JP2002173734A - Steel having excellent weldability and its production method - Google Patents
Steel having excellent weldability and its production methodInfo
- Publication number
- JP2002173734A JP2002173734A JP2000367427A JP2000367427A JP2002173734A JP 2002173734 A JP2002173734 A JP 2002173734A JP 2000367427 A JP2000367427 A JP 2000367427A JP 2000367427 A JP2000367427 A JP 2000367427A JP 2002173734 A JP2002173734 A JP 2002173734A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- temperature
- less
- weldability
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溶接性の優れた鋼
およびその製造方法に関するもので、鉄鋼業においては
厚板、形鋼、ホットストリップミルなどに適用できる。
当該鋼は、建築、土木、海洋構造物、造船、各種の貯槽
タンク、建・産機などの溶接構造用鋼として広範な用途
に適用できる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel having excellent weldability and a method for producing the same, and can be applied to a thick plate, a section steel, a hot strip mill and the like in the steel industry.
The steel can be applied to a wide range of uses as welded structural steel for construction, civil engineering, marine structures, shipbuilding, various storage tanks, construction and industrial machinery, and the like.
【0002】[0002]
【従来の技術】溶接性向上を謳った鋼材およびその製造
方法については、例示するまでもなく、過去多くの公開
公報、特許公報などが開示されている。いずれも基本的
には、鋼材の成分調整による炭素当量(Ceq)や溶接
割れ感受性組成(PCM)の低減が主たるポイントであっ
て、そのような低成分で所定の強度を確保する製造方法
との組み合わせなどで特許性を主張しているものであ
る。例えば、TMCP(thermo−mechani
cal control process)と呼ばれる
加熱、圧延(制御圧延)、冷却(制御冷却)に至る鋼材
の製造プロセスを鋼成分とともに緻密に制御すること
で、溶接性を飛躍的に向上させたことは周知の通りであ
る。2. Description of the Related Art Numerous published publications and patent publications have been disclosed in the past without reference to steel materials that claim to improve weldability and methods for producing the same. In any case, basically, the main point is to reduce the carbon equivalent (Ceq) and the weld crack susceptibility composition (P CM ) by adjusting the composition of the steel material. It claims patentability by a combination of. For example, TMCP (thermo-mechani
It is well known that the weldability has been dramatically improved by precisely controlling the manufacturing process of the steel material called heating, rolling (controlled rolling), and cooling (controlled cooling), which is called cal control process, together with the steel components. It is.
【0003】このTMCP技術の中で重要な役割を果た
すのは、Nbに代表されるマイクロアロイである。その
添加量は、功罪両面での冶金的な現象に対する効果やコ
スト上の観点から、あまり多く添加されることはなかっ
た。特に、Nbは、NbとCとの原子量比が大きい(N
b/C≒7.8)こともあって、極低CのIF(Int
erstitial free)鋼以外では、Cに対し
て化学量論的に過剰となる程度以上に添加されることは
なく、そのような範囲でのNbの溶接性をはじめとする
冶金的効果については、必ずしも十分な知見があるわけ
ではなかった。[0003] A microalloy represented by Nb plays an important role in the TMCP technology. The added amount was not so large from the viewpoint of effect on metallurgical phenomena in terms of merit and cost and from the viewpoint of cost. In particular, Nb has a large atomic weight ratio between Nb and C (Nb
b / C ≒ 7.8), the extremely low C IF (Int
Other than steel, it is not added in excess of the stoichiometric excess to C, and the metallurgical effects such as the weldability of Nb in such a range are not necessarily required. There was not enough knowledge.
【0004】また、高温加熱によりNbを一旦溶体化さ
せることで、「固溶Nb」の冶金的効果の利用は可能で
あるが、C、N量に対して化学量論的に少ないNb添加
では、炭窒化物として析出してしまった後は、固溶状態
のNbは利用すべくもない。[0004] In addition, the metallurgical effect of "solid solution Nb" can be utilized by temporarily forming Nb into a solution by heating at a high temperature. After being precipitated as carbonitride, Nb in a solid solution state cannot be used.
【0005】[0005]
【発明が解決しようとする課題】本発明は、極低Cで合
金添加のほとんどないIF鋼ではなく溶接構造用鋼材と
して、強度、靭性などの基本性質を損なうことなく、溶
接性に優れる鋼を得るため、Nbを化学量論的にC、N
に対して過剰に添加し、あらゆる局面で「固溶Nb」と
して利用できるようにしたものである。さらに製造方法
を限定することで、用途に応じた強度や靭性の調整、降
伏比の調整も可能で、広範な用途に適合する鋼を工業的
に安定して供給可能な方法を提供するものである。DISCLOSURE OF THE INVENTION The present invention aims to provide a steel having excellent weldability without deteriorating its basic properties such as strength and toughness as a steel material for a welded structure, rather than an IF steel having an extremely low C and almost no alloy addition. To obtain Nb stoichiometrically, C, N
In excess, so that it can be used as "solid solution Nb" in all aspects. Furthermore, by limiting the manufacturing method, it is possible to adjust the strength and toughness according to the application, and to adjust the yield ratio, and to provide a method that can industrially supply steel suitable for a wide range of applications. is there.
【0006】[0006]
【課題を解決するための手段】本発明の最大のポイント
は、NbをC、Nに対し化学量論的に過剰に添加し、あ
らゆる局面で「固溶Nb」を確保することにある。この
ことで、あえて高温加熱することなく固溶Nbが確保で
きるため、熱間圧延時のオーステナイトの再結晶抑制効
果、冷却時の変態抑制効果などの固溶Nbによる冶金効
果が享受できる。この結果、溶接性に優れる比較的低い
炭素当量(Ceq)、溶接割れ感受性組成(PCM)で強
靭化が達成できる。The most important point of the present invention is that Nb is added in stoichiometric excess with respect to C and N to secure "solid solution Nb" in all aspects. In this way, solid-solution Nb can be secured without the need to perform high-temperature heating, so that metallurgical effects due to solid-solution Nb such as an effect of suppressing recrystallization of austenite during hot rolling and an effect of suppressing transformation during cooling can be enjoyed. As a result, toughness can be achieved with a relatively low carbon equivalent (Ceq) and a weld cracking susceptibility composition (P CM ) having excellent weldability.
【0007】そのために鋼成分をはじめ製造方法を本発
明の通り限定したものであるが、その要旨は以下に示す
通りである。For this purpose, the manufacturing method including the steel component is limited according to the present invention, and the gist is as follows.
【0008】(1)鋼成分が質量%で、C:0.1%以
下、Si:0.6%以下、Mn:0.2〜1.6%、
P:0.02%以下、S:0.01%以下、Al:0.
06%以下、N:0.006%以下、かつ、 Excess Nb=Nb−7.8×[C−(Ti−
3.4N)/4] と定義するExcess Nbが+0.01%以上を満
足するようにNb:0.01〜0.5%、Ti:0.0
05〜0.1%、の範囲内でNb単独またはNbとTi
の両者を含有し、残部が鉄および不可避的不純物からな
ることを特徴とする溶接性に優れた鋼。(1) Steel component in mass%, C: 0.1% or less, Si: 0.6% or less, Mn: 0.2 to 1.6%,
P: 0.02% or less, S: 0.01% or less, Al: 0.
06% or less, N: 0.006% or less, and Access Nb = Nb−7.8 × [C− (Ti−
3.4N) / 4] Nb: 0.01 to 0.5%, Ti: 0.0 so that Excess Nb satisfying + 0.01% or more is satisfied.
Nb alone or Nb and Ti within the range of 0.05 to 0.1%.
Characterized by excellent weldability, characterized by containing both of the above, with the balance being iron and unavoidable impurities.
【0009】(2)上記鋼成分に加え、質量%で、C
u:0.05〜2.0%、Ni:0.05〜1.0%の
範囲でCu添加量の1/2以上、Cr:0.05〜1.
0%、Mo:0.05〜1.0%、の範囲で1種または
2種以上を含有することを特徴とする(1)に記載の溶
接性に優れた鋼。(2) In addition to the above steel components, C
u: 0.05 to 2.0%, Ni: 0.05 to 1.0%, 1/2 or more of the added amount of Cu, Cr: 0.05 to 1.0.
(1) The steel having excellent weldability according to (1), wherein the steel contains one or more kinds in the range of 0% and Mo: 0.05 to 1.0%.
【0010】(3)質量%で、V:0.005〜0.1
% Ta:0.005〜0.1%の範囲で1種または2種を
含有することを特徴とする(1)または(2)に記載の
溶接性に優れた鋼。(3) In mass%, V: 0.005 to 0.1
% Ta: The steel having excellent weldability according to (1) or (2), wherein one or two types are contained in a range of 0.005 to 0.1%.
【0011】(4)質量%で、B:0.0002〜0.
005%をさらに含有することを特徴とする(1)〜
(3)のいずれか1項に記載の溶接性に優れた鋼。(4) B: 0.0002 to 0.1% by mass.
(1)-characterized by further containing 005%.
The steel excellent in weldability according to any one of (3).
【0012】(5)質量%で、Ca:0.0005〜
0.004%、REM:0.0005〜0.004%の
いずれか1種をさらに含有することを特徴とする(1)
〜(4)のいずれか1項に記載の溶接性に優れた鋼。(5) Ca: 0.0005 to 5% by mass
0.001%; REM: 0.0005% to 0.004%.
The steel excellent in weldability according to any one of-(4).
【0013】(6)質量%で、Mg:0.0002〜
0.005%をさらに含有することを特徴とする(1)
〜(5)のいずれか1項に記載の溶接性に優れた鋼。(6) Mg: 0.0002-% by mass
(1) characterized by further containing 0.005%.
A steel excellent in weldability according to any one of-to (5).
【0014】(7)(1)〜(6)のいずれか1項に記
載の鋼成分からなる鋼片または鋳片を1000〜130
0℃の温度範囲に再加熱後、1000℃以下での累積圧
下量を30%以上として720℃以上の温度で圧延を終
了し、その後放冷または700℃以上の温度から600
℃以下の任意の温度まで加速冷却することを特徴とする
溶接性に優れた鋼の製造方法。(7) A slab or a slab made of the steel component according to any one of (1) to (6) is prepared in the range of 1000 to 130.
After reheating to a temperature range of 0 ° C., rolling is completed at a temperature of 720 ° C. or more with the cumulative rolling reduction at 1000 ° C. or less being 30% or more, and then cooling is performed or the temperature is reduced from a temperature of 700 ° C. or more to 600 ° C.
A method for producing steel having excellent weldability, characterized in that the steel is accelerated to an arbitrary temperature of not more than ° C.
【0015】(8)(1)〜(6)のいずれか1項に記
載の鋼成分からなる鋼片または鋳片を熱間圧延後、Ac
3以上1000℃以下の温度で焼きならしすることを特
徴とする溶接性に優れた鋼の製造方法。(8) After hot rolling a slab or a slab made of the steel component according to any one of (1) to (6),
A method for producing steel having excellent weldability, characterized in that normalizing is performed at a temperature of 3 to 1000 ° C.
【0016】(9)(1)〜(3)のいずれか1項に記
載の鋼成分からなる鋼片または鋳片を熱間圧延後、Ac
3以上1000℃以下の温度に再加熱後、焼き入れする
ことを特徴とする溶接性に優れた鋼の製造方法。(9) After hot rolling a slab or a slab comprising the steel component according to any one of (1) to (3),
A method for producing steel having excellent weldability, comprising quenching after reheating to a temperature of 3 to 1000 ° C.
【0017】(10)強度調整や靭性改善、あるいは鋼
板の残留応力除去の目的で、鋼板をAc1未満の温度で
焼き戻しすることを特徴とする(7)〜(9)のいずれ
か1項に記載の溶接性に優れた鋼の製造方法。(10) The steel sheet according to any one of (7) to (9), wherein the steel sheet is tempered at a temperature lower than Ac 1 for the purpose of adjusting strength, improving toughness, or removing residual stress of the steel sheet. 3. A method for producing steel having excellent weldability according to item 1.
【0018】(11)低降伏比化の目的で、鋼板をAc
1超Ac3未満のフェライトとオーステナイトの二相共存
域に再加熱後、放冷またはそれ以上の冷速で600℃以
下の温度まで冷却し、その後さらに必要に応じAc1未
満の温度で焼き戻しすることを特徴とする(7)〜
(9)のいずれか1項に記載の高温強度に優れた高張力
鋼の製造方法。(11) For the purpose of lowering the yield ratio,
After reheating to the two-phase coexistence region of ferrite and austenite of more than 1 Ac 3 and less, it is allowed to cool to a temperature of 600 ° C. or less at a cooling rate of not less than 1 and then tempered at a temperature of less than Ac 1 if necessary (7)-
(9) The method for producing a high-tensile steel excellent in high-temperature strength according to any one of (9).
【0019】[0019]
【発明の実施の形態】以下に、本発明を詳細に説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
【0020】本発明が、請求項の通りに鋼組成および製
造方法を限定した理由について説明する。The reason why the present invention limits the steel composition and the production method as described in the claims will be described.
【0021】Cは、まず第一に、鋼の溶接性に最も大き
な影響を及ぼし、添加量が多くなるほど溶接性を劣化さ
せるため、添加量は低いほど好ましい。第二に、本願発
明の特徴であるNbをC、N量に対して化学量論的に過
剰に添加し、固溶Nbを確保することが必要となるが、
その際に、Nbの絶対量を極力減らすためにも、C量は
低いほど好ましい。したがって、下限については特に限
定するものではないが、得ようとする強度レベルや脱炭
のための製鋼能力やコストなどにより自ずと制限される
ものである。。一方、上限は、上述した観点から0.1
%に限定した。なお、この上限値は、溶接性の点ではC
量のみで決定されるものではなく、また、Nb添加量の
点でも主としてコストからの理由であって、特性上、臨
界的な意味を持つものではない。いわば、本願発明の特
徴を明確にするために限定したに過ぎない。First of all, C has the greatest effect on the weldability of steel, and as the amount of addition increases, the weldability deteriorates. Therefore, the lower the amount of addition, the more preferable. Secondly, it is necessary to add Nb, which is a feature of the present invention, in a stoichiometric excess with respect to the amounts of C and N to secure solid solution Nb.
At this time, in order to reduce the absolute amount of Nb as much as possible, the C amount is preferably as low as possible. Therefore, the lower limit is not particularly limited, but is naturally limited by the strength level to be obtained, the steelmaking capacity for decarburization, the cost, and the like. . On the other hand, the upper limit is 0.1 from the viewpoint described above.
%. Note that this upper limit is C in terms of weldability.
It is not determined solely by the amount, and also in terms of the amount of Nb added, mainly because of cost, and does not have a critical meaning in characteristics. In other words, the present invention is merely limited to clarify the features of the present invention.
【0022】Siは、脱酸上鋼に含まれる元素である
が、多く添加すると溶接性、HAZ靭性が劣化するた
め、上限を0.6%に限定した。鋼の脱酸はTi、Al
のみでも十分可能であり、HAZ靭性、焼入性などの観
点から低いほど好ましく、必ずしも添加する必要はな
い。Although Si is an element contained in the deoxidized upper steel, if added in a large amount, the weldability and the HAZ toughness deteriorate, so the upper limit was set to 0.6%. Deoxidation of steel is Ti, Al
Alone is sufficiently possible, and the lower the better, from the viewpoints of HAZ toughness, hardenability, etc., and it is not always necessary to add.
【0023】Mnは、母材の強度、靭性を確保する上で
有用な元素である。比較的安価な元素でもあるので、強
度確保の観点から0.2%以上の添加を必須とする。上
限については、多すぎる添加は連続鋳造スラブの中心偏
析を助長したり、溶接性を劣化させるため1.6%に限
定する。Mn is a useful element for securing the strength and toughness of the base material. Since it is a relatively inexpensive element, the addition of 0.2% or more is essential from the viewpoint of securing strength. The upper limit is limited to 1.6% because excessive addition promotes central segregation of the continuously cast slab and deteriorates weldability.
【0024】Pは、本発明鋼においては不純物であり、
P量の低減はHAZにおける粒界破壊を減少させる傾向
があるため、少ないほど好ましい。含有量が多いと母
材、溶接部の低温靭性を劣化させるため上限を0.02
%とした。P is an impurity in the steel of the present invention,
Since a reduction in the amount of P tends to reduce grain boundary fracture in HAZ, a smaller amount is more preferable. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit is 0.02.
%.
【0025】Sは、Pと同様本発明鋼においては不純物
であり、母材の低温靭性の観点からは少ないほど好まし
い。含有量が多いと母材、溶接部の低温靭性を劣化させ
るため上限を0.01%とした。S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low-temperature toughness of the base material. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit was made 0.01%.
【0026】Alは、一般に脱酸上鋼に含まれる元素で
あるが、脱酸はSiまたはTiだけでも十分であり、本
発明鋼においては、その下限は限定しない(0%を含
む)。しかし、Al量が多くなると鋼の清浄度が悪くな
るだけでなく、溶接金属の靭性が劣化するので、上限を
0.06%とした。Al is an element generally contained in the deoxidized upper steel, but the deoxidation is sufficient with only Si or Ti, and in the steel of the present invention, the lower limit is not limited (including 0%). However, when the amount of Al increases, not only the cleanliness of the steel deteriorates, but also the toughness of the weld metal deteriorates, so the upper limit was made 0.06%.
【0027】Nは、不可避的不純物として鋼中に含まれ
るものであるが、後述するTiを添加した場合には、T
iNを形成して鋼の性質を高めたり、Nb、V、Taと
結合して炭窒化物を形成して強度を増加させる。この目
的のためには、N量として最低0.001%含有するこ
とが望ましい。しかしながら、N量の増加はHAZ靭
性、溶接性に極めて有害であり、また、固溶Nb確保の
観点から少ないほど好ましく、本発明鋼においてはその
上限は0.006%である。N is contained in steel as an unavoidable impurity, but when Ti, which will be described later, is added, T
iN is formed to enhance the properties of steel, or combined with Nb, V, and Ta to form carbonitrides, thereby increasing strength. For this purpose, it is desirable that the content of N be at least 0.001%. However, an increase in the amount of N is extremely detrimental to HAZ toughness and weldability, and is preferably as small as possible from the viewpoint of securing solid solution Nb. In the present invention, the upper limit is 0.006%.
【0028】Nbは、本願発明において構成の根幹をな
す不可欠の元素で、CおよびNに対し化学量論的に過剰
なNb添加を特徴とする。過剰の度合いは、質量%で、
Excess Nb=Nb−7.8×[C−(Ti−
3.4N)/4]と定義するExcess Nbが+
0.01%以上である。+0.01%未満では、いわゆ
る「固溶Nb」の確保が不十分で、本願発明が狙いとす
るあらゆる局面での固溶Nbの効果を享受することがで
きない。Excess Nbが+0.01%以上を満足
するためには、CおよびN量がゼロであっても少なくと
もNbは0.01%以上必要である。Nb量の上限につ
いては、発明者らにおいても限界を把握したわけではな
いが、実験室的に確認できた範囲であることと合金コス
トも勘案した上で、0.5%に限定した。したがって、
この上限値は、効果に対する臨界的な意味合いはない。Nb is an indispensable element that forms the basis of the constitution in the present invention, and is characterized by the stoichiometrically excessive addition of Nb to C and N. The degree of excess is in mass%,
Access Nb = Nb−7.8 × [C− (Ti−
3.4N) / 4] is defined as +
0.01% or more. If it is less than + 0.01%, the so-called "solid solution Nb" is not sufficiently secured, and the effects of solid solution Nb in all aspects aimed at by the present invention cannot be enjoyed. In order for Excess Nb to satisfy + 0.01% or more, at least 0.01% or more of Nb is necessary even if the amounts of C and N are zero. Although the inventors have not grasped the upper limit of the amount of Nb, they are limited to 0.5% in consideration of the range confirmed by the laboratory and the alloy cost. Therefore,
This upper limit has no critical effect on the effect.
【0029】Nbの一般的な効果としては、まず、固溶
Nbはオーステナイトの再結晶温度を上昇させ、熱間圧
延時の制御圧延の効果を最大限に発揮する。また、比較
的多い固溶Nbは、オーステナイト粒界に偏析し、フェ
ライト変態を遅延、抑制する効果を有する。この結果、
組織の微細化や強靭化に寄与する。これに加えて、本願
発明が特徴とするExcess Nbが+0.01%以
上では、Nbの固溶強化による強度上昇や高温時に転位
との相互作用による高温強度向上にも寄与する。さら
に、Nb炭窒化物は圧延に先立つ再加熱や圧延後の熱処
理時の加熱オーステナイトの細粒化に寄与する。また、
微細析出したNb炭窒化物は析出硬化として強度向上効
果を有し、高温強度向上にも寄与する。As a general effect of Nb, first, solid solution Nb raises the recrystallization temperature of austenite and exerts the effect of controlled rolling at the time of hot rolling to the maximum. In addition, a relatively large amount of solute Nb segregates at austenite grain boundaries and has an effect of delaying and suppressing ferrite transformation. As a result,
It contributes to the refinement and toughening of the structure. In addition, when Excess Nb, which is a feature of the present invention, is + 0.01% or more, it contributes to an increase in strength due to solid solution strengthening of Nb and an improvement in high-temperature strength due to interaction with dislocations at high temperatures. Further, Nb carbonitride contributes to reheating prior to rolling and grain refinement of heated austenite during heat treatment after rolling. Also,
The finely precipitated Nb carbonitride has a strength-improving effect as precipitation hardening, and also contributes to high-temperature strength improvement.
【0030】Tiは、母材および溶接部靭性に対する要
求が厳しい場合には、添加することが好ましい。なぜな
らばTiは、Al量が少ないとき(例えば0.003%
以下)、Oと結合してTi2O3を主成分とする析出物を
形成、粒内変態フェライト生成の核となり溶接部靭性を
向上させる。また、TiはNと結合してTiNとしてス
ラブ中に微細析出し、加熱時のγ粒の粗大化を抑え圧延
組織の細粒化に有効であり、また鋼板中に存在する微細
TiNは、溶接時に溶接熱影響部組織を細粒化するため
である。これらの効果を得るためには、Tiは最低0.
005%必要である。Tiは、Nbに先だって、CやN
と結合するため、Excess Nb確保の観点からも
添加することが好ましい。しかし多すぎるとTiCを多
量に形成し、低温靭性や溶接性を劣化させるので、その
上限は0.1%に限定した。It is preferable to add Ti when the requirements for base metal and weld toughness are severe. The reason for this is that when the amount of Al is small (for example, 0.003%
The following is combined with O to form a precipitate mainly composed of Ti 2 O 3, which serves as a nucleus for the formation of intragranular transformed ferrite and improves weld toughness. Further, Ti combines with N to form fine precipitates in the slab as TiN, which suppresses coarsening of γ grains during heating and is effective for reducing the rolling structure. Fine TiN present in the steel sheet is welded. This is because the structure of the heat affected zone is sometimes refined. In order to obtain these effects, Ti should be at least 0.1.
005% is required. Ti, C and N before Nb
Is preferably added from the viewpoint of securing Excess Nb. However, if it is too large, a large amount of TiC is formed, and the low-temperature toughness and weldability are deteriorated. Therefore, the upper limit is limited to 0.1%.
【0031】次に、必要に応じて含有することができる
Cu、Ni、Cr、Mo、V、Ta、B、Ca、RE
M、Mgの添加理由について説明する。Next, Cu, Ni, Cr, Mo, V, Ta, B, Ca, RE which can be contained as required.
The reason for adding M and Mg will be described.
【0032】基本となる成分に、さらにこれらの元素を
添加する主たる目的は、本発明鋼の優れた特徴を損なう
ことなく、強度、靭性などの特性を向上させるためであ
る。したがって、その添加量は自ずと制限されるべき性
質のものである。The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be naturally restricted.
【0033】Cuは、過剰に添加しなければ、溶接性、
HAZ靭性に悪影響を及ぼすことなく母材の強度、靭性
を向上させる。これら効果を発揮させるためには、少な
くとも0.05%以上の添加が必須である。特に、0.
5%を超えると時効析出処理により顕著に強度が向上す
る。しかし、過剰な添加は溶接性劣化に加え、熱間圧延
時にCu−クラックが発生し製造困難となるため、上限
を2.0%に限定した。If Cu is not excessively added, weldability,
Improves the strength and toughness of the base material without adversely affecting HAZ toughness. In order to exert these effects, it is essential to add at least 0.05% or more. In particular, 0.
If it exceeds 5%, the strength is remarkably improved by the aging precipitation treatment. However, excessive addition causes deterioration of weldability and Cu-cracks during hot rolling, which makes production difficult. Therefore, the upper limit is limited to 2.0%.
【0034】NiもCu同様、過剰に添加しなければ、
溶接性、HAZ靭性に悪影響を及ぼすことなく母材の強
度、靭性を向上させる。これら効果を発揮させるために
は、少なくとも0.05%以上の添加が必須である。一
方、過剰な添加は高価なだけでなく、溶接性に好ましく
ないため、上限を1.0%とした。なお、Cuを添加す
る場合、熱間圧延時のCu−クラックを防止するため、
前記添加範囲を満足すると同時に、Cu添加量の1/2
以上とする必要がある。Ni, like Cu, is not added unless excessively added.
Improves the strength and toughness of the base material without adversely affecting weldability and HAZ toughness. In order to exert these effects, it is essential to add at least 0.05% or more. On the other hand, excessive addition is not only expensive but also unfavorable for weldability, so the upper limit was made 1.0%. When Cu is added, in order to prevent Cu-cracks during hot rolling,
While satisfying the above addition range, at the same time, the amount of Cu added was 1 /.
It is necessary to do above.
【0035】CrおよびMoは、母材の強度、靭性をと
もに向上させる。その効果を確実に享受できる最小量は
0.05%である。特に、Mo添加は高温強度の向上に
も寄与し、0.4%以上でその効果が顕著となる。しか
し、両元素とも添加量が多すぎると母材、溶接部の靭性
および溶接性を劣化させるため、それぞれの上限を1.
0%とした。Cr and Mo both improve the strength and toughness of the base material. The minimum amount for surely enjoying the effect is 0.05%. In particular, the addition of Mo also contributes to the improvement of the high-temperature strength, and the effect becomes remarkable at 0.4% or more. However, if the addition amount of both elements is too large, the toughness and weldability of the base metal and the welded portion are deteriorated.
0%.
【0036】なお、Cu、Ni、Cr、Moの添加は、
耐候性にも少なからず有利に作用する。The addition of Cu, Ni, Cr and Mo is as follows.
It also has an advantageous effect on weather resistance.
【0037】VおよびTaは、Nbとほぼ同様の作用を
有するものであるが、Nbに比べてその効果は小さい。
また、Vは焼入性にも影響を及ぼすとともに、V、Ta
は高温強度向上にも寄与する。Nbと同様の効果は0.
005%未満では効果が少なく、上限は0.1%まで許
容できる。V and Ta have almost the same action as Nb, but their effects are smaller than Nb.
V also affects hardenability, and V, Ta
Contributes to the improvement of high-temperature strength. The effect similar to Nb is 0.
If it is less than 005%, the effect is small, and the upper limit can be allowed up to 0.1%.
【0038】Bは、オーステナイト粒界に偏析し、フェ
ライトの生成を抑制することを介して、焼入性を向上さ
せ、強度向上に寄与する。この効果を享受するため、最
低0.0002%以上必要である。しかし、多すぎる添
加は焼入性向上効果が飽和するだけでなく、靭性上有害
となるB析出物を形成する可能性もあるため、上限を
0.005%とした。なお、タンク用鋼などとして、応
力腐食割れが懸念されるケースでは、母材および溶接熱
影響部の硬さの低減がポイントとなることが多く(例え
ば、硫化物応力腐食割れ(SSC)防止のためにはHR
C≦22(HV≦248)が必須とされる)、そのよう
なケースでは焼入性を増大させるB添加は好ましくな
い。B segregates at austenite grain boundaries and suppresses the formation of ferrite, thereby improving hardenability and contributing to strength improvement. To enjoy this effect, at least 0.0002% is required. However, too much addition not only saturates the hardenability improvement effect, but also may form B precipitates that are harmful to toughness, so the upper limit was made 0.005%. In cases where stress corrosion cracking is a concern for steel for tanks and the like, reduction of the hardness of the base metal and the heat affected zone is often a key point (for example, to prevent sulfide stress corrosion cracking (SSC)). HR for
C ≦ 22 (HV ≦ 248) is essential. In such a case, the addition of B which increases the hardenability is not preferable.
【0039】CaおよびREMは、MnSの形態を制御
し、母材の低温靭性を向上させるほか、湿潤硫化水素環
境下での水素誘起割れ(HIC、SSC、SOHIC)
感受性を低減させる。これらの効果を発揮するために
は、最低0.0005%必要である。しかし、多すぎる
添加は、鋼の清浄度を逆に高め、母材靭性や湿潤硫化水
素環境下での水素誘起割れ(HIC、SSC、SOHI
C)感受性を高めるため、添加量の上限は0.004%
に限定した。CaとREMは、ほぼ同様の効果を有する
ため、いずれか1種を上記範囲で添加すれば良い。Ca and REM control the morphology of MnS, improve the low-temperature toughness of the base material, and cause hydrogen-induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment.
Reduces sensitivity. To achieve these effects, a minimum of 0.0005% is required. However, too much addition conversely increases the cleanliness of the steel, and increases the base metal toughness and hydrogen-induced cracking (HIC, SSC, SOHI) in a wet hydrogen sulfide environment.
C) To increase the sensitivity, the upper limit of the amount added is 0.004%
Limited to. Since Ca and REM have almost the same effect, any one of them may be added in the above range.
【0040】Mgは、溶接熱影響部においてオーステナ
イト粒の成長を抑制し、細粒化する作用があり、溶接部
の強靭化が図れる。このような効果を享受するために
は、Mgは0.0002%以上必要である。一方、添加
量が増えると添加量に対する効果代が小さくなるため、
コスト上得策ではないので上限は0.005%とした。Mg has the effect of suppressing the growth of austenite grains in the heat affected zone of welding and reducing the size of the grains, thereby toughening the welded portion. In order to enjoy such effects, Mg needs to be 0.0002% or more. On the other hand, as the addition amount increases, the effect cost on the addition amount decreases,
The upper limit is set to 0.005% because it is not advantageous in terms of cost.
【0041】次に、本発明の請求項7〜11に規定する
製造条件およびその限定理由について説明する。Next, the manufacturing conditions defined in claims 7 to 11 of the present invention and the reasons for limiting them will be described.
【0042】まず、本発明の請求項7にかかる圧延に先
立つ加熱温度は1000〜1300℃に限定する。構造
用鋼においては、強度と靭性をバランスよく両立させる
ことが、多くの場合最大の課題の一つとなっており、組
織の微細化がその有効な解決手段の一つである。加熱時
のオーステナイト粒を小さくすることは、圧延組織の微
細化を図る上でも有効で、本願発明が加熱温度の上限と
して規定する1300℃は加熱時のオーステナイトが極
端に粗大化しない温度である。加熱温度がこれを超える
とオーステナイト粒が粗大混粒化し、変態後の組織も粗
大化するため鋼の靭性が劣化する。一方、低い加熱温度
は、加熱オーステナイト粒の細粒化の点では有利である
が、圧延負荷大きくなるばかりでなく、後述する圧延終
了温度(720℃以上)の確保が困難となる。また、本
願発明ではNbをC、N量に対して過剰に添加するもの
であるが、さらに加熱時に析出Nbを多少なりとも溶体
化させることで、オーステナイトの再結晶温度を上昇さ
せ、熱間圧延時の制御圧延の効果を最大限に発揮させた
り、析出効果を発現させるためにも加熱の下限は100
0℃に限定した。First, the heating temperature prior to the rolling according to claim 7 of the present invention is limited to 1000 to 1300 ° C. In structural steels, balancing the strength and toughness in a well-balanced manner is often one of the biggest issues, and microstructural refinement is one of the effective solutions. Reducing the austenite grains during heating is also effective in miniaturizing the rolling structure, and 1300 ° C., which is defined as the upper limit of the heating temperature by the present invention, is a temperature at which austenite during heating does not become extremely coarse. If the heating temperature exceeds this, austenite grains are coarsely mixed and the structure after transformation is also coarse, so that the toughness of the steel is deteriorated. On the other hand, a low heating temperature is advantageous in terms of refining the heated austenite grains, but not only increases the rolling load but also makes it difficult to secure a rolling end temperature (720 ° C. or higher) described later. Further, in the present invention, Nb is added in excess with respect to the amounts of C and N. However, the recrystallization temperature of austenite is increased by further forming a solution of the precipitated Nb during heating more or less. In order to maximize the effect of controlled rolling at the time and to exhibit the precipitation effect, the lower limit of heating is 100
Limited to 0 ° C.
【0043】前記温度範囲に再加熱した鋳片または鋼片
を、圧延では1000℃以下での累積圧下量を30%以
上として720℃以上で熱間圧延を終了する必要があ
る。1000℃以下での累積圧下量が少ない場合、圧延
オーステナイトの細粒化が不十分となり、靭性確保が困
難なためである。また、圧延終了温度が720℃を下回
ると、C量が比較的低い本発明鋼においては、変態が一
部開始する可能性が高まり、最終組織に加工(圧延)組
織を残す恐れがあり、靭性上好ましくないばかりでな
く、降伏比の上昇を招き、建築用途などとして低降伏比
が求められた場合、製造が困難となるため、圧延終了温
度は720℃以上に限定する。In the rolling of a slab or a steel slab reheated to the above-mentioned temperature range, it is necessary to end the hot rolling at 720 ° C. or higher with the cumulative reduction at 1000 ° C. or lower being 30% or more. This is because if the cumulative rolling reduction at a temperature of 1000 ° C. or less is small, the grain size of the rolled austenite becomes insufficient, and it is difficult to secure toughness. Further, when the rolling end temperature is lower than 720 ° C., in the steel of the present invention having a relatively low C content, the possibility that transformation is partially started increases, and there is a possibility that a processed (rolled) structure may be left in the final structure, and the toughness may be reduced. If the yield ratio is not only unfavorable but also increases the yield ratio and a low yield ratio is required for architectural use, etc., the production becomes difficult. Therefore, the rolling end temperature is limited to 720 ° C. or higher.
【0044】圧延後は、放冷または700℃以上の温度
から600℃以下の任意の温度まで加速冷却する。本願
発明は、NbをC、N量に対して過剰に添加することを
特徴とし、常時、固溶状態のNbが比較的多量に存在す
ることになる。この比較的多い固溶Nbは、オーステナ
イト粒界に偏析し、フェライト変態を遅延、抑制する効
果を有することはすでに述べた通りである。したがっ
て、圧加熱−圧延条件を本願発明の通りとすることで、
圧延後は放冷ままでも組織の微細化が達成できる。ま
た、圧延後700℃以上の温度から600℃以下の任意
の温度までの加速冷却は、さらに組織を微細化するた
め、より強靭性化する目的においては適用することが好
ましい。このとき、Nb量は化学量論的にC、Nに対し
+0.01%以上過剰に添加されているため、常温まで
加速冷却しても必要以上に焼きが入ることはなく、加速
冷却停止温度については限定しない。また、300〜6
00℃の中庸温度で加速冷却を停止することは、その後
の放冷過程が焼戻効果となり、目的によっては好ましい
方法である。After the rolling, the steel sheet is allowed to cool or accelerated cooling from a temperature of 700 ° C. or more to an arbitrary temperature of 600 ° C. or less. The present invention is characterized in that Nb is added in excess with respect to the amounts of C and N, and Nb in a solid solution state is always present in a relatively large amount. As described above, this relatively large amount of solute Nb segregates at austenite grain boundaries and has the effect of delaying and suppressing ferrite transformation. Therefore, by setting the pressure heating-rolling conditions as in the present invention,
After rolling, the structure can be refined even if it is left to cool. In addition, accelerated cooling from a temperature of 700 ° C. or more to an arbitrary temperature of 600 ° C. or less after rolling is preferably applied for the purpose of further increasing the toughness in order to further refine the structure. At this time, since the Nb content is stoichiometrically added in excess of C and N by + 0.01% or more, even if accelerated cooling to room temperature, no excessive hardening occurs, and the accelerated cooling stop temperature Is not limited. Also, 300-6
Stopping the accelerated cooling at a moderate temperature of 00 ° C. is a preferable method depending on the purpose because the subsequent cooling step has a tempering effect.
【0045】なお、加速冷却時の冷速は、鋼成分や意図
する材質(強度、靭性)レベルによっても変わるため一
概には言えないが、板厚1/4厚位置の加速冷却開始温
度から停止温度までの平均冷速で、少なくとも3℃/秒
以上とすることが望ましい。The cooling rate during the accelerated cooling cannot be unconditionally determined because it varies depending on the steel composition and the intended material (strength, toughness) level. It is desirable that the average cooling rate up to the temperature be at least 3 ° C./sec or more.
【0046】次に、本発明の請求項8および9にかかる
製造方法について説明する。Next, a manufacturing method according to claims 8 and 9 of the present invention will be described.
【0047】本発明が限定する成分を有する鋼を熱間圧
延後、本発明が限定する熱処理を行っても、本発明鋼材
の優れた特性を損なうものではない。むしろ、鋼材の組
織や結果として材質が均質化するため、目的によっては
好ましい場合もある。ただし、この場合でも、組織の微
細化が鋼材の強度、靭性を同時に向上させるポイントの
一つであるため、熱処理時の再加熱温度はAc3以上1
000℃以下の温度とする必要がある。一般に、Nb添
加鋼の場合、本願発明に規定する程度の焼きならしまた
は焼き入れ温度ではNbが十分に溶体化せず、固溶Nb
の持つ冶金効果を十分に享受することができないが、本
願発明はExcess Nbを特定量以上確保すること
としているため、このような熱処理を利用できる。熱処
理温度の下限は組織の均質化のため、また上限は、再加
熱時のオーステナイト粒径を必要以上に大きくしないた
めである。熱処理後の冷却は、請求項7にかかる圧延後
の冷却(放冷または加速冷却)と同様の理由で、焼きな
らし、焼き入れいずれでもよい。Even if the steel having the components defined by the present invention is hot-rolled and then subjected to the heat treatment defined by the present invention, the excellent properties of the steel material of the present invention are not impaired. Rather, it may be preferable depending on the purpose, because the structure of the steel material and the resulting material are homogenized. However, even in this case, since the refining of the structure is one of the points for simultaneously improving the strength and toughness of the steel material, the reheating temperature during the heat treatment is not less than Ac 3.
It is necessary to keep the temperature below 000 ° C. Generally, in the case of Nb-added steel, at the normalizing or quenching temperature of the degree specified in the present invention, Nb does not sufficiently turn into a solution,
Although the metallurgical effect of the above cannot be sufficiently enjoyed, such a heat treatment can be used because the present invention secures a specific amount of Excess Nb or more. The lower limit of the heat treatment temperature is for homogenization of the structure, and the upper limit is for not increasing the austenite grain size during reheating more than necessary. The cooling after the heat treatment may be either normalizing or quenching for the same reason as the cooling after rolling (cooling or accelerated cooling) according to claim 7.
【0048】請求項10にかかるAc1未満の温度での
焼き戻しの理由は、強度調整や靭性改善、あるいは鋼板
の残留応力除去のためであって、請求項7にかかる圧延
材、請求項8および9にかかる熱処理材のいずれにも必
要に応じて適用することができ、本願発明の優れた特徴
をいささかも損なうものではない。The reason for the tempering at a temperature lower than Ac 1 according to the tenth aspect is to adjust the strength, improve the toughness, or to remove the residual stress of the steel sheet. It can be applied to any of the heat-treated materials according to Examples 9 and 9 as needed, and does not impair the excellent features of the present invention at all.
【0049】請求項11にかかるAc1超Ac3未満のフ
ェライトとオーステナイトの二相共存域での再加熱熱処
理は、建築用鋼などに要求される低降伏比化のために必
要に応じて行う。これは、軟質組織であるフェライトと
硬質組織との二相混合組織を得るためであって、請求項
7にかかる圧延材、請求項8および9にかかる熱処理材
のいずれにも適用することができる。再加熱時点で、二
相分離が達成されるため、再加熱後の冷却は放冷または
それ以上の冷速で600℃以下の温度まで冷却すれば良
いが、目的とする強度によっては冷速を高める方が好ま
しい場合もある。その後、必要に応じて実施するAc1
未満の温度での焼き戻しは、請求項10にかかる説明お
よび理由と同様である。The reheating heat treatment in the two-phase coexistence region of ferrite less than Ac 1 and less than Ac 3 and austenite according to the eleventh aspect is performed as necessary to reduce the yield ratio required for building steel and the like. . This is for obtaining a two-phase mixed structure of a soft structure, ferrite and a hard structure, and can be applied to any of the rolled material according to claim 7 and the heat-treated material according to claims 8 and 9. . At the time of reheating, since two-phase separation is achieved, the cooling after reheating may be allowed to cool to a temperature of 600 ° C. or less at a cooling rate higher than that, but depending on the intended strength, the cooling rate may be reduced. In some cases it is preferable to increase. Then, if necessary, Ac 1
Tempering at a temperature lower than the above is the same as the explanation and the reason according to claim 10.
【0050】[0050]
【実施例】転炉−連続鋳造−厚板工程で種々の鋼成分の
鋼板(厚さ20〜100mm)を製造し、その機械的性
質を調査した。EXAMPLES Steel plates (thickness: 20 to 100 mm) of various steel components were produced in a converter-continuous casting-thick plate process, and their mechanical properties were investigated.
【0051】表1に比較鋼とともに本発明鋼の鋼成分
を、表2に鋼板の製造条件および諸特性の調査結果を示
す。Table 1 shows the steel composition of the steel according to the present invention together with the comparative steel, and Table 2 shows the results of examination of the manufacturing conditions and various properties of the steel sheet.
【0052】本発明法に則った成分、組織および製造方
法による鋼板(本発明鋼)は、すべて良好な特性を有す
る。これに対し、鋼成分や製造条件が本発明の限定範囲
を逸脱する比較鋼は、強度、靭性あるいは高温強度が明
らかに劣っている。The steel sheet (steel according to the present invention) having the components, structure and production method according to the present invention all have good properties. On the other hand, the comparative steels whose steel composition and production conditions deviate from the limited range of the present invention are clearly inferior in strength, toughness or high-temperature strength.
【0053】すなわち、比較例21では、Nbは0.1
%程度添加されているものの、C量が高いためExce
ss Nb量が不十分なため、靭性や高温強度に劣る。
比較例22は、やはりExcess Nb量が低いこ
と、および圧延工程における1000℃以下での累積圧
下量が少ないために靭性に劣るとともに高温強度にも劣
る。また、Cu添加量に対してNi添加量が低いため、
熱間圧延時にクラックが生じ、製造が困難となった。比
較例23は、化学量論的にはExcess Nb量がプ
ラス側であるが、本願発明が規定する+0.01%を下
回っているため、靭性、高温強度が本願発明鋼に対し他
の比較例ほどではないが、やや劣っている。比較例24
では、Nb添加量が少ないため、計算上はExcess
Nb量は本願発明範囲にあるが、強度が低く、高温強
度にも劣る。That is, in Comparative Example 21, Nb was 0.1
%, But because of the high C content,
Insufficient ss Nb content results in poor toughness and high-temperature strength.
Comparative Example 22 is also inferior in toughness and high-temperature strength due to the low amount of Excess Nb and the small amount of cumulative reduction at 1000 ° C. or lower in the rolling step. Also, since the amount of Ni added is lower than the amount of Cu added,
Cracks occurred during hot rolling, making production difficult. In Comparative Example 23, although the amount of Excess Nb is stoichiometrically positive, it is lower than + 0.01% specified by the present invention. Not as good, but somewhat inferior. Comparative Example 24
Then, because the amount of Nb added is small, the calculation is Excess
Although the Nb content is within the range of the present invention, the strength is low and the high temperature strength is poor.
【0054】なお、溶接性は、本願発明例、比較例とも
Ceq、PCMを低く設計しているため、いずれもまった
く問題ないことを付記しておく。[0054] Incidentally, weldability, the present invention examples, both Comparative Examples Ceq, since the design low P CM, It may be noted that one no problem even.
【0055】[0055]
【表1】 [Table 1]
【0056】[0056]
【表2】 [Table 2]
【0057】[0057]
【発明の効果】本発明により、溶接性に優れ、かつ強
度、靭性などの基本性能に優れた鋼の提供が可能となっ
た。当該鋼は、付随的に高温強度にも優れ、溶接構造用
鋼としての各種用途向けに優れた性能を発揮する鋼材が
大量かつ安価に供給できるようになった。このような鋼
材を用いることにより、各種の溶接鋼構造物の安全性を
一段と向上させることが可能となった。According to the present invention, it has become possible to provide steel having excellent weldability and excellent basic performance such as strength and toughness. The steel is also excellent in high-temperature strength incidentally, and it has become possible to supply a large amount and inexpensively of a steel material exhibiting excellent performance for various uses as a welded structural steel. By using such a steel material, it has become possible to further improve the safety of various welded steel structures.
フロントページの続き (72)発明者 潮田 浩作 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K032 AA00 AA01 AA02 AA04 AA08 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 AA33 AA35 AA36 AA40 BA01 CA02 CA03 CC02 CC03 CD05 CF02 CF03 Continued on the front page (72) Inventor Hirosaku Shioda 1 Kimitsu, Kimitsu-shi Nippon Steel Corporation Kimitsu Works F-term (reference) 4K032 AA00 AA01 AA02 AA04 AA08 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA27 AA29 AA31 A33 AA35 AA36 AA40 BA01 CA02 CA03 CC02 CC03 CD05 CF02 CF03
Claims (11)
Si:0.6%以下、Mn:0.2〜1.6%、P:
0.02%以下、S:0.01%以下、Al:0.06
%以下、N:0.006%以下、かつ、 Excess Nb=Nb−7.8×[C−(Ti−
3.4N)/4] と定義するExcess Nbが+0.01%以上を満
足するようにNb:0.01〜0.5%、Ti:0.0
05〜0.1%、の範囲内でNb単独またはNbとTi
の両者を含有し、残部が鉄および不可避的不純物からな
ることを特徴とする溶接性に優れた鋼。1. A steel component in mass%, C: 0.1% or less,
Si: 0.6% or less, Mn: 0.2 to 1.6%, P:
0.02% or less, S: 0.01% or less, Al: 0.06
% Or less, N: 0.006% or less, and Access Nb = Nb−7.8 × [C− (Ti−
3.4N) / 4] Nb: 0.01 to 0.5%, Ti: 0.0 so that Excess Nb satisfying + 0.01% or more is satisfied.
Nb alone or Nb and Ti within the range of 0.05 to 0.1%.
Characterized by excellent weldability, characterized by containing both of the above, with the balance being iron and unavoidable impurities.
0.05〜2.0%、Ni:0.05〜1.0%の範囲
でCu添加量の1/2以上、Cr:0.05〜1.0
%、Mo:0.05〜1.0%、の範囲で1種または2
種以上を含有することを特徴とする請求項1に記載の溶
接性に優れた鋼。2. In addition to the above steel components, Cu:
0.05 to 2.0%, Ni: in the range of 0.05 to 1.0%, 1/2 or more of the added amount of Cu, Cr: 0.05 to 1.0
%, Mo: 0.05 to 1.0%, 1 or 2 types
The steel with excellent weldability according to claim 1, comprising at least one kind.
含有することを特徴とする請求項1または2に記載の溶
接性に優れた鋼。3. The composition according to claim 1, wherein one or two kinds of V are contained in the range of 0.005 to 0.1% Ta: 0.005 to 0.1% by mass%. The steel with excellent weldability described in 1.
5%をさらに含有することを特徴とする請求項1〜3の
いずれか1項に記載の溶接性に優れた鋼。4. B: 0.0002 to 0.00% by mass
The steel excellent in weldability according to any one of claims 1 to 3, further containing 5%.
04%、REM:0.0005〜0.004%のいずれ
か1種をさらに含有することを特徴とする請求項1〜4
のいずれか1項に記載の溶接性に優れた鋼。5. Ca: 0.0005 to 0.0% by mass
5. The composition of claim 1, further comprising one of the following: 0.4%, REM: 0.0005 to 0.004%.
The steel excellent in weldability according to any one of the above.
05%をさらに含有することを特徴とする請求項1〜5
のいずれか1項に記載の溶接性に優れた鋼。6. Mg: 0.0002 to 0.0% by mass.
The composition further contains 0.05%.
The steel excellent in weldability according to any one of the above.
成分からなる鋼片または鋳片を1000〜1300℃の
温度範囲に再加熱後、1000℃以下での累積圧下量を
30%以上として720℃以上の温度で圧延を終了し、
その後放冷または700℃以上の温度から600℃以下
の任意の温度まで加速冷却することを特徴とする溶接性
に優れた鋼の製造方法。7. A steel slab or a slab made of the steel component according to any one of claims 1 to 6 is reheated to a temperature range of 1000 to 1300 ° C., and the cumulative rolling reduction at 1000 ° C. or lower is 30. % And finish the rolling at a temperature of 720 ° C or higher,
Thereafter, the method for producing steel having excellent weldability is characterized in that it is left to cool or accelerated cooling from a temperature of 700 ° C. or more to an arbitrary temperature of 600 ° C. or less.
成分からなる鋼片または鋳片を熱間圧延後、Ac3以上
1000℃以下の温度で焼きならしすることを特徴とす
る溶接性に優れた鋼の製造方法。8. A steel slab or a slab made of the steel component according to any one of claims 1 to 6, which is hot-rolled and then normalized at a temperature of Ac 3 or more and 1000 ° C. or less. To produce steel with excellent weldability.
成分からなる鋼片または鋳片を熱間圧延後、Ac3以上
1000℃以下の温度に再加熱後、焼き入れすることを
特徴とする溶接性に優れた鋼の製造方法。9. A slab or a slab made of the steel component according to any one of claims 1 to 6, after hot rolling, reheating to a temperature of 3 to 1,000 ° C. and then quenching. A method for producing steel having excellent weldability, characterized by the following.
残留応力除去の目的で、鋼板をAc1未満の温度で焼き
戻しすることを特徴とする請求項7〜9のいずれか1項
に記載の溶接性に優れた鋼の製造方法。In 10. strength adjustment and improving toughness, or residual stress relief purposes of the steel sheet, according to any one of claims 7-9, characterized in that tempering the steel plate at a temperature of less than Ac 1 A method for producing steel with excellent weldability.
Ac3未満のフェライトとオーステナイトの二相共存域
に再加熱後、放冷またはそれ以上の冷速で600℃以下
の温度まで冷却し、その後さらに必要に応じAc1未満
の温度で焼き戻しすることを特徴とする請求項7〜9の
いずれか1項に記載の溶接性に優れた鋼の製造方法。11. For the purpose of lowering the yield ratio, after reheating a steel sheet to a dual phase coexistence region of a ferrite and an austenite of more than Ac 1 and less than Ac 3 , the steel sheet is allowed to cool to a temperature of 600 ° C. or lower at a cooling rate of more than that. cooled, any one method of manufacturing steel excellent in weldability according to claim 7-9, characterized in that the tempering thereafter further optionally Ac 1 temperature below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000367427A JP2002173734A (en) | 2000-12-01 | 2000-12-01 | Steel having excellent weldability and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000367427A JP2002173734A (en) | 2000-12-01 | 2000-12-01 | Steel having excellent weldability and its production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002173734A true JP2002173734A (en) | 2002-06-21 |
Family
ID=18837855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000367427A Pending JP2002173734A (en) | 2000-12-01 | 2000-12-01 | Steel having excellent weldability and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002173734A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121120A (en) * | 2006-09-04 | 2008-05-29 | Nippon Steel Corp | Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and production process for the same |
JP2008121121A (en) * | 2006-09-04 | 2008-05-29 | Nippon Steel Corp | Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and production process for the same |
WO2010013358A1 (en) | 2008-07-30 | 2010-02-04 | 新日本製鐵株式会社 | High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both |
US8097096B2 (en) | 2006-09-04 | 2012-01-17 | Nippon Steel Corporation | Fire resistant steel excellent in high temperature strength, toughness, and reheating embrittlement resistance and process for production of the same |
CN105714191A (en) * | 2016-05-09 | 2016-06-29 | 武汉钢铁股份有限公司 | Normalized corrosion-resistant wind power steel with yield strength of at least 440 MPa and production method thereof |
CN111705259A (en) * | 2020-04-30 | 2020-09-25 | 上海加宁新材料科技有限公司 | 925A rare earth high-strength alloy steel manufacturing method |
CN111945072A (en) * | 2020-08-26 | 2020-11-17 | 南京钢铁股份有限公司 | S460QLO thick plate for offshore weldable structure and production method |
CN113234999A (en) * | 2021-04-27 | 2021-08-10 | 南京钢铁股份有限公司 | Efficient welding bridge steel and manufacturing method thereof |
CN115449741A (en) * | 2022-09-20 | 2022-12-09 | 武汉钢铁有限公司 | High-magnetic-induction oriented silicon steel produced based on continuous casting and rolling of thin slab and method |
KR20230078898A (en) * | 2021-11-26 | 2023-06-05 | 현대제철 주식회사 | H-shaped steel and method of manufacturing the same |
CN118497591A (en) * | 2024-07-22 | 2024-08-16 | 湖南华菱湘潭钢铁有限公司 | Production method of high-strength and high-toughness steel plate for high-rise building structure |
-
2000
- 2000-12-01 JP JP2000367427A patent/JP2002173734A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008121120A (en) * | 2006-09-04 | 2008-05-29 | Nippon Steel Corp | Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and production process for the same |
JP2008121121A (en) * | 2006-09-04 | 2008-05-29 | Nippon Steel Corp | Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and production process for the same |
US8097096B2 (en) | 2006-09-04 | 2012-01-17 | Nippon Steel Corporation | Fire resistant steel excellent in high temperature strength, toughness, and reheating embrittlement resistance and process for production of the same |
KR101185977B1 (en) * | 2006-09-04 | 2012-09-26 | 신닛뽄세이테쯔 카부시키카이샤 | Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same |
WO2010013358A1 (en) | 2008-07-30 | 2010-02-04 | 新日本製鐵株式会社 | High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both |
US8303734B2 (en) | 2008-07-30 | 2012-11-06 | Nippon Steel Corporation | High strength thick steel material and high strength giant H-shape excellent in toughness and weldability and methods of production of same |
CN105714191A (en) * | 2016-05-09 | 2016-06-29 | 武汉钢铁股份有限公司 | Normalized corrosion-resistant wind power steel with yield strength of at least 440 MPa and production method thereof |
CN111705259A (en) * | 2020-04-30 | 2020-09-25 | 上海加宁新材料科技有限公司 | 925A rare earth high-strength alloy steel manufacturing method |
CN111945072A (en) * | 2020-08-26 | 2020-11-17 | 南京钢铁股份有限公司 | S460QLO thick plate for offshore weldable structure and production method |
CN113234999A (en) * | 2021-04-27 | 2021-08-10 | 南京钢铁股份有限公司 | Efficient welding bridge steel and manufacturing method thereof |
CN113234999B (en) * | 2021-04-27 | 2022-05-20 | 南京钢铁股份有限公司 | Efficient welding bridge steel and manufacturing method thereof |
KR20230078898A (en) * | 2021-11-26 | 2023-06-05 | 현대제철 주식회사 | H-shaped steel and method of manufacturing the same |
KR102674148B1 (en) * | 2021-11-26 | 2024-06-13 | 현대제철 주식회사 | H-shaped steel and method of manufacturing the same |
CN115449741A (en) * | 2022-09-20 | 2022-12-09 | 武汉钢铁有限公司 | High-magnetic-induction oriented silicon steel produced based on continuous casting and rolling of thin slab and method |
CN115449741B (en) * | 2022-09-20 | 2023-11-24 | 武汉钢铁有限公司 | High-magnetic induction oriented silicon steel produced based on sheet billet continuous casting and rolling and method |
CN118497591A (en) * | 2024-07-22 | 2024-08-16 | 湖南华菱湘潭钢铁有限公司 | Production method of high-strength and high-toughness steel plate for high-rise building structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3846729B2 (en) | Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same | |
JP2003160811A (en) | Method for manufacturing tempered high-tensile- strength steel sheet superior in toughness | |
JP2001152248A (en) | Method for producing high tensile strength steel plate and steel pipe excellent in low temperature toughness | |
EP2623625B1 (en) | Steel plate for pipe line, having excellent hydrogen induced crack resistance, and preparation method thereof | |
JP2001288512A (en) | Method of producing high tensile strength steel excellent in toughness and ductility | |
JP4344073B2 (en) | High strength steel excellent in high temperature strength and method for producing the same | |
JP4767590B2 (en) | Production method of low yield ratio high strength steel and low yield ratio high strength steel | |
JP2002173734A (en) | Steel having excellent weldability and its production method | |
JP6684353B2 (en) | Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same | |
JP3981615B2 (en) | Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same | |
JP4362219B2 (en) | Steel excellent in high temperature strength and method for producing the same | |
JP2000256777A (en) | High tensile strength steel plate excellent in strength and low temperature toughness | |
JP2000008123A (en) | Production of high tensile strength steel excellent in low temperature toughness | |
JP4309561B2 (en) | High-tensile steel plate with excellent high-temperature strength and method for producing the same | |
JP4133175B2 (en) | Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same | |
JP2002003983A (en) | Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method | |
JP2000219914A (en) | Seamless steel pipe having fine grain structure and little unevenness of strength | |
JP2000328174A (en) | Wide flange shape excellent in toughness of fillet part and ut defect resisting characteristic and its production | |
JPS63145745A (en) | Hot rolled high tensile steel plate and its production | |
JP2001342520A (en) | Method for manufacturing high tension steel of low yield ratio and superior toughness with little fluctuation of material property | |
KR101899736B1 (en) | Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same | |
JP2002012939A (en) | High tensile steel excellent in hot strength and its production method | |
JP2002285238A (en) | Method for producing high tensile strength steel having excellent toughness and weldability | |
JP3569499B2 (en) | High strength steel excellent in weldability and method for producing the same | |
JP2002088413A (en) | Method for producing high tension steel excellent in weldability and ductility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090310 |