1時間透過さ
せて洗浄した後、TOC濃度1〜3ppbの範囲にある
25℃の水を膜透過流速1.0m3/m2・dで処理した
場合、処理開始から3時間経過した時点の原水のTOC
濃度(TOCin)と透過水TOC濃度(TOCout)と
の関係が、TOCout−TOCin≦2ppbにあること
を特徴とする流体分離素子。
5. A fluid separation element having a membrane unit including a supply liquid flow path material, a separation membrane, and a permeate flow path material around a water collection pipe, wherein the temperature is 50 ° C. at a TOC concentration of 1 to 3 ppb. Of water permeated at a membrane permeation flux of 0.3 m 3 / m 2 / day for 1 hour, and then washed at 25 ° C. with a TOC concentration of 1 to 3 ppb at a membrane permeation flow rate of 1.0 m 3 / m 2. -When treated with d, TOC of raw water at the time when 3 hours have passed since the start of treatment
Fluid separation element relationship between the concentration (TOC in) and permeate TOC concentration (TOC out), characterized in that in the TOC out -TOC in ≦ 2ppb.
【請求項6】洗浄直後にTOC濃度1〜3ppbの範囲
にある25℃の水を処理した場合と、洗浄した後に1か
月保管し、その後、TOC濃度1〜3ppbの範囲にあ
る25℃の水を処理した場合の、処理開始から3時間経
過した時点での透過水TOC濃度の差が、5ppb以内
である、請求項5に記載の流体分離素子。
6. A case where water at 25 ° C. having a TOC concentration of 1 to 3 ppb is treated immediately after washing, and a case where water is stored for one month after washing, and thereafter, the water is stored at a temperature of 25 ° C. having a TOC concentration of 1 to 3 ppb. The fluid separation element according to claim 5, wherein, when water is treated, the difference in the permeate TOC concentration at the point of time when three hours have elapsed from the start of the treatment is within 5 ppb.
【請求項7】分離膜は、3官能基のブタジエンジオール
を含む接着剤で封筒状に形成されている、請求項5また
は6に記載の流体分離素子。
7. The fluid separation element according to claim 5, wherein the separation membrane is formed in an envelope shape with an adhesive containing trifunctional butadiene diol.
【請求項8】接着剤は、主剤としてイソシアネートを、
硬化剤として3官能基のブタジエンジオールを含むもの
である、請求項7に記載の流体分離素子。
8. The adhesive comprises an isocyanate as a main component,
The fluid separation element according to claim 7, wherein the curing agent contains a trifunctional butadiene diol as a curing agent.
【請求項9】超純水製造用である、請求項3〜8のいず
れかに記載の流体分離素子。
9. The fluid separation element according to claim 3, which is used for producing ultrapure water.
【請求項10】請求項3〜9のいずれかに記載の流体分
離素子を、圧力容器に収納してなる流体分離膜モジュー
ル。
10. A fluid separation membrane module comprising the fluid separation element according to claim 3 housed in a pressure vessel.
JP2000392465A 2000-12-25 2000-12-25 Fluid separating element Pending JP2002191944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392465A JP2002191944A (en) 2000-12-25 2000-12-25 Fluid separating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392465A JP2002191944A (en) 2000-12-25 2000-12-25 Fluid separating element

Publications (1)

Publication Number Publication Date
JP2002191944A true JP2002191944A (en) 2002-07-10

Family

ID=18858450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392465A Pending JP2002191944A (en) 2000-12-25 2000-12-25 Fluid separating element

Country Status (1)

Country Link
JP (1) JP2002191944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288336A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Method of assembling pure water manufacturing apparatus
WO2005123233A1 (en) * 2004-06-22 2005-12-29 Toyo Boseki Kabushiki Kaisha Storage solution for fluid separator and/or membrane element, fluid separator and membrane element, and method of storing the same
CN104785075A (en) * 2015-04-27 2015-07-22 南京九思高科技有限公司 Gas membrane separation device capable of eliminating static electricity and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288336A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Method of assembling pure water manufacturing apparatus
JP4552483B2 (en) * 2004-03-31 2010-09-29 栗田工業株式会社 Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus
WO2005123233A1 (en) * 2004-06-22 2005-12-29 Toyo Boseki Kabushiki Kaisha Storage solution for fluid separator and/or membrane element, fluid separator and membrane element, and method of storing the same
JP2006224085A (en) * 2004-06-22 2006-08-31 Toyobo Co Ltd Preservation liquid for fluid separation apparatus and/or membrane element, fluid separation apparatus, membrane element, and preservation method of membrane element
CN104785075A (en) * 2015-04-27 2015-07-22 南京九思高科技有限公司 Gas membrane separation device capable of eliminating static electricity and method

Similar Documents

Publication Publication Date Title
US20040222158A1 (en) Nanofiltration system for water softening with internally staged spiral wound modules
WO1999065594A1 (en) Spiral reverse osmosis membrane element, reverse osmosis membrane module using it, device and method for reverse osmosis separation incorporating the module
US7208088B2 (en) Spiral wound filtration membrane cartridge with chevron seal
JP2002095931A (en) Spiral membrane element, and method for operating and washing spiral membrane module
JP2002191944A (en) Fluid separating element
JPH09299947A (en) Reverse osmotic membrane spiral element and treating system using the same
JP2000271454A (en) Spiral type membrane element and method for operating and washing spiral type membrane module
JP3856376B2 (en) Water treatment device and its operation method
JPH11347382A (en) Shape memory separation membrane system module
JP4583558B2 (en) Method of operating spiral membrane element and spiral membrane module
JP2005254192A (en) Membrane separator and membrane separation method
JPH11188245A (en) Spiral membrane element
JP2002370089A (en) Washing wastewater cleaning system
JPH10230144A (en) Method for cleaning spiral membrane element and operation method thereof
JPH11207154A (en) Spiral membrane module
JP3879224B2 (en) Treatment method for rainwater, etc.
JPH11207340A (en) Replenishing device of condensed water
JPH11137974A (en) Spiral membrane element
JP2000271456A (en) Spiral type membrane element and method for operating and washing spiral type membrane module
JP2001170457A (en) Washing method for membrane separating device
JP2004174365A (en) Method for manufacturing element of fluid separation membrane
JPH10180053A (en) Spiral type membrane element
JP3433663B2 (en) Operating method of membrane module
JP3664835B2 (en) Pretreatment system and method using spiral membrane element
JP3402174B2 (en) Water purification device and method